1 OCTOBER 2020 LYON 8209

Biases in CMIPS Sea Surface Temperature and the
Annual Cycle of East African Rainfall

BRADFIELD LYON

Climate Change Institute and School of Earth and Climate Sciences, University of Maine, Orono, Maine

(Manuscript received 12 February 2020, in final form 1 July 2020)

ABSTRACT

In much of East Africa, climatological rainfall follows a bimodal distribution characterized by the long rains
(March-May) and short rains (October—December). Most CMIP5 coupled models fail to properly simulate
this annual cycle, typically reversing the amplitudes of the short and long rains relative to observations. This
study investigates how CMIP5 climatological sea surface temperature (SST) biases contribute to simulation
errors in the annual cycle of East African rainfall. Monthly biases in CMIPS5 climatological SSTs (50°S-50°N)
are first identified in historical runs (1979-2005) from 31 models and examined for consistency. An atmo-
spheric general circulation model (AGCM) is then forced with observed SSTs (1979-2005) generating a set of
control runs and observed SSTs plus the monthly, multimodel mean SST biases generating a set of “‘bias” runs
for the same period. The control runs generally capture the observed annual cycle of East African rainfall
while the bias runs capture prominent CMIPS annual cycle biases, including too little (much) precipitation
during the long rains (short rains) and a 1-month lag in the peak of the long rains relative to observations.
Diagnostics reveal the annual cycle biases are associated with seasonally varying north-south- and east-west-
oriented SST bias patterns in Indian Ocean and regional-scale atmospheric circulation and stability changes,
the latter primarily associated with changes in low-level moist static energy. Overall, the results indicate that
CMIPS climatological SST biases are the primary driver of the improper simulation of the annual cycle of East
African rainfall. Some implications for climate change projections are discussed.

1. Introduction (MSE) framework, Yang et al. (2015a) showed a close
correspondence between the annual cycles of East
African rainfall and sea surface temperatures (SSTs) in
the western Indian Ocean. Observed SSTs peak in that
location during April, concomitant with the peak of the
long rains, and subsequently cool in association with the
development of the South Asian summer monsoon cir-
culation, the latter contributing to a reduced, secondary
maxima in both SST and rainfall during OND.

Given these complexities it is perhaps understandable
that global climate models struggle to properly simulate
the climatological annual cycle of East African rainfall.
Previous studies have shown this is indeed the case, with
most models from phase 5 of the Coupled Model
Intercomparison Project (CMIP5) having the tendency
to generate too much rainfall in the OND short rains and
too little in the MAM long rains relative to observations
(Lyon and Vigaud 2017; Yang et al. 2015b; Otieno and
Anyah 2013). In addition to their fairly coarse spatial
resolution (e.g., relative to topographic variations in

Corresponding author: Bradfield Lyon, bradfield.lyon@maine. ~ East Africa), coupled climate models are known to exhibit
edu systematic biases, including biases in their climatological

Across East Africa (study domain shown in Fig. 1)
climatological rainfall shows considerable heterogene-
ity, although for much of the region it follows a bimodal
annual cycle as evidenced by the long rains of March—
May (MAM; other seasons denoted similarly) and the
short rains during OND. The bimodal rainfall distribu-
tion is related to the meridional translation of the in-
tertropical convergence zone across the equator, with
topography further influencing rainfall locally (Hession
and Moore 2011; Nicholson 1996). Further, the long
rains typically undergo a meridional “‘jump” of several
degrees of latitude during MAM as low-level southerly
flow develops off the equatorial east coast (Riddle and
Cook 2008) concurrent with the development of the
Findlater jet, itself tied to the north—south orientation of
East African orography (Vizy and Cook 2003; Hart
1977; Findlater 1969). Based on a moist static energy
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FI1G. 1. Overall study domain indicated by black box. Gray
shading indicates locations with a bimodal rainfall distribution that
are used in the analysis.

SSTs. An important example of relevance to East African
climate is the general failure of coupled models to capture
the observed annual cycle of SSTs in the western equa-
torial Indian Ocean, tending to be too warm in the boreal
fall and too cool during boreal spring (Lyon and Vigaud
2017; Yang et al. 2015b). Yang et al. (2015b, hereafter
Y15) examined CMIP5 model errors in simulating the
observed annual cycle of East African rainfall but em-
phasized differences in behavior between a single coupled
model and its atmospheric model component. They found
that differences in the surface temperature field (equiva-
lent to SST over the ocean) between the coupled and
atmospheric models were associated with errors in simu-
lating climatological rainfall in East Africa. Y15 under-
took various diagnostic analyses to identify physical
mechanisms associated with both the East African rain-
fall bias in this model and the generation of the SST biases
themselves.

