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Abstract—In this paper, we propose a novel incentive based
Demand Response (DR) program with a self reported baseline
mechanism. The System Operator (SO) managing the DR pro-
gram recruits consumers or aggregators of DR resources. The
recruited consumers are required to only report their baseline,
which is the minimal information necessary for any DR program.
During a DR event, a set of consumers, from this pool of recruited
consumers, are randomly selected. The consumers are selected
such that the required load reduction is delivered. The selected
consumers, who reduce their load, are rewarded for their services
and other recruited consumers, who deviate from their reported
baseline, are penalized. The randomization in selection and
penalty ensure that the baseline inflation is controlled. We also
justify that the selection probability can be simultaneously used
to control SO’s cost. This allows the SO to design the mechanism
such that its cost is almost optimal when there are no recruitment
costs or at least significantly reduced otherwise. Finally, we
also show that the proposed method of self-reported baseline
outperforms other baseline estimation methods commonly used
in practice.

Index Terms—Demand Response, Baseline Estimation, Base-
line Inflation.

I. INTRODUCTION

Demand Response (DR) programs [2] are potentially pow-
erful tools to modulate the demand for electricity in a wide
variety of situations. For example, at certain times such as
mid-afternoons on hot summer days, the supply of additional
electric power is scarce and expensive. At these times, it is
more cost-effective to reduce demand than to increase supply
to maintain power balance. Another scenario is a grid with
high renewable penetration. Here, DR promises to be a better
alternative compared to other expensive and polluting reserves
to balance the variability in renewable generation. Realizing
its potential, the 2005 Energy Policy Act provided the Con-
gressional mandate to promote DR in organized wholesale
electricity markets. The FERC order 745 [3] met this mandate
by prescribing that demand response resource owners should
be allowed to offer their demand reduction as if it were a
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supply resource rather than a bid to reduce demand so that
the market operates fairly.

Dynamic pricing based DR programs [4], [5] can ideally
achieve market efficiency, but they require more complex
metering and communication infrastructure to achieve this
which raises their implementation costs [6], [7]. Furthermore,
consumers may not be responsive to dynamic pricing [8].
Alternatively, consumers could be signaled to reduce con-
sumption and paid for their load reductions. Such schemes
are referred to as Incentive-based DR programs or Demand
Reduction programs. There are three key components of any
incentive-based DR program: (a) a baseline against which
demand reduction is measured, (b) a payment scheme for
agents who reduce their consumption from the baseline, and
(c) various contractual clauses such as limits on the frequency
of DR events or penalties for nonconforming agents.

Thus, incentive-based DR programs require an established
baseline against which consumer’s load reduction is measured.
The baseline is an estimate of the consumption when the
consumer is not participating in the DR program. For example,
the California Independent System Operator (CAISO) uses the
average of the consumption on the ten most recent non-event
days as the baseline estimate [9]. The CAISO method also uses
a morning adjustment factor to account for any variability in
consumption pattern during the day of the DR event from the
past. Current methods to establish the baseline raise several
concerns. One major concern is that the consumers have
an incentive to artificially inflate their baseline to increase
their profits [10]–[13]. Cases have been reported where the
participants artificially inflated their baseline for increasing
payments [14]. Fairness can also be a concern. Consider, for
instance, an agent who happens to be on vacation during a
DR event and receives a payment for load reduction without
suffering any hardship. This can be perceived as unfair by
other agents who deliberately curtail their consumption and
suffer some disutility.

A. Our Contribution

The modern grid is undergoing changes due to the emer-
gence of Distributed Energy Resources (DERs) like rooftop
solar, micro wind turbines, battery energy storage systems,
plug-in electric vehicles and smart home appliances. Accom-
panying these developments is the need for evolution of the
role of distribution system operators (DSO). In the recently
published report by IRENA [1], one of the new roles that
were identified for DSOs was peak load management through
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DERs. Taking up this new role also makes financial sense for
the DSO because, by managing or leveraging DERs the DSO
can avoid or delay the financial investments it has to make to
upgrade the distribution system to cope with the modernization
requirements. In this paper, we propose a DR mechanism for
the SO for this scenario.

