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ABSTRACT

Developing efficient catalysts for nitrogen fixation is becoming increasingly
important, but is still challenging due to the lack of robust design criteria to tackling the
activity and selectivity problems, especially for electrochemical nitrogen reduction
reactions (NRR). Herein, by means of large-scale density functional theory (DFT)
computations, we reported a descriptor-based design principle to explore the large
composition space of two-dimensional (2D) bi-atom catalysts (BACs), namely metal
dimers supported on 2D expanded phthalocyanine (M>-Pc or MM’-Pc), towards NRR
at the acid conditions. We sampled both homonuclear (M>-Pc) and heteronuclear
(MM’-Pc) BACs, and constructed the activity map of BACs by using NoH* adsorption
energy as the activity descriptor, which reduces the number of promising catalyst
candidates from over 900 to less than 100. This strategy allowed us to readily identify
three homonuclear and 28 heteronuclear BACs, which could break the metal-based
activity benchmark towards efficient NRR. Particularly, using the free energy
difference of H* and NoH* as selectivity descriptor, we screened out five systems,
including Tix-Pc, V2-Pc, TiV-Pc, VCr-Pc, and VTa-Pc, which exhibit a strong
capability of suppressing the competitive hydrogen evolution reaction (HER) with
favorable limiting potential of —0.75, —0.39, —0.74, —0.85 and —0.47 V, respectively.
This work not only broadens the possibility of discovering more efficient BACs
towards N fixation, but also provides a feasible strategy for rational design of NRR
electrocatalysts, and help pave the way to fast screening and design of efficient BACs

for NRR and other electrochemical reactions.



1. INTRODUCTION

Direct reduction of nitrogen (N2) into ammonia (NH3) represents one of the most
important, yet challenging, chemical transformations. Currently, most ammonia is
synthesized by the preeminent Haber-Bosch process, which uses around 1-2% of man-
made energy supply, and releases about 1.44 % of global CO, emissions.' Thus, it is of
paramount importance to find economical and environmentally friendly routes for
nitrogen fixation.

As the alternative of Haber-Bosch process, electrochemical N fixation holds the
great promise of directly converting abundant N> and renewable electricity into NH3 in
aqueous solutions at ambient conditions of temperature and pressure.?® Unfortunately,
the corresponding N> reduction reaction of this electrochemical process (NRR: N2 +
6H"/e- = 2NH3) suffers from activity and selectivity problems, due to the sluggish
kinetics and the competing hydrogen evolution reaction (HER) in the aqueous
solutions.””!> Specifically, the Faradaic efficiency (FE) values, which describe the
percentage of charges transferred in a system facilitating the target reaction, are very

small (typically ranging from less than one to several tens of percent) when NRR is
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catalyzed by metals,'%?? metal oxides,?*?’ transition metal chalcogenides,?®*” and other
metal-free materials.?®3* Therefore, it is highly desirable to develop stable, active, and
low-cost electrocatalysts with high FE values for further advancing the electrochemical
NRR technology.

The newly emerging atomically dispersed catalysts, e.g., single-atom catalysts

(SACs), are of particular interest due to their high atom utilization and exceptional



catalytic performances.>>* Theoretically, many SACs, such as Mo-BN,* Fe-

graphene,*! Ru-g-C3N4,*? and single-boron catalysts,*-+

were predicted as high-
performance NRR catalysts. Experimental studies revealed that some SACs can
suppress HER to some extent, and thus are capable of improving FE.**° For example,
anchoring the single Ru atom onto the nitrogen-doped carbons can achieve high FE of
29.6% at —0.2 V vs. reversible hydrogen electrode.’® However, since NRR involves
multiple reaction intermediates, it is rather challenging for the single-atom center to
simultaneously improve the yield rate and FE. To address this issue, a promising
strategy is to introduce dimer sites to tune the adsorption of intermediates. Such bi-atom
catalysts (BACs), with more flexible active sites and synergetic interatomic interactions,
can maximize the potentials of the SACs for multistep reactions, which provides a
feasibility to optimize activity and selectivity.’'->® For example, the Pt dimers well
dispersed on graphene catalyzed the hydrolytic dehydrogenation of ammonia borane at
a specific rate nearly 17-fold higher than the isolated single Pt atoms.’ Theoretically,
Co, Ni, and Cu-based BACs have been predicted to have much higher activity towards
O; reduction, as compared with their single-atom counterparts.®®-° For NRR, several
metal dimers, including Mo, and Mno, supported by 2D C>N monolayer, were predicted
to have better catalytic activity than that of the corresponding SACs.50-¢!