This study extends the analysis of Y15 by examining 1)
the climatological SST biases in 31 CMIP5 coupled
models, 2) the consistency of these biases across the
models, and 3) the atmospheric response to the multi-
model mean SST bias in an atmospheric general circu-
lation model (AGCM). The main goal of the study is to
examine the extent to which the biases in CMIP5 cli-
matological SSTs can be related to coupled model biases
in simulating the annual cycle of East African climato-
logical rainfall. Thus, the atmospheric response to cou-
pled model SST biases is emphasized rather investigating
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the physical mechanisms responsible for the generation
of the SST biases. Here, after computing the monthly
climatological SST biases in each model (and comparing
biases across the models), the multimodel mean SST
biases are added to observed monthly SSTs (1979-2005)
with the combination used as the lower boundary forcing
in the ECHAMS AGCM (Roeckner et al. 2003). An
ensemble of ECHAMS SST “bias” runs is generated,
with the output compared to both CMIP5 model output
and a set of ECHAMS control runs, where in the latter
case the model is forced with observed SSTs. In addition
to examining the influence of CMIPS5 SST biases on the
annual cycle of East African rainfall, associated changes
in the regional atmospheric circulation are evaluated as
well as changes in local atmospheric stability through the
annual cycle.

Whereas variations in CMIPS5 simulations of clima-
tological rainfall in East Africa may be influenced by
different model formulations, spatial resolutions, and
various parameterizations, here the influence of CMIP5
SST biases alone is evaluated by examining the atmo-
spheric response to those biases in a single AGCM. To
the extent that the ECHAMS captures the observed
annual cycle of climatological rainfall in East Africa and
responds properly to SSTs generally, the results of the
study will indicate the potential impact CMIP5 SST
biases play in generating coupled model biases in the
simulation of East African climatological rainfall.

The paper is organized as follows. The observational
and climate model data used in the study are described
in section 2 along with a description of the basic meth-
odological approach. CMIPS biases in the annual cycle
of East African rainfall and climatological SSTs are
discussed in section 3. The annual cycle of East African
rainfall in the ECHAMS bias and control runs is compared
with observations and CMIP5 historical simulations in
section 4 where changes in the regional atmospheric cir-
culation and local atmospheric stability conditions are also
considered. A summary of the overall findings and the
main conclusions drawn from the study are reported in
section 5.

2. Data and methodology
a. Observational and model data

Several monthly, gridded precipitation analyses were
utilized, which primarily cover the period 1979-2005
unless otherwise noted. The base period 1979-2005 was
chosen primarily because the CMIPS5 historical runs end
in 2005 and the starting year of 1979 allowed for a robust
estimate of climatological rainfall while avoiding the
additional computational costs associated with using a
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longer base period when generating the atmospheric
model runs needed for the study. The specific observational
datasets include the Global Precipitation Climatology
Center (GPCC v7) product based on gauge observations,
and gridded to 1.0° latitude/longitude resolution (Rudolf
and Rubel 2005); the gauge-based version TS 4.01 of
monthly precipitation over global land areas from the
Climatic Research Unit at the University of East Anglia
(CRU; Harris and Jones 2017) gridded to 0.5° latitude/
longitude resolution; version 2.3 of the Global Precipitation
Climatology Project (GPCP) monthly precipitation dataset
(Huffman et al. 2009), which combines satellite estimates
with gauge observations and is gridded to a 2.5° latitude/
longitude resolution; version 2.0 of the monthly Climate
Prediction Center (CPC) Merged Analysis of Precipitation
(CMAP; Xie and Arkin 1997), which also combines satel-
lite and gauge data and is gridded to a 2.5° latitude/
longitude resolution; version 2.0 of the Climate Hazards
Group Infrared Precipitation with Station data (CHIRPS;
Funk et al. 2015) covering the period 1981-2005 and grid-
ded to a 0.05° latitude/longitude resolution; and version
1.1 of the satellite-based Precipitation Estimation from
Remotely Sensed Information using Artificial Neural
Networks (PERSIANN; Ashouri et al. 2015) data cov-
ering the period 1983-2005 and gridded to a 0.25°
latitude/longitude spatial resolution.

Monthly SST analyses from the Extended Reconstructed
SST dataset (ERSST v4) were employed (Huang et al.
2015). These data are gridded to a 2.0° latitude/longitude
resolution with data for the period 1977-2005 used in the
study, both for diagnostic analysis and for forcing the
ECHAMS atmospheric model. Output from 31 coupled
models contained in the CMIP5 archive (Taylor et al. 2012)
were employed (a listing of the models is found in the
appendix). CMIP5 variables included monthly average
values of surface temperature (equivalent to SST over
ocean areas), precipitation, and atmospheric temperature,
specific humidity, geopotential height, and vector wind
components at different pressure levels. Model precipitable
water was also examined.

b. Methodological approach

To identify locations in the East African domain
with a bimodal rainfall annual cycle, the GPCC monthly
climatological rainfall (1981-2000) was used to mask
grid points where JF (JJA) rainfall exceeded 1/4 (1/3) of
the annual average total value. This masks areas such as
western Ethiopia and northern Tanzania, for example,
where climatological rainfall is generally more uni-
modal. The resulting analysis domain is shown by the
shaded region in Fig. 1. In the subsequent analyses,
various observations and climate model results are av-
eraged over this shaded region, which hereafter will
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simply be called East Africa. As will be shown, and
consistent with previous work (Yang et al. 2015a; Lyon
2014), the GPCC data do a good job capturing the an-
nual cycle of rainfall across East Africa and, thus, re-
gions of bimodality.