In the setting we propose, the System Operator (SO) recruits
DR providers as an alternate resource to balance supply and
demand during high price periods. The providers could be
either individual consumers or aggregators of DR services.
We also assume that the SO has access to market outcomes,
which is a reasonable assumption. The objective of the SO is
to minimize cost when energy purchase from the wholesale
energy market is expensive. This usually happens during peak
load scenarios, when the market price exceeds a threshold
market clearing (TMC) price. The TMC price is the price
above which it is profitable for the SO to call the recruited
DR providers or consumers to provide load reduction.

The main aspects of the DR mechanism we propose are:
(i) self-reported baseline (ii) randomized selection of con-
sumers, and (iii) penalty for uninstructed deviations. In this
mechanism, the consumers are required to self-report their
baselines and are paid at a pre-determined reward for every
unit of reduction they provide. A large group of consumers
is recruited so that the necessary load reduction is delivered
reliably. When a DR event occurs, consumers are selected
randomly from this pool of recruited consumers to provide
the required service. The load reduction is measured by the
difference between the self-reported baseline and the measured
consumption. The consumers signaled to reduce are paid
in proportion to the measured reduction and the prescribed
reward. The consumers who are not called are penalized for
uninstructed deviation from the baseline. This penalty and
randomized selection controls baseline inflation. The proposed
DR program requires only baseline information from the
individual consumers, which makes it minimal in terms of
the information it elicits from the consumers.

In this paper, we characterize baseline inflation for a
quadratic utility function with uncertain consumption and
a quadratic penalty function with and without a deadband.
The deadband in the penalty function is required to achieve
individual rationality. Using this characterization, we show
that the proposed mechanism controls baseline inflation. We
also justify that by choosing an appropriate calling probability,
which depends on the recruitment cost, the SO can signficantly
reduce its costs. Finally, we show that the self-reported base-
line establishes a better estimate of the mean baseline when
compared to conventional methods such as the CAISO’s m/m
method [9]. Since the excess payments made to the consumers
are proportional to the baseline used in a DR program, this
establishes that the self-reported baseline approach is more
cost effective than the CAISO approach.

Two concerns can arise with the self-reported baseline idea.
One is the fatigue in reporting a baseline and the other is the
lack of knowledge of one’s own baseline. Notwithstanding,
self-reported baseline is still a viable method. This is because,
firstly, the proposed mechanism is for peak load scenarios
which are rare events. Secondly, we expect a energy man-

agement system to manage the load consumption pattern of
a consumer in the future. Given the consumer’s preferences,
this energy management system should have the capability
to estimate the baseline and report it to the operator or the
load serving entity. In addition to all of the above aspects, the
self-reported baseline DR mechanism can also avoid bias and
inflation in its estimate of the baseline.

B. Related Work

There exists substantial literature on baseline estimation
methods [15]–[19], [19]–[24]. These can be broadly classified
into three classes: (a) averaging, (b) regression, and (c) control
group methods.

Averaging methods determine baselines by averaging the
consumption on past days that are similar (e.g., in weather
conditions) to the event day. A detailed comparison of different
averaging methods is offered in [15], [16], [18]. Averaging
methods are simple but they suffer from estimation biases
[18]–[20], and require a significant amount of data, especially
for residential DR programs [19].

Regression methods estimate a load prediction model based
on historical data which is then used to predict the baseline
[17], [22]. They can potentially overcome biases incurred
by averaging methods [19], [25]. But they often require
considerable historical data for acceptable accuracy, and the
models may not capture the complex behavior of individual
consumers.

Control group methods have been suggested to have bet-
ter accuracy than averaging or regression methods and do
not require large amounts of historical data [23]. However
these methods require the SO to recruit an additional set of
consumers and also install additional metering infrastructure
for these consumers. In addition, prior data based analysis, to
identify the most appropriate control group, might be required
depending on the control group method deployed. This raises
their costs of implementation [23]. We also show later that
the adverse incentives to inflate still persists in this method.
Compared to all the above methods, the proposed self-reported
baseline avoids all of these issues, i.e. (i) bias and inflation,
(ii) need for historical data, and (iii) high implementation cost.

In order to avoid baseline estimation, in a previous
work [26], we addressed the DR problem as a mechanism de-
sign problem. The setting considered in [23] has an aggregator
and an Utility or SO. The Utility determines the required load
reduction D kWh that is to be delivered by the aggregator
based on the system requirements. The aggregator recruits
consumers to deliver the required reduction. The mechanism
that we proposed for the aggregator requires the consumers to
report both their marginal utility and their baseline consump-
tion. The aggregator uses the marginal utility reports to select
consumers such that its overall cost is minimized while the
load reduction target D is met. A drawback of this mechanism
in terms of implementation is that the consumers need not have
knowledge of their true marginal utilities.

