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Coherent structures/motions in turbulence inherently give rise to intermittent signals with sharp peaks, heavy-skirt, and
skewed distributions of velocity increments, highlighting the non-Gaussian nature of turbulence. That suggests that
the spatial nonlocal interactions cannot be ruled out of the turbulence physics. Furthermore, filtering the Navier-Stokes
equations in the large eddy simulation of turbulent flows would further enhance the existing nonlocality, emerging in the
corresponding subgrid scale fluid motions. That urges the development of new nonlocal closure models, which respect
the corresponding non-Gaussian statistics of the subgrid stochastic motions. To this end and starting from the filtered
Boltzmann equation, we model the corresponding equilibrium distribution function with a Lévy-stable distribution,
leading to the proposed fractional-order modeling of subgrid-scale stresses. We approximate the filtered equilibrium
distribution function with a power-law term, and derive the corresponding filtered Navier-Stokes equations. Subse-
quently in our functional modeling, the divergence of subgrid-scale stresses emerges as a single-parameter fractional
Laplacian, (−∆)α(·), α ∈ (0,1], of the filtered velocity field. The only model parameter, i.e., the fractional exponent,
appears to be strictly depending on the filter-width and the flow Reynolds number. We furthermore explore the main
physical and mathematical properties of the proposed model under a set of mild conditions. Finally, the introduced
model undergoes a priori evaluations based on the direct numerical simulation database of forced and decaying ho-
mogeneous isotropic turbulent flows at relatively high and moderate Reynolds numbers, respectively. Such analysis
provides a comparative study of predictability and performance of the proposed fractional model.

I. INTRODUCTION

Due to the remarkable advancements in computational ca-
pabilities over the last decades, large eddy simulations (LES)
have been introduced as a powerful approach in the compu-
tation of turbulent structures1,2. In modeling subgrid scale
(SGS) structures in the LES of turbulent flows, spatially-
filtered representation of a turbulent field is required for a
priori and a posteriori analyses. As a key ingredient in the
development of SGS models in turbulent flows, the statistical
behavior of small scale motions and their cumulative effects
on the evolution of the large scales should be incorporated.
In comprehensive studies, including numerical and empirical
approaches3–7, the intermittent statistical behavior of velocity
gradients and the development of anomalously intense fluc-
tuations were investigated. These studies confirmed the non-
Gaussian statistics of SGS structures and the existence of in-
termittency in the inertial sub-range of turbulence. By mea-
suring the Lagrangian velocity of tracer particles in a turbu-
lent flow, Mordant et al.8 explored the intermittent statistics of
probability distribution functions (PDF) of the velocity time
increments, which is even more highlighted than the corre-
sponding Eulerian spatial increments. Arnéodo et al.9 inves-
tigated the intermittency and universality properties of veloc-
ity temporal fluctuations in highly turbulent flows by quan-
titatively comparing experimental and numerical data. They
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described a stochastic phenomenological modelization in the
entire range of scales, using a multifractal description, which
links Eulerian and Lagrangian statistics. Recently, Buzzicotti
et al.10 performed a priori analyses of statistical characteris-
tics of resolved-to-subfilter scale (SFS) energy transfer. They
quantified the intermittent scaling of the SFS energy trans-
fer as a function of filtering type and described its non-trivial,
anomalous deviations from the classical scaling as a function
of cutoff scale. In fact, the anomalous behavior of turbulent
small scales monotonically deviates from Gaussianity by en-
larging the filter width11–15. The connection between nonlo-
cal interactions and the cascade of energy transfer in turbulent
flows have been widely investigated in [16–18]. Waleffe19

suggested that the nonlocal interactions are a general feature
of the Fourier representation of turbulent energy cascade by
decomposing the velocity field in terms of helical modes.
Accordingly, such nonlocal interactions are effectively rein-
forced by spatial filtering of the flow field, where an artifi-
cial pile-up of large-scale energy is produced. With all this
in mind, filtering a turbulent field incorporates nonlocal in-
teractions of SGS motions into the resolved scales, which is
reflected in heavy-tailed distributions of velocity increments.

Before any discussion on the various strategies of SGS
modeling, the reader is referred to [20–27] for more history
and background on LES of turbulent flows. The SGS model-
ing strategies are categorized into (I) functional and (II) struc-
tural modelings24. In the functional strategies, the closure
problem can be expressed in form of a mathematical oper-
ator, which is acting on the mean velocity field. Such tur-
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bulence models seek only to generate the net kinetic energy
transfer from the resolved to small scales28. However, struc-
tural modeling strategies would approximate the SGS stresses
in terms of the filtered velocity field, where the SGS structures
and statistical properties are recovered from the resolved scale
information. Multifractal modelings were introduced29,30 as a
structural approach to model the underlying intermittent cas-
cading of energy. More specifically, in a study by Burton and
Dahem31, a new approach was presented on the multifractal
modeling of subgrid-scale stresses in LES of turbulent flows
motivated by a priori testing. Subsequently, Rasthofer and
Gravemier32 proposed a new method of SGS modeling from
a multifractal description of the vorticity field. Regarding
the non-Gaussain statistics of small scale motions and nonlo-
cal effects in turbulent flows, Hamilington and Dahem33 ob-
tained a nonlocal closure modeling from a new derivation of
the rapid pressure strain correlation. Recently, Maltba et al.34

presented a new semi-local formulation employing a modi-
fied large eddy diffusivity (LED) approach, which retains the
accuracy of a fully nonlocal approach. It turns out that in for-
mulating SGS models, standard integer-order operators have
commonly been used to mathematically represent the anoma-
lous features of small scale motions.

In addition to the considerable progresses in developing
nonlocal models using standard methods, fractional calculus
appears to be a mathematical tractable tool to describe anoma-
lous phenomena, manifesting in nonlocal interactions, self-
similar structures, sharp peaks, and memory effects (see e.g.,
[35 and 36]). It seamlessly generalizes the notion of stan-
dard integer-order calculus to its fractional-order counterpart,
which leads to a broader class of mathematical models. Cush-
man and Moroni37 developed a theory for modeling anoma-
lous dispersion, which relied on the intermediate scattering
function. In another experimental work38, they obtained the
intermediate scattering function using the Lagrangian trajec-
tories for a conservative tracer in a porous medium. Based on
the anomalous characteristics of fluctuation processes in tur-
bulence, several studies were conducted to explore the non-
local modeling of turbulent flows. Chen39 proposed a frac-
tional Laplacian stochastic equation to describe intermittent
cascade of fully-developed turbulence. Furthermore, Chur-
banov and Vabishchevich40 presented a new fractional model
to describe turbulent fluid flows in a rectangular duct. An-
derson et al.41 presented a fractional Fokker-Planck model as
a viable candidate for describing nonlocal features of plasma
turbulence by using numerical means for varying degree of
fractionality of the stable Levy distribution. Recently, Egolf
and Hutter42 proposed nonlocal turbulent models in the form
of fractional operators to generalize Reynolds shear stresses
in local zero-equation models. Epps and Cushman-Roisin
in43 derived the Navier-Stokes (NS) equations with fractional
Laplacian starting from the Boltzmann transport equation. In
their study, they modeled large displacements of fluid particles
by Lèvy α-stable distributions36. Moreover, great progresses
have been made towards the theories and numerical solutions
to fractional partial differential equations (FPDEs). Samiee et
al.,44,45 developed a unified Petrov–Galerkin spectral method
for a class of FPDEs with two-sided derivatives employ-

ing the so-called Jacobi poly-fractonomials. Zayernouri and
Karniadakis46 introduced Jacobi poly-fractonomials as a new
family of basis/test functions, which are the explicit eigen-
functions of fractional Strum-Liouville problems in bounded
domains of the first and second kind. Zhou et al.47 developed
two efficient first- and second-order implicit-explicit (IMEX)
methods for accurate time-integration of stiff/nonlinear frac-
tional differential equations with fractional order α ∈ (0,1].
The reader is referred to [48–55] and the references given
therein for more details on fractional modeling of anomalous
transport.

