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Abstract—This paper presents fully-integrated analog neural
network classifier architecture for low resolution image classifica-
tion that eliminates memory access. We design custom activation
functions using single-stage common-source amplifiers, and ap-
ply a hardware-software co-design methodology to incorporate
knowledge of the custom activation functions into the training
phase to achieve high accuracy. Performing all computations
entirely in the analog domain eliminates energy cost associated
with memory access and data movement. We demonstrate our
classifier on multinomial classification task of recognizing down-
sampled handwritten digits from MNIST dataset. Fabricated in
65nm CMOS process, the measured energy consumption for
down-sampled MNIST dataset is 173pJ/classification, which is
3× better than state-of-the-art. The prototype IC achieves mean
classification accuracy of 81.3% even after down-sampling the
original MNIST images by 96% from 28 × 28 pixels to 5 × 5
pixels.

Index Terms—machine learning; analog neural network; low
resolution image classification; custom activation function

I. INTRODUCTION

Advances in machine learning (ML) techniques has enabled
high accuracy image classification which is one of the earliest
applications of ML and computer vision. The well-known
ML image classification algorithms are designed for high
resolution images. As an example, the popular ImageNet
dataset [1] has images with average resolution exceeding
482×418 pixels. However, many applications need to classify
images with very low resolution, such as far-field detection
scenarios for surveillance where the region-of-interest is just
a few pixels [2], or remote health monitoring of patients while
preserving their privacy by using low resolution images [3]–
[5]. While images of near-field objects can have thousands of
pixels in area, far-field objects may be as small as 50 pixels
in area [2], [6]. On the other hand, low resolution cameras
are deliberately used for human health monitoring such that
patients are not identified from their images, which can be as
small as 8× 8 pixels [7]. Low resolution image classification
also reduces computation cost and energy consumption which
can lead to integration of ML classifier with image sensor for
real-time classification.

Another application for low resolution image classification
is in the area of remote sensing using wireless image sensor

networks [8]. While research on CMOS image sensor (CIS)
has led to cameras that consume very low power [9], [10],
energy cost of transmitting high resolution raw image data
wirelessly is still factors of magnitude higher than capturing
the image itself, and the transmitter limits battery life of the
sensor [11]. Integration of ML classifier with image sensors
can significantly reduce transmission energy by selecting only
the frames-of-interest to be transmitted to the back-end for
deeper analysis. Since the integrated ML classifier acts a
coarse classifier, the sensor energy consumption can be further
reduced through classification on down-sampled, low resolu-
tion image. Fig. 1 shows two applications of low resolution
image classification. Integration of ML classifier with image
sensors on the same chip can reduce energy consumption
by pushing the analog-to-digital converters (ADCs) after the
classifier and thus, reduce the number of ADCs required
(Fig. 1(a)), or reduce energy by only transmitting images of
interest (Fig. 1(b)). While, recent works on CIS incorporate
object-detection techniques [12], [13], these works extract
histogram-of-oriented gradients (HOG) as features from the
images for classification, rather than use each pixel outputs as
features as is done in this work. Hence, the object detection
algorithm in [12] consumes more than 250pJ/pixel compared
to 6.9pJ/pixel for this work.

The bottlenecks for integrating ML classification on sensors
are – a) large amount of memory required to store neural
network (NN) weights and intermediate results; b) energy cost
of memory access. Existing approaches to counter these bot-
tlenecks are – a) analog/mixed-signal implementation of ML
algorithms [14]–[17]; b) reduced bit precision for less storage
requirement [18], [19]; c) in/near-memory computations [19]–
[22] to limit data movement between memory and computing
units. However, prior works using analog computing have
demonstrated only partial on-chip implementation of NN,
usually the first hidden/convolutional layer [18], [19], [21]
or only inner product calculation [14], [16], [20], [22], and
implemented the remaining layers off-chip.

