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Abstract— Demand Response (DR) programs serve to reduce
the demand for electricity at times when the supply is scarce
and expensive. Consumers or agents with flexible consumption
profiles are recruited by an aggregator who manages the DR
program. These agents are paid for reducing their energy
consumption from contractually established baselines. Baselines
are counter-factual consumption estimates against which load
reductions are measured. Baseline consumption and the true
cost of load reduction are consumer specific parameters and
are unknown to the aggregator. The key components of any DR
program are: (a) establishing a baseline against which demand
reduction is measured, (b) designing the payment scheme for
agents who reduce their consumption from this baseline, and
(c) the selection scheme. We propose a self-reported baseline
mechanism (SRBM) for the DR program. We show that truthful
reporting of baseline and marginal utility is both incentive
compatible and individually rational for every consumer under
SRBM. We also give a a pod-sorting algorithm based DR
scheduling for selecting consumers that is nearly optimal in
terms of expected cost of DR provision.

I. INTRODUCTION

The core problem in power systems operations is to
maintain the fine balance of electricity supply and demand at
all times. This must be done economically through markets
while respecting resource and reliability constraints. Adeptly
managing flexible demand is a far better alternative to
increased reserve generation, since it is inexpensive, pro-
duces no emissions, and consumes no resources. At certain
times such as mid-afternoons on hot summer days, the total
demand for electricity surges. At these times or events, it is
more cost-effective to reduce demand than to increase supply
to maintain power balance.

Demand Response programs are designed to reduce elec-
tricity consumption during such events. In these programs,
aggregators recruit residential or industrial customers who
are willing to reduce their electricity consumption in ex-
change for financial rewards. The aggregator serves as an in-
termediary and represents these flexible consumers or agents
to the local utility. The aggregator receives a payment from
the utility for the ability to reduce demand at short notice,
and, in-turn, pays the agents for their consumption reduction
during DR events. The key difficulty is in measuring this
reduction in consumption. While the actual consumption of
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agents is measured, their intended consumption or baseline
is a counter-factual, i.e., the energy an agent would have
consumed if they were not participating in the DR program.

There are three key components of any DR program that
need to be designed: (a) a baseline against which demand
reduction is measured, (b) the payment scheme for agents
who reduce their consumption from this baseline, and (c)
the scheduling scheme in order to minimize the cost of
DR. Commonly used baselines include historical averages
of consumption on similar days (by the agent, or by a
peer group of similar agents). These baseline estimation
methods and their variations are prone to inaccuracies and
participating agents have incentives to inflate to increase the
payments [1], [2], [3], [4]. Inaccurate baselines can result
in over-payment, compromising the cost-effectiveness of the
DR program, or in under-payment, adversely affecting the
ability to recruit participants into DR programs. Addressing
these issues is essential to encourage and sustain wider use
of DR programs. At the same time it is critical from the
point of view of the aggregator that the DR programs can
be implemented in a cost efficient way.

A. Our Contributions

We approach the baseline estimation and scheduling for
DR as a mechanism design problem. The utility informs
the aggregator of an upcoming DR event. The aggregator
who manages the DR program is required to deliver a target
load reduction in response. Our objective is to design an
incentive mechanism that, (a) establishes the true baseline,
(b) delivers the required load reduction reliably, and (c)
achieves both (a) and (b) in a cost effective way. We propose
a novel self-reported baseline mechanism (SRBM) to solve
the problem. Under the proposed mechanism the agents are
required to self-report their baselines which are forecasts
of their intended future consumption, and their unit cost to
reduce load or marginal utilities to an aggregator. In addition,
we propose a pod sorting based randomized scheduling
scheme for selecting or calling the consumers that is nearly
optimal in the metric of expected cost of DR provision

We show that, under the proposed scheme, reporting the
true baseline and marginal utility is a dominant strategy for
each agent. Also, the aggregator can guarantee delivery of the
required demand reduction target. In addition the pod sorting
based scheduling scheme achieves this at nearly optimal cost.