In comparison with the recent advances in SGS model-
ing of non-Gaussian features, the development of fractional
transport modeling of turbulent structures is still at its very
early stage. In the present work, we aim to open up a new
perspective to functional modeling of the SGS stresses, em-
ploying the fractional calculus. This approach implies that
we never question the correctness of Navier-Stokes (NS) sub-
ject to the Newtonian assumption. Starting from the Boltz-
mann transport equation, we propose to approximate the fil-
tered Maxwellian equilibrium distribution function of velocity
with a Lévy α-stable distribution. Accordingly, we derive the
filtered NS equations, in which the divergence of SGS stresses
is approximated by the fractional Laplacian of filtered veloc-
ity field. From a physical point of view, (any generic) filtering
the flow field in LES would further contribute to the nonlo-
cal effects, which are rigorously modeled to appear as a frac-
tional Laplacian term in the filtered NS equations. Certainly,
by decreasing the filter width, the super-diffusive fractional
operator gradually vanishes in compliance with the induced
nonlocality. Here, we briefly highlight the main contributions
of this work as follows:

• We develop a new functional approach to model the SGS
stresses by employing the fractional Laplacian of the filtered
velocity within the Boltzmann transport framework. The frac-
tional exponent in the model arises from the heavy-tailed be-
havior of the SGS stresses.

• We show that the model is frame invariant and constrain it
to a set of conditions to preserve the second-law of thermody-
namics.

• We perform the a priori studies to assess performance of
the model primarily by the correlation and regression coef-
ficients utilizing the results of direct numerical simulation
(DNS) for three-dimensional forced and decaying homoge-
neous isotropic turbulence (HIT) problems. We also investi-
gate the nonlocality of proposed model, as a hallmark of frac-
tional operators, in a range of filter widths.

The paper is organized as follows: in section 2, we intro-
duce some preliminaries on fractional calculus. We outline
the problem and discuss the governing equations in section 3.
In section 4, we develop the fractional model from the Boltz-
mann transport equation and study its mathematical and phys-
ical properties. In section 5, we provide the details of a priori
analysis for three-dimensional forced and decaying HIT and
study performance of the proposed fractional model. Finally,
we summarize the findings with conclusion.
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II. PRELIMINARIES ON FRACTIONAL LAPLACIAN

For modeling SGS stresses in isotropic turbulent flows, the
heavy-tailed behavior of Lévy α-stable distributions are highly
in demand due to their success in capturing singularities and
modeling anomalous phenomena (see e.g., [4]). From the
stochastic point of view, the dynamics of the SGS features,
which is modeled by an isotropic Lévy α-stable process at the
microscopic level, can be upscaled by a fractional Laplacian
operator. Such operator provides a rigorous tool for the math-
ematical modeling of nonlocal phenomena56. We denote by
(−∆)α the fractional Laplacian with 0 < α ≤ 1,

(−∆)α u(x) =
1

(2π)d

∫
Rd
|ξ|2α

(
u, e−iξ·x

)
L2eiξ·xdξ

= F−1
{
|ξ|2αF

{
u
}
(ξ)
}
, (1)

where F and F−1 represent the Fourier and inverse Fourier
transforms for a real-valued vector ξ = ξ j, j = 1, 2, 3, respec-
tively, and i denotes the imaginary unit. Moreover, (·, ·)L2

denotes the L2-inner product on Rd , d = 1,2,3. The Fourier
transform of the fractional Laplacian is then obtained as

F
{
(−∆)α u(x)

}
= |ξ|2αF

{
u
}
(ξ). (2)

It is worth noting that the integer-order Laplacian is recovered
when α = 1. Considering the definition of α-Riesz potential
as

Iα u(x) =Cd,−α

∫
Rd

u(x)−u(s)
|x−s|d−2α

ds, (3)

the fractional Laplacian can also be expressed in the integral
form as

(−∆)α u(x) =Cd,α

∫
Rd

u(x)−u(s)
|x−s|2α+d ds, (4)

where Cd,α = 22α Γ(α+d/2)
πd/2Γ(−α)

for α ∈ (0,1] and Γ(·) repre-

sents Gamma function57. The α-Riesz potential is also
formulated58 as

Iα u(x) = (−∆)−α u(x) = F−1
{
|ξ|−2αF

{
u
}
(ξ)
}
. (5)

Considering (5), the Riesz transform is then given by

R ju(x) = ∇ j I1u(x) = F−1
{
−

iξ j

|ξ|
F
{

u
}
(ξ)
}
, (6)

which is dealt with in formulating the SGS stresses in section
IV.

III. GOVERNING EQUATIONS

In the mathematical description of incompressible turbulent
flows, the primitive variables, including the velocity and the
pressure fields are represented by V (x, t) = (V1,V2,V3) and
p(x, t) for x= xi and i= 1,2,3, respectively. In the following,

the flow field variables are governed by the continuity and the
Navier-Stokes (NS) equations, given as

∂Vi

∂ t
+

∂Vi Vj

∂x j
=− 1

ρ

∂ p
∂xi

+
1
ρ

∂σi j

∂x j
, i, j = 1,2,3, (7)

where ρ denotes the density and the viscous stress tensor σi j

is defined as σi j = µ ( ∂Vi
∂x j

+
∂V j
∂xi

), in which µ represents the
dynamic viscosity for a Newtonian fluid.

In the LES of turbulent flows, the fluid motions are resolved
down to some prescribed length scale, filter width (L ), which
decomposes the velocity field, V , into the filtered (resolved),
V̄ , and the residual, v, components. The filtered velocity field
is obtained by convolution, where V̄ = G∗V and G = G(x)
denotes the kernel of spatial filtering in the convolution1,59. To
produce the filtered velocity field and the true values of SGS
stresses, we can adopt any generic isotropic filtering tech-
nique. Accordingly, the filtered NS equations in the index
form are derived as

∂V̄i

∂ t
+

∂V̄i V̄j

∂x j
=− 1

ρ

∂ p̄
∂xi

+
∂

∂x j
(ν

∂V̄i

∂x j
)−

∂T R
i j

∂x j
, (8)

where the kinematic viscosity is represented by ν and the
SGS stress tensor, T R

i j = ViVj − V̄iV̄j, which must be closed
in terms of the filtered flow variables. As the most pop-
ular eddy-viscosity closure, we exemplify the Smagorinsky
model (SMG), introduced in [60]. The SGS stresses in the
SMG are modeled by T R

i j =−2νRS̄i j, where S̄i j =
∂V̄i
∂x j

+
∂V̄ j
∂xi

,

νR = (CsL )2 |S̄|, and |S̄|=
√

2S̄i jS̄i j.

IV. MATHEMATICAL FRAMEWORK

Boltzmann-based frameworks offer a great potential in
building transport models at the microscopic level due to their
inherent simple mechanism in simulating the interactions of
fluid particles through streaming and collision operators. In
this section, we develop a new framework to reconcile closure
modeling in the Boltzmann transport and the NS equations.
Such framework is of great scientific importance specifically
for giving a kinetic statistical description of turbulent motions.

A. Boltzmann Transport Equation (BTE)

The kinetic theory aims to describe the motion of particles
in a gas from a microscopic point of view. The state of the gas
is obtained by a distribution function f (t,x,u) in the particle
phase space such that f (t,x,u)dxdu is defined as the mass
of gas particles in phase space within volume dxdu centered
on x, u at time t, where x and u represent gas particle’s loca-
tion and speed, respectively. We note that x, u, and t are in-
dependent variables. Let f = f (t,x,u) : R+×Rd ×Rd → R
(see e.g., [43 and 61]). Without loss of generality, we take
d = 3. Then ensemble-averaged macroscopic flow variables
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are given by:

ρ =
∫
Rd

f (t,x,u)du, (9)

Vi =
1
ρ

∫
Rd

ui f (t,x,u)du, i = 1,2,3, (10)

where ρ and Vi denote the fluid density and the i-th compo-
nent of flow velocity field in the NS equations, respectively.
The accurate description of non-reacting ideal gas particles is
governed by the Boltzmann transport equation61,62, which is
written as