This work presents a fully integrated, on-chip artificial
neural network (ANN) classifier architecture that uses analog
circuit design to address the above-mentioned bottlenecks
associated with integration of ML algorithms on sensors for
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Fig. 1: Integration of ML classifier for low resolution image
classification in a) applications with low resolution pixel array;
and b) reducing transmission energy by only transmitting
frames-of-interest from high resolution pixel array

low resolution image classification. We design custom activa-
tion function using analog circuit, and incorporate the circuit
model into training phase of the ANN classifier to reduce
discrepancy between software ANN model and analog ANN
circuit. Designing custom activation circuit results in lower
transistor count/activation circuit compared to conventional
techniques [23], [24] which try to replicate ideal mathematical
functions, like tanh/sigmoid, at the cost of design complexity.
Low transistor count is a key enabler in fitting a complete
ANN in a small area. The ANN weights are reduced to 4-
bit precision and are encoded as transistor widths to eliminate
storage. All the intermediate computations are performed in
analog domain to eliminate memory access and save energy.
The ANN weights are encoded as transistor widths in our
design, but the weights can be made re-configurable as in [18].
The ANN performance is demonstrated on the popular MNIST
dataset [25] consisting of handwritten images of digits from
0-9 to allow for comparison with existing works. To perform
low resolution image classification, the MNIST images are
down-sampled from 28 × 28 to 5 × 5 resolution. Compared
to our prior work [26] which presented circuit design for the
first layer only, we have implemented the entire ANN and
presented detailed analysis of non-idealities in our design as
well as measurement results. Even with 96% reduction in
image resolution, a prototype ANN in 65nm CMOS process
classifies MNIST test images with 82% accuracy. The rest
of the paper is organized as follows: architecture of the
proposed ANN is presented in Section II, measurement results
on MNIST dataset are presented in Section III, while the
conclusion is brought up in Section IV.

II. PROPOSED ARCHITECTURE

The proposed ANN circuit schematic is shown in Fig. 2.
The 28 × 28 features of MNIST dataset are down-sampled
to 5× 5 features, converted to analog voltages using off-chip

DAC and given to the ANN chip as inputs. Bilinear inter-
polation is used for down-sampling by performing weighted
average of neighboring pixels. Bilinear interpolation produces
a continuous function from the 28 × 28 pixels by computing
distance-weighted average of of the 4 nearest pixels [27]. The
continuous function is then re-sampled to create the 5 × 5
image. Fig. 3 shows samples of original images from MNIST
dataset and their down-sampled versions.

While off-chip DACs have been used to convert the digital
features to analog inputs for this work, in practical application
the ANN will be integrated with the image sensor and will
directly use analog pixel outputs, thus removing the DACs
from the signal path. The ANN circuit has 1 hidden layer
with 28 neurons and 1 output layer with 10 neurons [26].
Both the ANN layers uses common-source (CS) amplifiers
to implement custom, non-linear activation functions and
performs multiply-and-accumulate (MAC) in current domain
as shown in Fig. 2. Outputs from the output layer are sent
to an argmax layer which determines the output neuron with
the highest value, and hence, the classifier label. The argmax
layer consists of comparators which compare value of each
output neuron with all other output neurons. The comparators
are sized up to reduce mismatch and no offset calibration is
performed in this work. Activation function design and AI
training methodology are discussed in subsequent sections.

A. Custom Activation Function Design

Pseudo-differential CS amplifier architecture is used for
designing activation functions in the hidden and output lay-
ers. The custom activation function design methodology is
illustrated with a 2-input single-ended hidden layer circuit
shown in Fig. 4. The voltage inputs, V1 and V2, are converted
into currents I1 and I2 respectively, by 2 NMOS transistors
with widths W1 and W2, and identical channel lengths. The
summed current I1 + I2 is converted back to voltage using a
diode-connected PMOS load, and its source-to-drain voltage
acts as output of the hidden layer. In general, for N inputs,
the hidden layer output can be written as

Vout = Vdd − g

(
N∑
i=1

Wi · f(Vi)

)
(1)

where g(·) represents the I-V characteristic of the PMOS
load while Wi · f(·) represents the V-I characteristic of an
NMOS input transistor with width Wi. The argument of g(·)
in (1) represents current-domain MAC operation with Wi

being weights of the ANN. The transfer functions f(·) and
g(·) are extracted through SPICE simulation and incorporated
into our ML training. While f(·) and g(·) are nonlinear, the
summation operation

∑
Wi · f(Vi) has to be linear which is

ensured by restricting the input swing and dynamic range of
the weights as described in following sections.

To accommodate both positive and negative weights in
the hidden layer, we use a pseudo-differential architecture as
shown in Fig. 2 in which positive weights are assigned to
the left branch and negative weights to the right branch. The
output of each hidden neuron is difference between the positive
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Fig. 2: Circuit schematic for proposed analog ANN demonstrated on down-sampled MNIST dataset
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Fig. 3: Samples of MNIST images with (a) original 28 × 28
resolution, and (b) 5× 5 resolution used in this work
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Fig. 4: 2-input single-ended hidden layer with custom activa-
tion function

and negative outputs, Vp and Vn, respectively. Output of the
M -th hidden neuron is expressed mathematically as

Vp[M ]− Vn[M ] = g

(
N∑
i=1

Wn,i[M ] · f(Vi[M ])

)

− g

(
N∑
i=1

Wp,i[M ] · f(Vi[M ])

)
(2)

where Wp,i[M ] = {(Wi[M ] + |Wi[M ]|)/2} and Wn,i[M ] =
{(|Wi[M ]| −Wi[M ])/2} ∀ i ∈ [1, N ].

