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Abstract | COVID-19 pandemic represents an unprecedented global
health crisis in the last 100 years. Its economic, social and health impact
continues to grow and is likely to end up as one of the worst global dis-
asters since the 1918 pandemic and the World Wars. Mathematical mod-
els have played an important role in the ongoing crisis; they have been
used to inform public policies and have been instrumental in many of the
social distancing measures that were instituted worldwide. In this article,
we review some of the important mathematical models used to support
the ongoing planning and response efforts. These models differ in their
use, their mathematical form and their scope.

1 Introduction

The ongoing COVID-19 pandemic is the most
significant pandemic since the 1918 Influenza
pandemic. It has already caused over 21 Million
confirmed cases and 758,000 deaths.! The eco-
nomic impact is already in trillions of dollars. As
in other pandemics, researchers and public health
policy makers are interested in questions such as,’
(i) How did it start? (ii) How is it likely to pro-
gress and how can we control it? (iii) How can
we intervene while balancing public health and
economic impact? (iv) Why did some countries
do better than other countries thus far into the
pandemic? In particular, models and their pro-
jections/forecasts have received unprecedented
attention. With a multitude of modeling frame-
works, underlying assumptions, available datasets
and the region/timeframe being modeled, these
projections have varied widely, causing confusion
among end-users and consumers. We believe an
overview (non-exhaustive) of the current mod-
eling landscape will benefit the readers and also
serve as a historical record for future efforts.

! The numbers reported are as of August 14, 2020. See https
://coronavirus.jhu.edu/map.html and https://nssac.bii.virgi
nia.edu/covid-19/dashboard/ for most up to date surveillance
information.

2 see https://www.nytimes.com/news-event/coronavirus.
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1.1 Role of Models

Models have been used by mathematical epi-
demiologists to support a broad range of policy
questions. Their use during COVID-19 has been
widespread. In general, the type and form of
models used in epidemiology depend on the
phase of the epidemic. Before an epidemic, mod-
els are used for planning and identifying critical
gaps and prepare plans to detect and respond in
the event of a pandemic. At the start of a pan-
demic, policy makers are interested in asking
questions such as: (i) where and how did the pan-
demic start, (ii) risk of its spread in the region,
(iii) risk of importation in other regions of the
world, (iv) basic understanding of the pathogen
and its epidemiological characteristics. As the
pandemic takes hold, researchers begin investigat-
ing: (i) various intervention and control strate-
gies; usually pharmaceutical interventions do not
work in the event of a pandemic and thus non-
pharmaceutical interventions are most appropri-
ate, (ii) forecasting the epidemic incidence rate,
hospitalization rate and mortality rate, (iii) effi-
ciently allocating scarce medical resources to treat
the patients and (iv) understanding the change in
individual and collective behavior and adherence
to public policies. After the pandemic starts to
slow down, modelers are interested in developing
models related to recovery and long-term impacts
caused by the pandemic.
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As a result comparing models needs to be
done with care. When comparing models: one
needs to specify: (a) the purpose of the model, (b)
the end user to whom the model is targeted, (c)
the spatial and temporal resolution of the model,
(d) and the underlying assumptions and limita-
tions. We illustrate these issues by summarizing a
few key methods for projection and forecasting of
disease outcomes in the US and Sweden.

Organization. The paper is organized as fol-
lows. In Sect. 2 we give preliminary definitions.
Section 3 discusses US and UK centric models
developed by researchers at the Imperial Col-
lege. Section 4 discusses metapopulation mod-
els focused on the US that were developed by
our group at UVA and the models developed by
researchers at Northeastern University. Section 5
describes models developed Swedish researchers
for studying the outbreak in Sweden. In Sect. 6
we discuss methods developed for forecasting.
Section 8 contains discussion, model limitations
and concluding remarks. In a companion paper
that appears in this special issue, we address cer-
tain complementary issues related to pandemic
planning and response, including role of data and
analytics.

Important note. The primary purpose of the
paper is to highlight some of the salient compu-
tational models that are currently being used to
support COVID-19 pandemic response. These
models, like all models, have their strengths and
weaknesses—they have all faced challenges aris-
ing from the lack of timely data. Our goal is not
to pick winners and losers among these model;
each model has been used by policy makers and
continues to be used to advice various agencies.
Rather, our goal is to introduce to the reader a
range of models that can be used in such situa-
tions. A simple model is no better or worse than
a complicated model. The suitability of a specific
model for a given question needs to be evaluated
by the decision maker and the modeler.

2 Background: Computational Methods
for Epidemiology

Epidemiological models fall in two broad classes:

statistical models that are largely data driven and

mechanistic models that are based on underlying

theoretical principles developed by scientists on

how the disease spreads.

Data-driven models use statistical and
machine learning methods to forecast outcomes,
such as case counts, mortality and hospital
demands. This is a very active area of research,
and a broad class of techniques have been

2

developed, including auto-regressive time series
methods, Bayesian techniques and deep learning"
%34 56 Mechanistic models of disease spread
within a population” ® % 1° use mechanistic (also
referred to as procedural or algorithmic) methods
to describe the evolution of an epidemic through
a population. The most common of these is the
SIR type models. Hybrid models that combine
mechanistic models with data driven machine
learning approaches are also starting to become
popular, e.g.,'".