∂ f
∂ t

+u ·∇ f =
(∂ f

∂ t

)
coll ≡

f − f eq

τ
, (11)

where f eq = f eq(t,x,u) represents the equilibrium distri-
bution function and τ is the relaxation time, which is the
required time for fluid particles to reach equilibrium state.
The left-hand side of (11) represents the streaming of non-
interacting particles and the right-hand side expresses the col-
lision term due to two-particle interactions61. Assuming that
the system of gaseous particles is in thermodynamic equilib-
rium, the equilibrium distribution is given by the Maxwell
distribution63,

f eq(∆) =
ρ

U3 F(∆), (12)

where F(∆) = e−∆/2, ∆ = |u−V |2
U2 and U denotes the agitation

speed. For instance, for air at the room-temperature T = 15◦C,
we get U =

√
3kBT/m = 502m/s, in which kB, T , and m

represent the Boltzmann constant, room temperature, and the
molecular weight of air43, respectively. It should be pointed
out that F(∆) is an isotropic function with respect to the ve-
locity variables. Moreover, we define L as the macroscopic
characteristic length, l as the microscopic characteristic length
associated with the Kolmogorov length scale, and λ as the
mean-free path, which is the average distance, traveled by a
particle between successive collisions. Let take x′ the loca-
tion of particles before scattering, where x is the current lo-
cation. Then, x′ = x− δx and δx = (t− t ′)u, in which we
assume that u remains constant during t− t ′. As discussed in
[43], the analytical solution for the mass probability distribu-
tion function is

f (t,x,u) =
∫

∞

0
e−s f eq(t− sτ,x− sτu,u)ds

=
∫

∞

0
e−s f eq

s,s(∆)ds, (13)

where s≡ t−t ′
τ

and f eq
s,s(∆) = f eq(t−sτ,x−sτu,u). To estab-

lish a mathematical framework for deriving the NS equations
from the Boltzman equation in (11), we restrain our attention
to some necessary assumptions, following [43].

Assumption 1. The underlying assumptions for deriving the
NS equations from BTE are:
• The density, ρ , and the thermal agitation, U, speed are con-
stant,
• s∼ O(1),
• The mean flow velocity is less than the thermal agitation
speed, i.e., |V | �U,
• λ � l� L and τ � L

|V̄ | .

B. Filtered Boltzmann Transport Equation (FBTE)

To proceed for the LES of a turbulent flow, we can decom-
pose f to the filtered (resolved) and the residual (unresolved)
values as f = f̄ + f ′. Recalling from section 3 that overbar
represents the spatial isotropic filtering, i.e. f̄ = G∗ f , where
G is the kernel of spatial filtering with the filter width, L .
Then, we formulate the filtered BTE (FBTE) according to

∂ f̄
∂ t

+u ·∇ f̄ =
f̄ − f eq(∆)

τ
. (14)

We also define ∆̄ := |u−V̄ |2
U2 . Following (13), we obtain the

corresponding analytical solution to (14) in terms of f eq(∆)
as

f̄ (t,x,u) =
∫

∞

0
e−s f eq

s,s(∆)ds, (15)

where f eq
s,s(∆) = f eq

(
∆(t− sτ,x− sτu,u)

)
.

It is well-known that the nonlinear term is responsible for
the transfer of kinetic energy in the cascade of turbulent ki-
netic energy from large to small scale turbulent motions. In
principle, the SGS stresses originate from the convection term
in the NS equations. It accordingly appears natural to recog-
nize the advection term, u ·∇ f , in (11) as the resource of tur-
bulent motions. Considering (15), the streaming and collision
terms in (14) can be revised in terms of f eq

s,s(∆), which plays a
key role in the development of a model for the SGS stresses.
More specifically, the effects of highly vortical flow field on
the filtered shifted equilibrium, f eq

s,s(∆), is manifesting in the
advection term in (14), which gives rise to the SGS stresses.
Clearly, the way we treat f eq

s,s(∆) can lead us to the develop-
ment of a closure model in the LES of turbulent flows. It is
very important to note that f eq(∆) is not equal to the Gaussian
distribution of ∆̄, i.e.,

f eq(∆) =
ρ

U3 e−∆/2 6= ρ

U3 e−∆̄/2 = f eq(∆̄). (16)

A common practice in dealing with f eq(∆) is to follow
the eddy-viscosity approach (see e.g., [64–66]). Generally,
the residual scale motions can be modeled by approximating
the collision term through a modified relaxation time, τ?. In
an analogy with the standard Smagorinsky SGS model, the
Boltzmann equation with the modeled collision term64,67 is
proposed as

∂ f̄
∂ t

+u ·∇ f̄ =
f̄ − f eq(∆̄)

τ?
, (17)

where τ? accounts for the difference between f eq(∆) and
f eq(∆̄). Interestingly, τ? is inherently associated with the tur-
bulent viscosity in the Smagorinsky model.

Here, we outline a new framework to develop an LES mod-
eling strategy from the BTE using a non-Gaussian stochas-
tic process. Without loss of generality, we consider G(r) =
1
L H( 1

2L − |r|) as the convolution kernel of box filtering,
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where H(·) denotes a Heaviside step function. Therefore,

f eq(∆)=G∗ f eq(
∆(t,u,x)

)
=
∫

R f

G(r) f eq(
∆(t,u,x−r)

)
dr,

(18)
where R f = [−L

2 , L
2 ]3. Technically, f eq(∆) represents a sum-

mation of exponential functions, which leads to its multi-
exponential characteristics especially when L gets increased.
That is, by enlarging L , we are incorporating more infor-
mation into f eq(∆) according to (18), which essentially in-
duces more heaviness to the statistical behavior of f eq(∆).
Thus, f eq(∆) deviates more and more from the Gaussianity
of f eq(∆) (see e.g., [10, 12, and 68]). It should be noted that
we are permitted to employ any generic type of filtering.

For the purpose of modeling f eq(∆), it is understood from
[69 and 70] that the multi-exponential distributions can be
fitted with a power-law model, in which the discrepancy be-
tween the model and true values can be reduced by increasing
the number of exponential functions. Accordingly, we pro-
pose to model f eq(∆)− f eq(∆̄) with a power-law distribution,
which follows as

f eq(∆)− f eq(∆̄)' f Model(∆̄) = Cβ f β (∆̄), (19)

where f β (∆̄) = ρ

U3 Fβ (∆), in which Fβ (∆) denotes an
isotropic Lévy β -stable distribution. We assume Cβ is a
real-valued constant number. Moreover, we consider β ∈
(−1− d

2 ,−
d
2 ) and d = 3 represents the dimension of physi-

cal domain.

Remark 1. Unlike the fractional exponent43, β relies not only
on the thermodynamic properties and boundary conditions,
but also it is a function of Taylor Reynolds number, Reλ (de-
fined further in Table I), and L . It is also worth mentioning
that the power-law distribution can be well-suited in the mod-
eling of multi-exponential functions if the filter width is chosen
large enough to incorporate nonlocal interactions.

Therefore, we propose to model f eq(∆) in the collision term
by using an isotropic Lévy β -stable distribution. Therefore,
the FBTE is approximated by

∂ f̄
∂ t

+u ·∇ f̄ =
f̄ − f eq(∆̄)+ f eq(∆̄)− f eq(∆)

τ

' f̄ − f eq(∆̄)− f Model(∆̄)

τ
. (20)

For the sake of simplicity, we take f ∗(∆̄) = f eq(∆̄) +
f Model(∆̄). In comparison to the eddy-viscosity models, we
approximate the collision term by replacing f eq(∆) by f ∗(∆̄)
rather than modifying τ , which benefits from incorporating
nonlocal interactions in turbulent flows.

C. Derivation of the FSGS model

The macroscopic continuum variables, associated with (8),
can be expressed in terms of filtered distribution function in

(20) as

ρ̄ =
∫
Rd

f̄ (t,x,u)du, (21)

V̄i =
1
ρ

∫
Rd

ui f̄ (t,x,u)du, i = 1,2,3, (22)

where ρ = ρ̄ for an incompressible flow. It follows from [43
and 71] that by multiplying both sides of (20) by a collisional
invariant X = X (u) and then integrating over the kinetic
momentum, we attain∫

Rd
X
(∂ f̄

∂ t
+u ·∇ f̄

)
du=

∫
Rd

X
( f̄ − f ∗(∆̄)

τ

)
du, (23)

where the choices of X = 1, u lead to the conservation of
mass and momentum equations, respectively. As noted in
[72], due to the microscopic reversibility of the particles (the
collisions are taken to be elastic),

∫
Rd X

( f̄− f ∗(∆̄)
τ

)
du = 0.