We use a pseudo-differential CS amplifier with single-ended
output for the output layer as shown in Fig. 2 to implement
custom softmax activation function. Fig. 5 shows our custom

activation function for output layer illustrated with 2 inputs.
For each output layer neuron, if a weight is positive, the
corresponding hidden layer output Vp[M ] is connected to the
right branch and Vn[M ] to the left branch, and vice versa if
the weight is negative, as shown in Fig. 5.
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Fig. 5: 2-input output layer with custom softmax activation

B. Hardware-Software Co-Design

The hardware-software co-design methodology used to de-
sign the proposed ANN is shown in Fig. 6. As described in
Section II-A, CS amplifier transfer curves are imported into
Matlab training phase. The ANN is initialized with random
weights and the transfer functions f(·) and g(·) are used
to calculate output of the ANN. We use mean-squared error
(MSE) as cost function to calculate error between ANN output
and ground truth, and use stochastic gradient descent (SGD)
algorithm to minimize the MSE. SGD computes derivative of
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MSE with respect to each weight and updates each weight
through back-propagation. This process is done iteratively till
the MSE converges. Weights of the ANN are then encoded as
transistor widths in the hidden and output layers.

Fig. 6: Hardware-software co-design methodology for ANN

Fig. 7(a) shows simulated accuracy as a function of number
of pixels in the image and number of bits in the ANN weights.
Effects of non-idealities, such as noise and random mismatch,
are not included in this simulation. The simulated accuracy is
less than 60% for image resolution of 3×3, while the accuracy
improves to more than 80% for image resolution exceeding
5 × 5 and ANN weights with more than 3-bit resolution.
Classification accuracy for different image resolution does not
improve significantly for ANN weights with 4-bit or higher
resolution. Fig. 7(b) shows the simulated classification energy
for different image and ANN weight resolutions. The energy
numbers in Fig. 7(b) includes contribution from the hidden
and output layers, and not the argmax layer. Classification
energy increases monotonically with image and ANN weight
resolutions. For this work, an image resolution of 5×5 pixels
and 4-bit ANN weights are selected to mimic low resolution
image classification problem while meeting area constraints
on the IC, and to optimize energy consumption, respectively.
The ANN weights are truncated after each training epoch.
An interesting observation in Fig. 7 is that the classification
accuracy and energy consumption for 28× 28 pixels are less
than images with lower resolution when the ANN weights
are truncated to 1 or 2 bits. This is because the dynamic
range of floating point weights in the ANN increases with
number of features in the input. Hence, when truncated to 1
or 2 bits, a larger fraction of the quantized ANN weights are
‘0’ for larger feature sizes than for smaller feature sizes. This
results in the ANN with 28 × 28 pixels input to have less
accuracy and lower energy consumption at 1-2 bits resolution
than for smaller feature sizes. Fig. 8 shows the simulated
classification accuracy versus number of neurons in the hidden
layer. Classification accuracy increases initially with hidden
neurons, but does not change significantly once the number of
hidden neurons exceeds 28, while energy consumption keeps
increasing with number of hidden neurons. Hence, the hidden
layer is designed with 28 neurons for this work.

Fig. 9(a) shows the summed positive and negative weights
for each hidden neuron, while Fig. 9(b) shows the summed
positive and negative weights for each output neuron. The
maximum summed weight for the hidden layer is 85 for the
17-th neuron, while the maximum summed weight for the
output layer is 200 for the 7-th neuron.
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Fig. 7: a) Classification accuracy, and b) energy consumption
vs ANN weight truncation
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Fig. 8: Classification accuracy and energy vs number of hidden
neurons

C. Effect of Analog Non-idealities

The ANN circuit has several non-idealities, such as non-
linearity of current summation in the activation functions
and random mismatch in all the layers. While f(Vi) is
assumed to be independent of transistor width in (1), in
practice