2.1 Mass Action Compartmental Models
There are a number of models, which are referred
to as SIR class of models. These partition a pop-
ulation of N agents into three sets, each cor-
responding to a disease state, which is one of:
susceptible (S), infective (I) and removed or
recovered (R). The specific model then specifies
how susceptible individuals become infectious,
and then recover. In its simplest form (referred
to as the basic compartmental model)” % 10, the
population is assumed to be completely mixed.
Let S(¢), I(t) and R(¢) denote the number of peo-
ple who are susceptible, infected and recovered
states at time t, respectively. Let s(t) = S(¢)/N,
it) =1t)/N and r(t) =R()/N; then,
s(t) +i(t) + r(t) = 1. Then, the SIR model can
be described by the following system of ordinary
differential equations

% = Bsi, %:ﬂsi— yi,

dr )
= _——= l,
dt i 7

d
where B is referred to as the transmission rate,
and y is the recovery rate. A key parameter in such
a model is the “reproductive number”, denoted by
Ry = B/y. At the start of an epidemic, much of
the public health effort is focused on estimating
R from observed infections'?.

Mass action compartmental models have
been the workhorse for epidemiologists and
have been widely used for over 100 years. Their
strength comes from their simplicity, both ana-
Iytically and from the standpoint of understand-
ing the outcomes. Software systems have been
developed to solve such models and a number
of associated tools have been built to support
analysis using such models.

2.2 Structured Metapopulation Models

Although simple and powerful, mass action com-
partmental models do not capture the inherent
heterogeneity of the underlying populations. Sig-
nificant amount of research has been conducted
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to extend the model, usually in two broad ways.
The first involves structured metapopulation
models—these construct an abstraction of the
mixing patterns in the population into m differ-
ent sub-populations, e.g., age groups and small
geographical regions, and attempt to capture
the heterogeneity in mixing patterns across sub-
populations. In other words, the model has states
Sj(t),1;(t), Ri(t) for each subpopulation j. The
evolution of a compartment X;(¢) is determined
by mixing within and across compartments.
For instance, survey data on mixing across age
groups'” have been used to construct age struc-
tured metapopulation models'*. More relevant
for our paper are spatial metapopulation mod-
els, in which the subpopulations are connected
through airline and commuter flow networks'> '
17,18,19.

Main steps in constructing structured meta-
population models. This depends on the disease,
population and the type of question being stud-
ied. The key steps in the development of such
models for the spread of diseases over large popu-
lations include

e Constructing subpopulations and compart-
ments: the entire population V is partitioned
into subpopulations Vj, within which the
mixing is assumed to be complete. Depend-
ing on the disease model, there are Sj, E;, I, R;
compartments corresponding to the subpop-
ulation V; (and more, depending on the dis-
ease)—these represent the number of individ-
uals in V; in the corresponding state

e Mixing patterns among compartments: state
transitions between compartments might
depend on the states of individuals within the
subpopulations associated with those com-
partments, as well as those who they come in
contact with. For instance, the S; — E; transi-
tion rate might depend on I; for all the sub-
populations who come in contact with indi-
viduals in V;. Mobility and behavioral datasets
are needed to model such interactions.

Such models are very useful at the early days of
the outbreak, when the disease dynamics are
driven to a large extent by mobility—these can
be captured more easily within such models,
and there is significant uncertainty in the disease
model parameters. They can also model coarser
interventions such as reduced mobility between
spatial units and reduced mixing rates. However,
these models become less useful to model the
effect of detailed interventions (e.g., voluntary
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home isolation, school closures) on disease
spread in and across communities.

2.3 Agent-Based Network Models
Agent-based networked models (sometimes just
called as agent-based models) extend metapopu-
lation models further by explicitly capturing the
interaction structure of the underlying popu-
lations. Often such models are also resolved at
the level of single individual entities (animals,
humans, etc.). In this class of models, the epidemic
dynamics can be modeled as a diffusion process
on a specific undirected contact network G(V, E)
on a population V—each edge e = (u,v) € E
implies that individuals (also referred to as
nodes) u,v € V come into contact’ Let N(v)
denote the set of neighbors of v. For instance, in
the graph in Fig. 1, we have V = {4, b,¢,d} and
E ={(a,b),(a,c),(b,d),(cd)}. Node a has b and
¢ as neighbors, so N(a) = {b, c}. The SIR model
on the graph G is a dynamical process in which
each node is in one of the S, I or R states. Infec-
tion can potentially spread from u to v along edge
e = (u,v) with a probability of B(e, t) at time
instant f after u becomes infected, conditional on
node v remaining uninfected until time t—this is
a discrete version of the rate of infection for the
ODE model discussed earlier. We let I(¢) denote
the set of nodes that become infected at time .
The (random) subset of edges on which the infec-
tions spread represents a disease outcome, and is
referred to as a dendogram. This dynamical sys-
tem starts with a configuration in which there are
one or more nodes in state I and reaches a fixed
point in which all nodes are in states S or R. Fig-
ure 1 shows an example of the SIR model on a
network.

