
Persistence of anti-vaccine sentiment in social networks through strategic
interactions

A S M Ahsan-Ul Haque,1,2 Mugdha Thakur, 1 Matthew Bielskas,2 Achla Marathe,1,3 Anil
Vullikanti1,2

1 Biocomplexity Institute, University of Virginia
2 Dept of Computer Science, University of Virginia

3 Department of Public Health Sciences, University of Virginia
ah3wj@virginia.edu, mat3kk@virginia.edu, mb6xn@virginia.edu, achla@virginia.edu, vsakumar@virginia.edu

Abstract

Vaccination is the primary intervention for controlling the
spread of infectious diseases. A certain level of vaccination
rate (referred to as “herd immunity”) is needed for this in-
tervention to be effective. However, there are concerns that
herd immunity might not be achieved due to an increasing
level of hesitancy and opposition to vaccines. One of the pri-
mary reasons for this is the cost of non-conformance with
one’s peers. We use the framework of network coordination
games to study the persistence of anti-vaccine sentiment in a
population. We extend it to incorporate the opposing forces
of the pressure of conforming to peers, herd-immunity and
vaccination benefits. We study the structure of the equilibria
in such games, and the characteristics of unvaccinated nodes.
We also study Stackelberg strategies to reduce the number of
nodes with anti-vaccine sentiment. Finally, we evaluate our
results on different kinds of real world social networks.

1 Introduction
Vaccination is one of the safest methods to control highly
contagious childhood diseases, such as measles and small-
pox; it is also expected to be one of the primary interventions
in controlling the COVID-19 pandemic. The anti-vaccine
movement was already becoming an issue for measles in
many parts of the US, e.g., in California (Lieu et al. 2015)
and Minnesota (Cadena et al. 2019), leading to a concern
that the immunization rate may fall below the threshold for
herd immunity (Fine 1993; Fine, Eames, and Heymann 2011).
This problem has been exacerbated in the COVID-19 pan-
demic, with some surveys reporting that over 40% of the
US population might not take the vaccine, when it becomes
available (Cornwall 2020). This poses a significant challenge
in the efforts to eliminate the spread of COVID-19.

There are a number of reasons for the fall in immunization
rates, but the chief ones are concerns about their possible side-
effects, parents’ own religious and philosophical beliefs, and
misperceptions about the risks (SP 2004; Atwell et al. 2013).
It has been observed that peer effects have a significant role in
the spread of anti-vaccine sentiment— individuals with such
sentiment are in communities with similar sentiment (Poland
and Jacobson 2001; Velásquez et al. 2020; Johnson et al.
2020). There is a certain dis-utility an individual gets by not
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conforming to their social contacts; on the other hand, the
individual gets a utility by conforming to its social contacts.
This phenomenon can be viewed as a coordination games,
which has been very well studied (Ramazi, Riehl, and Cao
2016; Bramoullé and Kranton 2015; Apt, Simon, and Wo-
jtczak 2015; Vanelli et al. 2019; Apt, Simon, and Wojtczak
2019; Jackson and Zenou 2015; Adam, Dahleh, and Ozdaglar
2012). In its basic form, the utility of a node in a coordination
game is a function of the number of neighbors having the
same state as the node.

In this paper, we extend the framework of coordination
games and incorporate vaccination decisions— this requires
considering two important components, namely, the benefit
a node derives from vaccination, and the benefit of herd im-
munity that all individuals obtain, if a large enough fraction
of the population is vaccinated. Studying epidemic decisions
from a game-theoretical perspective is not new, e.g. (Bhat-
tacharyya and Ferrari 2017; Shim et al. 2012; Bauch and Earn
2004; Bauch and Bhattacharyya 2012; Aspnes, Chang, and
Yampolskiy 2006; V.S. Anil Kumar et al. 2010). However,
prior work has either ignored the heterogeneity of human
contacts (Bhattacharyya and Ferrari 2017; Shim et al. 2012;
Bauch and Earn 2004; Bauch and Bhattacharyya 2012), or
the peer effects in vaccine decisions (Aspnes, Chang, and
Yampolskiy 2006; V.S. Anil Kumar et al. 2010). In this paper,
we study the role of peer effects on the persistence of anti-
vaccine clusters in social contact networks. Our contributions
are summarized below.

• Game theoretic approach. We use a non-cooperative
game theoretic approach for studying persistence of anti-
vaccine sentiment. We introduce the VACCSENGAME,
which extends the framework of coordination games, and
incorporates the role of conformity on vaccine sentiment,
along with the benefit of vaccination and herd immunity.