The new approach proposed here also avoids baseline es-
timation by requiring the consumers to report their baseline
consumption, but the individual marginal utility need not
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TABLE I
NOTATION

q Energy consumption of consumer
θ Exogenous random variable
u Utility of consumer expressed in monetary units
π0 Retail price of energy
π2 Reward/kWh awarded to consumer k
f Baseline report of consumer
π∗ Threshold Market Clearing Price (TMC)
p Probability of consumer being signaled
R Reward function for load reduction
Φ Penalty function for deviation from baseline
Π Inverse supply function
Q0 Peak load

be disclosed. The mechanism is minimal in terms of the
information it elicits from the consumers because it does not
require either historical data or any additional infrastructure.
The authors in [27] use a similar problem formulation to ours
and propose an incentive based DR mechanism, but do not
address how the reward price is set, how the consumers are
selected so that the DR service is delivered reliably and the
cost aspect of the mechanism. In addition they also ignore
any randomness in the consumption of the consumers. Here,
we consider all of the above aspects and the randomness in
consumption. We also provide comparison with other baseline
estimation methods.

While some parallels can be drawn with dynamic pricing
based DR mechanisms [28]–[30], the setting we consider
here is different. These mechanisms essentially influence con-
sumers by using time varying prices to alter their energy con-
sumption so that system objectives are met. On the contrary,
the central problem we consider is to recruit DR resources
that can deliver a certain amount of load reduction at certain
times of a month which coincides with peak load conditions.
This requires the estimation of consumer baseline because
measuring load reduction requires a baseline. Hence baseline
estimation becomes a primary concern in our setting whereas
such a requirement does not arise in the dynamic pricing DR
setting.

The remainder of this paper is organized as follows. In
Section II, we introduce the consumer model and the incentive-
based self-reported DR program. In Section III, we solve
for the optimal consumer forecast and characterize baseline
inflation for a quadratic utility function and a quadratic penalty
with and without deadband. In section IV we discuss SO’s
cost. In Section V, we compare self-reported baseline with
other conventional baseline estimation methods. Finally, we
conclude in Section VI.

II. PROBLEM SETUP

In this section, we describe the market model, the consumer
model and the incentive-based DR program. A summary of the
notations is given in Table I.

A. Market Model
The market model is represented by the wholesale market’s

inverse supply function Π(Q) which provides the energy price

Q

∆Q∗

Q0

Π(Q)

π∗

Fig. 1. Inverse Supply Curve and Threshold Market Clearing (TMC) Price
π∗

as a function of the net energy transacted in the wholesale
market, see Fig. 1. The market inverse supply function is
assumed to be convex with respect to Q and monotone in-
creasing, i.e. with positive derivative Π′(Q) > 0. The threshold
market clearing price π∗ (TMC price), as defined earlier, is the
market price above which it is profitable for the SO to call the
consumers. Given the inverse supply curve of the market, this
price can be computed a priori. In scenarios where the inverse
supply function is not available a priori, the SO can estimate
it using data from past twelve months. This is typical of many
system operators such as the CAISO which publishes threshold
market clearing prices for the next target month using data
from past twelve months. The assumption we make is that
this estimate is reflective of the true TMC price.

Here, we assumed a single-node model to ilustrate the
TMC price calculation from the inverse supply function. In
a network model, the calculation may not be straightforward
and it would require a detailed analysis of how the congestion
constraints influence the Locational Marginal Prices (LMPs) of
the nodes, which is model specific [31], [32]. The main results
of this paper will still hold provided π∗, i.e. the threshold
market clearing price for a node in the network, is determined
via the network model.

B. Consumer Model

Consider a residential consumer whose consumption is
denoted by q. Let θ be a random variable that is drawn
from a continuous distribution. The utility of consumption
of a consumer depends on this random variable. We assume
that the distribution of θ includes every possible source of
uncertainty. For example, θ could represent the consumer’s
state where the consumer could either be at home or not.
It could also model the randomness induced due to external
weather conditions like temperature. Let the private utility
function which is expressed in monetary units be u(q, θ),
which is assumed to be a strictly concave monotone increasing
in q. We also assume that the random variable θ is realized
at the time when consumption is accomplished. Define the
marginal utility µ(q, θ) as follows:

µ(q, θ) =
∂u(q, θ)

∂q
. (1)

Note that since u(q, θ) is monotone increasing and strictly
concave in q, we have:

∀q : µ(q, θ) > 0,
∂µ(q, θ)

∂q
< 0.