Main steps in setting up an agent-based
model. While the specific steps depend on the
disease, the population, and the type of question
being studied, the general process involves the
following steps:

e Construct a network representation G: the set
V is the population in a region, and is avail-
able from different sources, such as Census
and Landscan. However, the contact patterns
are more difficult to model, as no real data are
available on contacts between people at a large
scale. Instead, researchers have tried to model

3 Note that though edge e is represented as a tuple (u, v), it
actually denotes the set {u, v}, as is common in graph theory.
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Figure 1: The SIR process on a graph. The contact graph G = (V,F) is defined on a population
V ={a,b,c,d}. The node colors white, black and gray represent the Susceptible, Infected and Recovered
states, respectively. Initially, only node a is infected, and all other nodes are susceptible. A possible out-
come at t = 1is shown, in which node ¢ becomes infected, while node a recovers. Node a tries to inde-
pendently infect both its neighbors b and ¢, but only node ¢ gets infected—this is indicated by the solid
edge (a, ¢). The probability of getting this outcome is (1 — p(a, b))p(a, ©).

activities and mobility, from which contacts
can be inferred, based on co-location. Multi-
ple approaches have been developed for this,
including random mobility based on statisti-
cal models, and very detailed models based on
activities in urban regions, which have been
estimated through surveys, transportation
data, and other sources, e.g.,zo’ 21,8,22,23

e Develop models of within-host disease pro-
gression: such models can be represented
as finite state probabilistic timed transition
models, which are designed in close coordi-
nation with biologists, epidemiologists, and
parameterized using detailed incidence data
(see’ for discussion and additional pointers).

e Develop high-performance computer (HPC)
simulations to study epidemic dynamics in
such models, e.g.,”* 2> 2% %7, Typical public
health analyses involve large experimental
designs, and the models are stochastic; this
necessitates the use of such HPC simulations
on large computing clusters.

e Incorporate interventions and behavio-
ral changes: interventions include clo-
sure of schools and workplaces®” ?® and
vaccinations®!; whereas, behavioral changes
include individual level social distancing,
changes in mobility, and use of protective
measures.

Such a network model captures the interplay
between the three components of computa-
tional epidemiology: (i) individual behaviors
of agents, (ii) unstructured, heterogeneous
multi-scale networks, and (iii) the dynamical
processes on these networks. It is based on the
hypothesis that a better understanding of the
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characteristics of the underlying network and
individual behavioral adaptation can give better
insights into contagion dynamics and response
strategies. Although computationally expensive
and data intensive, network-based epidemi-
ology alters the types of questions that can be
posed, providing qualitatively different insights
into disease dynamics and public health poli-
cies. It also allows policy makers to formulate
and investigate potentially novel and context-
specific interventions.

2.4 Models for Epidemic Forecasting

Like projection approaches, models for epi-
demic forecasting can be broadly classified into
two broad groups: (i) statistical and machine
learning-based data-driven models, (ii) causal or
mechanistic models—see?” % % 3132 6:33 and the
references therein for the current state of the art
in this rapidly evolving field.

Statistical methods employ statistical and time
series-based methodologies to learn patterns in
historical epidemic data and leverage those pat-
terns for forecasting. Of course, the simplest
yet useful class is called method of analogs. One
simply compares the current epidemic with one
of the earlier outbreaks and then uses the best
match to forecast the current epidemic. Popu-
lar statistical methods for forecasting influenza-
like illnesses (that includes COVID-19) include,
e.g., generalized linear models (GLM), autore-
gressive integrated moving average (ARIMA),
and generalized autoregressive moving average
(GARMA)** 31> 35 Statistical methods are fast,
but they crucially depend on the availability of
training data. Furthermore, since they are purely
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data driven, they do not capture the underlying
causal mechanisms. As a result, epidemic dynam-
ics affected by behavioral adaptations are usually
hard to capture. Artificial neural networks (ANN)
have gained increased prominence in epidemic
forecasting due to their self-learning ability with-
out prior knowledge (see" ' *® and the references
therein). Such models have used a wide variety of
data as surrogates for producing forecasts. This
includes: (i) social media data, (ii) weather data,
(iii) incidence curves and (iv) demographic data.

Causal models can be used for epidemic
forecasting in a natural manner’® * % 3% 3%
% These models calibrate the internal model
parameters using the disease incidence data
seen until a given day and then execute the
model forward in time to produce the future
time series. Compartmental as well as agent-
based models can be used to produce such
forecasts. The choice of the models depends on
the specific question at hand and the computa-
tional and data resource constraints. One of the
key ideas in forecasting is to develop ensemble
models—models that combine forecasts from
multiple models*”  #* %, The idea which origi-
nated in the domain of weather forecasting has
found methodological advances in the machine
learning literature. Ensemble models typically
show better performance than the individual
models.

3 Models from the Imperial College
Modeling Group (UK Model)
Background. The modeling group led by Neil
Ferguson was to our knowledge the first model to
study the impact of COVID-19 across two large
countries: US and UK, see?’. The basic model was
first developed in 2005—it was used to inform
policy pertaining to H5N1 pandemic and was
one of the three models used to inform the fed-
eral pandemic influenza plan and led to the
now well-accepted targeted layered containment
(TLC) strategy. It was adapted to COVID-19 as
discussed below. The model was widely discussed
and covered in the scientific as well as popular
press*!. We will refer to this as the IC model.
Model structure. The basic model structure
consists of developing a set of households based
on census information for a given country. The
structure of the model is largely borrowed from
their earlier work, see*” %, Landscan data were
used to spatially distribute the population. Indi-
vidual members of the household interact with
other members of the household. The data to
produce these households are obtained using
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Census information for these countries. Census
data are used to assign age and household sizes.
Details on the resolution of census data and the
dates were not clear. Schools, workplaces and ran-
dom meeting points are then added. The school
data for US were obtained from the National
Centre of Educational Statistics, while for UK
schools were assigned randomly based on popu-
lation density. Data on average class sizes and
staff-student ratios were used to generate a syn-
thetic population of schools distributed propor-
tional to local population density. Data on the
distribution of workplace size were used to gen-
erate workplaces with commuting distance data
used to locate workplaces appropriately across the
population. Individuals are assigned to each of
these locations at the start of the simulation. The
gravity-style kernel is used to decide how far a
person can go in terms of attending work, school
or community interaction place. The number of
contacts between individuals at school, work and
community meeting points are calibrated to pro-
duce a given attack rate.