• Structure and complexity of Nash equilibria (NE). We
use NE as the solution concept in such games, and charac-
terize their structure. We show that NE are closely related
to the notion of strong communities (Flake et al. 2002). We
also show a connection between NE and the dynamics of
bootstrap percolation (Ackerman, Ben-Zwi, and Wolfovitz
2010; Feige and Kogan 2019), and use it to find the “worst
NE”, i.e, the one with the largest number of anti-vaccine
nodes. We show that the social optimum (a strategy that



maximizes the total utility) can be computed optimally
in polynomial time, and derive tight bounds on the Price
of Anarchy (the maximum ratio of the total utility of the
social optimum and any NE); these terms are defined in
Section 2.

• Empirical analysis. We study the properties of NE in a
diverse class of real-world and social networks and random
graphs. We find that there is a threshold value θcritical for
the ratio C/α (where C and α are parameters associated
with the benefit from vaccination, and conformity with
neighbors, respectively, as defined in Section 2), such that
the number of anti-vaccine nodes in the worst NE shows a
dramatic change beyond this threshold.

• Reducing the number of anti-vaccine nodes in the
worst NE. Motivated by our characterization of the worst
NE, we explore strategies to reduce the number of anti-
vaccine nodes in the worst NE by forcing the decisions
for a small subset of nodes. We show that this problem
is NP-complete, and find that a heuristic based on high
degree is pretty effective.

Implications. The parameter C/α is intuitively reasonable,
since C is the parameter capturing the benefit of vaccination,
whereas α is the parameter capturing the benefit of conform-
ing to peers. The vaccination benefit C could potentially be
increased by suitable incentives, or additional information.
The threshold behavior of the number of anti-vaccine nodes
in terms of C/α can have an important implication for public
health efforts to reduce the number of anti-vaccine nodes: the
vaccination benefit has to be increased past a network depen-
dent threshold to give a significant reduction in the number
of anti-vaccine nodes.

2 Preliminaries and formulation
Network science preliminaries. Let the undirected un-
weighted graph G = (V,E) denote a network, where V
is the set of nodes that represents people in the network and
E is the set of edges where each edge represents the connec-
tion between two people. Let n = |V | denote the number
of nodes in the network. We use N(i) to denote the set of
neighbors of node i ∈ V , and d(i) = |N(i)| to denote its
degree. For a subset S, we use d(i, S) = |N(i)∩S| to denote
the number of neighbors of i in set S. The graphG represents
an “information/influence” network, in which an edge (i, j)
means i and j influence each other; G is not the network on
which the infection spreads in our model.
Bootstrap (threshold) diffusion process (Ackerman, Ben-
Zwi, and Wolfovitz 2010; Feige and Kogan 2019). Consider
a graph G, and parameter θi for each node i. The diffusion
process is defined in the following manner:
• Let S0 ⊆ V be an initial set of nodes
• At timestep t ≥ 1, each node i which is either in St−1, or

has at least θi neighbors in St−1 is added to St
• The process stops at time T , when no nodes can be added

to ST , i.e., for t ≥ T : St+1 = St.
Generalizing the notion of strong communities (Flake et al.

2002), for vectors p,q ∈ Rn≥0, we say S ⊂ V is a (p,q)-
strong community (also referred to as (p,q)-strong) if it

satisfies the following property: (1) for each node i ∈ S,
|N(i) ∩ S| ≥ |N(i) − S| + pi, and (2) for each j 6∈ S, we
have |N(j) ∩ S| ≤ |N(j)− S|+ qj ; in the uniform setting,
if pi = p for all i, and qj = q for all j, we refer to this as a
(p, q)-strong community. Intuitively, it means that every node
in a strong community has at least as many nodes inside the
strong community as outside. We say that S is a maximal
(p, q)-strong community if it is (p, q)-strong, and there is no
S′ ( S that is (p, q)-strong. Finally, we define the k-core of
G as a maximal subset S ⊂ V such that d(i, S) ≥ k for all
i ∈ S.
The VACCSENGAME game. Let xi ∈ {0, 1} denote the
sentiment of node i ∈ V , where 0 and 1 indicate pro- and anti-
vaccine sentiments, respectively. For convenience, we refer
to a node i as a pro-vaccine or anti-vaccine node, depending
on whether xi = 0 or xi = 1, respectively. We use x to
denote the strategy vector. For a subset S ⊂ V , we use
x = 1S to denote the indicator vector for S, with xi = 1 for
i ∈ S, and xi = 0 for i 6∈ S. We use flip(i)(x) to denote
the vector obtained by switching only node i’s strategy, i.e.,
flip(i)(x)j = xj for j 6= i, and flip(i)(x)i = 1 − xi.
Let N(i,x, σ) be the ith node’s neighbors who are in state
σ ∈ {0, 1}.
Our VACCSENGAME formulation involves the following
components:

• Utility of vaccination, Ci for node i: this parameter cap-
tures the utility that a node i gets if it is vaccinated. Ci
incorporates both the cost of the vaccine (e.g., economic
cost, and both real and rumored side effects to health),
as well the (perceived) health benefits; therefore, it can
also be negative for some individuals. Since xi = 0 indi-
cates pro-vaccine sentiment, the utility from vaccination
for node i can be expressed as Ci(1− xi).