CMIP5 SST biases were identified in each of the 31
models by first computing monthly, climatological
values of the surface temperature (variable .ts) from
historical runs made with all known natural and an-
thropogenic forcing for the period 1979-2005. Once
obtained, each model’s monthly SST climatology was
regridded to a 2.0° latitude/longitude resolution to
match the resolution of observed SSTs (from ERSST).
Land areas were omitted from the analysis. Monthly
CMIP5 SST biases were computed for each model by
subtracting the observed monthly climatology (1979-
2005) from the model climatology. As a test, it was found
in a subset of five randomly selected models that the
difference in the annual average, absolute SST bias
computed over 1950-2005 versus 1979-2005 was about
0.1°C when averaged over 50°S-50°N, indicating the
results presented here are not likely to be overly sensi-
tive to the base period used to compute the bias. For use
in this study, the multimodel mean climatological SST
bias was also computed for each month. An empirical
orthogonal function (EOF) analysis applied to seasonal
SST biases (DJF, MAM, JJA, SON; 50°S-50°N) across
the models showed that for each season, all 31 models
projected onto the leading EOF pattern for that season
(not shown). Using rotated EOFs provided very similar
results. In addition, the loading patterns of the leading
EOF (either unrotated or rotated) for each season were
found to be very similar to the multimodel mean SST
bias pattern for each season (not shown). Thus, the
multimodel mean bias is considered generally repre-
sentative of individual model bias patterns (more in-
formation on this aspect is provided in section 3). It is
also noted that there tends to be a slightly negative,
though not statistically significant, relationship between
the absolute value of model SST bias averaged across
the tropics and the correlation between the modeled and
observed annual cycle of East African climatological
rainfall (not shown). In other words, generally speaking,
there is a weak tendency for higher model SST bias to be
associated with poorer model performance in simulating
observed East African rainfall.

To examine the atmospheric response to CMIP5 cli-
matological SST biases, the ECHAMS AGCM was
utilized. Previous studies (e.g., Lyon and Vigaud 2017;
Liebmann et al. 2014) have shown the ECHAMS
AGCM does a generally good job simulating East
African climate and reproducing observed associations
between East African rainfall and SSTs. More generally,
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FIG. 2. Climatological monthly rainfall (mmday~!) for the
shaded region in Fig. 1. The thick black line is the median value of
the 31 CMIPS simulations, with individual model values shown by
the gray points. The colored lines are the annual cycle from six
observational datasets. The base period for both observations and
models is 1979-2005, with the exception of CHIRPS (1981-2005)
and PERSIANN (1983-2005).

earlier work by Yang et al. (2015b) showed that when
the atmospheric component of coupled climate models
is forced with observed SSTs (i.e., AMIP-style run) their
simulation of the East African annual rainfall cycle
generally has a higher correlation with observations
(and lower root-mean-square error) than the corre-
sponding coupled versions of the models do. The
ECHAMS5 AGCM is a spectral model, configured in this
study with a triangular truncation at wavenumber 42
(T42; spatial resolution of roughly 2.8° latitude X lon-
gitude) with 19 unevenly spaced hybrid sigma-pressure
vertical layers (Simmons and Burridge 1981). Sea ice
concentrations are prescribed and derived from the
observational surface boundary forcing dataset for un-
coupled simulations with the Community Atmosphere
Model based on Hurrell et al. (2008) that is a merged
product of the monthly mean Hadley Centre sea ice and
SST dataset version 1 (HadISST1; Rayner et al. 2003)
and version 2 of the NOAA weekly optimum interpo-
lation (OI) SST analysis (Reynolds et al. 2002).
Greenhouse gas concentrations are kept at the year 2000
values and no aerosol forcing is used. This is the same
model formulation as recently described in Vigaud et al.
2020). Two sets of model runs were generated for use in
the study. First, a set of ECHAMS control runs was
made by forcing the model with observed, monthly SSTs
from ERSST v4 for the period 1977-2005. The SST
forcing for a second set of ECHAMS “‘bias’ runs con-
sisted of the combination of monthly, multimodel mean
CMIPS5 climatological SST biases (50°S-50°N) and the
observed monthly SSTs. In both the control and bias
runs, the monthly average value of the SST field was
treated as a midmonth value with daily SST values
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obtained by linearly interpolating between these mid-
month values (i.e., across months). These interpolated,
daily SST values were used as the SST forcing field in the
model. To avoid adding or removing heat from the cli-
mate system (relative to the control runs) the global
average, multimodel mean SST bias was first subtracted
from the multimodel mean SST bias field at each grid
point before combining with observed SSTs. A 16-
member ensemble was generated for both sets of runs
by using initial atmospheric conditions that differed by
one day in each model run, starting on 1 January 1977.
The ECHAMS output was analyzed for the period 1979—
2005 (instead of 1977-2005) to avoid any spinup issues.
Using an overbar to represent the monthly climatolog-
ical mean and a prime to denote the monthly departure
from that mean, the SST forcing for the control (ctrl)
and bias runs may be written, respectively, as

SST,,, = SST,,_ + SST. and

obs>

SST,,,. = SST,, + SST, -+ SST,

bias obs*

Differences between bias and control run values of
various quantities were tested for statistical significance
using a two-tailed ¢ test.

