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ABSTRACT

Inmuch of EastAfrica, climatological rainfall follows a bimodal distribution characterized by the long rains

(March–May) and short rains (October–December). Most CMIP5 coupled models fail to properly simulate

this annual cycle, typically reversing the amplitudes of the short and long rains relative to observations. This

study investigates how CMIP5 climatological sea surface temperature (SST) biases contribute to simulation

errors in the annual cycle of East African rainfall. Monthly biases in CMIP5 climatological SSTs (508S–508N)

are first identified in historical runs (1979–2005) from 31 models and examined for consistency. An atmo-

spheric general circulation model (AGCM) is then forced with observed SSTs (1979–2005) generating a set of

control runs and observed SSTs plus themonthly, multimodelmean SST biases generating a set of ‘‘bias’’ runs

for the same period. The control runs generally capture the observed annual cycle of East African rainfall

while the bias runs capture prominent CMIP5 annual cycle biases, including too little (much) precipitation

during the long rains (short rains) and a 1-month lag in the peak of the long rains relative to observations.

Diagnostics reveal the annual cycle biases are associated with seasonally varying north–south- and east–west-

oriented SST bias patterns in Indian Ocean and regional-scale atmospheric circulation and stability changes,

the latter primarily associated with changes in low-level moist static energy. Overall, the results indicate that

CMIP5 climatological SST biases are the primary driver of the improper simulation of the annual cycle of East

African rainfall. Some implications for climate change projections are discussed.

1. Introduction

Across East Africa (study domain shown in Fig. 1)

climatological rainfall shows considerable heterogene-

ity, although for much of the region it follows a bimodal

annual cycle as evidenced by the long rains of March–

May (MAM; other seasons denoted similarly) and the

short rains during OND. The bimodal rainfall distribu-

tion is related to the meridional translation of the in-

tertropical convergence zone across the equator, with

topography further influencing rainfall locally (Hession

and Moore 2011; Nicholson 1996). Further, the long

rains typically undergo a meridional ‘‘jump’’ of several

degrees of latitude during MAM as low-level southerly

flow develops off the equatorial east coast (Riddle and

Cook 2008) concurrent with the development of the

Findlater jet, itself tied to the north–south orientation of

East African orography (Vizy and Cook 2003; Hart

1977; Findlater 1969). Based on a moist static energy

(MSE) framework, Yang et al. (2015a) showed a close

correspondence between the annual cycles of East

African rainfall and sea surface temperatures (SSTs) in

the western Indian Ocean. Observed SSTs peak in that

location during April, concomitant with the peak of the

long rains, and subsequently cool in association with the

development of the South Asian summer monsoon cir-

culation, the latter contributing to a reduced, secondary

maxima in both SST and rainfall during OND.

Given these complexities it is perhaps understandable

that global climate models struggle to properly simulate

the climatological annual cycle of East African rainfall.

Previous studies have shown this is indeed the case, with

most models from phase 5 of the Coupled Model

Intercomparison Project (CMIP5) having the tendency

to generate toomuch rainfall in theOND short rains and

too little in the MAM long rains relative to observations

(Lyon and Vigaud 2017; Yang et al. 2015b; Otieno and

Anyah 2013). In addition to their fairly coarse spatial

resolution (e.g., relative to topographic variations in

EastAfrica), coupled climatemodels are known to exhibit

systematic biases, including biases in their climatological
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SSTs. An important example of relevance to East African

climate is the general failure of coupledmodels to capture

the observed annual cycle of SSTs in the western equa-

torial Indian Ocean, tending to be too warm in the boreal

fall and too cool during boreal spring (Lyon and Vigaud

2017; Yang et al. 2015b). Yang et al. (2015b, hereafter

Y15) examined CMIP5 model errors in simulating the

observed annual cycle of East African rainfall but em-

phasized differences in behavior between a single coupled

model and its atmospheric model component. They found

that differences in the surface temperature field (equiva-

lent to SST over the ocean) between the coupled and

atmospheric models were associated with errors in simu-

lating climatological rainfall in East Africa. Y15 under-

took various diagnostic analyses to identify physical

mechanisms associated with both the East African rain-

fall bias in thismodel and the generation of the SSTbiases

themselves.

This study extends the analysis of Y15 by examining 1)

the climatological SST biases in 31 CMIP5 coupled

models, 2) the consistency of these biases across the

models, and 3) the atmospheric response to the multi-

model mean SST bias in an atmospheric general circu-

lation model (AGCM). The main goal of the study is to

examine the extent to which the biases in CMIP5 cli-

matological SSTs can be related to coupledmodel biases

in simulating the annual cycle of East African climato-

logical rainfall. Thus, the atmospheric response to cou-

pled model SST biases is emphasized rather investigating

the physical mechanisms responsible for the generation

of the SST biases. Here, after computing the monthly

climatological SST biases in each model (and comparing

biases across the models), the multimodel mean SST

biases are added to observed monthly SSTs (1979–2005)

with the combination used as the lower boundary forcing

in the ECHAM5 AGCM (Roeckner et al. 2003). An

ensemble of ECHAM5 SST ‘‘bias’’ runs is generated,

with the output compared to both CMIP5 model output

and a set of ECHAM5 control runs, where in the latter

case the model is forced with observed SSTs. In addition

to examining the influence of CMIP5 SST biases on the

annual cycle of East African rainfall, associated changes

in the regional atmospheric circulation are evaluated as

well as changes in local atmospheric stability through the

annual cycle.