• Herd immunity threshold γ, and benefit δ: herd immunity
is a standard notion from mathematical epidemiology– if
more than a certain fraction (γ) of nodes in the entire net-
work are vaccinated, the disease will die out on its own,
e.g., for measles, γ = 0.96 has been suggested (Bowes
2016). In practice, herd immunity is indirectly considered
through the perceived risk of infection. Apart from the
individuals ineligible for receiving vaccination, the cost
of vaccinations to people who do not have health insur-
ance can be high enough for them to rely on the herd
immunity benefit. Such a quantity has actually been de-
termined from analysis of differential equation models,
but is given as a general recommendation by public health
agencies. We assume that each node gets a benefit δ if
the herd immunity threshold is achieved. In terms of our
notation of the strategy vector, herd immunity is achieved
if
∑
j xj < (1− γ)n, and in this case, each unvaccinated

node j gets utility δ · xi · 1∑
j xj<(1−γ)n, where 1Z is an

indicator variable which is 1 if the condition Z holds.

• Peer effect parameters ᾱ, β̄: we use ᾱ to indicate the ben-
efit an individual u gets by being “similar” to a neighbor
v (i.e., by having the same vaccine sentiment as v). On
the other hand, β̄ is the cost of having a different senti-
ment from one’s neighbor. Without loss of generality (by



scaling all the parameters by 1/β̄), we will assume β̄ = 1.
Therefore, the utility node i from conforming to its peers
is ᾱ|N(i,x, xi)| − |N(i,x, 1 − xi)| = ᾱ|N(i,x, xi)| −
(d(i) − |N(i,x, xi)|) = (ᾱ + 1)|N(i,x, xi)| − d(i). Let
α = ᾱ+ 1. Since the −d(i) term exists in the utility from
conformance for node i, irrespective of its strategy, we
drop it, and consider only the term α|N(i,x, xi)|.
Combining all the above terms, we define the utility for

node i as

util(i,x) = α|N(i,x)|+ Ci(1− xi) + δ · xi1∑
j xj<(1−γ)n

We use util(x) =
∑
i util(i,x) to denote the total

utility associated with x. We refer to a strategy vector x∗ =
argmaxxutil(x), which maximizes the total utility, as the
social optimum.

For notational simplicity, we assume a uniform vaccination
utility Ci = C for all i, in our experiments, though the results
extend to the general case.
Connection to Coordination games. The standard litera-
ture on coordination games (Ramazi, Riehl, and Cao 2016;
Bramoullé and Kranton 2015; Apt, Simon, and Wojtczak
2015; Vanelli et al. 2019; Apt, Simon, and Wojtczak 2019;
Jackson and Zenou 2015) only consists of the first term,
namely α|N(i,x, xi)|. The second term, namely Ci(1− xi)
could be easily incorporated into the coordination game set-
ting, e.g., (Vanelli et al. 2019), but is not often considered.
The third term, which captures herd immunity has not been
considered before. Table 1 summarises the notations used
throughout the paper.

Table 1: Summary of notations

Symbol Description
V Set of vertices
E Set of edges
n |V |, Number of nodes

N(i) Set of neighbors of node i
d(i) |N(i)|, Degree of node i

d(i, S)
|N(i) ∩ S|, Number of neighbors of i in set of
nodes S

xi(t)
State of node i at time t, either 0 (pro-vaccine)
or 1 (anti-vaccine)

x(t) Strategy vector at time t
N(i,x, σ) Set of neighbors of node i in x with state σ

γ
Herd immunity parameter; if∑

i xi < (1− γ)n then herd immunity exists
δ Herd immunity benefit

α
Parameter capturing utility from conformance
to neighbors

Ci Vaccination utility parameter for node i

1S
Vector x with xi = 1 ∀i ∈ S and
xi = 0 ∀i 6∈ S

flip(i)(x)

Vector obtained by switching only node i’s
strategy in x, i.e., flip(i)(x)j = xj for j 6= i,
and flip(i)(x)i = 1− xi

Nash equilibrium (NE). We say that x is a NE if no
node i is able to improve its utility by switching its
state. In other words, for every i, we have util(i,x) ≥

util(i,flip(i)(x)). We refer to a NE x which has the
maximum number of anti-vaccine nodes as worst NE. We
define the maximum ratio of the utility of a social optimum
to that of any NE, util(x∗)

minxNE util(x) as the Price of Anarchy
(PoA) (Koutsoupias and Papadimitriou 1999). Note that the
definition of (Koutsoupias and Papadimitriou 1999) is the
inverse, since they consider cost of a strategy, and the goal is
to minimize the cost; since we consider utility maximization,
this ratio is more reasonable.