B. Related Work

There is a substantial literature on baseline estimation
methods. These can be broadly classified into (a) averaging,
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(b) regression, and (c) control group methods. Authors in [5]
give a short description on these different baseline schemes.

Averaging methods determine baselines by averaging the
consumption on past days that are similar (ex: in temperature
or workday) to the event day. There are many variants such
as (i) weighted averaging and (ii) using an adjustment factor
to account for variations between the event day and prior
similar days. A detailed comparison of different averaging
methods is offered in [6] [7] [8]. Averaging methods are
simple, but they suffer from (i) estimation biases that can
be substantial [8] [9] and (ii) they require significant data
access, especially for residential DR programs [10].

Regression methods fit a model to the historical data
which is used to predict the baseline [11] [12]. They can
potentially overcome biases incurred by averaging methods
[10]. They often require considerable historical data for
acceptable accuracy, and the models may be too simple to
capture the complex behavior of individual agents.

Control group methods are found to be more accurate
than averaging or regression methods [13] [14]. While they
do not require large amount of historical data, they require
metering infrastructure.This complicates and raises the costs
of implementation, particularly for large numbers of recruited
agents. Finally, [9] proposes a probabilistic method using
Gaussian statistics to estimate baselines.

The methods discussed above only focus on baseline
estimation and ignore the behavioral or gaming aspects of
agents intentionally inflating their baselines. There are some
exceptions, notably [15], [16], [17], [18], which models the
strategic behavior consumers but either assumes knowledge
of utility functions or true baselines. In [19] authors ad-
dresses the gaming aspect where consumers inflate their
baseline to maiximize the payment. They characterize the
optimal contract between DR aggregators and consumers.
However they assume that true reduction can be observed at
a later time, and the payment depends on this information.
Our approach doesn’t require this assumption. Instead we
propose a joint design of baseline estimation and incentive
design to address both problems together.

II. PROBLEM FORMULATION
A. Aggregator Model

The aggregator recruits N agents into its DR program from
a large candidate pool such that they deliver D KWh of de-
mand reduction target during DR events over some contract
window. Recruited agents are obligated to participate in m
DR events contractually. The cost of recruitment is 7° per
enrolled agent.

The aggregator’s profit is the revenue from the utility,
minus the payout to the agents and recruiting costs. It may
also receive penalty revenue from agents, but we will show
that this is not the case under our baseline mechanisms. The
total expected cost faced for the aggregator is

Juge = ME[4f] + m°E[N]

where 1) is the payout per DR event and N is the number of
recruited agents. The aggregator’s expected cost of demand

TABLE I
NOTATIONS

expected value of the random variable X
load reduction target

number of DR events agents must participate in
number of agents recruited by aggregator
Uk utility of agent k

qx discretionary energy consumption of agent k
by, true baseline consumption of agent k

Tk true marginal utility of agent k

upper bound on marginal utilities

g probability that agent & is selected

fr baseline report of agent k

Lo marginal utility report of agent k

m, | reward/kWh awarded to agent &

T penalty/kWh imposed on agent k

retail price of energy

recruitment cost per enrolled agent

P* | pod i

S* | pod core i

H’ | pod header i

Bl probability that pod ¢ is selected for DR
maximum reported marginal utility in pod ¢
0] average cost of DR provision per KWh

Y payout to agents per DR event

response ¢, i.e. the average cost per KWh of demand
reduction is then

g duw_ EW | mEN) "
mD D mD
N~~~ N——

payout per KWh  recruitment cost

B. Consumer Model

Let uy(gx) be the utility of agent k derived by consuming
qx, units of energy. We assume that the utility functions uy(+)
have the piece-wise linear form

T,
uk(gqr) = { ﬂ':Z:

if g < b

if g > by @

Here by, is the maximum possible consumption of agent k.
Any additional consumption will not increase its utility. We
call 7y, the true marginal utility of agent k. We assume
that s are i.i.d and so are bps and that m;s and bys are
independent of each other. Let m¢ be the retail price of
electricity offered by the utility. The net utility Uy (+) of agent

k is .
Teqk — TOqk
Us(ar) = { by — Tqx

if qr < b
if i > by

We clearly require 7;, > 7¢, else agent k£ would not consume
electricity. Equivalently, for every agent, the marginal util-
ity derived from electricity consumption exceeds the retail
electricity price.