Whereas variations in CMIP5 simulations of clima-

tological rainfall in East Africa may be influenced by

different model formulations, spatial resolutions, and

various parameterizations, here the influence of CMIP5

SST biases alone is evaluated by examining the atmo-

spheric response to those biases in a single AGCM. To

the extent that the ECHAM5 captures the observed

annual cycle of climatological rainfall in East Africa and

responds properly to SSTs generally, the results of the

study will indicate the potential impact CMIP5 SST

biases play in generating coupled model biases in the

simulation of East African climatological rainfall.

The paper is organized as follows. The observational

and climate model data used in the study are described

in section 2 along with a description of the basic meth-

odological approach. CMIP5 biases in the annual cycle

of East African rainfall and climatological SSTs are

discussed in section 3. The annual cycle of East African

rainfall in theECHAM5bias and control runs is compared

with observations and CMIP5 historical simulations in

section 4 where changes in the regional atmospheric cir-

culation and local atmospheric stability conditions are also

considered. A summary of the overall findings and the

main conclusions drawn from the study are reported in

section 5.

2. Data and methodology

a. Observational and model data

Several monthly, gridded precipitation analyses were

utilized, which primarily cover the period 1979–2005

unless otherwise noted. The base period 1979–2005 was

chosen primarily because the CMIP5 historical runs end

in 2005 and the starting year of 1979 allowed for a robust

estimate of climatological rainfall while avoiding the

additional computational costs associated with using a

FIG. 1. Overall study domain indicated by black box. Gray

shading indicates locations with a bimodal rainfall distribution that

are used in the analysis.
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longer base period when generating the atmospheric

model runs needed for the study. The specific observational

datasets include the Global Precipitation Climatology

Center (GPCC v7) product based on gauge observations,

and gridded to 1.08 latitude/longitude resolution (Rudolf

and Rubel 2005); the gauge-based version TS 4.01 of

monthly precipitation over global land areas from the

Climatic Research Unit at the University of East Anglia

(CRU; Harris and Jones 2017) gridded to 0.58 latitude/

longitude resolution; version 2.3 of theGlobal Precipitation

Climatology Project (GPCP)monthly precipitation dataset

(Huffman et al. 2009), which combines satellite estimates

with gauge observations and is gridded to a 2.58 latitude/
longitude resolution; version 2.0 of the monthly Climate

Prediction Center (CPC)MergedAnalysis of Precipitation

(CMAP; Xie and Arkin 1997), which also combines satel-

lite and gauge data and is gridded to a 2.58 latitude/

longitude resolution; version 2.0 of the Climate Hazards

Group Infrared Precipitation with Station data (CHIRPS;

Funk et al. 2015) covering the period 1981–2005 and grid-

ded to a 0.058 latitude/longitude resolution; and version

1.1 of the satellite-based Precipitation Estimation from

Remotely Sensed Information using Artificial Neural

Networks (PERSIANN; Ashouri et al. 2015) data cov-

ering the period 1983–2005 and gridded to a 0.258
latitude/longitude spatial resolution.

Monthly SST analyses from the ExtendedReconstructed

SST dataset (ERSST v4) were employed (Huang et al.

2015). These data are gridded to a 2.08 latitude/longitude
resolution with data for the period 1977–2005 used in the

study, both for diagnostic analysis and for forcing the

ECHAM5 atmospheric model. Output from 31 coupled

models contained in the CMIP5 archive (Taylor et al. 2012)

were employed (a listing of the models is found in the

appendix). CMIP5 variables included monthly average

values of surface temperature (equivalent to SST over

ocean areas), precipitation, and atmospheric temperature,

specific humidity, geopotential height, and vector wind

components at different pressure levels. Model precipitable

water was also examined.

b. Methodological approach

To identify locations in the East African domain

with a bimodal rainfall annual cycle, the GPCCmonthly

climatological rainfall (1981–2000) was used to mask

grid points where JF (JJA) rainfall exceeded 1/4 (1/3) of

the annual average total value. This masks areas such as

western Ethiopia and northern Tanzania, for example,

where climatological rainfall is generally more uni-

modal. The resulting analysis domain is shown by the

shaded region in Fig. 1. In the subsequent analyses,

various observations and climate model results are av-

eraged over this shaded region, which hereafter will

simply be called East Africa. As will be shown, and

consistent with previous work (Yang et al. 2015a; Lyon

2014), the GPCC data do a good job capturing the an-

nual cycle of rainfall across East Africa and, thus, re-

gions of bimodality.

CMIP5 SST biases were identified in each of the 31

models by first computing monthly, climatological

values of the surface temperature (variable .ts) from

historical runs made with all known natural and an-

thropogenic forcing for the period 1979–2005. Once

obtained, each model’s monthly SST climatology was

regridded to a 2.08 latitude/longitude resolution to

match the resolution of observed SSTs (from ERSST).