3 Structural properties of Nash Equilibria
We observe a correspondence between NE and maximal
strong communities.

Lemma 3.1. For every (p,q)-strong community S, with
pi = Ci

α and qj =
Cj−δ
α , the state vector x = 1S̄ is a

NE. Conversely, if x is a NE, the set S = {i : xi = 0} is a
(p,q)-strong community.

Proof. Let S be a (p,q)-strong community S, and x =
1S̄ . We observe that no node i ∈ V improves its utility by
switching its strategy, with respect to x. Consider any node
i ∈ S. We have util(i,x) ≥ α|N(i) ∩ S|; note that if the
herd immunity condition is met, util(i,x) has an additional
δ term, but the above inequality is sufficient for our purpose.
Also, util(i,flip(i)(x)) = α|N(i) − S| + Ci. By the
definition of S, we have |N(i) ∩ S| ≥ |N(i) − S| + Ci/α,
which implies util(i,x) ≥ util(i,flip(i)(x)). Next,
consider a node j 6∈ S. We have util(j,x) = α|N(j) −
S|+Cj and util(j,flip(j)(x)) ≤ α|N(i)∩S|+δ. By the
definition of S, we have |N(j) ∩ S| ≤ |N(j)− S|+ (Cj −
δ)/α. Rearranging this we have util(j,flip(j)(x)) ≤
util(j,x).

The converse follows by a similar argument.

Connection to bootstrap percolation. For the pure coordi-
nation game, the best response strategy is closely related
to the threshold model of diffusion or bootstrap percola-
tion (Adam, Dahleh, and Ozdaglar 2012; Barrett et al. 2006).
We show below that a similar connection exists for VACC-
SENGAME, with thresholds which depend on the vaccination
and herd immunity parameters.

Lemma 3.2. Let S ⊆ V be any non empty subset of nodes.
Let U = ST be the final set obtained by running the threshold
process with θv = d(v)

2 −
Cv−δ

2α , starting from S0 = S, and
let x = 1V−U . If |U | > γn , or if δ = 0, no node v ∈ V −S
has incentive to switch its strategy.

Proof. Let St (t = 0, . . . , T ) be the sequence of sets in the
diffusion process, with S0 = S and ST = U .

First, we consider the case |U | > γn. Consider any
node v ∈ St − St−1, t ≥ 1. By definition of the diffu-
sion process, we have d(v, St−1) ≥ θv = d(v)

2 − Cv−δ
2α .

Rearranging the terms, we have αd(v, St−1) + Cv ≥
α(d(v) − d(v, St−1)) + δ = αd(v, St−1) + δ. Further, we
have d(v, U) ≥ d(v, St−1) and d(v, St−1) ≥ d(v, U), as
St−1 ⊆ U . This implies util(v,x) = αd(v, U) + Cv ≥



αd(v, U) + δ = util(v,flip(v)(x)), so that node v has
no utility to flip its strategy.

Next, consider any node v 6∈ U . By definition of the
diffusion process, we have d(v, U) < θv = d(v)

2 −
Cv−δ

2α . Rearranging the terms, we have αd(v, U) + Cv <

α(d(v) − d(v, U)) + δ = αd(v, U) + δ, which implies
util(v,flip(v)(x)) < util(i,x). This means node v
does not have incentive to switch its strategy in this case
either.

The argument in the case δ = 0 is similar.

Theorem 3.3. Suppose δ = 0. Let S0 = {v : d(v) < Cv

α }.
Let U be the final set obtained by running the threshold
process with θv = d(v)

2 − Cv

2α , starting from S0. Then, the
strategy vector x = 1V−U is a pure NE. Further, this is the
NE with the minimum number of pro-vacc nodes.

Proof. From Lemma 3.2, it follows that no node v ∈ V −S0

has incentive to switch its strategy. Consider a node v ∈ S0.
We have d(v) < Cv

α , which implies d(v) < 2d(v, U) + Cv

α .
Rearranging, we have d(v) − d(v, U) < d(v, U) + Cv

α , so
that util(v,flip(v)(x)) = αd(v, U) < util(v,x) =
αd(v, U) + Cv , so that node v has no incentive to switch its
strategy. Therefore, x is a NE.

The above argument also implies that in any NE x, the
nodes in S0 will always have state 0. An inductive argument,
as in the proof of Lemma 3.2, also implies that each node
v ∈ St has incentive to switch to state 0. This implies that
in any NE, the nodes in U are always pro-vaccine, and the
Lemma follows.