This allows (23) to be found as∫
Rd

(
∂ f̄
∂ t

+∇ · (u f̄ )
)

du = 0 (24)

=⇒ ∂ρ

∂ t
+∇ · (ρV̄ ) = 0,

∫
Rd

(
u

∂ f̄
∂ t

+∇ · (u2 f̄ )
)

du = 0 (25)

=⇒ ρ
∂ V̄

∂ t
+∇ ·

∫
Rd
u2 f̄ du= 0,

in which u is independent of t and x. Reminding that the
filter convolution kernel, G = G(x), is independent of t and u
and thereby, Assumption 1 still holds. In (25), by adding and
subtracting V̄ V̄ , the advection term, u2, is evaluated as∫

Rd
u2 f̄ du=

∫
Rd
(u− V̄ )(u− V̄ ) f̄ du+

∫
Rd
V̄ V̄ f̄ du

=
∫
Rd
(u− V̄ )(u− V̄ ) f̄ du+ρV̄ 2. (26)

Plugging (26) into (25), we obtain

ρ

(
∂ V̄

∂ t
+∇ · V̄ 2

)
=−∇ · ς, (27)

where

ςi j =
∫
Rd
(ui−V̄i)(u j−V̄j) f̄ du. (28)

It is worth mentioning that the Cauchy and filtered SGS
stresses arise from ςi j. Considering (15), we formulate ςi j
in (28) as

ςi j =
∫
Rd

∫
∞

0
e−s(ui−V̄i)(u j−V̄j) f ∗s,s(∆̄)dsdu, (29)

where f Model
s,s := f Model

(
∆̄(t − sτ,x − sτu,u)

)
, f eq

s,s :=
f eq
(
∆̄(t − sτ,x − sτu,u)

)
, thus, f ∗s,s := f ∗

(
∆̄(t − sτ,x −

sτu,u)
)
. In Appendix, we prove that the temporal shift can
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be dropped from (29) following the derivations of fractional
NS equations43. Consequently, ςi j in (29) can be simplified to

ςi j =
∫
Rd

∫
∞

0
e−s(ui−V̄i)(u j−V̄j) f eq

s (∆̄)dsdu (30)

+
∫
Rd

∫
∞

0
e−s(ui−V̄i)(u j−V̄j) f Model

s (∆̄)dsdu.

According to the kinetic definition of static pressure, p =
ρ U2, we decouple ςi j as

ςi j =−p̄δi j +Ti j, (31)

where

− p̄δi j =
∫
Rd
(ui−V̄i)(u j−V̄j) f ∗(∆̄)du

∫
∞

0
e−sds (32)

and Ti j = T Shear
i j +T R

i j denotes the sum of shear stress ten-
sor, T Shear

i j , and the SGS stress tensor, T R
i j . It is worth not-

ing that in (32) when i 6= j, (ui−V̄i)(u j−V̄j) f ∗(∆̄) represents
an odd function of ui and u j; consequently,

∫
Rd (ui− V̄i)(u j−

V̄j) f ∗(∆̄)du = 0. Considering f ∗s (∆̄) = f ∗(∆̄) + ( f ∗s (∆̄)−
f ∗(∆̄)), Ti j is then obtained as

Ti j =
∫

∞

0

∫
Rd
(ui−V̄i)(u j−V̄j)( f ∗s (∆̄)− f ∗(∆̄))e−sduds.

(33)
By ascribing the Gaussian distribution f eq(∆̄) to T Shear

i j and
the isotropic Lévy β -stable distribution, f Model(∆̄), to T R

i j , Ti j
in (33) is decomposed to

T Shear
i j =

∫
∞

0

∫
Rd
(ui−V̄i)(u j−V̄j) (34)

×( f eq
s (∆̄)− f eq(∆̄))e−sduds,

T R
i j =

∫
∞

0

∫
Rd
(ui−V̄i)(u j−V̄j) (35)

×( f Model
s (∆̄)− f Model(∆̄))e−sduds

= Cβ

∫
∞

0

∫
Rd
(ui−V̄i)(u j−V̄j)( f β

s (∆̄)− f β (∆̄))e−sduds.

In Appendix, we discuss the evaluations of T Shear
i j and T R

i j
in terms of the macroscopic quantities, including ρ and V̄ .
Eventually, the shear stresses are given by

T Shear
i j = µ

(
∂V̄i

∂x j
+

∂V̄j

∂xi

)
, (36)

where µ = ρU2τ denotes the kinematic viscosity. Further-
more, we formulate the divergence of SGS stress tensor as

(∇ ·T R)i =
ρ(Uτ)2α

τ
Γ(2α +1)Cα

∫
Rd

V̄i(x
′)−V̄i(x)

|x′−x|2α+d dx′,

(37)
where α = −β − d/2. Regarding the definition of fractional
Laplacian given in (4), we can rewrite equation (37) as

(∇ ·T R)i = µα(−∆)αV̄i, (38)

in which µα = ρ(Uτ)2α

τ
Γ(2α +1)Cα and Cα = 22α Γ(α+d/2)

πd/2Γ(−α)
Cα

and Cα is a real-valued constant. Therefore, the filtered NS

equations, developed from the filtered kinetic transport equa-
tion, is described by

∂V̄i

∂ t
+

∂V̄i V̄j

∂x j
=− 1

ρ

∂ p̄
∂xi

+ν∆V̄i−να(−∆)αV̄i, (39)

where α ∈ (0,1], να = µα

ρ
. With a proper choice of α =

α(Reλ ,L ), in which α|L=0 = 1, the FSGS model is able
to capture the heavy-tailed distribution of the SGS quanti-
ties and predict the corresponding high-order statistical mo-
ments. By setting L = 0, we obtain να=1 = 0, and hence
να(−∆)αV̄i = 0, which evidently recovers the exact NS equa-
tions, given in (7).

Remark 2. In [43], Epps and Cushman-Roisin evaluated the
fractional NS equations from the BTE by replacing f eq(∆) as
a Gaussian distribution with a Lévy β -stable distribution and
splitting the jumps of particles into small and large scales.
From this perspective, the fractional exponent, α , in the frac-
tional NS equations is introduced only as a function of fluid
properties and boundary conditions. Unlike that, we devel-
oped the proposed fractional SGS model from the FBTE by
approximating f eq(∆)− f eq(∆̄) with a Lévy-β stable distribu-
tion, in which f eq(∆) =G∗ f eq(∆) and G=G(x). Besides, we
found that the factional exponent depends on the flow proper-
ties, Reλ , and also L . Therefore, by setting L = 0 we recover
the standard NS equations at any Reλ .

From the Fourier definition of fractional Laplacian and the
Riesz transform in Section II, it is straightforward to verify
that

F
{
(−∆)αV̄j

}
= iξi

(
− iξi

|ξ|

)
(|ξ|2)α− 1

2 F
{

V̄j

}
, (40)

which leads to

(−∆)α V̄ = ∇ j(R j(−∆)α− 1
2 V̄ ). (41)

Therefore, we obtain

∇ ·T R = ∇ · (R(−∆)α− 1
2 V̄ ). (42)

Using (42), we can find the equivalent form of the SGS stress
tensor as

T ∗
i j = T R

i j +C =
1
2
(R j(−∆)α− 1

2 V̄i +Ri(−∆)α− 1
2 V̄j), (43)

where C is a real-valued constant. T ∗
i j is dealt with later in

section V in the computation of the correlation coefficients.

Remark 3. As described earlier in (2), F
{
(−∆)α V̄

}
=

|ξ|2αF
{
V̄
}

. Similar to the eddy-viscosity models, ∇ ·T R

can be explicitly derived in the Fourier domain, hence main-
taining the high-order accuracy of scheme.

D. Physical Properties

In order to ensure that the developed FSGS model is physi-
cally and mathematically consistent with the filtered NS equa-
tions, we introduce a mild condition for the model in accor-
dance with the second law of thermodynamics and also exam-
ine the frame invariant modeling as follows.
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1. Second-law of Thermodynamics

The contribution of filtered momentum equation in the en-
tropy production rate is formulated in [73] as

Ṡprod =
1
T

(
T Shear : ∇V̄ +T R : ∇V̄

)
, (44)

where T represents the temperature of flow and “:” denotes
a double dot product operator. In thermodynamic analysis of
the exact NS equations74, it is proven that µ > 0, in the de-
scription of T Shear

i j = µ

(
∂V̄i
∂x j

+
∂V̄ j
∂xi

)
. Regarding µ > 0 and

T R = R(−∆)α− 1
2 V̄ in (42), the underlying coefficient in the

FSGS model, µα , should satisfy

µα ≤ µ min

∣∣∣∣∣ ∇V̄ : ∇V̄

(R(−∆)α− 1
2 V̄ ) : ∇V̄

∣∣∣∣∣ , (45)

to ensure the positivity of entropy generation rate.