Note that so far most efforts in electrocatalyst design primarily focus on the
homonuclear BACs. However, in principle, there exist myriad of possible combinations

for heteronuclear dimers, since mixing the 3d, 4d, and 5d and main group metals

together could produce more than 900 candidates at one specific support with



asymmetric adsorption sites.®>7° Therefore, it is imperative to establish a feasible
strategy, which can enable the rational design of stable, active, and in particular highly
selective electrocatalysts towards NRR, and better bridge the gap between theory and
experiments.

To conquer this challenge, especially to simultaneously achieve high activity and
high selectivity for NRR, in this work, we adopted a descriptor-based design principle
and demonstrated its validity in screening and designing two-dimensional (2D)
electrocatalysts for NRR. By means of large-scale systematic density functional theory
(DFT) computations and taking the 2D expanded phthalocyanine (Pc) substrate as an
example, we built up the full profile of the stability, activity, and selectivity of metal
dimers anchored on 2D Pc towards NRR at the acid conditions, and sampled the large
composition space of both homonuclear (M»-Pc) and heteronuclear (MM’-Pc) BACs.
We demonstrated that three homonuclear BACs and 28 heteronuclear BACs could
break the metal-based activity benchmark and achieve the efficient N» electroreduction.
Specifically, the HER, which is the most problematic yet dominate side reaction in NRR,
can be dramatically suppressed on the Tiz-, V-, T1V-, VCr-, and VTa-Pc BACs with
the less negative limiting potential of —0.75, —0.39, —0.74, —0.85 and —0.47 V, which
are more favorable than most reported electrocatalysts for NRR. This work provides a
comprehensive understanding of stability, activity and selectivity of BACs, which
could guide further exploration of an even broader composition space of BACs for NRR
or other related reactions.

2. COMPUTATIONAL METHODS



All the computations were carried out by spin-polarized DFT method including
van der Waals (vdW) corrections, as implemented in Vienna ab initio Simulation
Package (VASP).”!2 The exchange correlation energy was modelled by Perdew-
Burke-Ernzerhof (PBE) functional within the generalized gradient approximation
(GGA).”> An energy cutoff of 400 eV was adopted for the plane-wave basis. In
structural optimizations, the Brillouin zone was sampled by 3x3x1 k-points using
Monkhorst-Pack scheme, while a denser k-points of 9x9x1 was employed for electronic
property computations. To avoid interactions between periodic images, a vacuum space
of 15 A was used in the perpendicular direction of the 2D layer. The energy and force
convergence thresholds for the iteration in self-consistent filed (SCF) were set to 107
eV and 0.02 eV/A, respectively. Since the solvation-induced stabilization of reaction
intermediates in NRR is within 0.2 eV (affecting the limiting potential for NRR by ~0.1
eV),”* the effects of solvation were not taken into account. The free energy diagram of
NRR was obtained by referring to the computational hydrogen electrode (CHE) model
proposed by Nerskov et al..””> More computational details regarding electrochemical

reactions and surface models are given in the Supporting information.

3. RESULTS AND DISCUSSION
3.1. Structural Models of BACs

Experimentally, metal dimers have been successfully anchored on various 2D

materials, such as graphene,’® graphitic carbon nitride (g-C3N4),”””® nitrogen-doped
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carbons, and rectangular-shaped expanded phthalocyanine,®' to form the BACs. In

these cases, the metal atoms can either be trapped at the graphene trivacancy,
6



quadrovacancy, and two adjacent single vacancies, or coordinate with nitrogen/carbon
atoms to form metal-carbon/nitrogen moieties (Figure S1). Using one of the
experimentally available Fe dimers as the prototype,® we found that the binding
strength between the metal dimers and substrates can be significantly affected by the
coordination environment of metals. Especially, the phthalocyanine (Pc) family serves
as probably the best substrate for us to investigate BACs due to the flexibility of the
physical-chemical and catalytic properties, as well as the strong binding for the metal
atoms. Thus, in this study, we built up the repository of Pc-based BACs, namely M>-Pc
and MM’-Pc.