We refer to the NE in Theorem 3.3 as the worst NE.

4 Finding Nash Equilibria
It is known that a best response strategy converges to a NE in
pure coordination games (Bramoullé and Kranton 2015; Apt,
Simon, and Wojtczak 2015; Vanelli et al. 2019; Apt, Simon,
and Wojtczak 2019; Ramazi, Riehl, and Cao 2016); some
of these analyses can also be extended to prove that when
δ = 0, a best response type of strategy converges to a NE.
We show that a best response strategy, SEQBR, in a specific
order converges much faster to a NE when δ = 0, and can
be implemented in O(|V | + |E|) time. In our experiments,
we find a parallel best response, PARBR, converges faster.
We give details of these methods, and their analyses in the
Appendix. When δ > 0, finding a NE in which herd immunity
is achieved is much harder, as we discuss below.

Lemma 4.1. Let K < (1 − γ)n. Determining whether or
not there exists a NE x with 0 <

∑
i xi ≤ K is NP-complete.

5 The social optimum and the price of
anarchy

Recall the notions of social optimum and price of anarchy, as
defined in Section 2. We first bound the PoA.

Theorem 5.1. For any instance with δ = 0, and Ci ≥ 0 for
all i, the PoA is at most 2 +

∑
i Ci

α|E| .

Proof. First, observe that
∑
i util(i,x∗) =∑

i α|N(i,x∗)|+
∑
i Ci(1− x∗i ) ≤ 2α|E|+

∑
i Ci.

Next, consider any NE x. Let U = {i : xi = 0}. By
definition of a NE, for i ∈ U , we have α|N(i) ∩ U |+ Ci ≥
α|N(i)∩U | = α(d(i)− |N(i)∩U |). Rearranging, we have
α|N(i, U)| + Ci/2 ≥ αd(i)/2. Similarly, for i ∈ U , we
have α|N(i) ∩ U | ≥ α|N(i) ∩ U | + Ci ≥ α|N(i) ∩ U |.
Rearranging, we have α|N(i) ∩ U | ≥ αd(i)/2. This implies∑
i util(i,x) =

∑
i∈U α|N(i)∩U |+Ci+

∑
i∈U α|N(i)∩

U | ≥
∑
i∈U α|N(i) ∩ U | + Ci/2 +

∑
i∈U α|N(i) ∩ U | ≥

α
∑
i d(i)/2 = α|E|.

Putting these together, the PoA is bounded by
2α|E|+

∑
i Ci

α|E| ≤ 2 +
∑

i Ci

α|E| .

Next, we show that the social optimum can be computed in
polynomial time using an approach based on linear program-
ming and rounding. Our algorithm involves the following
steps.

1. Solve the following linear program (LP)

max
∑
i

Ci(1− zi) + α
∑
e

(1− ye) (1)

ye ≥ zi − zj for all e = (i, j) ∈ E (2)
ye ≥ zj − zi for all e = (i, j) ∈ E (3)

zi, ye ∈ [0, 1] for all i ∈ V, e ∈ E (4)

2. Let y, z be an optimal factional solution to the above linear
program

3. Let S = {zi : i ∈ V }. For each r ∈ S, define the strategy
vector x(r) with xi(r) = 1 if zi ≥ r. Return the vector
x(r∗) = argmaxr∈S

∑
i util(i,x(r)), which maximizes

the total utility.

Theorem 5.2. If δ = 0, the strategy x(r∗) computed by the
above algorithm is a social optimum.

Proof. (Sketch) Let x∗ denote a social optimum. First ob-
serve that in the linear program (LP), we have ye = |zi − zj |
for all e = (i, j). This follows because the objective in-
volves maximizing

∑
e(1−ye). If there exists an edge e with

ye > |zi − zj |, we can reduce ye and increase the objective
value, while keeping the zi’s fixed.

Next, we observe that the integral version of the above
linear program, i.e., with the constraints (4) replaced with
zi, ye ∈ {0, 1}, has the same total utility as the social opti-
mum x∗. Consider a solution zi = x∗i , and for e = (i, j),
ye = 1 if x∗i 6= x∗j . Then, observe that ye = |zi − zj |,
and so y, z is a feasible solution. Let S∗ = {i : x∗i =
0}. This implies for any node i ∈ S∗, |N(i) ∩ S∗| =∑
e=(i,j),j∈S∗(1− ye). Similarly, for node i ∈ S∗, |N(i) ∩

S∗| =
∑
e=(i,j),j∈S∗(1− ye). Therefore, the objective value

of y, z equals util(x∗).
We first consider a different rounding than the one in Step 3

of the algorithm: pick r ∈ [0, 1] uniformly at random, and let
X denote the strategy vector withXi = 1 if zi ≥ r. Let Ye =
|Xi −Xj |. Then, E[Xi] = Pr[Xi = 1] = Pr[r ≤ zi] = zi.
Further, Ye = 1 if r ∈ (min(Xi, Xj),max(Xi, Xj)). This



implies E[Ye] = |zi − zj | = ye. By linearity of expectation,
we have E[util(X)] = α

∑
e(1−Ye)+

∑
i Ci(1−Xi) =

util(x∗). This implies there exists a value of r = r∗ such
that the strategy x(r∗) defined in Step 3 of the algorithm has
util(x(r∗)) = E[util(X)], and so the strategy x(r∗) is
a social optimum.