4

C. Incentive-Based Demand Response Program

The SO signals a DR event when the market price exceeds
the TMC price. The novel DR program that we propose
comprises a self-reported baseline mechanism. The mechanism
has two stages which are as follows.

Stage 1 (Reporting): In this stage, the consumer self
reports its baseline f and the SO announces the following
quantities:

1) the probability p of calling a consumer,
2) the reward function R(π2, f, q) for reducing consump-

tion (f − q),
3) reward per unit reduction π2 which is equal to the TMC

price π∗,
4) the penalty function Φ(f, q) for consumers who deviate

from their reported baseline when they are not called for
DR service.

This penalty function Φ is critical to ensure that the consumers
do not inflate their baseline report. At the same time, the
penalty should not discourage participation by preventing lack
of profitability for the participants. Based on the reward per
unit reduction π2 and the penalty Φ(f, q), each consumer
submits the baseline report f .

Stage 2 (DR Event): In the second stage, a DR event
is triggered when the SO expects the market price to shoot
above the TMC price. The SO then selects randomly from
the pool of recruited consumers and the selected consumers
are signaled to reduce consumption. The SO observes the
aggregated consumption Q of those selected consumers. By
the mechanism, the consumers who are signaled and reduce
consumption are paid π2 per unit of reduction. However, those
recruited consumers that are not signaled are penalized for
deviating from their reported baseline as prescribed by the
penalty function.

1) Consumer Recruitment and Selection: The objective of
SO is to minimize its cost during DR events. During a DR
event, the load is at its peak Q0, and is desirable to achieve
a load reduction of ∆Q∗, which is the optimal load reduction
(Refer Fig. 1). The SO recruits n sets of consumers. The
recruitment is such that each set of consumers reduces load
by ∆Q∗ for the specified reward/kWh π∗. The consumers are
tested before they are recruited. Here, the assumption is that
the aggregate load reduction can be more reliably established
than the individual load reduction which requires a reliable
baseline estimate. Since the probability of selection or calling
of each individual consumer is restricted to probability p, the
number n of such sets of consumers recruited satisfies np = 1.
When a DR event occurs, one set is randomly chosen and its
members are signaled to reduce consumption. This recruitment
and selection process ensures that one set is always chosen.
Hence, the required level of reduction ∆Q∗ is delivered during
all DR events while satisfying the calling probability of each
recruited consumer.

It is inconceivable that each set of consumers will exactly
deliver ∆Q∗ amount of reduction at the prescribed reward.
Hence, in the proposed mechanism, the SO is allowed to adjust
the selected consumers within the DR event window. If the
price remains higher than the TMC price within the DR event

then the SO can call more consumers till the price falls to
the desired level. Note that this does require the SO to recruit
some set of consumers who can respond on short notice. Such
type of consumers can be recruited under the flexible resource
category.

Here, we provide a very simple example to illustrate how the
consumers are grouped and selected. Consider the case where
the consumers are identical and have a capacity to deliver 0.5
kWh of reduction when paid at π∗ = $0.05/kWh. Let the
probability of calling a consumer be p = 0.1 and the optimal
load reduction ∆Q∗ = 10 kWh. Then the SO would recruit
n = 1/p = 10 groups each with a capacity to deliver 10 kWh
of reduction when paid at π∗ = $0.05/kWh. This implies
that each of these groups would contain 20 such consumers
and each of these groups will be called or selected by the
probability p = 0.1 when a DR event occurs.

Remark 1. As stated earlier, for an incentive-based demand
response program, determining the right baseline is very
important as baseline can not be measured. In our mechanism,
consumers self-report their baseline. No other information
from consumers is needed other than baseline report. Hence,
our mechanism is minimal in the information it elicits from
the consumers.