Land areas were omitted from the analysis. Monthly

CMIP5 SST biases were computed for each model by

subtracting the observed monthly climatology (1979–

2005) from themodel climatology. As a test, it was found

in a subset of five randomly selected models that the

difference in the annual average, absolute SST bias

computed over 1950–2005 versus 1979–2005 was about

0.18C when averaged over 508S–508N, indicating the

results presented here are not likely to be overly sensi-

tive to the base period used to compute the bias. For use

in this study, the multimodel mean climatological SST

bias was also computed for each month. An empirical

orthogonal function (EOF) analysis applied to seasonal

SST biases (DJF, MAM, JJA, SON; 508S–508N) across

the models showed that for each season, all 31 models

projected onto the leading EOF pattern for that season

(not shown). Using rotated EOFs provided very similar

results. In addition, the loading patterns of the leading

EOF (either unrotated or rotated) for each season were

found to be very similar to the multimodel mean SST

bias pattern for each season (not shown). Thus, the

multimodel mean bias is considered generally repre-

sentative of individual model bias patterns (more in-

formation on this aspect is provided in section 3). It is

also noted that there tends to be a slightly negative,

though not statistically significant, relationship between

the absolute value of model SST bias averaged across

the tropics and the correlation between themodeled and

observed annual cycle of East African climatological

rainfall (not shown). In other words, generally speaking,

there is a weak tendency for higher model SST bias to be

associated with poorer model performance in simulating

observed East African rainfall.

To examine the atmospheric response to CMIP5 cli-

matological SST biases, the ECHAM5 AGCM was

utilized. Previous studies (e.g., Lyon and Vigaud 2017;

Liebmann et al. 2014) have shown the ECHAM5

AGCM does a generally good job simulating East

African climate and reproducing observed associations

between East African rainfall and SSTs.More generally,
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earlier work by Yang et al. (2015b) showed that when

the atmospheric component of coupled climate models

is forced with observed SSTs (i.e., AMIP-style run) their

simulation of the East African annual rainfall cycle

generally has a higher correlation with observations

(and lower root-mean-square error) than the corre-

sponding coupled versions of the models do. The

ECHAM5AGCM is a spectral model, configured in this

study with a triangular truncation at wavenumber 42

(T42; spatial resolution of roughly 2.88 latitude 3 lon-

gitude) with 19 unevenly spaced hybrid sigma-pressure

vertical layers (Simmons and Burridge 1981). Sea ice

concentrations are prescribed and derived from the

observational surface boundary forcing dataset for un-

coupled simulations with the Community Atmosphere

Model based on Hurrell et al. (2008) that is a merged

product of the monthly mean Hadley Centre sea ice and

SST dataset version 1 (HadISST1; Rayner et al. 2003)

and version 2 of the NOAA weekly optimum interpo-

lation (OI) SST analysis (Reynolds et al. 2002).

Greenhouse gas concentrations are kept at the year 2000

values and no aerosol forcing is used. This is the same

model formulation as recently described in Vigaud et al.

2020). Two sets of model runs were generated for use in

the study. First, a set of ECHAM5 control runs was

made by forcing themodel with observed, monthly SSTs

from ERSST v4 for the period 1977–2005. The SST

forcing for a second set of ECHAM5 ‘‘bias’’ runs con-

sisted of the combination of monthly, multimodel mean

CMIP5 climatological SST biases (508S–508N) and the

observed monthly SSTs. In both the control and bias

runs, the monthly average value of the SST field was

treated as a midmonth value with daily SST values

obtained by linearly interpolating between these mid-

month values (i.e., across months). These interpolated,

daily SST values were used as the SST forcing field in the

model. To avoid adding or removing heat from the cli-

mate system (relative to the control runs) the global

average, multimodel mean SST bias was first subtracted

from the multimodel mean SST bias field at each grid

point before combining with observed SSTs. A 16-

member ensemble was generated for both sets of runs

by using initial atmospheric conditions that differed by

one day in each model run, starting on 1 January 1977.

TheECHAM5output was analyzed for the period 1979–

2005 (instead of 1977–2005) to avoid any spinup issues.

Using an overbar to represent the monthly climatolog-

ical mean and a prime to denote the monthly departure

from that mean, the SST forcing for the control (ctrl)

and bias runs may be written, respectively, as

SST
ctrl

5 SST
obs

1 SST0
obs, and

SST
bias

5 SST
obs

1 SST
bias

1SST0
obs:

Differences between bias and control run values of

various quantities were tested for statistical significance

using a two-tailed t test.

3. CMIP5 climatological biases: East African
rainfall and SSTs

Monthly climatological rainfall averaged across East

Africa is shown in Fig. 2 for both observations and the

CMIP5 models. For observations, monthly rainfall is

shown for six different datasets, which show very strong

agreement with one another. For the models, the me-

dian monthly rainfall amount computed across the

models is shown along with the monthly value for each

model. It is found that 29/31 models (93%) have OND

rainfall that exceeds that in MAM and in 22/31 models

(71%) May rainfall exceeds that in April. The variance

in monthly average rainfall across the models generally

increases with increasing median monthly rainfall

amount (the correlation between the two being r5 0.9).