6 Interventions to reduce the number of
anti-vaccine nodes in the worst NE

In general, the worst NE can have a large fraction of anti-
vaccine nodes. For instance, consider an instance with d(v) >
Cv/α for all v. Then, by Theorem 3.3, the worst NE has n
anti-vaccine nodes. This motivates the following question:
can we incentivize a set S of at most k nodes to become
pro-vaccine, so that if the remaining nodes in V − S make
decisions maximizing their individual utility, the number of
anti-vaccine nodes is minimized; here k denotes the budget
available to the social planner. This approach falls into the
framework of Stackelberg strategies (Roughgarden 2004),
in which a social planner is able to force the strategies for
a subset of players, and the rest decide in a decentralized
manner. We refer to the set S as a Stackelberg solution.
We say a NE xS is consistent with a Stackelberg solution
S if xSv = 0 for all v ∈ S, and for all i 6∈ S, we have
util(i,xS) ≥ util(i,flip(i)(xS)), i.e., no node in S
has incentive to switch its decision.
Lemma 6.1. Given a budget k and a target value N , finding
a Stackelberg solution S with |S| ≤ k, such that the number
of anti-vaccine nodes in the worst NE xS is at most N , is
NP-complete.

Proof. (Sketch) We do a reduction from the Target Set Selec-
tion in threshold dynamical systems (Ackerman, Ben-Zwi,
and Wolfovitz 2010). Given a network G and a threshold θv
for each node v ∈ V , the objective is to choose an initial
set S0, so that all the nodes are influenced eventually. De-
termining whether there exists a solution S0 with |S0| ≤ k,
such that all nodes are influenced is NP-complete. Using
Theorem 5.2, it follows that finding a Stackelberg solution
S such that the number of anti-vaccine nodes is N = 0 is
NP-complete.

Finding good Stackelberg solutions. From Lemma 6.1,
it follows that this problem is computationally very hard.
For the special case of C = 0, the techniques of (Feige
and Kogan 2019) can be adapted to give an O(maxv d(v))-
approximation. Since this is not a very practical algorithm,
we use a degree based strategy as a heuristic to find a Stack-
elberg solution: given a budget k, we pick the top k nodes in
terms of degree, and add to the set S0 in Theorem 5.2, and
find the worst NE.

7 Experimental Results
We study the following questions to complement our theoret-
ical results and understand the structure of VACCSENGAME
in different kinds of networks.
• Minimizing the number of anti-vaccine nodes in the

worst NE: how does the number of anti-vaccine nodes in

the worst NE vary with the parameter C/α (which affects
the initial set of pro-vaccine nodes S0 in Theorem 3.3 to
compute worst NE) in different graphs, and at what point
does it drop significantly?

• Characteristics of nodes in worst and random NE. Do
properties such as degree and clustering coefficient help
characterize the anti-vaccine nodes?

• Effectiveness of strategies to limit worst NE. Can a
small set of nodes be influenced, so that the number of
anti-vaccine nodes in the worst NE drops?

We perform all the experiments using Python 3.7.5 on
a Windows 10 Pro machine with 16 GB of physical mem-
ory. Networkx was used for graph manipulation, Pandas and
Numpy libraries were used for data analysis and Matplotlib
for visualization.

7.1 Datasets
We consider a variety of synthetic graphs and real-world
networks as summarized in Table 2. We also analyze our own
Twitter network from data collected in June 2020 (using the
public API), allowing for an experiment representative of
online discussion in response to COVID-19. This network
differs from the rest in that it has directed edges along with
node attributes that are an aggregation of a user’s sentiment
from text. Some results are omitted due to space, and will be
presented in the full version of the paper.

Table 2: Summary of datasets– number of nodes (n), number
of edges (|E|), average degree (davg) and average clustering
coefficient (ccavg). θcritical is the threshold values beyond
which the number of anti-vaccine nodes in the worst NE sud-
denly decline to zero . Refer to Section 7.2 for the experiment
details. We mention one of the Erdős-Rényi used here; we
also consider other values of p. The social and communi-
cation networks were collected from the Stanford Network
Analysis Project (Leskovec and Krevl 2014).