The optimal consumption for agent & maximizes the net
utility. This is by as is evident from Figure 1(b). We call by
the true baseline consumption of agent k.
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Fig. 1. (a) Utility, and (b) net utility of agent k

Remark 1: The agent utility functions are private infor-
mation. The aggregator does not have knowledge of agent
baselines and marginal utilities. We assume that the aggre-
gator has knowledge of an upper bound on the agent marginal
utilities, i.e. it knows 7,,x Where

T'max Z m]?X Tk (3)

We note that 7, has the interpretation of the maximum
price that the aggregator is willing to pay agents per KWh
of demand reduction.

Remark 2: We assume that the agent parameters 75 and
by are independent across the agents. This is reasonable
because the true marginal utility and the true baseline of
an agent are not dependent on the behavior of other agents.
In addition 7, and by, are also independent.

C. Mechanism Time-line

Below we outline the time-line of the mechanism as shown
in Figure 2.

Period 1 Period 2 Period 3

|
|
|
|
utility notifies !
T agg of DR event

agg selects
‘ T agents for reduction

agents decide

|
|
|
|
|
\ T consumption g,

N

4

agents pay penalties l
or recieve rewards

agg publishes l :
| penalty/reward prices |
I I

agents report l :
private info fi, pup

Fig. 2. Event Time-line

Period 0 (Common information): The aggregator recruits
N agents into its DR program. Agents enroll based on
the opportunity to receive financial rewards. The aggregator
informs participating agents of (a) the selection scheme (b)
the payment scheme.

Period 1 (Reporting): The utility notifies the aggregator
of an anticipated DR event. In response the aggregator is
obligated to deliver D KWh of demand reduction. All agents
(indexed by k) report their baselines and marginal utilities,
fr and py respectively, to the aggregator, which need not
be truthful. The agents report (fi, k) strategically, i.e. they
may opt to deliberately submit incorrect reports.

Period 2 (Selection): The aggregator selects a subset of
agents to delivers the aggregate load reduction target D. The
selection is based on the collective reports submitted by the
agents. The aggregator calls the selected agents to reduce
their consumption. The selection scheme has to address the
tradeoff arising from the following two aspects (i) strategic

manipulation of reports (ii) delivering the target at minimum
cost. The aggregator computes and publishes reward prices
nr, for agents who are called, and a penalty price 7}, for
agents who are not called.

Period 3 (Load reduction and payment): During the DR
event, all agents decide on their actual consumption q. The
consumption they decide depends on whether they are called
or not. If agent k is called, it receives an ex post reward

R=mp(fr —ax)™ “4)
If agent £ is not called, it is assessed an ex post penalty
P=m(fi — )" )

Called agents are rewarded for consumption reduction from
their reported baselines, and agents that are not called are
penalized for consumption shortfalls below their reported
baselines.

D. The Agent’s Problem

We assume that the agents are rational and non-
cooperative. Each agent faces a two stage decision problem.
In the first stage, it has to decide the value of its reports
(fx, px). In the second stage, it has to decide on its actual
energy consumption g, during the DR event. This second
stage decision depends on whether or not agent k is called for
the DR event. Selected agents are rewarded for consumption
reduction from their reported baselines, and agents that are
not selected are penalized for consumption shortfalls below
their reported baselines. Suppose agent &k submits a baseline
report fi. If this agent is selected, its second stage cost
function is

Jo(qr, fr) = e — wlar) — 75 (fr —ar) "

If the agent is not selected, its second stage cost function is
Jos(qis fr) = @ — ulqe) + 7 (fe — ar) "

Define the optimal consumptions
¢; = argmin Jy(qe, fi),  gas = argmin Ju(qe, fi)-

Note that these depend on the first stage decision fy, i.e. the
reported baselines. The first stage reports ( fx, 1) of agent k
are such that it minimizes the overall cost of participation in
the DR program. The overall cost of participation depends
on the selection mechanism, and the the second stage costs
Js and Jy.