Averaged across all months of the year, 22/31 models

(71%) have monthly climatological rainfall that differs

by less than 50% of the multimodel median value.

Overall, the key findings are that CMIP5 models tend to

generate too little rainfall during the MAM long rains

and too much in the OND short rains relative to ob-

servations, and there is typically a 1-month delay in the

peak of the MAM long rains in the models compared to

observations. In the analyses that follow, these CMIP5

model precipitation biases are related to biases in

CMIP5 climatological SSTs.

FIG. 2. Climatological monthly rainfall (mmday21) for the

shaded region in Fig. 1. The thick black line is the median value of

the 31 CMIP5 simulations, with individual model values shown by

the gray points. The colored lines are the annual cycle from six

observational datasets. The base period for both observations and

models is 1979–2005, with the exception of CHIRPS (1981–2005)

and PERSIANN (1983–2005).
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The CMIP5 multimodel mean SST biases for DJF,

MAM, JJA, and SON are shown in Fig. 3. In the tropics,

the CMIP5 models generally underestimate the cooling

in major coastal upwelling regions (Yang et al. 2015a)

and they extend the equatorial Pacific cold tongue too

far to the west (e.g., Li and Xie 2014, 2012). In the

equatorial Atlantic, coupled models tend to generate a

zonal gradient in SSTs that is often of the wrong sign

(Richter et al. 2014; Xu et al. 2014; Tozuka et al. 2011)

while underestimating the upwelling strength along the

Benguela coast (Xu et al. 2014) in the southeast portion

of the basin.

FIG. 3. Multimodel mean CMIP5 bias (8C) in climatological SST (1979–2005) by season.
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TheCMIP5monthly climatological SST biases for just

the Indian Ocean are shown in Fig. 4. Note the different

color scale from that used in Fig. 3, as the magnitude of

the SST biases tends to be smaller in the Indian Ocean

than other basins. It is not clear why this is the case,

although globally, positive SST biases tend to be larger

in magnitude than negative biases and are typically as-

sociated with cold current, upwelling regions along the

west coasts of continents (the positive biases along the

northeast coast of North America are likely related to

improper modeling of the Labrador Current and Gulf

Stream). TheCMIP5models generally exhibit an easterly

wind bias over the equatorial portion of the IndianOcean

(Cai et al. 2013), resulting in enhanced shoaling of the

thermocline in the eastern portion of the basin and thus a

negative SST bias through much of the year. The western

equatorial Indian Ocean tends to be too warm during the

boreal summer and fall, while the northern portion of the

basin tends to be too cold relative to observations from

winter into boreal spring (Lyon and Vigaud 2017). A

general north–south gradient in SST bias is seen from

January into boreal spring in May.

The consistency of the CMIP5 climatological SST

biases across the 31 models was examined by computing

FIG. 4. As in Fig. 3, but showing monthly values for the Indian Ocean.
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the pattern correlations between the monthly multi-

model mean bias and the monthly bias in individual

models. These pattern correlations were computed for

the near-global domain (508S–508N) and the tropical

Indian Ocean (258S–258N, 208–1208E) with the results

shown in Fig. 5. It is noted that omitting the interior

southern Indian Ocean (258S–08, 608–1008E) where SST

biases are generally smaller (cf. Fig. 4) had little influ-

ence on the overall results. For both spatial domains the

pattern correlations are positive for all models and for

all calendar months, with values exceeding 0.6 at.91%

(.79%) of all model months for the near-global domain

(Indian Ocean). For the Indian Ocean, two models in

Fig. 5b have pattern correlations substantially lower

than other models (marked with asterisks). This point

will be returned to in subsequent analyses.

4. ECHAM5 comparisons with CMIP5 historical
simulations

a. East African climatological rainfall in ECHAM5
and CMIP5

The monthly, climatological average rainfall for East

Africa for the ensemble mean of the ECHAM5 bias and

control runs is shown in Fig. 6. Also shown in the figure

are climatologies for observations (GPCC) and the

CMIP5 multimodel mean. The ECHAM5 control runs

do a generally good job in capturing East Africa’s

bimodal rainfall climatology, including greater rainfall

amounts during the MAM long rains than in the OND

short rains. ECHAM5 does generate more rainfall than

observed in DJF, but the temporal correlation with the

observed annual cycle is r 5 0.85. The ECHAM5 bias

runs reverse the relative amplitudes of the long and

FIG. 5. Pattern correlation between the CMIP5 multimodel mean SST bias and the bias of individual models, by

month. (a) The near-global domain (508S–508N), and (b) the Indian Ocean region (258S–258N, 208–1208E).
Asterisks in (b) identify two models discussed further in the text.