In M2-Pc (or MM’-Pc), four isoindole rings are connected by two methanetriamine
moieties, which accommodate two metal atoms in the central cavity (Figure 1a); each
metal atom combines with two pyrrole nitrogen atoms and two amino nitrogen atoms
of the macrocycle to form the MaNg moiety. In principle, all the 3d, 4d, 5d, and main
group metal atoms can serve as the metal centers of M>-Pc (or MM’-Pc). However, due
to the toxic/radioactive nature, Tc, Cd, Hg, In, T1 and Pb were excluded in this study.
We only considered 30 metal atoms, including 27 transition metal atoms (except for
lanthanides, Tc, Cd, and Hg) and three main group metal atoms (Al, Ga, Bi) as the
central atoms in the 2D phthalocyanine networks. We will first focus on understanding
the stability and activity of homonuclear BACs, then extend the modeling capabilities

to capture greater complexities of heteronuclear BACs.



3.2. Homonuclear BACs
3.2.1 Structure and Stability

First, we theoretically investigated the geometric structures of the above
mentioned 30 homonuclear M>-Pc monolayers (Figure 1a, the details of the optimized
structures and the corresponding structural parameters are given in Figure S2 and
Table S1 of Supporting Information). In the optimized structures, the central atoms are
in or out of the Pc plane, mostly depending on the radii of the metal atoms. Ten metal
atoms, namely Al, Cr, Mn, Fe, Co, Ni, Ru, Rh, Os, and Ir, can incorporate into the
central cavity of Pc and form the almost in-plane configurations, whereas the remaining
20 dimers slightly protrude out of the Pc plane, leading to the buckled structures. The
distances between two metal atoms are in the range of 2.30 (for Fe>-Pc) and 3.41 A (for
Bix-Pc). Compared with the interatomic distances in the bulk, Crz, Niz, Cuz, Pd>, Pts.
Snz, and Biz display longer bond length, while the other metal dimers have shorter
distances (Table S1, Figure S3). Such interconnection enables the metal dimers to
respond cooperatively to adsorbate with communicative structural self-adaption and
electronic transformation,®? which induces different catalytic performance from that of
single-atom counterparts.

Then, we evaluated the thermodynamic and electrochemical stabilities of these 30
M;-P¢ monolayers by the formation energy Ey and dissolution potential Uy;gs
(Figure 1b),% which are defined as

Ef = (EMZ—PC — Epc — 2Ey)/2 (1)

o E
Ugiss = Uyiss(metal, bulk) — f/ne (2)



where Ej is the total energy of metal atom in its most stable bulk structure, Ey,_p.
and Ep. are the total energies of Mo-Pc and substrate, Uy;..(metal, bulk) and n are
the standard dissolution potential of bulk metal and the number of electrons involved
in the dissolution, respectively. According to our definition, systems with Er < 0 eV
are considered to be thermodynamically stable, while materials with Ug;ss >
0 Vvs. SHE. are regarded as electrochemically stable. The exact values of Ef and Uy
are listed in Table S2. Note that most of the experimentally synthesized SACs are
thermodynamically and electrochemically stable according to our above evaluation
criteria (Figure S4),%* which suggests the reliability and feasibility of our approach.
Promisingly, the computed Ef of all the considered M»-Pc systems are well below
zero, suggesting high thermodynamic stabilities of these metal dimers on the Pc
substrate. As far as the U,;ss 1s concerned, five systems, namely Sc2-Pc, Y»-Pc, Zr;-Pc,
Nb»-Pc, and Hf>-Pc, are ruled out due to the electrochemical instability at the acid
conditions, as indicated by their negative Uy;ss values. Thus, we finally screened out

25 homonuclear M»-Pc that meet the stability criteria for further investigations.
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3.2.2 N; Adsorption

Under ambient conditions, N> can be electrochemically reduced to NH3/NH4"

86 87

following distal,® alternative,®® enzymatic,®’” and mixed pathways®® on a catalyst
surface. A key step in the proposed mechanisms is the adsorption and activation of the
classically inert N». Thus, we investigated the N> adsorption on the 25 homonuclear
M:-Pc.

These 25 M»-Pc can be divided into three categories depending on the adsorption
configuration of N> (Figure 1c¢): the N> may interact with the M>-Pc either through
physisorption, or through chemisorption via side-on/end-on configurations.