Each individual has an associated disease
transmission model. The disease transmission
model parameters are based on the data col-
lected when the pandemic was evolving in
Wuhan; see page 4 of*2.

Finally, the model also has rich set of inter-
ventions. These include: (i) case isolation, (ii)
voluntary home quarantine, (iii) Social distanc-
ing of those over 70 years, (iv) social distancing of
the entire population, (v) closure of schools and
universities; see page 6”>. The code was recently
released and is being analyzed. This is important as
the interpretation of these interventions can have
substantial impact on the outcome.

Model predictions. The Imperial college (IC
Model) model was one of the first models to evalu-
ate the COVID-19 pandemic using detailed agent-
based model. The predictions made by the model
were quite dire. The results show that to be able to
reduce R to close to 1 or below, a combination of
case isolation, social distancing of the entire popu-
lation and either household quarantine or school
and university closure is required. The model had
tremendous impact—UK and US both decide to
start considering complete lock downs—a policy
that was practically impossible to even talk about
earlier in the Western world. The paper came out
around the same time that Wuhan epidemic was
raging and the epidemic in Italy had taken a turn
for the worse. This made the model results even
more critical.

Strengths and limitations. IC model was one
of the first models by a reputed group to report the

]
IS¢

797



798

A. Adiga et al.

potential impact of COVID-19 with and without
interventions. The model was far more detailed
than other models that were published until then.
The authors also took great care parameterizing
the model with the best disease transmission data
that was available until then. The model also con-
sidered a very rich set of interventions and was
one of the first to analyze pulsing intervention. On
the flip side, the representation of the underlying
social contact network was relatively simple. Sec-
ond, often the details of how interventions were
represented were not clear. Since the publication
of their article, the modelers have made their code
open and the research community has witnessed
an intense debate on the pros and cons of various
modeling assumptions and the resulting software
system, see®’. We believe that despite certain valid
criticisms, overall, the results represented a signifi-
cant advance in terms of the when the results were
put out and the level of details incorporated in the
models.

4 Spatial Metapopulation Models:
Northeastern and UVA Models (US
Models)

Background. This approach is an alternative to
detailed agent-based models, and has been used
in modeling the spread of multiple diseases,
including Influenza' '8, Ebola!” and Zika'®. It
has been adapted for studying the importation
risk of COVID-19 across the world'®. Struc-
tured metapopulation models construct a sim-
ple abstraction of the mixing patterns in the
population, in which the entire region under
study is decomposed into fully connected geo-
graphical regions, representing subpopulations,
which are connected through airline and com-
muter flow networks. Thus, they lack the rich
detail of agent-based models, but have fewer
parameters, and are, therefore, easy to set up
and scale to large regions.

Model structure. Here, we summarize
GLEaM" (Northeastern model) and PatchSim'®
(UVA model). GLEaM uses two classes of
datasets—population estimates and mobility.
Population data are used from the “Gridded
Population of the World”**, which gives an esti-
mated population value at a 15 x 15 minutes
of arc (referred to as a “cell”) over the entire
planet. Two different kinds of mobility processes
are considered—airline travel and commuter
flow. The former captures long-distance travel;
whereas, the latter captures localized mobility.
Airline data are obtained from the International
Air Transport Association (IATA)*, and the
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Official Airline Guide (OAG)*®. There are about
3300 airports world wide; these are aggregated
at the level of urban regions served by multiple
airport (e.g., as in London). A Voronoi tessel-
lation is constructed with the resulting airport
locations as centers, and the population cells are
assigned to these cells, with a 200 mile cutoff
from the center. The commuter flows connect
cells at a much smaller spatial scale. We repre-
sent this mobility pattern as a directed graph on
the cells, and refer to it as the mobility network.

In the basic SEIR model, the subpopula-
tion in each cell j is partitioned into compart-
ments Sj,Ej,I[; and R;, corresponding to the
disease states. For each cell j, we define the force
of infection /; as the rate at which a susceptible
individual in the subpopulation in cell j becomes
infected—this is determined by the interactions
the person has with infectious individuals in cell
j or any cell j' connected in the mobility network.
An individual in the susceptible compartment
S; becomes infected with probability 4;A¢ and
enters the compartment Ej, in a time interval At.
From this compartment, the individual moves to
the I; and then the R; compartments, with appro-
priate probabilities, corresponding to the disease
model parameters.