3. CMIPS climatological biases: East African
rainfall and SSTs

Monthly climatological rainfall averaged across East
Africa is shown in Fig. 2 for both observations and the
CMIPS5 models. For observations, monthly rainfall is
shown for six different datasets, which show very strong
agreement with one another. For the models, the me-
dian monthly rainfall amount computed across the
models is shown along with the monthly value for each
model. It is found that 29/31 models (93%) have OND
rainfall that exceeds that in MAM and in 22/31 models
(71%) May rainfall exceeds that in April. The variance
in monthly average rainfall across the models generally
increases with increasing median monthly rainfall
amount (the correlation between the two being r = 0.9).
Averaged across all months of the year, 22/31 models
(71%) have monthly climatological rainfall that differs
by less than 50% of the multimodel median value.
Opverall, the key findings are that CMIPS models tend to
generate too little rainfall during the MAM long rains
and too much in the OND short rains relative to ob-
servations, and there is typically a 1-month delay in the
peak of the MAM long rains in the models compared to
observations. In the analyses that follow, these CMIP5
model precipitation biases are related to biases in
CMIPS5 climatological SSTs.
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F1G. 3. Multimodel mean CMIPS bias (°C) in climatological SST (1979-2005) by season.

The CMIPS multimodel mean SST biases for DJF, equatorial Atlantic, coupled models tend to generate a
MAM, JJA, and SON are shown in Fig. 3. In the tropics, zonal gradient in SSTs that is often of the wrong sign
the CMIP5 models generally underestimate the cooling  (Richter et al. 2014; Xu et al. 2014; Tozuka et al. 2011)
in major coastal upwelling regions (Yang et al. 2015a)  while underestimating the upwelling strength along the
and they extend the equatorial Pacific cold tongue too Benguela coast (Xu et al. 2014) in the southeast portion
far to the west (e.g., Li and Xie 2014, 2012). In the of the basin.
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FIG. 4. As in Fig. 3, but showing monthly values for the Indian Ocean.

The CMIP5 monthly climatological SST biases for just
the Indian Ocean are shown in Fig. 4. Note the different
color scale from that used in Fig. 3, as the magnitude of
the SST biases tends to be smaller in the Indian Ocean
than other basins. It is not clear why this is the case,
although globally, positive SST biases tend to be larger
in magnitude than negative biases and are typically as-
sociated with cold current, upwelling regions along the
west coasts of continents (the positive biases along the
northeast coast of North America are likely related to
improper modeling of the Labrador Current and Gulf
Stream). The CMIP5 models generally exhibit an easterly
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wind bias over the equatorial portion of the Indian Ocean
(Cai et al. 2013), resulting in enhanced shoaling of the
thermocline in the eastern portion of the basin and thus a
negative SST bias through much of the year. The western
equatorial Indian Ocean tends to be too warm during the
boreal summer and fall, while the northern portion of the
basin tends to be too cold relative to observations from
winter into boreal spring (Lyon and Vigaud 2017). A
general north—south gradient in SST bias is seen from
January into boreal spring in May.

The consistency of the CMIP5 climatological SST
biases across the 31 models was examined by computing
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FIG. 5. Pattern correlation between the CMIPS multimodel mean SST bias and the bias of individual models, by
month. (a) The near-global domain (50°S-50°N), and (b) the Indian Ocean region (25°S-25°N, 20°-120°E).
Asterisks in (b) identify two models discussed further in the text.

the pattern correlations between the monthly multi-
model mean bias and the monthly bias in individual
models. These pattern correlations were computed for
the near-global domain (50°S-50°N) and the tropical
Indian Ocean (25°S-25°N, 20°-120°E) with the results
shown in Fig. 5. It is noted that omitting the interior
southern Indian Ocean (25°S-0°, 60°~100°E) where SST
biases are generally smaller (cf. Fig. 4) had little influ-
ence on the overall results. For both spatial domains the
pattern correlations are positive for all models and for
all calendar months, with values exceeding 0.6 at >91%
(>79%) of all model months for the near-global domain
(Indian Ocean). For the Indian Ocean, two models in
Fig. 5b have pattern correlations substantially lower
than other models (marked with asterisks). This point
will be returned to in subsequent analyses.