Our computations demonstrated that 17 M»-Pc (M = Al, Fe, Co, Ni, Cu, Zn, Ga,
Ru, Rh, Pd, Ag, Sn, Os, Ir, Pt, Au, and Bi) interact with M»-Pc only by physisorption.
The computed adsorption energy (E,45) on these catalysts are close to 0 eV, indicating
that the adsorption and activation of N> on these M>-Pc hardly take place at room
temperature (Figure 1d).

In contrast, N> chemisorption occurs on eight M>-Pc (M= Cr, Mn, Mo, W, Re, Ti,
V, and Ta) with E ;¢ values between —0.26 and —2.07 eV. N, can be readily adsorbed
on Cr2-Pc, Mnz-Pc, Mo,-Pc, Wa-Pc, and Rex-Pc via end-on configuration, whereas side-
on adsorption is preferred on Ti-Pc, V2-Pc, and Tar-Pc surfaces. Charge density
difference plots indicate that upon adsorption, the adsorbed N> can interact with these
eight Ma-Pc by the so-called “push-pull” hypothesis, in which M-Pc can “push”

electrons into the antibonding orbitals of N> and simultaneously “pull” the lone-pair

electrons from the N> (Figure 2). Especially, since the occupied orbitals of metal atoms



can “push” electrons into antibonding orbitals of N> via both two N atoms, Ti>-Pc, V-
Pc, and Tax-Pc, which possess the side-on configuration, can remarkably activate the
N=N bond, leading to the significant N> bond elongation (1.19~1.22 A, vs. 1.12 A in

free gas phase).
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Figure 2. Optimized adsorption configurations and charge density differences of N»
chemisorbed on eight M»-Pc surfaces. The charge depletion and accumulation were

depicted by cyan and yellow, respectively. The isosurface value is 0.003 e/A3.
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To understand the underlying mechanism of the N, activation, we analyzed the
interactions between the metal dimers and N; by plotting the partial density of states
(PDOS) (Figure 3) of their energetically most favorable configurations. Compared
with the molecular orbitals of free N2, the strong ability for Mz-Pc to adsorb/activate
N2 is primarily associated with their availability of unoccupied and occupied d orbitals.
On one hand, the unoccupied d orbitals of M»-Pc accept electrons from the 2z and 3¢
molecular orbitals of N>, forming the bonding states to strengthen the N> adsorption.
On the other hand, the occupied d-orbitals of metal dimers back-donate electrons to the
27* orbital of N», leading to the partially occupied 2z * orbital near the Fermi level. The
strong d-2z* coupling can activate the adsorbed N> to be radical-like, which is ready
for hydrogenation.

To gain deep insights into the d-27* interaction quantitatively, we performed the
integrated-crystal orbital Hamilton population (ICOHP) analysis by integrating the
band states up to the highest occupied energy level (Figure 3)3° Note that a more
negative value of ICOHP implies a stronger d-27* coupling. The computed ICOHPs
for those with side-on N; adsorption configurations (—0.92, —0.95, and —1.33 for Ti,-
Pc, V2-Pc, and Tax-Pc, respectively) are more negative than those with end-on N>
adsorptions (—0.55, —0.57, —0.73, —0.73, and —0.74 for Cr>-Pc, Mnz-Pc, Moz-Pc, W»-
Pc, and Rex-Pc, respectively). More interestingly, we plotted the ICOHP versus the
Gibbs free energy change of the first hydrogenation step (N2* — NNH*), and found an
approximately linear correlation with R? of 0.78 (Figure S5), suggesting the important

role of adsorption configurations for N activation. This characteristic could also well
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explain why 10 candidates out of 270 SACs, which were predicted with high NRR
activity, prefer to adsorb N, through the side-on configuration.”® However, since the
catalytic activity of NRR is governed by multiple reaction intermediates, the detailed

reaction pathways and activity trends will be systematically evaluated in the next

section.
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3.2.3 Catalytic Activity of Homonuclear BACs

Theoretically, the intrinsic activity of the electrocatalysts can be estimated by the
limiting potential (U;) or overpotential. Note that the products of NRR are pH-
dependent (Figure 4a), the overpotential can be affected by conditions of electrolyte.
Thus, we used U, to evaluate the activity trends for different materials, and the
corresponding U; on stepped Ru(0001) (cat. —0.98 V) was set as the metal-based
benchmark due to the highest theoretical activity among bulk metal surfaces.”'*?
Accordingly, M»>-Pc with less negative (or more positive) U, related to that of stepped
Ru(0001) (U, >—-0.98 V) are considered to possess improved catalytic activity towards
NRR.