2) Reward and Penalty Function: The reward function in
the mechanism is set as

R(π2, f, q) =

{
π2(f − q), if consumer is called,
0, otherwise. (2)

Thus, the SO pays the consumers according to the measured
reduction f − q, where f is the consumer’s baseline report
and q is the measured consumption during the DR event.
The reward per unit reduction is π2. The consumer’s penalty
function is specified as follows,

Φ(f, q) =

{
0, if consumer is called,
φ(f − q), otherwise. (3)

where the penalty function φ in (3) is chosen to be convex,
symmetric, and nonnegative with minimum value zero at the
origin, i.e. it satisfies the following conditions:

φ(0) = φ′(0) = 0, ∀x : φ(x) = φ(−x), φ′′(x) > 0, (4)

where φ′ and φ′′ denote the first and second derivative of the
penalty function φ.

D. Consumer’s Optimization Problem

The minimum expected cost incurred by a consumer is a
function of the baseline report f and is given by

H(f) = Eθ

[
min
q
{π0q − u(q, θ) + Φ(f, q)−R(π2, f, q)}

]
.

(5)
The consumer’s problem is formulated as follows:

CP: min
f

H(f). (6)

Hence, the consumer’s problem is a two stage stochastic
decision problem. In the first stage the consumer decides the
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optimal baseline report f , and in the second stage decides the
optimal consumption q.

Definition 1. Let f∗ be defined as the baseline report that
minimizes the cost that is incurred by the consumer, i.e. f∗ =
arg min H(f).

III. OPTIMAL BASELINE REPORT AND INFLATION

In this section, we derive an optimality condition for the
consumer baseline report that minimizes the expected cost of
the consumer. The optimality condition has a nice economic
interpretation because it establishes that the baseline report that
minimizes the expected cost is such that the marginal utility
of the consumers equals the retail price of the electricity.

The consumer’s optimization problem CP given by (6) is
a two-step stochastic decision problem. We characterize con-
sumers’s consumption decisions corresponding to the second
stage problem and then obtain the optimality condition for the
consumer’s baseline report by solving the first stage problem.

A. The Consumer’s Second Stage Problem

The consumer has several choices. It can decide to partici-
pate or not to participate in the DR program. If it decides to
participate, then it can be signaled to reduce its consumption
or not signaled. This gives rise to three possible scenarios for
the second stage: a) consumer is not participating in the DR
program, b) consumer is participating in the program but is not
signaled to reduce consumption, c) consumer is participating
in the program and is signaled to reduce consumption. We
obtain the optimal consumption for each of the three cases
assuming that the baseline report f is given. The consumption
when the consumer is not participating corresponds to the
true baseline. Hence, we use this value as the baseline to
characterize inflation in the DR program.

a) Consumer is not participating in the DR program: In
this case, R = 0 and Φ = 0. Let Ja(q, θ) denote the realized
cost function for this case. It is then given by

Ja(q, θ) = π0q − u(q, θ), (7)

where π0 is the retail price of electricity. The optimal con-
sumption is given by

qa(θ) = arg min
q
Ja(q, θ),

which is a function of θ because its value is realized when the
consumption decision is made. Note that qa(θ) is the solution
of the first order optimality condition,

π0 −
∂u(q, θ)

∂q
= 0. (8)

Hence, qa(θ) is given by

qa(θ) = µ−1(π0, θ), (9)

where µ−1 denotes the inverse function of the marginal utility,
see (1), that always exists for every θ. Moreover, since the
consumer’s utility is monotone increasing and concave in q,
the consumption qa(θ) is always nonnegative.

b) Consumer is participating in the program but is not
signaled to reduce consumption: The reward and penalty
functions are given by (2) and (3). Let Jb(f, q) denote the
realized cost function which is given by

Jb(f, q, θ) = π0q − u(q, θ) + φ(f − q). (10)

As before, the value of θ is realized when the consumption
decision is made. In this scenario the realized cost is also a
function of the baseline report f in addition to the consumption
decision and the value of θ. The optimal consumption is given
by

qb(f, θ) = arg min
q
Jb(f, q, θ),

and so it satisfies the first order optimality condition,

π0 −
∂u(q, θ)

∂q
− φ′(f − q) = 0. (11)

Hence, the optimal consumption satisfies the following im-
plicit equation,

qb(f, θ) = µ−1(π0 − φ′(f − qb(f, θ)), θ), (12)

and qb(f, θ) is also a function of f because the deviation from
f incurs a penalty.

c) Consumer is participating in the program and is sig-
naled to reduce consumption: Again, the reward and penalty
functions are given by equations (2) and (3), respectively. Let
Jc(q, θ) denote the realized cost function which is given by

Jc(q, f, θ) = π0q − u(q, θ)− π2(f − q). (13)

The optimal consumption is given by

qc(f, θ) = arg min
q
Jc(f, q, θ).