2. Frame Invariance

The SGS stresses and their divergence are separately proven
to be frame invariant75,76, which contribute to invariant char-
acteristics of the NS equations. In order to reproduce all lo-
cal and nonlocal turbulent solutions in the LES of turbulence,
SGS models should undergo certain restrictions to follow such
invariant properties; otherwise, the value of turbulent stresses
may change with any frame movement.

It is apparent that in the FSGS model, µα is frame invari-
ant. Additionally, as a generator of Lévy-stable processes, the
fractional Laplacian operator is proven to be rotationally and
Galilean invariant (see [77 and 78]); therefore, we do not need
to impose any additional constraint on the FSGS model.

V. A PRIORI ANALYSIS OF THE FRACTIONAL SGS
MODEL

We perform a priori tests using DNS database to study the
performance and capability of the proposed model in captur-
ing anomalous behavior of SGS quantities. To pursue the a
priori evaluations, we introduce two primary cases: three-
dimensional forced and decaying homogeneous isotropic tur-
bulent flows with periodic boundary conditions as follows.

Case (I): Forced HIT

Forced HIT is a canonical benchmark in studying the per-
formance of subgrid-scale models. This test case has the
obvious advantage of allowing the statistical features to be
approximately stationary. Here, the corresponding computa-
tional domain is specified as Ω = [0,2π]3, which is uniformly
discretized on a Cartesian grid using 10243 grid points. The
Johns Hopkins Turbulence Databases (JHTDB) has provided

TABLE I: Computational parameters and statistical features
of a forced HIT problem, provided by JHTDB

Reλ =
u′rmsλ

ν
u′rms =

√
2
3 Etot Etot =

〈
v′i v′i
〉

ν ε = 2ν
〈
S̄i jS̄i j

〉
(m/sec) (m2/sec2) (m2/sec) (m2/sec3)

437 0.686 0.93 1.85×10−4 9.28×10−2

TABLE II: Micro-scale statistical characteristics of
turbulence for the applied initial condition in DNS of

decaying HIT.

Reλ u′rms K ν ε L τL

(m/sec) (m2/sec2) (m2/sec) (m2/sec3) (m) (sec)

66 0.186 0.052 10−3 4.17×10−3 0.275 1.478

public access to DNS database of a forced isotropic homo-
geneous turbulent flow, which is characterized by the micro-
scale statistical properties presented in Table I. For more in-
formation, the reader is referred to [79 and 80].

In the a priori assessments of the FSGS model, the filtered
velocity fields are obtained from the DNS data by using a
three-dimensional box filtering, in which we set Lδ = L

2δ
= 2 j

for j = 0, · · · ,5, where L and δ represent filter and grid
widths, respectively.

Case (II): Decaying HIT

In terms of a priori tests, the DNS of decaying HIT set the
ground to evaluate the modeling capabilities of FSGS while
Reλ experiences a decaying process. Furthermore, the DNS
dataset of decaying HIT gives us the opportunity to conduct
a series of a priori tests to evaluate the performance of the
proposed model for a wider range of Reynolds numbers.

Similar to Case (I), the computational domain is chosen to
be the cube of Ω = [0,2π]3 with the periodic boundary condi-
tions. We start from a three-dimensional fully-developed HIT
as the initial condition, which was previously obtained from
the DNS of a forced HIT. The skewness and flatness of the
velocity derivatives for the initial condition data are approxi-
mately −0.5 and 4.0, respectively. Table II shows the micro-
scale statistical properties of the initial condition, which are
described in Table I. It should be mentioned that L and τL

represent the integral length scale and the eddy turnover time,
respectively.

Further, we conduct the numerical simulation of decay-
ing HIT using the incompressible Navier-Stokes solver of
NEKTAR++, which is an open-source spectral/hp element
framework81,82. Using a C0-continuous Galerkin projection,
the discretized domain consists of 643 uniform tetrahedral el-
ements and the fifth-order modified polynomials, p = 5, as
the basis functions within each element. In other words, our
computational domain would be a uniformly discretized cube
with 2563 grid points. The applied solver works based on the

http://turbulence.pha.jhu.edu
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(a) Normalized kinetic energy and dissipation rate

(b) Taylor micro-scale Reynolds number

FIG. 1: Time evolution of (a) K(t ′)/K0, ε(t ′)/ε0, and (b)
Reλ (t ′) during the DNS of decaying HIT

velocity-correction method and for time integration we use the
second-order IMEX scheme. Let kmax and η = (ν3/ε)1/4 de-
note the maximum wave number of turbulence and the Kol-
mogorov length scale, respectively. As a measure of ac-
curacy, we evaluate kmaxη > 2.6, which ensures that Kol-
mogorov scale motions are well-resolved. Figure 1 depicts
the time evolution of normalized turbulent kinetic energy,
K(t ′)/K0, normalized dissipation rate, ε(t ′)/ε0, and Reλ (t ′),
where t ′ = t/τL is the dimensionless time and K0 = K(t ′ =
0), ε0 = ε(t ′ = 0), and τL are the values reported in Table
II. The kinetic energy is monotonically decaying in Figure 1
while the dissipation rate first experiences an increase up to
approximately two large eddy turnover times, t ′ ≈ 2, and later
monotonically decays. The decay of dissipation rate occurs
when the energy spectrum starts to completely decay at the
entire wavenumbers, which is consistent with the physics of
decaying HIT problems1. To conduct the a priori analysis
of Case (II), we collect the velocity field data, starting from
t ′ ≈ 2 , where Reλ ≈ 45, and we set Lδ = j for j = 1, · · · ,15.

A. Estimation of Fractional Exponent α

To achieve a high degree of accuracy and performance in
the FSGS model, the model parameters are considered to be
a function of Lδ and Reλ . By assuming Cα as a real-valued
function of α in (19), there is only one adjustable model pa-
rameter, α , given in (39). Conventionally, the correlation

FIG. 2: να versus α for ν = 1.85×10−4 in Case (I) and
ν = 10−3 in Case (II)

and regression coefficients are known as the primary tools
in a priori tests for tuning the parameters associated with
an SGS model. Following [83], we denote by ρi ∈ [−1, 1]
and Ri for i = 1,2,3 the correlation and regression coeffi-
cients between [∇ ·T R]DNS

i from the filtered DNS data and
[∇ ·T R]FSGS

i from the FSGS model, respectively. Moreover,
the correlation coefficient associated with a component of
SGS stresses, T R

i j , is indicated by ρi j with dual subscripts,
where i, j = 1,2,3. Since the FSGS model is strictly limited to
access the straight form of SGS stresses, we employ the equiv-
alent SGS stresses, T ∗

i j , given in (43) to attain ρi j. Therefore,
ρi j = ρ (T ∗

i j ,T
DNS

i j ) = ρ (T R
i j ,T

DNS
i j ), where T DNS

i j denotes
the SGS stress tensor obtained from the DNS data.

Technically, the proper choice of α can be made by looking
at a range of α , in which we obtain the relatively largest values
of ρi while the corresponding Ri is around 1. As a rule of
thumb, Cα should be designed such that Ri ≈ 1 occurs, where
the values of ρi are relatively maximum. With this in mind,
we adopt Cα = c̄α2, where c̄ = 1500. Figure 2 illustrates the
variation of να versus α ∈ [0,1] for the specified properties of
Case (I) and Case (II) in Tables I and II at room temperature.

To estimate the optimal fractional exponent, αopt , in the
case of forced HIT problem (Case (I)), we perform a compar-
ative study of ρi and Ri versus Lδ by carrying out several a
priori tests. In Figure 3a, we illustrate ρi and Ri for uniformly
distributed α ∈ [0,1] at the specific Lδ = 8 for i = 1,2,3.
It is important to note that the values of αopt , obtained from
the evaluations in each direction, can be approximately repre-
sented by the same value. Accordingly, we reduce the evalu-
ation of αopt to only the first direction as presented in Figure
3b. After running enough test cases, we show the variations
of αopt versus Lδ in Figure 4. It reveals that enlarging Lδ

accelerates the reduction of αopt toward the smaller values.
Recall that Reλ remains approximately unchanged over time
in forced HIT problems, hence, αopt is primarily relying on
Lδ .