∑
Wi · f(Vi) depends on the transistor width and

the number of inputs which introduces non-linearity in the
current summation. Fig. 10(a) and (b) show linearity of current
summation (argument of g(·) in (1)) in the hidden and output
layers. For the hidden layer, we compare current through an
NMOS transistor with unit width with current through an
NMOS transistor with width of 85 units across input voltage.
The maximum error between the two curves is 3%. The input
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Fig. 9: Distribution of summed weights for (a) hidden, and (b)
output layers

voltage range of 0.15-0.45V is chosen for the hidden layer to
reduce power consumption of the hidden layer, and is realized
by scaling each input feature and centering around 0.3V.
Similarly, for the output layer we compare current through a
PMOS transistor with unit width with current through a PMOS
transistor with width of 200 units across input voltage. The
input voltage range for output layer is set by the output voltage
range of the hidden layer. The maximum error between the two
curves in Fig. 10(b) is less than 3.5%. While non-linearity
in current summation can be addressed by incorporating the
non-linear terms in the ANN model during training phase,
non-linearity correction is not done in this work since it
does not affect classification accuracy for 5 × 5 resolution
images as will be verified through the measurement results in
Section III. For classification of high resolution images, non-
linearity correction needs to be added to the ANN training
phase.

In addition to non-linearity current summation, other non-
idealities in our ANN are random mismatch and thermal noise.
The transistors are sized-up to reduce mismatch. Fig. 11 shows
the result of 100 monte-carlo simulation on the proposed
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Fig. 10: Linearity of current summation for (a) hidden, and
(b) output layers

custom activation function circuits for hidden and output
layer. The maximum standard deviation of error from nominal
transfer curve is 1.2mV for the hidden layer and 26mV
for the output layer. The maximum deviation from nominal
transfer curve occurs around the zero crossing for the soft-
max activation function in the output layer. To analyze the
effects of random mismatches in the activation functions on
classification accuracy, we performed simulations on the test-
set by introducing static random mismatch to each neuron, and
repeated the simulations 100 times. Fig. 12(a) and (b) show
the histograms of classification accuracy for random mismatch
in hidden neurons, and random mismatch in both hidden and
output neurons respectively. The mean classification accuracy
is 84.03% with standard deviation of 0.12% for random mis-
match in only hidden neurons, while the mean classification
accuracy is 83.82% with standard deviation of 0.29% for
random mismatch in both hidden and output neurons.

Aside from the neurons in the hidden and output layers,
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Fig. 11: Monte-carlo simulation of activation functions in a)
hidden layer, and b) output layer
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Fig. 12: Histogram of accuracy vs random mismatch in acti-
vation functions in a) hidden layer, and b) both hidden and
output layer

the comparators in the argmax layer are another major source
of random mismatch. Random mismatch introduces different
offset in each comparator in the argmax layer and changes the
decision boundaries which affects classification accuracy. The
argmax layer uses 45 comparators. To analyze the effect of
random mismatch in argmax layer on classification accuracy,
the ANN is simulated by varying standard deviation of com-
parator offset from 0 to 35mV. For each value of standard
deviation, the simulation is repeated 100 times. Fig. 13(a)
shows the mean and standard deviation of classification accu-
racy as a function of comparator offset. As expected, the mean
classification accuracy reduces with increase in comparator
offset. The classification accuracy is greater than 83% if the
comparator offset is less than 10mV. Comparator offset can be
reduced further by sizing up the input transistors and burning
more power. Fig. 13(b) plots simulated comparator offset as a
function of energy. The comparator offset is calculated using
monte-carlo simulations. An input ramp with 1mV step is
applied to the comparator input, and 200 point monte-carlo
simulation is performed for each step. For each input value, the
comparator offset is calculated from inverse of the cumulative
normal distribution of probability of ‘1’ [28]. For this design,
each comparator is biased to consume 0.96pJ energy which
results in an offset of 8.9mV. In addition to simulation,
measurement results on 5 chips presented in Section III also
show robustness against mismatch.
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Fig. 13: (a) Classification accuracy versus comparator offset
(b) comparator offset as a function of energy consumption

To estimate the effect of thermal noise on classification
accuracy, we characterized noise of hidden and output layer
neurons and the comparator. Each hidden neuron has output-
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referred noise of 0.3mV and each output neuron has output-
referred noise of 0.1mV which are calculated at the lowest
overdrive voltages corresponding to the worst-case scenario.
The comparator has an input-referred noise of 0.5mV. The
ANN is simulated with thermal noise enabled, and the sim-
ulation is repeated 100 times for each sample image on the
test set. Fig. 14 shows the histogram of classification accuracy.
The ANN has a mean classification accuracy of 83.11% with
standard deviation of 0.04% which shows low sensitivity to
thermal noise.