4. ECHAMS comparisons with CMIPS5 historical

simulations

a. East African climatological rainfall in ECHAMS
and CMIP5

The monthly, climatological average rainfall for East
Africa for the ensemble mean of the ECHAMS bias and
control runs is shown in Fig. 6. Also shown in the figure
are climatologies for observations (GPCC) and the
CMIPS multimodel mean. The ECHAMS control runs
do a generally good job in capturing East Africa’s
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bimodal rainfall climatology, including greater rainfall
amounts during the MAM long rains than in the OND
short rains. ECHAMS does generate more rainfall than
observed in DJF, but the temporal correlation with the
observed annual cycle is r = 0.85. The ECHAMS bias
runs reverse the relative amplitudes of the long and

CMIP5 Multi-Model Mean
ECHAMS Bias
r=0.87

—— Observed
- - = ECHAMS Control
r=0.85

Woge o
n o
|

Rainfall (mm/day)
808

[
[N, |
L !

e ©
o n
L

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

FIG. 6. Monthly climatological East African rainfall (mm day !)
in observations (GPCC; solid black line), ensemble mean of
ECHAMS control runs (dashed black line), CMIP5 historical
simulations multimodel mean (solid gray line), and ensemble mean
of ECHAMS bias runs (dashed gray line). The temporal correla-
tions between pairs of time series are shown near the top of
the plot.
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FIG. 7. Temporal correlation of monthly climatological rainfall
in East Africa between individual CMIP5 models and the ensemble
mean of ECHAMS bias runs (vertical axis) and control runs
(horizontal axis).

short rains, generating too much rainfall in OND com-
pared to MAM. In addition, the bias runs climatology
shows a long rains peak in May rather than in April, as
observed. As such, the rainfall climatology from the
ECHAMS bias runs is quite similar to the that of the
CMIP5 historical simulations, with the temporal corre-
lation between those two climatologies being r = 0.87.
These results strongly suggest that the coupled models’
inability to properly capture the rainfall annual cycle in
East Africa is tied to their biases in climatological SST.
To examine how consistent the CMIP5 multimodel
mean results of Fig. 6 are across individual CMIP5
models, temporal correlations were computed between
the climatological annual cycle of East African rainfall
in each model and, separately, that in the ECHAMS bias
and control runs ensemble means. The expectation is
that the correlations will be higher between CMIP5 and
the ECHAMS bias runs rather than with the ECHAMS
control runs. The correlation pairs are plotted for each
CMIP5 model in Fig. 7, which shows most of the CMIP5
models behave as expected (i.e., the points are above the
diagonal line in the figure). While 4 of the 31 CMIP5
models show a stronger correlation with the annual cycle
in the ECHAMS control runs, only 2 CMIP5 models
show substantial departures in this regard. These two
CMIP5 models are marked with an asterisk in Fig. 5b,
with that figure showing that their climatological SST
biases had the lowest pattern correlation with the 31-
model mean SST bias pattern. This result would be ex-
pected if SST biases are indeed tied to CMIPS errors in
simulating the East African rainfall climatology.
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b. ECHAMS regional atmospheric circulation
response, association with SST bias patterns

To explore the influence of the CMIP5 SST biases on
regional atmospheric conditions, differences (bias —
control) in ensemble mean values of ECHAMS rainfall
and the 850-hPa vector wind were computed, with the
results shown in Fig. 8 as a function of season. During JF,
anomalous northerly 850-hPa flow is seen off the coast of
East Africa north of the equator with anomalous west-
erlies near the equator to about 10°S, which is generally
consistent with an anomalously cool Arabian Sea and
warmer SST conditions farther south (cf. Fig. 4). Bias
minus control differences in East African rainfall during
JF are relatively small, with enhanced rainfall seen over
the west-central Indian Ocean. During MAM, East
Africa is anomalously dry, with anomalous northeast-
erly flow off the East African coast and anomalous
easterlies over the northern Indian Ocean opposing
the observed climatological winds during this transition
season ahead of the South Asian monsoon. This is
consistent with a delay in the annual cycle of the regional
atmospheric circulation as well as East African rainfall
(recall the CMIP5 simulations and ECHAMS bias runs
both show the East African long rains peaking in May
rather than April, as observed). For JJAS, the anoma-
lous low-level winds generally oppose the observed
monsoon flow over the northern Indian Ocean, with
anomalously dry conditions over northern portions of
the basin. The CMIP5 multimodel mean SST bias during
this season transitions to a more east-west pattern, with
anomalously high SSTs off of the East African coast
(Fig. 4) in response to the CMIP5 models’ inability to
capture the cooling associated with the Somali jet.
During OND, the anomalous 850-hPa flow now rein-
forces the climatological northeast monsoon flow, in-
creasing precipitation in East Africa and over the western
equatorial Indian Ocean where SSTs remain anoma-
lously warm (Fig. 4).

The ECHAMS model has the tendency to overesti-
mate rainfall in the southwestern equatorial Indian
Ocean (e.g., Bollasina and Ming 2013) and East African
rainfall in the model may respond a bit too strongly to
western Indian Ocean SSTs relative to observations
(Liebmann et al. 2014). However, here the difference
between bias and control runs in ECHAMS is empha-
sized, which should reduce these issues. Caveats aside,
the results indicate that the CMIPS5 annual cycle bias in
East African rainfall is tied to regional-scale changes in
the seasonal monsoon systems, which are themselves
tied only to climatological biases in CMIPS5 SSTs. Based
on a coupled model ocean heat budget analysis, Y15
argued that a similar low-level flow that opposes the
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Asian summer monsoon circulation is likely a response,
rather than the cause, of the positive SST bias that de-
velops off the East African coast during boreal spring/
summer. That conclusion is consistent with the ECHAMS
response to SST biases shown here in Fig. 8.