Figure 4b summarizes the U; values for 25 homonuclear M>-Pc which meet the
stability criteria. Notably, three systems, including Ti>-Pc, V2-Pc, and Re>-Pc, can co-
balance the adsorption for the multiple reaction intermediates, which display
outstanding activity towards NRR as compared to the stepped Ru(0001) surface, with
more favorable U; values of —0.75 V, —0.39 V, and —0.82 V, respectively. Whereas
for Tax-Pc, the intrinsic activity is limited due to its strong interaction with the
adsorbates.

Four possible associative NRR catalytic mechanisms, namely distal, alternative,
enzymatic, and mixed, are possible on the most promising M>-Pc (M= Ti, V, Re)
catalysts, as schematically illustrated in Figure 4¢. Due to the high energy barrier of N2
dissociation (e.g., 2.94 eV on Tax-Pc, Figure S6), the dissociative mechanism for N»

fixation was not considered. The free energy diagrams of NRR on these three M>-Pc
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are presented in Figure 4d-f, while the computed thermodynamic properties and the
optimized structures of reaction intermediates are given Table S3-5 and Figure S7-S9,

respectively.
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free energy diagrams for N electroreduction on Tiz2-Pc, V2-Pc and Re»-Pc, respectively.

First, we investigated the NRR pathway on Ti>-Pc and V»-Pc since N> prefers side-
on configuration on these two catalysts. In the reduction process, the adsorbed N2 (N2*)
can interact with H'/e™ pair to form the NNH*. The Gibbs free energy changes of the
first hydrogenation step (N2* — NNH*) on Ti>-Pc and V»-Pc are 0.41 and 0.21 eV,

respectively. Then, the H'/e” pair can attack one N atom of the adsorbed N>H species
16



to form the NHNH* or NNH>* intermediate. Comparing the Gibbs free energy change
in these two elementary steps, we found that Ti>-Pc and V2-Pc prefer to catalyze NRR
through the NoH* — NHNH?*, whereas the formation of NNH>* could be much
hindered due to the more positive free energy change. Subsequently, the NHNH* can
be readily hydrogenated into NHNH»* after overcoming a small potential barrier (0.15,
and 0.05 eV for Ti>-Pc and V»-Pc respectively). In the following steps, the protonation
of NHNH>* can proceed via NHNH>* — NH*-NH;3*, and the generation of second
NH; (NHx* —NH3*) was identified as the potential-limiting step (PDS) (with the
maximum free energy change of 0.75 and 0.39 eV, respectively). Simply, we can
compute the U, value using the equation U, = — AGp ps/ e» and the corresponding U,
for Ti2-Pc and V2-Pc are —0.75 and —0.39 V, respectively. Hence, after applied a U; on
Ti2-Pc and V»-Pc surfaces, all the electron-transfer steps can be downhill, favoring the
production of NHs, and the reaction process follows the enzymatic and mixed
mechanism. Moreover, we also examined the kinetics of the proton transfer in PDS
using the Zundel HsO>" as the solvated proton donor (Figure S10). The computed
activation barriers of PDS at the 0.0 V versus SHE are only 0.38 and 0.35 eV,
respectively, on the Ti-Pc and V»-Pc catalysts. Such small barries can be easily
surmountable at room temperature or diminished with more negative applied voltages.

Then, we examined the NRR pathway on Re>-Pc where N> adopts end-on
configuration. Similar to the other two catalysts, NNH* is formed by the interaction
between N>* and H'/e™ pair, and this hydrogenation step (N2* — NNH¥*) is 0.82 eV

uphill in the free energy profile. Afterwards, the NoH* is easily protonated by H'/e" pair,

17



releasing energy of 0.68 eV and leading to the energetically more favorable NNH>*
(rather than NHNH*, which is 0.65 eV higher in energy). Once the NNH>* is formed,
the first NH3 molecule can be readily desorbed on the catalyst surface, leaving a single
nitrogen atom on the Re site. In the subsequent reaction steps, three H/e™ pair can
continuously attack the remaining N*, forming the NH*, NH>* and NH3* with an
energy demand of 0.65, —0.51 and —0.87 eV, respectively. Among all the elementary
steps, the formation of NoH* (N2* — NNH?*) is the PDS with the maximum free energy
change of 0.82 eV. Thus, when the external potential increases to —0.82 V, the free
energy of PDS becomes zero, and the electron-transfer steps can be proceeded by the

distal mechanism.