Fig. 14: Histogram of accuracy vs thermal noise in the
classifier

In addition to thermal noise, the comparators in the argmax
layer also creates kickback noise that couples voltage at re-
generation node of the comparator to its inputs [29]. However,
the kickback noise is partially mitigated due to relatively low
speed operation of the comparator which reduces the rate at
which voltages at the regeneration nodes fall, and hence, the
coupling to the comparator inputs. Fig. 15 shows example
of kickback noise for a sample image each from classes ‘0’
and ‘4’. The kickback noise has small amplitude of 0.2-
0.3mV which is not expected to reduce ANN performance
significantly, as is evident from measurement results which
are within 2% of simulation results without the effect of
comparator kickback.

III. MEASUREMENT RESULTS

Fig. 16 shows the die photograph of the proposed classifier
in 65nm CMOS process as well as the chip layout. The
classifier chip has a core area of 0.42mm2 and consumes 173pJ
energy from 1.2V power supply at 5MHz operating speed.

The MNIST classifier is trained on 60,000 images and 4
chips are tested with 10,000 test images. Fig. 17 shows the
measured confusion matrix for 1 test chip which graphically
summarizes its performance for every digit. The classifier has
the most false positives for class ‘4’ indicating that the classi-
fier had difficulty separating classes ‘4’ and ‘9’, likely due to
the similarity between the digit shapes after severely reduced
image resolution. The overall accuracy of the MNIST classifier
is 82%. While accuracy is a good indicator of performance of
a classifier, to fully evaluate effectiveness of a classifier, we
need to look at two other parameters - precision and recall.
Precision measures what proportion of positive identifications
are correct, while recall measures what proportion of actual
positives is identified correctly [30]. Table I reports measured
precision and recall of our ANN. Since precision and recall
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Fig. 15: Kickback noise simulation on sample images from a)
class ‘0’ (b) class ‘4’
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Fig. 16: Die photograph and chip layout

are usually in tension, and improving one degrades the other,
we also report f1-score which is harmonic mean of precision
and recall. The proposed classifier has the high f1-scores for
classes ‘0’ and ‘5’, and the lowest f1-scores for classes ‘4’
and ‘9’ which also confirms that the classifier has difficulty in
separating the classes ‘4’ and ‘9’.

Fig. 18(a) shows the energy breakdown by each layer. The
hidden, output and argmax layers consume average energy
of 52pJ, 78pJ and 43pJ respectively. Fig. 18(b) shows the
measured energy consumption for each MNIST class. The
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Fig. 17: Measured confusion matrix

TABLE I: Precision, recall and f1-score of the classifier

Class Precision Recall f1-score
0 0.82 0.96 0.88
1 0.72 0.89 0.80
2 0.87 0.84 0.86
3 0.93 0.80 0.86
4 0.56 0.92 0.70
5 0.96 0.83 0.89
6 0.94 0.77 0.85
7 0.98 0.72 0.83
8 0.95 0.71 0.81
9 0.76 0.72 0.74

classifier has the highest energy consumption of 288pJ for
class ‘0’ and minimum energy consumption of 120pJ for class
‘1’. The average energy consumption of the classifier is 173pJ.
The reason for higher energy consumption for class ‘0’ is due
to the distribution of pixel intensity as can be seen in Fig. 18(c)
which plots the mean input voltages for each pixel location for
classes ‘0’ and ‘1’. As can be seen from Fig. 18(c), class ‘0’
has higher average values for the pixels compared to class ‘1’
which increases the energy consumption for classifying class
‘0’.

Fig. 19(a) shows measured accuracy versus supply volt-
age and operating frequency. The measured accuracy drops
with reduction in supply voltage and increase in operating
frequency. The maximum speed is limited by the argmax
layer but can be improved at the cost of increased power
consumption. Fig. 19(b) shows the measured accuracy for
5 chips. The mean accuracy is 81.3% with a low standard
deviation of 0.85% which demonstrates robustness against
random mismatch.