So qc(f, θ) is the solution of

π0 −
∂u(q, θ)

∂q
+ π2 = 0. (14)

Hence, the optimal consumption qc is independent of f and
is given by

qc(θ) = µ−1(π0 + π2, θ). (15)

The relation between the consumptions for the three differ-
ent cases qa(θ), qb(θ, f), qc(θ) and the consumer’s baseline
report f are stated in the following lemma.

Lemma 1. The optimal consumptions for the three cases
qa(θ), qb(θ, f), qc(θ) satisfy the conditions (i) qc < qa and
(ii) qa < qb < f or f < qb < qa for every θ.

Proof. Refer Appendix.

As a result of Lemma 1, a rational consumer that is partic-
ipating in the DR program and is signaled always provides a
load reduction with respect to its true baseline consumption
qa. However, according to this lemma, a consumer that is
participating and not signaled for reduction may inflate its
consumption near to its inflated baseline report to avoid the
penalty and gain from the inflated baseline when called for
reduction. This behaviour needs to be controlled.
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B. The Optimal Baseline Report

Let p denote the probability that the consumer is signaled
to reduce when a DR event occurs. The expected cost that is
incurred by the consumer (5) can be expressed in terms of the
probability p as follows:

H(f) = pEθJ
c(f, qc, θ) + (1− p)EθJb(f, qb, θ), (16)

and it follows that the optimal baseline report f∗ mini-
mizes this H(f). In the following lemma, we show that the
consumer’s expected cost H(f) is a convex function of its
argument f .

Lemma 2. The consumer’s expected cost H(f) is a (strictly)
convex function of its argument f if and only if the penalty φ
is (strictly) convex.

Proof. Refer Appendix.

Since the penalty function φ was chosen to be convex, the
consumer’s expected cost H(f) is also convex.

Definition 2 (Consumer’s Expected Marginal Utility). The
consumer’s expected marginal utility under the incentive-
based self-reported DR program is given by

M(f) = pEθ
∂u(qc, θ)

∂q
+ (1− p)Eθ

∂u(qb, θ)

∂q
. (17)

The consumer’s expected marginal utility is a function of
the baseline report f , because the consumption q is a function
of f . For example, if the consumer is participating in the
DR program and is signaled, then its consumption is qb(f, θ)
which solves the implicit equation (12) and does depend on
f . The following theorem establishes the optimality condition
for the optimal baseline report f∗ in terms of M(f),

Theorem 1. The optimal baseline report f∗ satisfies π0 =
M(f∗) and is a global minimizer of the cost function H(f).
Moreover, the minimizer is unique when φ is strictly convex.

Proof. Refer Appendix.

The optimality condition obtained in Theorem 1 has a
nice interpretation from the classical consumer theory in
economics [33]. The optimal baseline report f∗ is such that
the consumer’s marginal utility equals the retail price of the
electricity. Given f∗, the expected reward per unit of energy
(in kWh) paid for the expected load reduction provided by a
consumer is given by

π∗(f − Eθqc(θ))
Eθqa(θ)− Eθqc(θ)

= π∗ + π∗
Eθδf(θ)

Eθqa(θ)− Eθqc(θ)
, (18)

where δf(θ) = f − qa(θ) is defined to be the inflation of
the baseline report. From the second term, we infer that the
expected inflation of the baseline report should be small to
avoid a large excess payment.

C. Control of Baseline Inflation

Here, we show that the penalty function in combination with
randomized calling allows the SO to control the inflation of
the optimal baseline report δf∗(θ) = f∗ − qa(θ). First we

establish that penalty is necessary and then show that with
a penalty, the probability of calling p provides us a lever to
control baseline inflation.

1) Optimal Baseline Report without Penalty: In this case,
the optimality condition for the optimal baseline report f∗ is
given by

dH(f)

df
= pEθ

dJc(f, qc, θ)

df
= −pπ2. (19)

Since the sensitivity of the consumer’s cost H(f) is negative
with respect to f , it indicates that the consumer will report a
very high baseline.