Noteworthily, different from the NRR under strong alkaline conditions or thermal
catalysis, in which the desorption of NH3* plays an important role in the whole process,

the protonation of NH3* into NH4" trends to be facile under the acid or alkalescence

93-94

conditions, and thus was not examined in detail (the computed adsorption energies

of NH3* on BACs are given in Table S6).

To summarize, among the 25 homonuclear M»-Pc, we identified that Ti>-Pc, V-
Pc, and Re;-Pc exhibit higher activity towards NRR than the stepped Ru(0001) surface.
Particularly, V2-Pc displays most less negative U; value of —0.39 V, which is more
favorable than that of Ti>-Pc (—0.75), Rez-Pc (—0.82), and reported B-C3N4 (—0.47 V),
Mo-C2N (—0.53 V),”> Mo-graphdiyne (Mo-GDY, —0.99 V)*, Ru-N3 (=1.10 V),>° Ru-
NC; (—0.82 V), and Ru-ZrO; (—1.41 V)% catalysts under the same theoretical level (the

computed thermodynamic properties are listed in Table S7).
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3.3. Exploration of Heteronuclear BACs for NRR

The above activity data enabled us to find descriptors to build up a full activity
picture of the M>-Pc and MM’-Pc systems. Once the activity trends are identified, it
can be used to create a candidate list of all the combinatorial possibilities of
heteronuclear BACs.

First, we employed two previously selected descriptors, the adsorption energy of
NNH* (AEy,u+) and AEyy,+, to describe the catalytic behavior of M>-Pc and MM’-P¢
systems.?”- 74 90,91 Interestingly, we found the volcano-shaped relationship between the
theoretical limiting potential (U,) and AEy, g+ (Figure Sa), in which the best limiting
potential occurs when AEy, -+ is close to —1.0 eV, whereas the correlation between the
limiting potential and the NH>* adsorption energy is less satisfactory than that between
the limiting potential and the NoH* adsorption energy, as illustrated in Figure S11.
When AEy, ,+ on the catalyst is stronger than ca. —1.0 eV (AEy,y+< ~—1.0 €V, left
branch in Figure 5a), for example, Ti2-Pc and Taz-Pc, the NNH* can be readily formed,
but the interaction between NH>* and catalyst is so strong that the formation of NH3*
is difficult to achieve. On the contrary, when the Ey, g+ is weaker than ca. —1.0 eV
(AEy,p=>~—1.0 eV), the No* + H'/e — NNH* step is difficult to proceed. To balance
these two requirements, the AEy, g+ for an active catalyst should be near —1.0 eV. Note
that the V»-Pc, which displays the highest activity among all the considered
homonuclear M»-Pc, is located near the peak of the volcano with Ey_ 4+ of -0.99 eV.
Thus, AEy,y+ can be used as a good activity descriptor for us to screen efficient BACs
towards NRR. More interestingly, the previously studied 2D C,N-supported Mn» and
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Moz BAC:s also follow the general tendency of our volcano-shaped relation, implying
that the constructed scaling relations could be used to other types of BACs.%0-¢!

To better understand the possible relations between AEy,n+« and electronic
properties of metal dimers, we also plotted the correlations between the N>H adsorption
energy (AEy,y+) and (i) the band center of adsorbed metal atoms (Figure S12a),”” and
(if) the energy of lowest unoccupied state of 25 homonuclear bi-atom catalysts (Figure
S12b).”® Unfortunately, no strong correlation between AEy, y+ and the two other
potential descriptors were found. This finding is likely due to the different band
hybridization of NoH* on different metal surfaces, which is similar to our recent study.®*
For metal atoms with strong binding for the NoH*, the adsorption energy can be
significantly affected by the band center of metal atoms because of the strong band
hybridization between the metal and NoH*. However, for the systems with weak

binding with N>H*, the adsorption is mainly associated with the charge transfer

between the metal and adsorbates.
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Figure 5. (a) Volcano-shaped relationship between the theoretical limiting potential
(Up) and the adsorption energy of NoH* intermediate (AEy,y+). (b) Variations of
AEy,y+ on 69 heteronuclear M»-Pc. (¢) Summary of U, values on 37 heteronuclear
M;-Pc catalysts which were proposed as promising catalysts by using AEy - as the
activity descriptor. The Ti-, V-, and Ta-based BACs are depicted by aqua, violet, and

yellow, respectively.