FIG. 6. Monthly climatological East African rainfall (mmday21)

in observations (GPCC; solid black line), ensemble mean of

ECHAM5 control runs (dashed black line), CMIP5 historical

simulationsmultimodel mean (solid gray line), and ensemblemean

of ECHAM5 bias runs (dashed gray line). The temporal correla-

tions between pairs of time series are shown near the top of

the plot.
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short rains, generating too much rainfall in OND com-

pared to MAM. In addition, the bias runs climatology

shows a long rains peak in May rather than in April, as

observed. As such, the rainfall climatology from the

ECHAM5 bias runs is quite similar to the that of the

CMIP5 historical simulations, with the temporal corre-

lation between those two climatologies being r 5 0.87.

These results strongly suggest that the coupled models’

inability to properly capture the rainfall annual cycle in

East Africa is tied to their biases in climatological SST.

To examine how consistent the CMIP5 multimodel

mean results of Fig. 6 are across individual CMIP5

models, temporal correlations were computed between

the climatological annual cycle of East African rainfall

in eachmodel and, separately, that in the ECHAM5 bias

and control runs ensemble means. The expectation is

that the correlations will be higher between CMIP5 and

the ECHAM5 bias runs rather than with the ECHAM5

control runs. The correlation pairs are plotted for each

CMIP5 model in Fig. 7, which shows most of the CMIP5

models behave as expected (i.e., the points are above the

diagonal line in the figure). While 4 of the 31 CMIP5

models show a stronger correlationwith the annual cycle

in the ECHAM5 control runs, only 2 CMIP5 models

show substantial departures in this regard. These two

CMIP5 models are marked with an asterisk in Fig. 5b,

with that figure showing that their climatological SST

biases had the lowest pattern correlation with the 31-

model mean SST bias pattern. This result would be ex-

pected if SST biases are indeed tied to CMIP5 errors in

simulating the East African rainfall climatology.

b. ECHAM5 regional atmospheric circulation
response, association with SST bias patterns

To explore the influence of the CMIP5 SST biases on

regional atmospheric conditions, differences (bias 2
control) in ensemble mean values of ECHAM5 rainfall

and the 850-hPa vector wind were computed, with the

results shown in Fig. 8 as a function of season. During JF,

anomalous northerly 850-hPa flow is seen off the coast of

East Africa north of the equator with anomalous west-

erlies near the equator to about 108S, which is generally

consistent with an anomalously cool Arabian Sea and

warmer SST conditions farther south (cf. Fig. 4). Bias

minus control differences in East African rainfall during

JF are relatively small, with enhanced rainfall seen over

the west-central Indian Ocean. During MAM, East

Africa is anomalously dry, with anomalous northeast-

erly flow off the East African coast and anomalous

easterlies over the northern Indian Ocean opposing

the observed climatological winds during this transition

season ahead of the South Asian monsoon. This is

consistent with a delay in the annual cycle of the regional

atmospheric circulation as well as East African rainfall

(recall the CMIP5 simulations and ECHAM5 bias runs

both show the East African long rains peaking in May

rather than April, as observed). For JJAS, the anoma-

lous low-level winds generally oppose the observed

monsoon flow over the northern Indian Ocean, with

anomalously dry conditions over northern portions of

the basin. The CMIP5multimodel mean SST bias during

this season transitions to a more east–west pattern, with

anomalously high SSTs off of the East African coast

(Fig. 4) in response to the CMIP5 models’ inability to

capture the cooling associated with the Somali jet.

During OND, the anomalous 850-hPa flow now rein-

forces the climatological northeast monsoon flow, in-

creasing precipitation inEast Africa and over the western

equatorial Indian Ocean where SSTs remain anoma-

lously warm (Fig. 4).

The ECHAM5 model has the tendency to overesti-

mate rainfall in the southwestern equatorial Indian

Ocean (e.g., Bollasina and Ming 2013) and East African

rainfall in the model may respond a bit too strongly to

western Indian Ocean SSTs relative to observations

(Liebmann et al. 2014). However, here the difference

between bias and control runs in ECHAM5 is empha-

sized, which should reduce these issues. Caveats aside,

the results indicate that the CMIP5 annual cycle bias in

East African rainfall is tied to regional-scale changes in

the seasonal monsoon systems, which are themselves

tied only to climatological biases in CMIP5 SSTs. Based

on a coupled model ocean heat budget analysis, Y15

argued that a similar low-level flow that opposes the

FIG. 7. Temporal correlation of monthly climatological rainfall

in EastAfrica between individual CMIP5models and the ensemble

mean of ECHAM5 bias runs (vertical axis) and control runs

(horizontal axis).
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Asian summer monsoon circulation is likely a response,

rather than the cause, of the positive SST bias that de-

velops off the East African coast during boreal spring/

summer. That conclusion is consistent with theECHAM5

response to SST biases shown here in Fig. 8.

Recall that in four CMIP5 models, the climatological

annual cycle in East African rainfall was more highly

correlated with the ECHAM5 control runs than the bias

runs (Fig. 7), indicating these CMIP5models had amore

realistic annual cycle than the other models. For these

four models the climatological 850-hPa vector wind and

SST bias was compared with the corresponding average

values from the other 27 models (31 models total). The

average differences for these four models are shown in

Fig. 9 for the MAM and OND seasons. For MAM, the

anomalous 850-hPa flow over the western Indian Ocean

is now southwesterly, with the northern portion of the

basin warmer than in the south, the opposite of the 31

multimodel mean bias. These conditions are consistent

with enhanced MAM rainfall in East Africa during this

season relative to the other CMIP5 models. For OND

the SST difference pattern is more zonal, with the eastern

equatorial Indian Ocean warmer than the west with

anomalous westerlies near the equator. An anomalous

southwesterly flow is seen off the East African coast.