Network n = |V | |E| davg ccavg θcritical
Synthetic

Erdos-Renyi 1000 99851 199.702 0.1998 169.0
Social

Facebook
combined 4039 88234 43.691 0.6055 93.0

Twitter
mentions 9527 82709 17.363 0.0505 136.0

Communication
email-Eu-
core 1005 16706 33.2458 0.3994 17.0

Gnutella p2p 10876 39994 7.3545 0.0062 3.0

7.2 Number of anti-vaccine nodes in the worst NE
We compute the worst NE for the datasets summarized in
Table 2 using the approach outlined in Theorem 3.3. We use
a uniform value for C here. Figure 1 shows the number of
anti-vaccine nodes in the worst NE (y-axis) as a function of
the parameter C/α which plays a role in the choice of the
set S0 in Theorem 3.3, and intuitively captures the ratio of



the benefit of vaccination to that of conformance with peers.
As expected, the number of anti-vaccine nodes reduces when
C/α increases. Quite surprisingly, we observe that the num-
ber of anti-vaccine nodes exhibits a “threshold phenomenon”
with respect to C/α, i.e., a small increase in C/α leads to a
significant drop in the number of anti-vaccine nodes. We refer
to the value of C/α at which number of anti-vaccine drops
to zero as θcritical. The θcritical values are highly network
dependent. In particular, the G(n, p) model of Erdős-Rényi
has a very sharp threshold. In contrast, the Facebook and
Twitter networks have a sharp initial drop, followed by some
spread.

In Figure 2, we examine the threshold phenomenon in the
G(n, p) model for other p values; the expected degree np is
shown for each plot. θcritical seems to be a constant fraction
of the expected degree (within a factor of 2); understanding
the exact dependence is an interesting open problem.

The vaccination benefit C could be increased by suitable
incentives, or additional information. The threshold effect
relative to the parameter C/α suggests that raising the vac-
cination benefit past the threshold can have a significant
public health benefit. In contrast, increasing C/α below this
threshold does not have a significant benefit for reducing the
number of anti-vaccine nodes.

Figure 1: Fraction of nodes which end up as anti-vaccine
in the worst NE according to Theorem 3.3. We observe a
threshold effect where the anti-vaccine nodes disappear as
C/α increases.

7.3 Characteristics of nodes in the worst NE
We consider the worst NE associated with the C/α values
just before the threshold, and examine the characteristics of
nodes in these NE. Figure 3 shows the degree and clustering
coefficient distributions of the anti-vacc nodes in the NE
for the Twitter mentions network, just before the critical
threshold. We observe that these nodes have somewhat low
degrees, and generally low clustering coefficients. Similar
results for other networks are presented in the Appendix.

7.4 Characteristics of random NE
VACCSENGAME has multiple NE, in general, and here we
examine the characteristics of the anti-vaccine nodes, specifi-

Figure 2: Fraction of nodes which end up as anti-vaccine in
the worst NE according to Theorem 3.3 for the Erdős-Rényi
model G(n, p) for different values of p. As we increase the
expected degree np in the graph, the threshold value θcritical
increases.

Figure 3: (Left) Degree distribution, and (Right) Clustering
coefficient distribution of provaccine nodes in the worst NE
in the Twitter network for C/α = 10 (before θcritical).

cally how they differ from those in the worst NE. Figure 4
shows the degree distribution and the clustering coefficient
distribution of the combined Twitter network’s anti-vaccine
nodes in a NE computed using a best response strategy. In the
initial strategy vector (for the best response), the anti-vaccine
nodes are chosen randomly. We set α = δ = 1 and γ = 0.9.
We observe that in contrast to Figure 3, nodes have much
lower degree as well as clustering coefficient.

Figure 4: (Left) Degree distribution and (Right) clustering
coefficient distribution of the combined Twitter network’s
anti-vaccine nodes in a NE. Note that the box plot in the left
represents the distribution of the number of nodes for the
corresponding interval of degrees.



7.5 Reducing the number of anti-vaccine nodes in
worst NE

Here, we study the effectiveness of Stackelberg strategies
for reducing the number of anti-vaccine nodes. Motivated
by Lemma 3.2, we use strategies to select the initial set S0,
so that the number of anti-vaccine nodes in the resulting
worst NE is minimized. Let Dk be the set of k nodes of the
highest degree. We choose S0 = {v : dv < Cv/α} ∪Dk. In
figure 5 We observe significant variation in θcritical with k

n
across networks but for all networks θcritical goes down very
sharply as k

n increases.

Figure 5: Variation in θcritical (y-axis) vs k
n (x-axis) for

different networks.