Recall that in four CMIP5 models, the climatological
annual cycle in East African rainfall was more highly
correlated with the ECHAMS control runs than the bias
runs (Fig. 7), indicating these CMIP5 models had a more
realistic annual cycle than the other models. For these
four models the climatological 850-hPa vector wind and
SST bias was compared with the corresponding average
values from the other 27 models (31 models total). The
average differences for these four models are shown in
Fig. 9 for the MAM and OND seasons. For MAM, the
anomalous 850-hPa flow over the western Indian Ocean
is now southwesterly, with the northern portion of the
basin warmer than in the south, the opposite of the 31
multimodel mean bias. These conditions are consistent
with enhanced MAM rainfall in East Africa during this
season relative to the other CMIP5 models. For OND
the SST difference pattern is more zonal, with the eastern
equatorial Indian Ocean warmer than the west with
anomalous westerlies near the equator. An anomalous

Brought to you by Columbia University | Unauthenticated | Downloaded 02/16/21 06:57 PM UTC

southwesterly flow is seen off the East African coast.
These conditions would act to reduce OND rainfall over
East Africa, being somewhat akin to the negative phase
of the Indian Ocean dipole (IOD) and making this sea-
son’s component of the annual cycle of East African
rainfall more realistic.

c¢. Physical considerations of changes in the East
African rainfall annual cycle

Yang et al. (2015a) used a moist static energy (MSE)
framework in their analysis of the climatological annual
cycle of East African rainfall. Among other findings, the
study showed the modulating influence of western Indian
Ocean SSTs on convective instability, primarily through
changes in low-level atmospheric moisture content. In
addition to western Indian Ocean SSTs alone, previous
studies have shown the equatorial zonal gradient in SST
(as represented by the IOD index) is closely associated
with interannual rainfall variations in East Africa, par-
ticularly during the OND season (e.g., Black et al. 2003).
While the life cycle of IOD events typically features
maximum SST anomaly amplitudes in boreal fall (e.g.,
Sajietal. 1999), here Fig. 10 shows there is actually a close
relationship between monthly climatological values of
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the IOD index and the annual cycle of East African
rainfall. Note that for all panels in Fig. 10 the annual
average values have been removed to emphasize the
annual cycle. Figure 10a shows the annual cycle of the
observed climatological (1979-2005) SST gradient based
on the IOD index of Saji et al. (1999) along with the
annual cycle of climatological East African rainfall.
Variations in the SST gradient nicely follow the pre-
cipitation annual cycle, including peaks in both quanti-
ties during April and November and larger, positive
values for MAM than OND. The temporal correlation
between the two time series is ¥ = 0.91, which is highly
statistically significant (p < 0.01) and greater than the
correlation between western equatorial Indian Ocean
SST (10°S-10°N, 30°E—60°E) and rainfall (» = 0.64).
Figure 10b shows the annual cycle of the climatological
SST gradient for observations and for observations plus
the CMIP5 31-model mean monthly SST bias. During
the long rains season, the gradient for the observations
plus bias case now peaks in May compared to April in
observations. In addition, the zonal SST gradient is more
strongly positive during OND for the bias case than for
MAM. These results are quite consistent with the
CMIP5 bias in East African rainfall, which is confirmed
in Fig. 10c, where the temporal correlation between the
two is shown to be r = 0.90, which is statistically signif-
icant at p < 0.01. Itis noted that, while the zonal gradient
in Indian Ocean SSTs based on observations plus
CMIPS biases shows a close connection to biases East
African rainfall, the spatial patterns of these biases also
reveal substantial seasonal variation, including impor-
tant north-south asymmetries, as discussed earlier.

To examine changes in the annual cycle of tropo-
spheric stability in relation to the CMIP5 bias in the
annual cycle of East African precipitation, the MSE
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framework used in Seth et al. (2011) was employed. By
definition, MSE = ¢, T + L,q + gZ, where ¢, is the
specific heat of air at constant pressure (Jkg 'K ™), L,
is the latent heat of vaporization (J kg '), g is the specific
humidity (kgkg™'), T is the atmospheric temperature
(K), g is the acceleration of gravity (ms~2), and Z is the
geopotential height (gpm). Following Seth et al. (2011),
to estimate the free tropospheric stability the difference
in MSE between the upper troposphere (200 hPa) and
near surface (850 hPa) was examined for monthly cli-
matological values through the annual cycle. Given the
very low specific humidity at 200 hPa, to a very close
approximation the MSE was approximated as MSE,y, =
¢,T + gZ and the vertical change in MSE thus com-
puted as

SMSE = MSE,,, — MSE,,.