In a similar fashion, we perform a priori tests of the FSGS
model using the dataset of Case (II) for the purpose of cal-
ibrating αopt to well-describe the non-Gaussian features of
the SGS stresses. Such analysis also provides a platform for
studying the statistical behavior of the FSGS model regarding
a range of Reλ . Using the Kriging method84 from 135 di-
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(a) Lδ = 4

Lδ = 2 Lδ = 8

(b)

Lδ = 32

FIG. 3: Variation of the correlation coefficient, ρi, denoted by N, and the regression coefficient, βi, denoted by V, in terms of
the fractional exponent, α ∈ (0,1) using the DNS database of Case (I) for (a) i = 1,2,3 at Lδ = 4, and (b) i = 1 at Lδ = 2,8,32

FIG. 4: αopt versus Lδ for the Case (I), of properties are
given in Table I

rect evaluations, we approximate a high-resolution surrogate
of αopt , which is presented as a function of Lδ and Reλ in
Figure 5a. For three specific Reλ , we also show the curves
of αopt versus Lδ in Figure 5b. Similar to the corresponding
Figure in Case (I), αopt shows a substantial reduction by en-
larging Lδ . Additionally, Figure 5b confirms that, when Reλ

decreases in a decaying process, αopt exhibits a sharp reduc-
tion in a limited span of Lδ , which corresponds to the decay
of η as a function of Reλ and thereby the amount of induced
nonlocality.

B. Analysis of the Model Performance

Following the evaluation of αopt , we perform a compar-
ative study of performance for the FSGS model employing
the introduced correlation coefficients, i.e., ρi and ρi j. Using
the high resolution turbulent fields of Case (I), we compare
the variation of ρi obtained from the FSGS and SMG mod-
els in terms of Lδ in Figure 6. Seemingly, the FSGS model
shows acceptable correlations with the true values obtained
from the DNS data, which is the notion of adequate magni-
tude and phase agreement. More significantly, by intensify-
ing nonlocality in the filtered velocity field through increasing
Lδ , the FSGS model works relatively better in terms of cap-
turing heavy-tailed behavior of the SGS stresses in all direc-
tions. In Figure 7, we present the scatter plot analysis on the
values of (∇ ·T R)i for i = 1,2,3, attained by the FSGS model
and the filtered DNS data, for Lδ = 8, 64. The results confirm
that, with a proper selection of αopt in the FSGS model, we
can achieve an approximate unit regression, which represents
the same level of magnitudes in the scatter plots. In order to
study the influence of Reλ on the performance, we reiterate the
evaluation of correlation coefficients at other instantaneous re-
alization of DNS database for Case (I) by imposing the same
αopt . The outcomes in Table IV are seemingly in an accept-
able agreement with the results shown in Figure 6. Therefore,
in the LES of forced HIT problems, αopt can be dealt with
as a constant parameter since Lδ is considered as a constant
value.

Despite the limitations of fractional approaches in approxi-
mating the SGS stresses, our findings explicitly formulate ρi j
by evaluating T ∗

i j in (43) on the filtered velocity field. Con-
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(a) (b)

FIG. 5: (a) The surface of αopt , obtained by the Kriging method, versus Lδ and Reλ using the data points, denoted by ?, which
are estimated by the a priori tests of FSGS model for Case (II) and (b) comparison between the curves of αopt versus Lδ ,

which are designated by Reλ ≈ 26,35,45

TABLE III: A priori results for the correlation coefficients,
ρi j, of SGS stresses obtained from the FSGS and SMG

models at two different Reynolds numbers, Lδ

Lδ = 16
ρ11 ρ12 ρ13 ρ22 ρ23 ρ33

FSGS 0.17 0.29 0.30 0.13 0.30 0.23
SMG 0.16 0.29 0.28 0.12 0.31 0.23

Lδ = 32
ρ11 ρ12 ρ13 ρ22 ρ23 ρ33

FSGS 0.18 0.36 0.33 0.13 0.33 0.27
SMG 0.17 0.33 0.32 0.11 0.32 0.27

sistent with the results discussed previously, Table III reports
the correlations of the components of SGS stress tensor, ρi j,
for Lδ = 16 and 32. More clearly, the results support com-
patible behavior of the FSGS model with the SMG model in
the description of SGS stresses.

In the LES of decaying HIT problems, αopt retains Reλ

dependence since Reλ as a macro-scale property undergoes
a temporal decay. Employing αopt , we study accuracy of
the FSGS model in a broader framework, as shown in Fig-
ure 8. It seems that the surface of the FSGS model overlies
the SMG model at larger filter widths, which confirms the im-
proved performance of the FSGS model at larger values of
Lδ regarding the SMG model as discussed in Case (I). Taken
together, the FSGS model seems to be in a comparatively fa-
vorable agreement with the filtered DNS database in terms of
functional models.

TABLE IV: Study of FSGS model in terms of L through a
priori analysis at other time instants of Case (I)

Reλ = 427 Reλ = 437 Reλ = 421
Lδ 4 16 4 16 4 16
ρ1 0.15 0.20 0.15 0.20 0.15 0.20
ρ2 0.16 0.21 0.15 0.21 0.15 0.22
ρ3 0.16 0.20 0.15 0.20 0.15 0.21

C. Towards Modeling Nonlocal E�ects

As pointed out previously, performance of the proposed
model relies strictly on the selection of αopt as a function
of Reλ and Lδ . Regarding the connection between small
scale turbulent motions in the NS and BT equations in sec-
tion IV B, we explore the influence of nonlocal interactions
on the model’s performance at the microscopic level. Within
the Boltzmann transport framework, f eq(∆) demonstrates in-
creasingly multi-exponential behavior by enlarging L . Prac-
tically, when we increase L in the filtered NS equations, more
nonlocalities are incorporated into ωi j in (30) through f eq(∆).
From a physical point of view, vortices in turbulent flows tend
to live longer than their turnover time. During the formation of
coherent structures (see e.g., [85] and the references therein),
the mutual advection and filamentation of vortices render non-
local flow structures in isotropic turbulent flows. Filtering the
flow field variables integrates such nonlocalities in a single
numerical grid point, which intensifies the heavy-tailed char-
acteristics of f eq(∆).

In the proposed framework, the multi-exponential behavior
of f eq(∆) is readily modeled by a Lévy β -stable distribution
described in (19), in which the tail heaviness is indicated di-
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FIG. 6: Comparing the correlation coefficients, ρi, from the FSGS model using the optimum fractional exponent, which is
denoted by V, with the corresponding ones implied by the Smagorinsky model, specified by  

Lδ = 4

Lδ = 16

Lδ = 8

Lδ = 32

FIG. 7: A priori results for the correlation between the true and model values for the components of ∇ ·T R, where
[∇ ·T R]FSGS = µα (−∆)α V̄|α=αopt , yielding the correlation coefficients, as shown

rectly by Lδ . The multi-exponential pattern suggests that the
heavy-tailed characteristics of f eq(∆) get more intensified if
we increase Lδ . Interestingly, as we decrease β , the Lévy β -
stable distribution exhibits more fat-tailed behavior, which is
provably in demand for the best-description of f eq(∆). Ex-
tending this argument to the macroscopic level, the FSGS
model inherently moves from the diffusion toward the advec-
tion to precisely represent the heavy-tailed behavior of SGS
statistics by choosing the smaller values of α in (14). This ar-
gument accounts for the abrupt reduction of αopt versus Lδ ,
presented in Figures 4 and 5. For α <αopt , the FSGS model is
subject to overfit the heavy-tailed behavior of f eq(∆), thereby
losing the correlation.

On such a background, the FSGS model can be dealt with as

a new framework to capture anomalous features of SGS statis-
tics at large values of Lδ . As shown in Figures 6 and 8, the
correlations associated with the FSGS model offer a slight, but
potentially important, improvement in correlation coefficient
compared to the SMG model. Moreover, we proceed to per-
form qualitative assessment of the FSGS model in predicting
the PDF of (∇ ·T R)i depicted in Figure 9 for different values
of Lδ in Case (I). We should note that the presented results
are confined to i = 1 due to the similarities in other directions.
It appears that by employing the proper choice of αopt , the
PDF obtained by the FSGS model fits into the heavy-tailed
distribution of true SGS values while with α < αopt the PDF
is overpredicted. This argument emphasizes the reliability of
the FSGS model on the selection αopt as a function of Lδ and
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FIG. 8: Comparison of Kriging-constructed surfaces of ρi for i = 1,2,3, obtained from a priori study of the FSGS (denoted by
) and the SMG models (denoted by ∗), versus Lδ and Reλ on Case (II)

Lδ = 4 Lδ = 8

Lδ = 16 Lδ = 32

FIG. 9: A priori results for the PDF of the true and modeled (∇ ·T R)1 regarding α variations at each Lδ

Reλ .