Using the AEy, ph- as the activity descriptor, we extended our study to 69
heteronuclear MM’-Pc by mixing one of the metal atoms in the left branch of the
volcano-type plot (i.e. Ta, Ti, and V with NoH* binding strength stronger than —1.0 V)
with the remaining 24 metal atoms (Figure 5b). We expect that the binding strength of
multiple reaction intermediates could be tuned by doping Ta/T1/V with another metal

atom that has a weaker binding to the NoH intermediate, consequently the activity
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toward NRR could be improved. Given that the AEy, - value for an active catalyst is
typically in the range of —0.33 and —2.50 eV as revealed from the scaling relations, 37
of 69 heteronuclear MM’-Pc were proposed as promising candidates, and further
examined by detailed activity analyses (Figure Sc, the computed AEy g4+, U, and
corresponding PDS can be found in Table S8). Finally, our DFT computations
identified 28 heteronuclear BACs, including nine Ti-based BACs (TiV, TiCu, TiZn,
TiAl, TiGa, TiAg, TiTa, TiW, TiAu), seven V-based BACs (VCr, VZn, VMo, VSn,
VTa, VW, VPt), and 12 Ta-based BACs (TaCr, TaMn, TaFe, TaCo, TaAl, TaMo, TaRu,
TaRh, TaW, TaOs, Talr, TaB1), with intrinsic activity better than the stepped Ru(0001)
surface. Specifically, 21 heteronuclear BACs display less negative U; values, thus
higher activity than their homonuclear counterparts.

We further computed PDOS of these 28 heteronuclear BACs and three
homonuclear systems (Ti2-Pc, V2-Pc, and Re;-Pc), and found that all these catalysts are
metallic (Figure S13). Note that the metallicity can ensure the high carrier mobility
during the reaction process. The superior catalytic activity, as well as the metallic
characteristic could render these BACs as promising efficient catalysts towards NRR.
In the following sections, we will focus on the catalytic selectivity of these 31 NRR
catalysts (28 heteronuclear and three homonuclear).

3.4. Selectivity Evaluation of NRR Catalysts

Besides the high stability and activity, an ideal catalyst for N» fixation should be

able to effectively suppress HER to achieve the high FE for the production of NHj.

Therefore, our final step is to quantify the catalytic selectivity of the screened catalysts.
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Basically, since the adsorption free energy of H adsorbate (AG(H*)) is commonly
more negative than that for N>* on most metal surfaces,”? H* can easily cover the metal
surfaces and block active sites for NRR. Especially, due to the involvement of proton
and electron transfer in H adsorption, the H adsorption process can be facilitated by the
negative electrode potential. On the contrary, the free energy of N> adsorption is
insensitive to the electrode potential due to the lack of proton and electron transfer
during the N> adsorption. Thus, with increasing electrode potential (more negative), the
HER could dominate the reaction process until the adsorption of NoH* is favored. In
this context, we calculated the free energy difference between the H* and NoH*
(AG(H*) — AG(N,H™)) to estimate the catalytic selectivity of different catalysts.

The AG(H*) — AG(N,H*) versus U, relationship for the 31 promising NRR
catalysts (three homonuclear and 28 heteronuclear BACs) is presented in Figure 6, and
the relevant data for the six reported high-performance NRR catalysts, i.e., B-C3N4,*,
Mo-C2N,”* Mo-GDY#, Ru-N3,>° Ru-NCz, and Ru-ZrO,,’® are given for comparison.
To exclude the possible deviation in different studies, all the theoretical results were
obtained at the same theoretical level (DFT-D3, more details in Supporting
Information). Based on this selectivity criterion, a catalyst with a positive AG(H*) —
AG(N,H*) value (>0) suggests a significant preference for hydrogenation of N>*, thus
possesses the good selectivity.

However, the calculated AG(H*) — AG(N,H*) values of most considered 31
BACGs and all the reported reference catalysts are below zero, implying the strong

competition of HER during the reaction process. Specifically, our computations
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suggested that there exists a trade-off between adsorption of NoH* and H*, as catalysts
with strong binding for NoH* also involves the strong capability for H* adsorption,
leading to the poor selectivity under the reaction conditions (Figure S14). Remarkably,
five systems, namely Ti»-Pc, V»-Pc, TiV-Pc, VCr-Pc, and VTa-Pc, have positive or
roughly neutral AG(H*) — AG(N,H*) values (0.04, —0.07, 0.01, —0.07 and 0.09 eV,
respectively), thus are expected to be able to (nearly) eliminate HER, and exhibit the
highest selectivity for NRR.