Figure 11 shows the annual cycle (annual mean re-
moved) of SMSE for the ECHAMS bias and control
runs evaluated over East Africa, where monthly values
have been multiplied by —1 so that positive values are
consistent with reduced static stability and greater pre-
cipitation. For the control runs, SMSE peaks in April
and is greater during MAM than in OND, which is
consistent with the observed annual cycle of East
African rainfall. For the ECHAMS bias runs, SMSE
peaks in May (exceeding control run values) with April
values lower than in the control runs, consistent with the
1-month lag in the peak of the long rains in the bias runs
(and CMIP5) relative to observations. While bias run
values of SMSE for OND are not larger than those for
MAM, the difference between the bias and control run
values is. The temporal correlation between control
(bias) run SMSE and observed (CMIP5) East African
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FIG. 10. (a) Monthly differences from the annual mean values of
observed (GPCC) East African rainfall (black line; mm day ') and
the zonal gradient in equatorial Indian Ocean SST (black bars; °C).
(b) As in (a), but just for the SST gradient in observations (black
bar) and observations plus the 31-model mean CMIPS SST bias.
(c) As in (a), but just for the gradient in observed SST plus SST
bias, with the multimodel mean CMIPS5 climatological East African
rainfall also shown. Correlations between plotted time series also
shown in the upper left of (a) and (c).

climatological rainfall is » = 0.94 (0.66), which are both
statistically significant (p < 0.05), but clearly lower for
the bias run case. For both the control and bias runs, the
annual cycle of SMSE is dominated by changes in
MSEgs,, and more specifically, by the specific humidity
at 850 hPa as shown in Figs. 11b and 11c. This is consistent
with the findings of Yang et al. (2015a) in their evaluation
of the annual cycle of observed East African rainfall.

In addition to stability, to capture changes in moisture
transport and supply, the annual cycle of vertical column
precipitable water (PWAT) was evaluated in the
ECHAMS bias and control runs. The monthly difference
(bias — control) in climatological PWAT is shown in
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Fig. 11d, where the annual mean has again been sub-
tracted. The figure shows the PWAT differences for the
MAM season are negative (the bias runs are compara-
tively dry) although for the month of May the difference
is slightly positive, which is consistent with the CMIP5
rainfall bias for this season. For the OND season, the
PWAT differences are much more strongly positive,
which is consistent with the tendency for too much rain-
fall during this season in the ECHAMS bias runs
(and CMIPS).

Taken together, the ECHAMS MSE and PWAT re-
sults are generally consistent with the CMIP5 climato-
logical rainfall biases for East Africa. While consistent,
it was desirable to further compare the MSE and PWAT
results for ECHAMS with those for the CMIP5 multi-
model mean, as shown in Fig. 12. The figure shows the
climatological annual cycles (annual mean removed) of
6MSE and PWAT over East Africa in the ECHAMS
bias runs and for the CMIP5 multimodel mean (data for
only 28 of the 31 models was available). For both vari-
ables the annual cycles are very similar, with the tem-
poral correlation between the ECHAMS bias runs and
CMIPS5 model historical runs being r = 0.95 for SMSE
and r = 0.98 for PWAT. Thus, the ECHAMS is found to
do a good job replicating the behavior of the CMIP5
models in this regard.

5. Summary and conclusions

Most CMIP5 coupled models fail to properly simulate
the bimodal annual cycle of East African rainfall,
tending to underestimate the MAM long rains and
overestimate the OND short rains. The main goal of
this study was to examine the extent to which these
rainfall simulation errors are tied to biases in the cli-
matological SST biases in the CMIP5 models. The ap-
proach was to first compute monthly climatological
SST biases for 31 coupled models, which were found to
be generally consistent across models for both the near-
global domain (50°S-50°N) and the Indian Ocean re-
gion (25°S-25°N, 20°-120°E). The multimodel mean,
monthly SST biases for the near-global domain were
then added to the observed, monthly SSTs, with this
combined dataset used as the lower boundary forcing
in the ECHAMS atmospheric climate model. An en-
semble of these bias runs was generated with output
compared with a set of control runs generated by
forcing ECHAMS with observed monthly SSTs.

The ensemble mean of the ECHAMS control runs was
found to do a generally good job in capturing the ob-
served, bimodal rainfall annual cycle in East Africa. The
ensemble mean of the ECHAMS bias runs, in turn,
generally reproduced the spurious characteristics of that
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tiplied by —1) values over East Africa in the ECHAMS ensemble mean of the control runs (black bars) and bias
runs (gray bars). (b) As in (a), but for just the MSE at 850 hPa (kJ kg™ '). (c) As in (b), but just for the specific
humidity contribution to MSE at 850 hPa (kJ kg '). (d) Monthly departures from the annual mean value of cli-
matological (1979-2005) PWAT (mm) over East Africa, plotted as the difference in ECHAMS ensemble mean

values (bias — control).

annual cycle as seen in the CMIPS5 multimodel mean.
This includes too little rainfall during the MAM long
rains, a 1-month lag in the peak of the long rains relative
to observations, and too much rainfall during the OND
short rains season. Diagnostics of the regional low-level
atmospheric circulation revealed that the ECHAMS
model response to the CMIP5 multimodel mean SST
biases is an anomalous atmospheric circulation that
opposes the observed climatological flow during MAM
(and JJAS) and reinforces it during OND. These results
are consistent with the decreased MAM rainfall, the
delay in the peak of the long rains, and enhanced OND
short rains seen in the bias runs and CMIP5 model

7 a) 8(MSE)
4 - CMIP5
Bias

r=095

climatologies. They are also consistent with the findings
of Y15, who emphasized related behavior in a single
coupled model and who further examined what mech-
anisms are associated with the generation of the clima-
tological SST biases themselves.