These conditions would act to reduce OND rainfall over

East Africa, being somewhat akin to the negative phase

of the Indian Ocean dipole (IOD) and making this sea-

son’s component of the annual cycle of East African

rainfall more realistic.

c. Physical considerations of changes in the East
African rainfall annual cycle

Yang et al. (2015a) used a moist static energy (MSE)

framework in their analysis of the climatological annual

cycle of East African rainfall. Among other findings, the

study showed the modulating influence of western Indian

Ocean SSTs on convective instability, primarily through

changes in low-level atmospheric moisture content. In

addition to western Indian Ocean SSTs alone, previous

studies have shown the equatorial zonal gradient in SST

(as represented by the IOD index) is closely associated

with interannual rainfall variations in East Africa, par-

ticularly during the OND season (e.g., Black et al. 2003).

While the life cycle of IOD events typically features

maximum SST anomaly amplitudes in boreal fall (e.g.,

Saji et al. 1999), here Fig. 10 shows there is actually a close

relationship between monthly climatological values of

FIG. 8. Differences in ensemble mean, climatological precipitation (shading; mmday21), and 850-hPa wind

(vectors) between the ECHAM5 bias runs and control runs for different seasons. Representative wind vectors

(m s21) are shown at the lower right of each panel. Only differences that are statistically significant (p , 0.05) are

plotted (at least one wind vector component).
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the IOD index and the annual cycle of East African

rainfall. Note that for all panels in Fig. 10 the annual

average values have been removed to emphasize the

annual cycle. Figure 10a shows the annual cycle of the

observed climatological (1979–2005) SST gradient based

on the IOD index of Saji et al. (1999) along with the

annual cycle of climatological East African rainfall.

Variations in the SST gradient nicely follow the pre-

cipitation annual cycle, including peaks in both quanti-

ties during April and November and larger, positive

values for MAM than OND. The temporal correlation

between the two time series is r 5 0.91, which is highly

statistically significant (p , 0.01) and greater than the

correlation between western equatorial Indian Ocean

SST (108S–108N, 308E–608E) and rainfall (r 5 0.64).

Figure 10b shows the annual cycle of the climatological

SST gradient for observations and for observations plus

the CMIP5 31-model mean monthly SST bias. During

the long rains season, the gradient for the observations

plus bias case now peaks in May compared to April in

observations. In addition, the zonal SST gradient is more

strongly positive during OND for the bias case than for

MAM. These results are quite consistent with the

CMIP5 bias in East African rainfall, which is confirmed

in Fig. 10c, where the temporal correlation between the

two is shown to be r 5 0.90, which is statistically signif-

icant at p, 0.01. It is noted that, while the zonal gradient

in Indian Ocean SSTs based on observations plus

CMIP5 biases shows a close connection to biases East

African rainfall, the spatial patterns of these biases also

reveal substantial seasonal variation, including impor-

tant north–south asymmetries, as discussed earlier.

To examine changes in the annual cycle of tropo-

spheric stability in relation to the CMIP5 bias in the

annual cycle of East African precipitation, the MSE

framework used in Seth et al. (2011) was employed. By

definition, MSE 5 cpT 1 Lyq 1 gZ, where cp is the

specific heat of air at constant pressure (J kg21K21), Ly

is the latent heat of vaporization (J kg21), q is the specific

humidity (kgkg21), T is the atmospheric temperature

(K), g is the acceleration of gravity (m s22), and Z is the

geopotential height (gpm). Following Seth et al. (2011),

to estimate the free tropospheric stability the difference

in MSE between the upper troposphere (200 hPa) and

near surface (850 hPa) was examined for monthly cli-

matological values through the annual cycle. Given the

very low specific humidity at 200 hPa, to a very close

approximation theMSEwas approximated asMSE2005
cpT 1 gZ and the vertical change in MSE thus com-

puted as

dMSE5MSE
200

2MSE
850

:

Figure 11 shows the annual cycle (annual mean re-

moved) of dMSE for the ECHAM5 bias and control

runs evaluated over East Africa, where monthly values

have been multiplied by 21 so that positive values are

consistent with reduced static stability and greater pre-

cipitation. For the control runs, dMSE peaks in April

and is greater during MAM than in OND, which is

consistent with the observed annual cycle of East

African rainfall. For the ECHAM5 bias runs, dMSE

peaks in May (exceeding control run values) with April

values lower than in the control runs, consistent with the

1-month lag in the peak of the long rains in the bias runs

(and CMIP5) relative to observations. While bias run

values of dMSE for OND are not larger than those for

MAM, the difference between the bias and control run

values is. The temporal correlation between control

(bias) run dMSE and observed (CMIP5) East African

FIG. 9. Difference in CMIP5 climatological SST bias (shading) and 850-hPa wind (vectors; m s21) between four

models with more realistic East African rainfall climatology and the remaining 27-model mean.
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climatological rainfall is r 5 0.94 (0.66), which are both

statistically significant (p , 0.05), but clearly lower for

the bias run case. For both the control and bias runs, the

annual cycle of dMSE is dominated by changes in

MSE850, and more specifically, by the specific humidity

at 850 hPa as shown in Figs. 11b and 11c. This is consistent

with the findings of Yang et al. (2015a) in their evaluation

of the annual cycle of observed East African rainfall.