The PatchSim'® model has a similar struc-
ture, except that it uses administrative boundaries
(e.g., counties), instead of a Voronoi tesselation,
which are connected using a mobility network.
The mobility network is derived by combining
commuter and airline networks, to model time
spent per day by individuals of region (patch) i
in region (patch) j. Since it explicitly captures the
level of connectivity through a commuter-like
mixing, it is capable of incorporating week-to-
week and month-to-month variations in mobility
and connectivity. In addition to its capability to
run in deterministic or stochastic mode, the open
source implementation’ allows fine-grained con-
trol of disease parameters across space and time.
Although the model has a more generic force of
infection mode of operation (where patches can
be more general than spatial regions), we will
mainly summarize the results from the mobility
model, which was used for COVID-19 response.

What did the models suggest? GLEaM model
is being used in a number of COVID-19-related
studies and analysis. In**, the Northeastern Uni-
versity team used the model to understand the
spread of COVID-19 within China and relative
risk of importation of the disease internation-
ally. Their analysis suggested that the spread of
COVID-19 out of Wuhan into other parts of
mainland China was not contained well due
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to the delays induced by detection and official
reporting. It is hard to interpret the results. The
paper suggested that international importa-
tion could be contained substantially by strong
travel ban. While it might have delayed the onset
of cases, the subsequent spread across the world
suggest that we were not able to arrest the spread
effectively. The model is also used to provide
weekly projections (see https://covid19.gleam
project.org/); this site does not appear to be
maintained for the most current forecasts (likely
because the team is participating in the CDC
forecasting group).

The PatchSim model is being used to support
federal agencies as well as the state of Virginia.
Due to our past experience, we have refrained
from providing longer term forecasts, instead of
focusing on short-term projections. The model is
used within a Forecasting via Projection Selection
approach, where a set of counterfactual scenarios
are generated based on on-the-ground response
efforts and surveillance data, and the best fits are
selected based on historical performance. While
allowing for future scenarios to be described, they
also help to provide a reasonable narrative of past
trajectories, and retrospective comparisons are
used for metrics such as ‘cases averted by doing
X. These projections are revised weekly based on
stakeholder feedback and surveillance update.
Further discussion of how the model is used by
the Virginia Department of Health each week can
be found at https://www.vdh.virginia.gov/coron
avirus/covid-19-data-insights/#model.

Strength and limitations. Structured meta-
population models provide a good tradeoff
between the realism/compute of detailed agent-
based models and simplicity/speed of mass
action compartmental models and need far
fewer inputs for modeling, and scalability. This is
especially true in the early days of the outbreak,
when the disease dynamics are driven to a large
extent by mobility, which can be captured more
easily within such models, and there is signifi-
cant uncertainty in the disease model param-
eters. However, once the outbreak has spread, it
is harder to model detailed interventions (e.g.,
social distancing), which are much more local-
ized. Further, these are hard to model using a
single parameter. Both GLEaM and PatchSim
models also faced their share of challenges in
projecting case counts due to rapidly evolving
pandemic, inadequate testing, a lack of under-
standing of the number of asymptomatic cases
and assessing the compliance levels of the popu-
lation at large.
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5 Models by KTH, Umea and Uppsala
Researchers (Swedish Models)
Sweden was an outlier amongst countries in that
it decided to implement public health interven-
tions without a lockdown. Schools and univer-
sities were not closed, and restaurants and bars
remained open. Swedish citizens implemented
“work from home” policies where possible.
Moderate social distancing based on individual
responsibility and without police enforcement
was employed but emphasis was attempted to be
placed on shielding the 65+ age group.

5.1 Simple Model

Background. Statistician Tom Britton developed
a very simple model with a focus on predicting
the number of infected over time in Stockholm.

Model structure. Britton® used a very simple
SIR general epidemic model. It is used to make
a coarse grain prediction of the behavior of the
outbreak based on knowing the basic reproduc-
tion number Ry and the doubling time d in the
initial phase of the epidemic. Calibration to cal-
endar time was done using the observed number
of case fatalities, together with estimates of the
time between infection to death, and the infec-
tion fatality risk. Predictions were made assuming
no change of behavior, as well as for the situation
where preventive measures are put in place at one
specific time-point.

Model predictions. One of the controversial
predictions from this model was that the number
of infections in the Stockholm area would quickly
rise towards attaining herd immunity within a
short period. However, mass testing carried out
in Stockholm during June indicated a far smaller
percentage of infections.

Strength and limitations. Britton’s model
was intended as a quick and simple method to
estimate and predict an on-going epidemic out-
break both with and without preventive measures
put in place. It was intended as a complement to
more realistic and detailed modeling. The esti-
mation-prediction methodology is much sim-
pler and straight-forward to implement for this
simple model. It is more transparent to see how
the few model assumptions affect the results, and
it is easy to vary the few parameters to see their
effect on predictions so that one could see which
parameter uncertainties have biggest impact on
predictions, and which parameter uncertainties
are less influential.
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5.2 Compartmentalized Models I: FHM
Model

Background. The Public Health Authority

(FHM) of Sweden produced a model to study

the spread of COVID-19 in four regions in Swe-

den: Dalarna, Skdne, Stockholm, and Vistra

Gotaland.™.

Model structure. It is a standard compart-
mentalized SEIR model and within each com-
partment, it is homogeneous; so, individuals are
assumed to have the same characteristics and act
in the same way. Data used in the fitting of the
model include point prevalences found by PCR-
testing in Stockholm at two different time points.