D. Merits, Challenges, and Future Works

On the basis of the theoretical background and the a priori
analyses provided in this section, the proposed framework has
a remarkable potential to outline sophisticated SGS models
in LES of turbulent flows by leveraging proper mathemati-
cal tools in fractional calculus. The characteristics of our ap-
proach are listed as follows.

• We treat the main resource turbulent small-scale motions
at the kinetic level employing heavy-tailed distribution func-

tions, which contributes to the corresponding nonlocal SGS
model in the NS equations.

• Regarding the FSGS model, the only model parameter, α ,
is associated with the nonlocality, induced by filtering turbu-
lent flow field. Accordingly, performance and accuracy of the
FSGS model are exclusively indicated by α as a function of
L and Reλ .

• The FSGS model interestingly fulfills the physical and math-
ematical properties of SGS stresses.

Inevitably, due to the approximation we made in model-
ing f eq(∆) in the filtered Boltzmann equation, there are some
discrepancies between the results obtained from the fractional
model and the filtered DNS data. We believe that this new
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framework has the advantage of allowing us to promote the
accuracy of the model by involving more compatible options
for approximating f eq(∆) in (14). However, there are some
significant challenges in developing such nonlocal SGS mod-
els, which require theoretical and numerical considerations.

On the theoretical side, deriving the corresponding opera-
tor in the NS equations from (35) deserves careful attention
particularly when we employ more complicated form of dis-
tributions in (14). Moreover, the proposed distribution func-
tion in (14) is not constrained to be an isotropic function since
f eq(∆) is influenced by the physics of turbulent flow field and
boundary conditions and hence can exhibit different mathe-
matical properties in each direction. The idea of modeling
f eq(∆) with an anisotropic heavy-tailed distributions brings a
variety of fractional operators to the table for SGS modeling
of inhomogeneous turbulent flows.

Another difficulty of the current framework corresponds to
mathematical and physical limitations of the Boltzmann trans-
port equation. In fact, the Boltzmann transport is constrained
to be extended to relatively large values of Knudsen number
in transitional and free-molecular flows, where the assump-
tion of continuity is not met. Moreover, due to some of the
approximations in deriving the NS equations in section IV,
this framework cannot well-describe all physical features of
some complex phenomena, e.g., plasma turbulence or rarefied
gas flows. Further studies should be performed to extend the
framework to such important applied areas by using neoclas-
sical transport theory86.

From the viewpoint of numerical analysis, the intrinsic non-
local and memory dependent characteristics of fractional op-
erators can potentially impose further numerical complica-
tions for the numerical simulation of fractional equations. It
is of great importance and necessity to develop efficient but
reliable numerical schemes in treating fractional operators. In
this work, the FSGS model can be dealt with smoothly due
to the straightforward Fourier form of fractional Laplacian in
(2).

Despite the theoretical and numerical challenges, improv-
ing the FSGS model is a viable and promising direction to-
ward attaining better-predictions of the SGS quantities and
capturing non-Gaussain features of SGS motions within the
presented framework. In order to optimize performance of the
FSGS model, regarding a wide range of L and Reλ , further
works should be undertaken to construct a mapping function
from the underlying physical properties of turbulent SGS mo-
tions to the model parameters through using machine learn-
ing algorithms. Ultimately, it is essential to perform a poste-
riori evaluation to show if the FSGS model re-produces the
shape and topology of the coherent structures embedded at
high-Reynolds turbulent flows and preserves scaling in laws.

VI. SUMMARY AND FUTURE WORK

This study presented a new framework to the functional
modeling of SGS stresses in the LES of turbulent flows, start-
ing from the kinetic theory. Within the proposed framework,
we began with modeling the filtered equilibrium distribution

function as a key term to consider the power-law scaling of
SGS motions in the filtered BTE. Due to the multi-exponential
behavior of the filtered equilibrium distribution function, we
proposed to approximate it with a Lévy-stable distribution,
where the associated fractional parameter strictly relied on the
filter width. Subsequently, we derived the filtered NS equa-
tions from the approximated filtered BTE, in which the diver-
gence of SGS stresses was modeled via a fractional Laplacian
operator, (−∆)α(·) for α ∈ (0,1]. In general, we established
a framework, which permitted us to treat the source of tur-
bulent motions at the kinetic level by employing a compati-
ble choice of distribution function and derive the correspond-
ing fractional operator in the filtered NS equations as an SGS
model. Therefore, the proposed framework, termed “FSGS
modeling”, could potentially recover the non-Gaussian statis-
tics of SGS motions precisely. Next, we studied the physical
and mathematical properties of the proposed model and in-
troduced a set of mild conditions to preserve the second law
of thermodynamics. Eventually, we carried out a priori eval-
uations of the FSGS model based on the DNS database of
forced and decaying HIT problems. In light of the analysis,
there was a relatively great agreement between the modeled
and true SGS values in terms of the correlation and regres-
sion coefficients. The performance of the FSGS model de-
pended rigorously on the choice of fractional exponent, α ,
as a function of L and Reλ . We showed that, by enlarg-
ing L , the heavy-tailed characteristics of the SGS motions
could become more intensified, which were conceivably well-
described by the FSGS model with smaller values of α . With
all this in mind, FSGS modeling provided a new perspective,
which respected the non-Gaussian behavior of SGS stresses
by exploiting fractional calculus within the Boltzmann trans-
port framework.

On the basis of the theoretical background and the a priori
analysis provided in this study, the FSGS model can be en-
hanced in order to achieve comparatively greater correlations
by incorporating more sophisticated heavy-tailed distributions
at the kinetic level. As a part of future works, we perform cal-
ibration of model parameters by using machine learning tech-
niques, which sets the ground for optimizing the performance
of the FSGS model regarding L and Reλ . As an ultimate test,
we also carry out a posteriori analysis of the FSGS model in
an LES solver to ensure numerical stability.
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Appendix A

In this section, we follow the derivations of fractional NS
equations43 to evaluate the shear and SGS stresses in (36) and
(37).

• Temporal Shift

Recalling from the Assumption 1 that s ∼ O(1), we take
the temporal Taylor expansion of f ∗ as follows:

f ∗s,s= f ∗
(
∆̄(t− sτ,x− sτu,u)

)
= f ∗s

(
∆̄
)
+

∂ f ∗s
∂ ∆̄

∂ ∆̄

∂ t
δ t +O(δ t2)

= f ∗s
(
∆̄
)
+

∂ f ∗s
∂ ∆̄

∂ ∆̄

∂ t
(−sτ)+O(τ2), (A1)

where f ∗s
(
∆̄
)
= f ∗

(
∆̄(t,x− sτu,u)

)
, δ t =−sτ and

∂ ∆̄

∂ t
=
−2
U2

3

∑
k=1

(uk−V̄k)
∂V̄k

∂ t
. (A2)

Considering (A1), we can approximate (29) according to

ςi j ≈
∫

∞

0
e−s

∫
Rd
(ui−V̄i)(u j−V̄j) (A3)

×
(

f ∗s
(
∆̄
)
+

∂ f ∗s
∂ ∆̄

∂ ∆̄

∂ t
(−sτ)

)
duds,

=
∫

∞

0
e−s

∫
Rd
(ui−V̄i)(u j−V̄j)

×
[

f ∗s
(
∆̄
)
+

2
U2

∂ f ∗s
∂ ∆̄

(
3

∑
k=1

(uk−V̄k)
∂V̄k

∂ t
)(sτ)

]
duds.

Since ∆̄ is an even function of (uk − V̄k) for k = 1, · · · ,3,
f eq(∆̄) and f Model(∆̄) and also their corresponding first

derivatives ∂ f eq
s

∂ ∆̄
and ∂ f Model

s
∂ ∆̄

are even functions of (uk − V̄k).
Subsequently, there is an odd power of either (ui − V̄i) or
(u j−V̄j), which makes

∫
Rd
(ui−V̄i)(u j−V̄j)

[
∂ f ∗s
∂ ∆̄

(
3

∑
k=1

(uk−V̄k)
∂V̄k

∂ t
)(sτ)

]
du= 0.