III. SELF-REPORTED BASELINE MECHANISM

The agents who are recruited, submit reports of their
baseline f; and marginal utility uj. This establishes the
baseline of the consumer. As stated before the agents can
be strategic in what they report. The key idea is to design
the DR program so that agents reveal their true baselines
and marginal utilities. This avoids inaccurate baselines and
allows the aggregator to deliver the DR target at minimal
cost. SRBM is given in Algorithm 1 below.
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Algorithm 1 Self-Reported Baseline Mechanism (SRBM)
1) Receive aggregate load reduction target D from utility
2) Receive reports fi and p from all consumers
3) Sort agents into M pods P', P2...,PM
4) Select P* with probability /3
5) Call the agents in the pod core S? of P!

6) Observe consumption qj, of every agent k

7) Reward the called consumers based on the reported
reduction, as given by (4)

8) Impose penalty for deviation from the reported base-
line, as given by (5)

The algorithm in terms of the time line in Fig. 2 entails
the following steps.

Period 1 (Reporting): In this stage each agent report its
baseline and its marginal utility f; and pg. These may not
be their true values.

Period 2 (Selection): The selction is a randomized schedul-
ing scheme which entails the following steps: (a) agents
are sorted in the increasing order of their reported marginal
utility uy, (b) these agents are then arranged into pods,
P! P2,...,PM, where each pod is a subset of agents that
can deliver the required demand target under SRBM, (c)
aggregator selects pod i with a certain probability 3¢, (d) a
subset of agents in the selected pod (pod core) are called for
the DR event. Details of the selection scheme are discussed
in Section IV.

Period 3 (Load reduction and payment): After the DR
event the agents who were called are paid a reward R
according to (4). The agents who are not called gets a penalty
P according to (5) if their consumption deviates from their
reported baseline. However this requires the specification of
the reward price 7}, and penalty price 7.

Let S_j, be the set of agents who would have been called
if agent k£ was not participating in the DR program. Define
the reward price for agent k to be

m, = max{p,;} — 7, j € S_4. (6)

We stress that the reward price 7, depends on the target D,
and is agent-specific. Agents who are not selected face a
penalty price 7P for consumption deficits (f — qx)T below
their reported baselines. The penalty price 7}, for agent k is
chosen to satisfy 7P > 7°. It is best to select the smallest
penalty price, i.e. 7, = 7°, Vk, so as not to discourage
agents from participating. For a detailed discussion of the
self-reported baseline mechanism we direct the reader to
[20]. We summarize the properties of SRBM in the theorem
below.

Remark 3: Under SRBM, agents are not privy to the
randomized sheduling scheme. Each agent is provided
limited information about the mechanism that is sufficient
to establish their selection and reward mechanism. We refer
the reader to [20] for a detailed discussion.

Theorem 1: SRBM has the following properties:

(a) truthful reporting of baselines and marginal utilities is a

dominant strategy

(b) called agents consume q; = 0, providing the maximal
reduction in their discretionary consumption

(c) agents that are not called consume g, = by,

(d) the aggregator receives no penalty revenue

(e) the load reduction target D is met by each pod

Proof is omitted to due to page limit. Detailed analysis
and proof are given in [20].

Remark 4: We have assumed that agent utility functions
(and resulting true baseline consumption by) are determinis-
tic. However, by, depends on (exogenous) random parameters
such as temperature and occupancy. For example, A more re-
alistic model would accommodate dependence on exogenous
random processes such as temperature and occupancy. This
might result, for example, in a baseline consumption of the
form by, = by, +ax|0—0|. Here, @ is the realized temperature
during the DR event, and 6 is the predicted temperature. In
this case, agents can be required to report their best-effort
forecast by, of their baseline consumption along with the
temperature sensitivity ay. Historical consumption data can
be used to assist agents in making these reports. The SRBM
mechanism can be easily extended to incorporate these more
complex reporting scenarios. The most general scenarios
with uncertain utility functions that explicitly depend on
exogenous random processes 6 is challenging and is an
ongoing work.