Model predictions. The model estimated the
number of infected individuals at different time
points and the date with the largest number of
infectious individuals. It predicted that by July 1,
8.5% (5.9-12.9%) of the population in Dalarna
will have been infected, 4% (2.4-9.9%) of the
population in Skdne will have been infected, 19%
(17.7-20.2%) of the population in Stockholm
will have been infected, and 9% (6.3—12.2%)
of the population in Vistra Gotaland will have
been infected. It was hard to test these predic-
tions because of the great uncertainty in immune
response to SARS-CoV-2—prevalence of anti-
bodies was surprisingly low but recent stud-
ies show that mild cases never seem to develop
antibodies against SARS-CoV-2, but only T-cell-
mediated immunity”".

The model also investigated the effect of
increased contacts during the summer that sta-
bilizes in autumn. It found that if the contacts in
Stockholm and Dalarna increase by less than 60%
in comparison to the contact rate in the begin-
ning of June, the second wave will not exceed the
observed first wave.

Strength and limitations. The simplicity
of the model is a strength in ease of calibration
and understanding but it is also a major limita-
tion in view of the well-known characteristics
of COVID-19: since it is primarily transmitted
through droplet infection, the social contact
structure in the population is of primary impor-
tance for the dynamics of infection. The com-
partmental model used in this analysis does not
account for variation in contacts, where few
individuals may have many contacts, while the
majority have fewer. The model is also not age
stratified, but COVID-19 strikingly affects dif-
ferent age groups differently; e.g., young peo-
ple seem to get milder infections. In this model,
each infected individual has the same infectivity
and the same risk of becoming a reported case,
regardless of age. Different age groups normally
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have varied degrees of contacts and have changed
their behavior differently during the COVID-19
pandemic. This is not captured in the model.

5.3 Compartmentalized Models Il
Background. A group around statistician Joacim
Rocklov developed a model to estimate the
impact of COVID-19 on the Swedish population
at the municipality level, considering demogra-
phy and human mobility under various scenarios
of mitigation and suppression. They attempted to
estimate the time course of infections, health care
needs, and the mortality in relation to the Swed-
ish ICU capacity, as well as the costs of care, and
compared alternative policies and counterfactual
scenarios.

Model structure.’> used a SEIR compart-
mentalized model with age structured compart-
ments (0-59, 60-79, 80+) susceptibles, infected,
in-patient care, ICU and recovered populations
based on Swedish population data at the munici-
pal level. It also incorporated inter-municipality
travel using a radiation model. Parameters were
calibrated based on a combination of values
available from international literature and fitting
to available outbreak data. The effect of a num-
ber of different intervention strategies was con-
sidered ranging from no intervention to modest
social distancing and finally to imposed isolation
of various groups.

Model predictions. The model predicted an
estimated death toll of around 40,000 for the
strategies based only on social distancing and
between 5000 and 8000 for policies imposing
stricter isolation. It predicted ICU cases of up
to 10,000 without much intervention and up to
6000 with modest social distancing, way above
the available capacity of about 500 ICU beds.

Strength and limitations. The model showed
a good fit against the reported COVID-19-related
deaths in Sweden up to 20th of April, 2020, How-
ever, the predictions of the total deaths and ICU
demand turned out to be way off the mark.

5.4 Agent-Based Microsimulations
Background. Finally,”> ** used an individual-
based model parameterized on Swedish demo-
graphics to assess the anticipated spread of
COVID-19.

Model structure.”® employed the individual
agent-based model based on work by Fergu-
son et al.”%. Individuals are randomly assigned
an age based on Swedish demographic data and
they are also assigned a household. Household

3

@ Springer [ J. Indian Inst. Sci.l VOL 100:41793-807 October 2020ljournal.iisc.ernet.in



Mathematical Models for COVID-19 Pandemic: A Comparative Analysis

size is normally distributed around the average
household size in Sweden in 2018, 2.2 people
per household. Households were placed on a lat-
tice using high-resolution population data from
Landscan and census dara from the Statstics Swe-
den and each household is additionally allocated
to a city based on the closest city center by dis-
tance and to a county based on city designation.
Each individual is placed in a school or workplace
at a rate similar to the current participation in
Sweden.

Transmission between individuals occurs
through contact at each individual’s workplace
or school, within their household, and in their
communities. Infectiousness is, thus, a property
dependent on contacts from household mem-
bers, school/workplace members and community
members with a probability based on household
distances. Transmissibility was calibrated against
data for the period 21 March-6 April to repro-
duce either the doubling time reported using
pan-European data or the growth in reported
Swedish deaths for that period. Various types of
interventions were studied including the policy
implemented in Sweden by the public health
authorities as well as more aggressive interven-
tions approaching full lockdown.

Model predictions. Their prediction was that
“under conservative epidemiological param-
eter estimates, the current Swedish public-health
strategy will result in a peak intensive-care load in
May that exceeds pre-pandemic capacity by over
40-fold, with a median mortality of 96,000 (95%
CI 52,000 to 183,000)”.

Strength and limitations. This model was
based on adapting the well-known Imperial
model discussed in Sect. 3 to Sweden and con-
sidered a wide range of intervention strategies.
Unfortunately the predictions of the model were
woefully off the mark on both counts: the deaths
by June 18 are under 5000 and at the peak the
ICU infrastructure had at least 20% unutilized
capacity.