Table II summarizes the performance of the proposed
ANN prototype and compares our work with state-of-the-
art ASICs demonstrated on low resolution images from the
MNIST dataset. State-of-the-art analog ASICs [18], [19] have
low energy/classification but have implemented only the first
binary classification layer on-chip while the other layers are
realized off-chip in digital-domain. In contrast, the proposed

Avg. energy = 173pJAvg. energy = 173pJ

0 1 2 3 4 5 6 7 8 9

MNIST classes

0

50

100

150

200

250

300

350

E
n

e
rg

y
 (

p
J
)

hidden layer

output layer

argmax layer

total

(a)

(b)

Class 0Class 0

0 5 10 15 20 25

Pixel location

0

0.2

0.4

M
e

a
n

 v
a

lu
e

 (
V

)

Class 1Class 1

0 5 10 15 20 25

Pixel location

0

0.2

0.4

M
e

a
n

 v
a

lu
e

 (
V

)

(c)

Fig. 18: Measured average energy (a) distribution by class and
layer, (b) breakdown by layer, and (c) distribution of mean
pixel values for classes ‘0’ and ‘1’

analog ANN is fully integrated but consumes 3× lower energy
than state-of-the-art. While accuracy of our fully integrated
ANN is 82%, the accuracy increases to 88% if 49 and 81
features are used. The estimated energy/classification of our
ANN with 49 and 81 features increase to 267pJ and 403pJ
respectively, but is still 2× less than energy of [18] while
having comparable accuracy. If only the first hidden layer
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Fig. 19: (a) Measured accuracy versus power supply and
operating frequency (b) histogram for accuracy of multiple
chips

for our ANN is implemented on-chip, and a digital all-vs-all
neural network with SVM binary learners is used for off-chip
classification, as in [18], [19], on-chip energy consumption is
only 52pJ for the first layer which is 10× lower than [18].

Since the proposed ANN is designed for low resolution
image classification, a relevant question is how does the
proposed analog implementation compare with a fully digital
realization of the ANN. There are 2 pathways for digital
implementation - 1) the 5 × 5 images are digitized by 25
ADCs and the ANN is implemented in the digital back-end
on CPU/GPU; 2) ADCs and digital ANN are implemented
in the front-end and are fully integrated with image sensor.
Assuming the ADC input is amplified to span the full range
of the ADC, Fig. 20(a) shows that a minimum of 6-bit ADC
is needed for maximizing accuracy of ANN with both floating
point as well as 4-bit weights. Using reported ADC energy for
state-of-the-art image sensors [31], [32], energy consumed by
the 25 6-bit ADCs for digitizing the 5×5 images is estimated
to be 970-990pJ, which is approximately 5.5× higher than
energy consumed by the proposed analog ANN. The ADC
energy consumption for 6-bit resolution is estimated assuming

TABLE II: Comparison with state-of-the-art ASICs

[18] [19] This work
TCAS–I’17 VLSI’16

Process (nm) 130 130 65
Type analog analog analog
Fully Integrated? × × X
Classifier binary binary ANN
Supply (V) 1.2 − 1.2
Speed (MHz) 1.3 50 5
Area (mm2) 4.37 0.26 0.42 −
No. of features 48 81 25 491 811

Accuracy (%) 902 902 82 881 881

Energy (pJ) 5343 6303 173 2671 4031

Energy/pixel (pJ) 11.13 7.83 6.9 5.41 51

1simulated using 4-bit ANN weights;
2based on Matlab simulation of ensemble adder and all-vs-all

voter;
3only for first layer implemented on-chip

that the ADC signal-to-noise ratio is limited by thermal noise.
In addition, the energy required to transmit 6-bits from 25
ADCs is going to be much higher than energy needed to
transmit the 4-bit class label from the analog ANN. However,
implementing the ANN in the back-end has the advantage
of higher classification accuracy as shown in Fig. 20(a). On
the other hand, if the ANN is implemented digitally on-chip,
the maximum classification accuracy is 82.8% as shown in
Fig. 20(a). Fig. 20(b) shows layout of digitally synthesized
2-layer ANN with 28 hidden neurons in 65nm CMOS. For
the digital implementation, we used ideal tanh and softmax
activations for the hidden and output layers respectively. The
activation functions are realized in circuit by synthesizing the
first four terms of their Taylor series expansions. The digitally
synthesized ANN consumes 7.3nJ/classification which is 42×
higher than the proposed analog ANN.

IV. CONCLUSION

This work has demonstrated feasibility of a fully integrated,
analog ANN ASIC for low resolution image classification.
Integration of the proposed classifier with image sensors can
lead to new generation of low-energy cameras with built-in
ML capability real-time monitoring and remote sensing appli-
cations. The prototype ASIC has been validated on MNIST
dataset and demonstrates a promising direction for future
neural network circuits in resource constrained sensor devices.
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