8 Related work
Our paper is a direct generalization of coordination games,
which have been studied extensively, e.g., (Apt, Simon, and
Wojtczak 2015; Vanelli et al. 2019; Apt, Simon, and Wo-
jtczak 2019; Ramazi, Riehl, and Cao 2016; Adam, Dahleh,
and Ozdaglar 2012); we refer to (Jackson and Zenou 2015;
Bramoullé and Kranton 2015) for good surveys on this topic,
and on games on networks, more broadly. As mentioned ear-
lier, such games typically only involve the peer effects term
from VACCSENGAME, which corresponds to setting Ci and
δ to 0. Prior work has primarily focused on the convergence
of both synchronous and asynchronous best response strate-
gies (Ramazi, Riehl, and Cao 2016); they show convergence
in linear time. (Vanelli et al. 2019) analyze both coordina-
tion and anti-coordination games (in which nodes prefer to
have a different state than their neighbors), and derive tight
bounds on the size of different NE; however, these are re-
stricted to complete networks. (Apt et al. 2014) consider a
stronger notion of NE, and present conditions for their ex-
istence. These games have also been extended to weighted
(Apt, Simon, and Wojtczak 2019) and directed networks (Apt,
Simon, and Wojtczak 2015); they show that NE need not ex-
ist, in general, and finding them is NP-complete. (Adam,
Dahleh, and Ozdaglar 2012) also show a connection between
best response and cascades in the bootstrap model.

There has also been a lot of game-theoretic work on vacci-
nation decisions, which have considered the costs of vacci-

nation and sickness, e.g., (Bhattacharyya and Ferrari 2017;
Shim et al. 2012; Bauch and Earn 2004; Bauch and Bhat-
tacharyya 2012; Aspnes, Chang, and Yampolskiy 2006; V.S.
Anil Kumar et al. 2010). Most of this has used differential
equation models, which makes it easier to incorporate the
cost of infection (Bhattacharyya and Ferrari 2017; Shim et al.
2012; Bauch and Earn 2004; Bauch and Bhattacharyya 2012).
There has been limited work on vaccination games in net-
work models (Aspnes, Chang, and Yampolskiy 2006; V.S.
Anil Kumar et al. 2010). However, these works have not
taken the important role that peer effects play in such such
decisions. Our work is the first to extend coordination games
to incorporate the benefits of vaccination and herd immunity.

There is a lot of work on the broader topic of vaccine sen-
timent, and how it can be changed (Velásquez et al. 2020;
Johnson et al. 2020; Cornwall 2020). Its been found that po-
larization and strong ideologies make people less amenable
to changing their sentiment; in particular, providing informa-
tion on vaccine safety and benefits might have an opposite
effect on some people.

9 Conclusions
In this study, we extend the framework of coordination games
to study the spread of anti-vaccine sentiment in a social net-
work. We study the structure of Nash equilibria, including the
maximum number of anti-vaccine nodes, and their character-
istics. Quite surprisingly, we find that the ratio C/α, which
captures the relative benefit of vaccination to conformance
to one’s peers has a threshold effect on the number of anti-
vaccine nodes. The point at which the threshold occurs is
network dependent, and understanding is an interesting open
question. This can also help in designing incentives to reduce
anti-vaccine sentiment. This is a fundamental public health
challenge, as vaccinations are the only hope for eliminating
highly contagious diseases, including COVID-19.

Our analysis can be extended in multiple directions. The
price-demand relationship of vaccines is an important eco-
nomic aspect of this problem. If the number of people taking
the vaccines increases, the cost associated with taking the
vaccines will also increase. Incorporating this into VACC-
SENGAME is an interesting future direction, specially in
the context of potential competing vaccinations with differ-
ent costs and efficacies. Another direction is to consider the
hardening of ideologies when information or incentives for
vaccination is provided (Velásquez et al. 2020; Johnson et al.
2020; Cornwall 2020). This issue needs to be considered
carefully in the Stackelberg approach.
Acknowledgments. This work was partially supported by
National Institutes of Health (NIH) Grant 2R01GM109718
and 3R01GM109718, NSF BIG DATA Grant IIS-1633028,
NSF Expeditions in Computing Grant CCF-1918656, CCF-
1917819, DTRA subcontract/ARA S-D00189-15-TO-01-
UVA. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agen-
cies.



References
Ackerman, E.; Ben-Zwi, O.; and Wolfovitz, G. 2010.
Combinatorial model and bounds for target set selec-
tion. Theoretical Computer Science 411(44): 4017 – 4022.
ISSN 0304-3975. doi:https://doi.org/10.1016/j.tcs.2010.08.
021. URL http://www.sciencedirect.com/science/article/pii/
S0304397510004561.

Adam, E. M.; Dahleh, M. A.; and Ozdaglar, A. 2012. On the
behavior of threshold models over finite networks. In 2012
IEEE 51st IEEE Conference on Decision and Control (CDC),
2672–2677.
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