Note that the (non-zero) charge and hydrogen bonding between the polar reaction
intermediates and the H>O could affect the binding strength of reaction intermediates
on catalysts, especially in 2D materials.®® However, the most important criteria for us
to evaluate the activity and selectivity of the NRR electrocatalysts, namely the U; and
the NoH and H* (AG(H*) — AG(N,H*), are obtained by comparing the energies of two
or multiple intermediates, and the energy change caused by charges and solvation on
the reaction species commonly are in the same degree,'°®!?! leading to ‘“error
cancellation.

On the other hand, once electrode potentials are set, the oxidation of metal centers
might be a problem for NRR, especially Ti or V are oxophylic and BAC surface might
be covered with -OH or -O under NRR and HER conditions. To address this potential
problem, we systematically investigated the possible deoxidation/dehydroxylation
process (by hydrogenating the O*/OH* functional groups) on the high-performance
NRR catalysts we screened out, i.e., the Ti-Pc, V2-Pc, TiV-Pc, VCr-Pc, and VTa-Pc
surfaces (Figure S15).
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On all these five catalysts, when oxygen is attached, the O* can be easily
protonated to OH* by the H'/e™ pair with the downhill energies of between —0.52 and
—1.62 eV. Further protonation of OH* can lead to the formation of HO* with downhill
energy of —0.36 eV on VCr-Pc), or by overcoming the accessible energy barrier of 0.38,
0.55, and 0.35 eV, respectively, on Ti>-Pc, V2-Pc, TiV-Pc, which are well below 0.75
eV, commonly considered to be surmountable for reactions at room temperature.'%?
Thus, on these four BACs, the surface oxidation or hydroxylation is not a big concern.
However, on the VTa-Pc surface, the protonation of OH* to H,O* could be suppressed
due to the high energy demand of 1.22 eV, and a more negative potential needs to be
applied to favor HoO* formation. Consequently, for NRR under the alkaline conditions
(i.e. containing high levels of hydroxyl), the OH* may constantly occupy the active
sites of the VTa-Pc surface, leading to the reduced activity for NH3; production, the
possible oxidation of active sites on this catalyst should be taken into account.

Nevertheless, the possible surface oxidation and proton transfer can be reduced by
a few experimental strategies, such as developing gas-diffusion-electrode flow cells
with a controlled local liquid/gas environment,!*® operating three phase interfaces
(electrolyte/ electrode/ gas) by a superhydrophobic coating layer to optimize the local
environment and mass transfer,'® and using the nonaqueous electrolytes to dilute the
water concentration and thus reduce the proton donor activity.!%>1% Guided by these
encouraging findings, it is expected that similar strategies could be used to attenuate

HER or surface oxidation on the BACs.
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Figure 6. Limiting potential (U;) versus AG(H*) — AG(N,H*) on 31 M»-Pc and six

reported catalysts.

4. CONCLUSIONS

In summary, by means of DFT computations, we systematically examined the
potential of a branch of 2D BACs, namely M»>-Pc and MM’-Pc, as efficient N» fixation
electrocatalysts. Taking advantage of the activity descriptor (NoH* adsorption energy),
we surveyed a large composition space of homonuclear M>-Pc BACs as well as their
heteronuclear counterparts (MM’-Pc, with over 900 candidates), and investigated the
catalytic activity of the promising catalysts towards NRR. Three homonuclear BACs
and 28 heteronuclear catalysts were identified as highly active NRR catalysts under the
electrochemical conditions. Particularly, five systems, including Ti>-Pc, V2-Pc, TiV-Pc,
VCr-Pc, and VTa-Pc, can effectively suppress the competitive HER with favorable
limiting potential of —0.75, —0.39, —0.74, —0.85 and —0.47 V, surpassing most of the

reported electrocatalysts at the acid conditions. Overall, this work not only gain us a
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comprehensive understanding of the stability, activity, and selectivity of M;-Pc/MM’-
Pc electrocatalysts, but also provide an effective strategy for screening and designing
novel BACs for NRR. We believe this work will motivate more experimental and
theoretical efforts to further explore the potential of two-dimensional BACs for NRR

and other related electrochemical reactions.
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