In addition to stability, to capture changes in moisture

transport and supply, the annual cycle of vertical column

precipitable water (PWAT) was evaluated in the

ECHAM5 bias and control runs. The monthly difference

(bias 2 control) in climatological PWAT is shown in

Fig. 11d, where the annual mean has again been sub-

tracted. The figure shows the PWAT differences for the

MAM season are negative (the bias runs are compara-

tively dry) although for the month of May the difference

is slightly positive, which is consistent with the CMIP5

rainfall bias for this season. For the OND season, the

PWAT differences are much more strongly positive,

which is consistent with the tendency for too much rain-

fall during this season in the ECHAM5 bias runs

(and CMIP5).

Taken together, the ECHAM5 MSE and PWAT re-

sults are generally consistent with the CMIP5 climato-

logical rainfall biases for East Africa. While consistent,

it was desirable to further compare theMSE and PWAT

results for ECHAM5 with those for the CMIP5 multi-

model mean, as shown in Fig. 12. The figure shows the

climatological annual cycles (annual mean removed) of

dMSE and PWAT over East Africa in the ECHAM5

bias runs and for the CMIP5 multimodel mean (data for

only 28 of the 31 models was available). For both vari-

ables the annual cycles are very similar, with the tem-

poral correlation between the ECHAM5 bias runs and

CMIP5 model historical runs being r 5 0.95 for dMSE

and r5 0.98 for PWAT. Thus, the ECHAM5 is found to

do a good job replicating the behavior of the CMIP5

models in this regard.

5. Summary and conclusions

Most CMIP5 coupled models fail to properly simulate

the bimodal annual cycle of East African rainfall,

tending to underestimate the MAM long rains and

overestimate the OND short rains. The main goal of

this study was to examine the extent to which these

rainfall simulation errors are tied to biases in the cli-

matological SST biases in the CMIP5 models. The ap-

proach was to first compute monthly climatological

SST biases for 31 coupled models, which were found to

be generally consistent across models for both the near-

global domain (508S–508N) and the Indian Ocean re-

gion (258S–258N, 208–1208E). The multimodel mean,

monthly SST biases for the near-global domain were

then added to the observed, monthly SSTs, with this

combined dataset used as the lower boundary forcing

in the ECHAM5 atmospheric climate model. An en-

semble of these bias runs was generated with output

compared with a set of control runs generated by

forcing ECHAM5 with observed monthly SSTs.

The ensemblemean of theECHAM5 control runs was

found to do a generally good job in capturing the ob-

served, bimodal rainfall annual cycle in East Africa. The

ensemble mean of the ECHAM5 bias runs, in turn,

generally reproduced the spurious characteristics of that

FIG. 10. (a) Monthly differences from the annual mean values of

observed (GPCC) East African rainfall (black line; mmday21) and

the zonal gradient in equatorial Indian Ocean SST (black bars; 8C).
(b) As in (a), but just for the SST gradient in observations (black

bar) and observations plus the 31-model mean CMIP5 SST bias.

(c) As in (a), but just for the gradient in observed SST plus SST

bias, with themultimodelmeanCMIP5 climatological EastAfrican

rainfall also shown. Correlations between plotted time series also

shown in the upper left of (a) and (c).
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annual cycle as seen in the CMIP5 multimodel mean.

This includes too little rainfall during the MAM long

rains, a 1-month lag in the peak of the long rains relative

to observations, and too much rainfall during the OND

short rains season. Diagnostics of the regional low-level

atmospheric circulation revealed that the ECHAM5

model response to the CMIP5 multimodel mean SST

biases is an anomalous atmospheric circulation that

opposes the observed climatological flow during MAM

(and JJAS) and reinforces it during OND. These results

are consistent with the decreased MAM rainfall, the

delay in the peak of the long rains, and enhanced OND

short rains seen in the bias runs and CMIP5 model

climatologies. They are also consistent with the findings

of Y15, who emphasized related behavior in a single

coupled model and who further examined what mech-

anisms are associated with the generation of the clima-

tological SST biases themselves.

Further diagnostics showed that the climatological

annual cycle of East African rainfall is closely associated

with the climatological zonal gradient in equatorial

Indian Ocean SSTs. Further, when the annual cycle of

this zonal gradient is computed for SSTs that include

the CMIP5 multimodel mean SST bias, it is found to

be closely related to the spurious annual cycle of East

African rainfall identified in most CMIP5 models. This

FIG. 12. (a) As in Fig. 11a, but for MSE differences (kJ kg21) averaged across 28 CMIP5 models (black bars) and

the ensemble mean of the ECHAM5 bias runs (gray bars). (b) As in Fig. 11d, but for the 31-model CMIP5 average

PWAT (mm; black bars) and the ensemble mean of the ECHAM5 bias runs. Temporal correlations between time

series also shown in the upper left of both panels.