Therefore,

ςi j ≈
∫

∞

0
e−s

∫
Rd
(ui−V̄i)(u j−V̄j) f ∗s

(
∆̄
)
duds

=
∫
Rd

∫
∞

0
e−s(ui−V̄i)(u j−V̄j) f ∗s

(
∆̄
)
dsdu. (A4)

• Shear Stresses

Regarding (34), the shear stress tensors are described ac-
cording to

T Shear
i j =

∫
∞

0

∫
Rd
(ui−V̄i)(u j−V̄j)( f eq

s (∆̄)− f eq(∆̄))e−sduds,

in which f eq
s (∆̄)= f eq(∆̄(t,x−sτu,u). The spatial shift δx=

sτ|u| can be decomposed into small δx ≤ l and large δx > l
displacements, which are associated with ∆̄ ≤ 1 and ∆̄ > 1,
respectively. Therefore,

T Shear
i j =

∫
∞

0

∫
δx≤l

(ui−V̄i)(u j−V̄j)

×( f eq
s (∆̄)− f eq(∆̄))e−sduds

+
∫

∞

0

∫
δx>l

(ui−V̄i)(u j−V̄j)

×( f eq
s (∆̄)− f eq(∆̄))e−sduds. (A5)

Since f eq(∆̄) belongs to C∞, which denotes the space of in-
finitely differentiable functions, we can perform the local lin-
ear approximation of f eq

s (∆̄), which yields in

f eq
s (∆̄)≈ f eq(∆̄)+

∂ f eq

∂ ∆̄
(∆̄s− ∆̄), (A6)

where ∂ f eq

∂ ∆̄
= − ρ

2U3 e−∆̄/2 and ∆̄s = ∆̄(t,x− sτu,u). Due to
the exponential behavior of f eq

s (∆̄)− f eq(∆̄), we obtain∫
∞

0

∫
δx>l

(ui−V̄i)(u j−V̄j)( f eq
s (∆̄)− f eq(∆̄))e−sduds≈ 0

and thereby

T Shear
i j ≈

∫
∞

0

∫
δx≤l

(ui−V̄i)(u j−V̄j)

×( f eq
s (∆̄)− f eq(∆̄))e−sduds. (A7)

Moreover, it is permissible to use the Taylor expansion of ∆̄s
for δx≤ l, which is formulated as

∆̄s = ∆̄+
∂ ∆̄

∂xk
δxk +O

(
|δx|2

)
,

where

∂ ∆̄

∂xk
=
−2
U2

3

∑
m=1

(um−V̄m)
∂V̄m

∂xk
. (A8)

Therefore,

f eq
s = f eq(

∆̄(t,x− sτu,u)
)

= f eq(
∆̄
)
+

∂ f eq

∂ ∆̄

∂ ∆̄

∂xk
δxk +O

(
|δx|2

)
= f eq(

∆̄
)
+

∂ f eq

∂ ∆̄

∂ ∆̄

∂xk
(−sτuk)+O

(
(sτ|u|)2). (A9)

Plugging (A8) and (A9) into (34), we attain

T Shear
i j ≈−

∫
∞

0

∫
δx≤l

(ui−V̄i)(u j−V̄j)

×
(

∂ f eq

∂ ∆̄

∂ ∆̄

∂xk
(sτuk)

)
e−sduds

=−2ρ

U5

∫
∞

0

∫
δx≤l

(ui−V̄i)(u j−V̄j)

×
(

e−∆
3

∑
m=1

(um−V̄m)
∂V̄m

∂xk

)
(sτuk)e−sduds.(A10)
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We should note that the limits of integral in (A10) can be
extended to R3 due to (A7). Following every steps in the
derivation of shear stresses from (4.33) to (4.36) in [43], we
can formulate T Shear

i j = µ

(
∂V̄i
∂x j

+
∂V̄ j
∂xi

)
in (36) from (A10),

in which we obtain µ = −2ρτ

U5

∫
∞

0 I0se−sds = ρU2τ and I0 =
4π

15
∫

∞

0 r6e−∆dr, where ∆ = r2

U2 and r = |u− V̄ |.

• SGS Stresses

The SGS stresses are given by

T R
i j = Cβ

∫
∞

0

∫
Rd
(ui−V̄i)(u j−V̄j)

×( f β
s (∆̄)− f β (∆̄))e−sduds (A11)

in (35), where f β (∆̄) = ρ

U3 Fβ (∆̄) and Fβ (∆̄) denotes the
isotropic Lévy-β stable distribution. Therefore,

T R
i j =

ρCβ

U3

∫
∞

0

∫
Rd
(ui−V̄i)(u j−V̄j)

×(Fβ
s (∆̄)−Fβ (∆̄))e−sduds. (A12)

Asymptotically, Fβ (∆̄) behaves like a power-law distribution
when ∆̄ > 1, i.e., Fβ (∆̄) ∼ C̃β ∆̄β , where β = −α − d

2 and

hence C̃α = 22α Γ(α+d/2)
πd/2Γ(−α)

. It is worth mentioning that f eq(∆)

demonstrates a heavy-tailed behavior at ∆̄ > 1, it keeps the
exponential trait for ∆̄ < 1 though. Regarding the exponen-
tial behavior of f eq(∆̄), f eq(∆)− f eq(∆̄) can be fitted by a
heavy-tailed distribution like Fβ (∆̄), in which Fβ (∆̄) reduces
exponentially in a close proximity of ∆̄ = 0. Therefore, we
can simplify (A12) to

T R
i j ≈

ρCα

U3

∫
∞

0

∫
Rd−Bε

(ui−V̄i)(u j−V̄j) (A13)

×(∆̄−α+d/2
s − ∆̄

−α+d/2)e−sduds,

where Cα = 22α Γ(α+d/2)
πd/2Γ(−α)

Cα , d = 3 and Bε = {u ∈Rd s.t. |∆̄|<
ε}, which is associated with ∆̄� 1. Due to the fact that Fβ (∆̄)
is continuously differentiable for |u| ∈ Rd −Bε , we perform
the Taylor expansion of Fβ

s (∆̄) as follows:

Fβ
s (∆̄)−Fβ (∆̄)≈ ∂Fβ (∆̄)

∂ ∆̄
(∆̄s−∆̄)= (α+

3
2
)

ρCα

U3
(∆̄s− ∆̄)

∆̄α+5/2 .

Under Assumption 1, in which s∼ O(1), we obtain

δx = s|u|τ > O(l)→ |u|> O(
l
τ
) = O(

l
λ/U

)> O(U)

at large δx > l, which yields in ∆̄ = |u−V̄ |2
U2 ≈ |u|

2

U2 � 1 and
ui− V̄i ≈ ui. In virtue of (4.50-51) in [43], we also conclude
that

∆̄s− ∆̄≈−2
3

∑
k=1

uk(V̄k(x
′)−V̄k(x))

U2 . (A14)

Utilizing the definition of u = x−x′
sτ

in Section IV A and
(A14), we reformulate (A13) as

T R
i j ≈ (α +

3
2
)

ρCα

U3

∫
∞

0

∫
Rd−Bε

(
xi− x′i

sτ
)(

x j− x′j
sτ

)

× (∆̄s− ∆̄)

( |x−x
′|

sτU )2α+5

dx′

(sτ)3 e−sds,

= (2α +3)(ρCα τ
2α−1U2α)

∫
∞

0

e−s

s1−2α
ds

×
∫
Rd−Bε

(xi− x′i)(x j− x′j)
(x−x′) · (V̄ (x)− V̄ (x′))

|x−x′|2α+5 dx′,

which corresponds to (4.58) in [43]. Therefore, we can pro-
ceed the same derivations as discussed in (4.58) to (4.64) in
[43] to obtain

(∇ ·T R)i =
ρ(Uτ)2α

τ
Γ(2α +1)Cα

∫
Rd−Bε

V̄i(x
′)−V̄i(x)

|x′−x|2α+d dx′

= p.v.
ρ(Uτ)2α

τ
Γ(2α +1)Cα

∫
Rd

V̄i(x
′)−V̄i(x)

|x′−x|2α+d dx′

in which "p.v." denotes the principal value of the integral.
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