IV. RANDOMIZED SCHEDULING SCHEME

In this section we discuss the selection/scheduling scheme,
pod sorting algorithm, that constitutes the SRBM. The basic
idea is to arrange the agents in the increasing order of
marginal utility and selects the agents with lowest marginal
utility. However this is done in a randomized way in order
to elicit the true reporting from the agents and to minimize
expected cost of DR provision. The algorithm is given below.

Pod Sorting Algorithm

1 Sort agents in the increasing order of reported marginal
utilities

2 Set pod index 1 = 1. Setn =1

3 Place k*(i) agents indexed from n to n + k*(i) — 1 in
pod core S where k*(4) is the smallest number such that
ntk*(i)—1

Z fj = D. Increment n < n + k*(3)
4 Plai:e k*(i+1) agents indexed from n to n+k*(i+1)—1

in pod header H* where k*(i+ 1) is the smallest number
ntk* (i41)—1
j=n

Increment n <— n + k*(i 4+ 1)

5 Define the pod P? = S* U H'. Define the pod selection
probability ° = min 3}, k € S'. Increment i < i + 1

6 Define S = H~ 1.

7 If >, 8" < 1, go to step 4. Else stop.

such that f; > D.

Based on the submitted reports, the agents are arranged
in the increasing order of u; and sorted into M pods,
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P!, ... ,PM. A pod contains a subset of recruited agents that
can deliver the demand reduction target D under SRBM.

Suppose there are n; agents in pod P?, arranged in such
a way that uy < pug+1,k =1,...,n; — 1. These agents in
pod P? are divided into the pod core S* and pod header H’
such that P* = S* U H. More precisely, the first k* agents
form the pod core S' where

L*
ka zDa
k=1

In order to compute the reward prices 77, the pod header
must also contain sufficiently many agents. More precisely,
we require that if any agent in the core S’ is removed, we
can still find sufficiently many agents in the same pod P*
to determine S’ , and in turn 7. This can be ensured by
defining pod header H' as the set of the next k** agents
such that

k*—1

> fe<D. (7
k=1

. -
> k=D, Y <D ®)
k=k*+1 k=k*+1

The pod P’ is defined as P = S* U H'.

Equivalently, £* is the smallest index such that the first
k* agents from pod P! in the sorted list of marginal utilities
can deliver the target D. If pod IP? is selected in response to
a DR event, agents in its core S* are called on to provide
their demand reduction. The remaining agents form the pod
header H’. Since agents in the header of a pod are not called,
they can serve as the core of another pod. In this way we
reduce the number of agents to be recruited.

The key idea in our pod selection algorithm is to organize
agents into pods so that pods with large rewards are selected
with low probability. This reduces the expected payout to
agents. The maximum reward price paid to agents in pod P*
is bounded by

T < vt — 7€, where - max .

kEP
Also, pod P is selected with probability 3¢ = 7¢/vi.
As a result, pods with larger reward prices are selected
with lower probability, reducing the expected cost of DR
provision. Agents with high marginal utility are called on
less frequently, reducing the expected dis-utility. Pod sorting
is illustrated in Fig. 3.

Remark 5: As discussed above, the design of the pod
sorting based randomized scheduling scheme is such that
it is optimal in terms of expected cost of DR provision. For
lack of space we do not include a discussion here and we
direct the reader to [20] for a more detailed discussion.

V. CONCLUSION

In this paper, we have addressed the baseline estimation
problem that is central to demand response programs. We
proposed a mechanism where agents participating in a DR
program self-report their baselines and marginal utilities.
Under this self reported baseline mechanism (SRBM), agents
reveal their true baselines and marginal utilities. We also

Head H' Head HM ~! || Head HM
Core S! Core §2 Core SM
t } >
agents sorted b —
ALEII S sorte y 1 VA[ 1 VA\[

increasing reported
marginal utility piy

Fig. 3. Pod Sorting

proposed a pod-sorting algorithm based DR scheduling for
selecting consumers that is nearly optimal in terms of ex-
pected cost of DR provision.
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