6 Forecasting Models

Forecasting is of particular interest to policy
makers as they attempt to provide actual counts.
Since the surveillance systems have relatively sta-
bilized in recent weeks, the development of fore-
casting models has gained traction and several
models are available in the literature. In the US,
the Centers for Disease Control and Prevention
(CDC) has provided a platform for modelers to
share their forecasts which are analyzed and com-
bined in a suitable manner to produce ensemble
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multi-week forecasts for cumulative/incident
deaths, hospitalizations and more recently cases
at the national, state, and county level. Probabil-
istic forecasts are provided by 36 teams as of July
28, 2020 (there were 21 models as of June 24,
2020) and the CDC with the help of>® has devel-
oped uniform ensemble model for multi-step
forecasts™®.

6.1 COVID-19 Forecast Hub Ensemble
Model

It has been observed previously for other infec-
tious diseases that an ensemble of forecasts from
multiple models perform better than any indi-
vidual contributing model®. In the context of
COVID-19 case count modeling and forecasting,
a multitude of models have been developed based
on different assumptions that capture specific
aspects of the disease dynamics (reproduction
number evolution, contact network construction,
etc.). The models employed in the CDC Forecast
Hub can be broadly classified into three catego-
ries, data-driven, hybrid models, and mechanis-
tic models with some of the models being open
source.

Data-driven models. They do not model the
disease dynamics but attempt to find patterns
in the available data and combine them appro-
priately to make short-term forecasts. In such
data-driven models, it is hard to incorporate
interventions directly; hence, the machine is pre-
sented with a variety of exogenous data sources
such as mobility data, hospital records, etc. with
the hope that its effects are captured implicitly.
Early iterations of Institute of Health Metrics
and Evaluation (IHME) model** for death fore-
casting at state level employed a statistical model
that fits a time-varying Gaussian error function
to the cumulative death counts and is param-
eterized to control for maximum death rate,
maximum death rate epoch, and growth param-
eter (with many parameters learnt using data
from outbreak in China). The IHME models are
undergoing revisions (moving towards the hybrid
models) and updated implementable versions are
available at™. The University of Texas at Austin
COVID-19 Modeling Consortium model®® uses
a very similar statistical model as®* but employs
real-time mobility data as additional predictors
and also differ in the fitting process. The Car-
negie Mellon Delphi Group employs the well
known auto-regressive (AR) model that employs
lagged version of the case counts and deaths
as predictors and determines a sparse set that
best describes the observations from it by using
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LASSO regression™.*’ is a deep learning model
which has been developed along the lines of' and
attempts to learn the dependence between death
rate and other available syndromic, demographic,
mobility and clinical data.

Hybrid models. These methods typically
employ statistical techniques to model disease
parameters which are then used in epidemio-
logical models to forecast cases. Most statistical
models*® ** are evolving to become hybrid mod-
els. A model that gained significant interest is the
Youyang Gu (YYG) model and uses a machine
learning layer over an SEIR model to learn the
set of parameters (mortality rate, initial Ro, post-
lockdown R) specific to a region that best fits
the region’s observed data. The authors (YYG)
share the optimal parameters, the SEIR model
and the evaluation scripts with general public
for experimentation®'. Los Alamos National Lab
(LANL) model® uses a statistical model to deter-
mine how the number of COVID-19 infections
changes over time. The second process maps the
number of infections to the reported data. The
number of deaths is a fraction of the number of
new cases obtained and is computed using the
observed mortality data.

Mechanistic models. GLEaM and JHU
models are county-level stochastic SEIR model
dynamics. The JHU model incorporates the effec-
tiveness of state-wide intervention policies on
social distancing through the Ry parameter. More
recently, model outputs from UVAs PatchSim
model were included as part of a multi-model
ensemble (including autoregressive and LSTM
components) to forecast weekly confirmed cases.

7 Comparative Analysis Across Modeling
Types
We end the discussion of the models above by
qualitatively comparing model types. As dis-
cussed in the preliminaries, at one end of the
spectrum are models that are largely data driven:
these models range from simple statistical models
(various forms of regression models) to the more
complicated deep learning models. The differ-
ence in such model lies in the amount of train-
ing data needed, the computational resources
needed and how complicated the mathematical
function one is trying to fit to the observed data.
These models are strictly data driven and, hence,
unable to capture the constant behavioral adapta-
tion at an individual and collective level. On the
other end of the spectrum SEIR, meta-population
and agent-based network models are based on
the underlying procedural representation of the

2

dynamics—in theory, they are able to represent
behavioral adaptation endogenously. But both
class of models face immense challenges due to
the availability of data as discussed below.

(1) Agent-based and SEIR models were used in
all the three countries in the early part of the
outbreak and continue to be used for coun-
ter-factual analysis. The primary reason is
the lack of surveillance and disease specific
data and hence, purely data-driven models
were not easy to use. SEIR models lacked
heterogeneity but were simple to program
and analyze. Agent-based models were more
computationally intensive, required a fair bit
of data to instantiate the model but captured
the heterogeneity of the underlying coun-
tries. By now it has become clear that use
of such models for long term forecasting is
challenging and likely to lead to mis-leading
results. The fundamental reason is adaptive
human behavior and lack of data about it.

(2) Forecasting, on the other hand, has seen
use of data-driven methods as well as
causal methods. Short-term forecasts
have been generally reasonable. Given
the intense interest in the pandemic, a lot
of data are also becoming available for
researchers to use. This helps in validating
some of the models further. Even so, real-
time data on behavioral adaptation and

compliance remain very hard to get and is
one of the central modeling challenges.