FIG. 11. Monthly departures from annual mean values of (a) climatological (1979–2005) dMSE (kJ kg21; mul-

tiplied by 21) values over East Africa in the ECHAM5 ensemble mean of the control runs (black bars) and bias

runs (gray bars). (b) As in (a), but for just the MSE at 850 hPa (kJ kg21). (c) As in (b), but just for the specific

humidity contribution to MSE at 850 hPa (kJ kg21). (d) Monthly departures from the annual mean value of cli-

matological (1979–2005) PWAT (mm) over East Africa, plotted as the difference in ECHAM5 ensemble mean

values (bias 2 control).
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zonal gradient pattern, in turn, was identified to be part

of a larger SST bias pattern that includes a substantial

north–south gradient in Indian Ocean SSTs during bo-

real spring with a more zonal pattern dominating from

boreal summer into the fall.

Using a MSE framework, the annual cycle of static

stability in the ECHAM5 control runs is found to be

closely correlated with the observed annual cycle of East

African rainfall (r5 0.94), being most closely associated

with changes in low-level moisture. The annual cycle of

stability in the ECHAM5 bias runs shows a weaker, al-

though statistically significant, relationship to the annual

cycle CMIP5 East African rainfall (r5 0.66). To capture

the broader influence of moisture transport and supply

on rainfall, an analysis of PWAT in ECHAM5 bias runs

revealed that it is consistent with the spurious en-

hancement of OND rainfall seen in CMIP5 simulations,

being anomalously high during this season compared to

the control runs. In addition, the annual cycle of static

stability and PWAT in the ECHAM5 bias runs was

TABLE A1. List of the 31 CMIP5 models used in the study and their associated institutions.

Model Name Institution

1 ACCESS1.3 AustralianCommunityClimate andEarth

System Simulator

2 BCC-CSM1.1 Beijing Climate Center, China

Meteorological Administration

3 BCC-CSM1-m As above

4 BNU-ESM Beijing Normal University

5 CanESM2 Canadian Centre for Climate Modeling

and Analysis

6 CCSM4 National Center for Atmospheric

Research

7 CESM1-BGC Community Earth System Model

Contributors

8 CESM1-CAM5 As above

9 CESM1-CAM5.1-FV2 As above

10 CMCC-CESM Centro Euro-Mediterraneo per I

Cambiamenti Climatici

11 CMCC-CMS As above

12 CNRM-CM5 Centre National de Recherches

Météorologiques
13 CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial

Research Organization

14 FGOALS-g2 LASG (Institute of Atmospheric Physics)

15 FIO-ESM The First Institute of Oceanography, SOA

16 GFDL CM3 NOAA Geophysical Fluid Dynamics

Laboratory

17 GFDL-ESM2M As above

18 GISS-E2-R NASA Goddard Institute for Space

Studies

19 HadGEM2-CC Met Office Hadley Centre

20 HadGEM2-ES As above

21 INM-CM4 Institute for Numerical Mathematics

22 IPSL-CM5A-LR Institut Pierre-Simon Laplace

23 IPSL-CM5A-MR As above

24 IPSL-CM5B-LR As above

25 MIROC-ESM Japan Agency for Marine-Earth Science

and Technology, Atmosphere and

Ocean Research Institute, and National

Institute for Environmental Studies

26 MIROC-ESM-CHEM As above

27 MIROC5 As above

28 MPI-ESM-LR Max Planck Institute for Meteorology

29 MPI-ESM-MR As above

30 MRI-CGCM3 Meteorological Research Institute

31 NorESM1-M Norwegian Climate Center
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found to be strongly correlated with respective values

obtained as the multimodel mean from CMIP5 simula-

tions, indicating the ECHAM5 yields a realistic repre-

sentation of CMIP5 coupled models in this regard.

Collectively, the results indicate that climatological

SST biases in CMIP5 historical simulations play a fun-

damental role in the improper simulation of the East

African rainfall climatology in those same models. As

the atmospheric model is generally capable of simulat-

ing the annual cycle of East African rainfall when forced

with the observed annual cycle of SSTs, this points to

deficiencies in the ocean component of the CMIP5

coupled models. As such, these results have important

implications for interpreting projections of East African

rainfall under increasing greenhouse gas forcing. For

example, it is clear that the annual cycle of East African

rainfall is sensitive to seasonally varying spatial patterns

of climatological SST. To the extent that coupled model

biases in the SSTmean state influence projected changes

in SST, these biases may increase the uncertainty in re-

gional climate projections (e.g., He and Soden 2016).

Specific to East Africa, to the extent that projected

changes in Indian Ocean SSTs are similar to important

bias patterns in simulated SSTs in the current climate

(e.g., Lyon and Vigaud 2017), confidence in those pro-

jections is diminished.
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