Further diagnostics showed that the climatological
annual cycle of East African rainfall is closely associated
with the climatological zonal gradient in equatorial
Indian Ocean SSTs. Further, when the annual cycle of
this zonal gradient is computed for SSTs that include
the CMIPS5 multimodel mean SST bias, it is found to
be closely related to the spurious annual cycle of East
African rainfall identified in most CMIP5 models. This

7 b) PWAT
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FIG. 12. (a) As in Fig. 11a, but for MSE differences (kJ kg~') averaged across 28 CMIP5 models (black bars) and

the ensemble mean of the ECHAMS bias runs (gray bars). (b) As in Fig. 11d, but for the 31-model CMIPS5 average
PWAT (mm; black bars) and the ensemble mean of the ECHAMS bias runs. Temporal correlations between time
series also shown in the upper left of both panels.
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TABLE Al. List of the 31 CMIP5 models used in the study and their associated institutions.

Model Name Institution

1 ACCESS1.3 Australian Community Climate and Earth
System Simulator

2 BCC-CSM1.1 Beijing Climate Center, China
Meteorological Administration

3 BCC-CSM1-m As above

4 BNU-ESM Beijing Normal University

5 CanESM2 Canadian Centre for Climate Modeling
and Analysis

6 CCSM4 National Center for Atmospheric
Research

7 CESM1-BGC Community Earth System Model
Contributors

8 CESM1-CAMS As above

9 CESM1-CAMS.1-FV2 As above

10 CMCC-CESM Centro Euro-Mediterraneo per I
Cambiamenti Climatici

11 CMCC-CMS As above

12 CNRM-CM5 Centre National de Recherches
Meétéorologiques

13 CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial
Research Organization

14 FGOALS-g2 LASG (Institute of Atmospheric Physics)

15 FIO-ESM The First Institute of Oceanography, SOA

16 GFDL CM3 NOAA Geophysical Fluid Dynamics
Laboratory

17 GFDL-ESM2M As above

18 GISS-E2-R NASA Goddard Institute for Space
Studies

19 HadGEM2-CC Met Office Hadley Centre

20 HadGEM2-ES As above

21 INM-CM4 Institute for Numerical Mathematics

22 IPSL-CMSA-LR Institut Pierre-Simon Laplace

23 IPSL-CM5A-MR As above

24 IPSL-CM5B-LR As above

25 MIROC-ESM Japan Agency for Marine-Earth Science
and Technology, Atmosphere and
Ocean Research Institute, and National
Institute for Environmental Studies

26 MIROC-ESM-CHEM As above

27 MIROCS As above

28 MPI-ESM-LR Max Planck Institute for Meteorology

29 MPI-ESM-MR As above

30 MRI-CGCM3 Meteorological Research Institute

31 NorESM1-M Norwegian Climate Center

zonal gradient pattern, in turn, was identified to be part
of a larger SST bias pattern that includes a substantial
north—south gradient in Indian Ocean SSTs during bo-
real spring with a more zonal pattern dominating from
boreal summer into the fall.

Using a MSE framework, the annual cycle of static
stability in the ECHAMS control runs is found to be
closely correlated with the observed annual cycle of East
African rainfall (r = 0.94), being most closely associated
with changes in low-level moisture. The annual cycle of
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stability in the ECHAMS bias runs shows a weaker, al-
though statistically significant, relationship to the annual
cycle CMIPS5 East African rainfall (r = 0.66). To capture
the broader influence of moisture transport and supply
on rainfall, an analysis of PWAT in ECHAMS bias runs
revealed that it is consistent with the spurious en-
hancement of OND rainfall seen in CMIP5 simulations,
being anomalously high during this season compared to
the control runs. In addition, the annual cycle of static
stability and PWAT in the ECHAMS bias runs was
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found to be strongly correlated with respective values
obtained as the multimodel mean from CMIP5 simula-
tions, indicating the ECHAMS yields a realistic repre-
sentation of CMIP5 coupled models in this regard.

Collectively, the results indicate that climatological
SST biases in CMIPS5 historical simulations play a fun-
damental role in the improper simulation of the East
African rainfall climatology in those same models. As
the atmospheric model is generally capable of simulat-
ing the annual cycle of East African rainfall when forced
with the observed annual cycle of SSTs, this points to
deficiencies in the ocean component of the CMIP5
coupled models. As such, these results have important
implications for interpreting projections of East African
rainfall under increasing greenhouse gas forcing. For
example, it is clear that the annual cycle of East African
rainfall is sensitive to seasonally varying spatial patterns
of climatological SST. To the extent that coupled model
biases in the SST mean state influence projected changes
in SST, these biases may increase the uncertainty in re-
gional climate projections (e.g., He and Soden 2016).
Specific to East Africa, to the extent that projected
changes in Indian Ocean SSTs are similar to important
bias patterns in simulated SSTs in the current climate
(e.g., Lyon and Vigaud 2017), confidence in those pro-
jections is diminished.
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