8 Models and Policy Making

Were some of the models wrong? In a recent
opinion piece,® Professor Vikram Patel of the
Harvard School of Public Health makes a stinging
criticism of modeling:

Crowning these scientific disciplines is the field
of modeling, for it was its estimates of moun-
tains of dead bodies which fuelled the panic
and led to the unprecedented restrictions on
public life around the world. None of these
early models, however, explicitly acknowl-
edged the huge assumptions that were made,

A similar article in NY Times recounted the mis-

takes in COVID-19 response in Europe’; also
62

see®.
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Our point of view. It is indeed important to
ensure that assumptions underlying mathemati-
cal models be made transparent and explicit.
But we respectfully disagree with Professor
Patel’s statement: most of the good models tried
to be very explicit about their assumptions. The
mountains of deaths that are being referred to
are explicitly calculated when no interventions
are put in place and are often used as a worst case
scenario. Now, one might argue that the authors
be explicit and state that this worst case scenario
will never occur in practice. Forecasting dynam-
ics in social systems is inherently challenging:
individual behavior, predictions and epidemic
dynamics co-evolve; this coevolution immediately
implies that a dire prediction can lead to extreme
change in individual and collective behavior lead-
ing to reduction in the incidence numbers. Would
one say forecasts were wrong in such a case or
they were influential in ensuring the worst case
never happens? None of this implies that one
should not explicitly state the assumption under-
lying their model. Of course our experience is
that policy makers, news reporters and common
public are looking exactly for such a forecast—
we have been constantly asked “when will peak
occur” or “how many people are likely to die”.
A few possible ways to overcome this tension
between the unsatiable appetite for forecasts and
the inherent challenges that lie in doing this accu-
rately, include:

e We believe that, in general, it might not be
prudent to provide long term forecasts for
such systems.

e State the assumptions underlying the mod-
els as clearly as possible. Modelers need to be
much more disciplined about this. They also
need to ensure that the models are transpar-
ent and can be reviewed broadly (and expedi-
tiously).

e Accept that the forecasts are provisional and
that they will be revised as new data comes in,
society adapts, the virus adapts and we under-
stand the biological impact of the pandemic.

e Improve surveillance systems that would pro-
duce data that the models can use more effec-
tively. Even with data, it is very hard to esti-
mate the prevalence of COVID-19 in society.

* Indian Express, July 30, 2020.

>NY Times July 20, 2020: https://www.nytim
es.com/2020/07/20/world/europe/coronavirus-mistakes-franc
e-uk-italy.html.
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Communicating scientific findings and risks is an
important topical area in this context, see*" ¢
65

Use of models for evidence-based policy
making. In a new book,*, Radical Uncertainty,
economists John Kay and Mervyn King (formerly
Governor of the Bank of England) urge caution
when using complex models. They argue that
models should be valued for the insights they
provide but not relied upon to provide accurate
forecasts. The so-called “evidence-based policy”
comes in for criticism where it relies on models
but also supplies a false sense of certainty where
none exists, or seeks out the evidence that is
desired ex ante—or “cover’—-to justify a policy
decision. “Evidence-based policy has become pol-
icy-based evidence’.

Our point of view. The authors make a good
point here. But again, everyone, from public to
citizens and reporters clamor for a forecast. We
argue that this can be addressed in two ways:(i)
viewing the problem from the lens of control the-
ory so that we forecast only to control the devia-
tion from the path we want to follow and (ii) not
insisting on exact numbers but general trends. As
Kay and King opine, the value of models, espe-
cially in the face of radical uncertainty, is more in
exploring alternative scenarios resulting from dif-
ferent policies:

a model is useful only if the person using it
understands that it does not represent the “the
world as it really is” but is a tool for exploring
ways in which a decision might or might not
g0 wrong.

Supporting science beyond the pandemic.
In his new book The Rules of Contagion, Adam
Kucharski®” draws on lessons from the past.
In 2015 and 2016, during the Zika outbreak,
researchers planned large-scale clinical studies
and vaccine trials. But these were discontinued as
soon as the infection ebbed.

This is a common frustration in outbreak
research; by the time, the infections end, fun-
damental questions about the contagion can
remain unanswered. That is why building
long-term research capacity is essential.

Our point of view. The author makes an
important point. We hope that today, after wit-
nessing the devastating impacts of the pandemic
on the economy and society, the correct lessons
will be learnt: sustained investments need to be
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made in the field to be ready for the impact of the
next pandemic.

9 Concluding Remarks

The paper discusses a few important computa-
tional models developed by researchers in the US,
UK and Sweden for COVID-19 pandemic plan-
ning and response. The models have been used by
policy makers and public health officials in their
respective countries to assess the evolution of the
pandemic, design and analyze control measures
and study various what-if scenarios. As noted,
all models faced challenges due to availability
of data, rapidly evolving pandemic and unprec-
edented control measures put in place. Despite
these challenges, we believe that mathematical
models can provide useful and timely informa-
tion to the policy makers. On on hand the mod-
elers need to be transparent in the description
of their models, clearly state the limitations and
carry out detailed sensitivity and uncertainty
quantification. Having these models reviewed
independently is certainly very helpful. On the
other hand, policy makers should be aware of
the fact that using mathematical models for pan-
demic planning, forecast response rely on a num-
ber of assumptions and lack data to over these
assumptions.
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