2) Optimal Baseline Report with Penalty: The introduction
of a penalty function allows us to control the inflation in the
baseline report by adjusting the probability of calling. This
result is shown in the following lemma.

Theorem 2. Let the penalty function φ be a quadratic function
such that ∀x : φ′′(x) = 1/λ. Then the measurable inflation in
the optimal baseline report δf̃∗(θ) = f∗ − qb(f∗, θ) satisfies

lim
p→0

Eθδf̃∗(θ) = 0.

And when ∂u2(q,θ)
∂q2 = −1/d,

lim
p→0

Eθδf∗(θ) = 0.

Proof. Refer Appendix.

For specific consumer utility and penalty functions, an ex-
plicit expression for the expected baseline report inflation can
be obtained. The following theorem provides this expression
for the case where the consumer’s utility and the penalty
function are both quadratic.

Theorem 3. Let the consumer’s utility u and the penalty
function φ be quadratic functions such that

i) ∀(q, θ) : ∂u
2(q,θ)
∂q2 = −1/d,

ii) ∀x : φ′′(x) = 1/λ,
where d and λ are positive scalars, then the expected inflation
of the baseline report is given by

Eθδf
∗(p) = f∗ − Eqa(θ) = (d+ λ)

pπ2

1− p
. (20)

Proof. Refer Appendix.

The law of diminishing marginal utility establishes that the
marginal utility declines with increase in consumption [33]. In
Theorem 3, 1/d is the rate of diminishment of the consumer’s
marginal utility, and it is a private feature of the consumer that
cannot be modified by the system operator. Unlike d, λ is a
parameter of the DR program, because it defines the quadratic
penalty function, i.e. φ(x) = x2/(2λ). Hence, the SO can
choose λ in the design of the DR program. Since λ > 0, a
lower bound for the expected inflation of baseline report is
obtained by setting λ = 0,

Eθδf
∗ = f∗ − Eθqa(θ) ≥ dpπ2

1− p
. (21)

Moreover, by choosing the parameter of the penalty function
λ to be small enough, the expected inflation of the baseline
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Fig. 2. Penalty function with deadband

report can be made arbitrarily close to its lower bound. Note
that this lower bound is a function of p and is decreasing with
p. Consequently, by choosing λ and p to be small the baseline
inflation can be controlled.

Here, we provide a simple numerical example to validate
the above results. In this example, u = cq− (0.5/d)q2, where
c = $.5/kWh and d ∈ {0.1, 0.2, 0.3, 0.4} in ($/kWh2)−1.
The retail price π0 = $0.12/kWh and the TMC price
π∗ = $0.05/kWh and are typical values (Refer [34]). These
set of parameter values correspond to a typical price sensi-
tivity value of ∼ −0.3 [35], [36]. The penalty coefficient
λ = 0.1 ($/kWh2)−1. The probability p is chosen to be
p = 0.1. Table II summarizes the simulation results and how
it compares with the theoretical results for this example.

TABLE II
BASELINE INFLATION, δf∗

d 0.1 0.2 0.3 0.4

δf∗ (theory) 0.0011 0.0017 0.0022 0.0028

δf∗ (simul.) 0.0012 0.0017 0.0023 0.0028

D. Ensuring Individual Rationality with a Deadband

The DR program is not guaranteed to be individually
rational from the point of view of a single consumer because of
the presence of uncertainty θ. When a consumer is not called,
it consumes qb(f, θ) which varies with θ and is different from
f , as it was shown in Lemma 1. As a result the consumer
incurs a penalty and the mechanism is not guaranteed to
be individually rational. This is not an issue in the absence
of uncertainty. Individual rationality of the program can be
ensured by introducing a deadband in the penalty as illustrated
in Figure 2. A penalty with deadband can be expressed as,

φ(f − q) =

{
(|f−q|−ε)2

2λ , if |f − q| ≥ ε,
0, otherwise.

(22)

It is evident from such a design that there exists a deadband
width ε such that the mechanism is individually rational. But
a deadband worsens the inflation in baseline. In the theorem
below, we provide an upper bound for the inflation in baseline
when the penalty function has a deadband. The upper bound
explicitly proves that the baseline inflation can worsen with
the introduction of a deadband. But this trade off has to be
made to guarantee individual rationality.

Theorem 4. Let the consumer’s utility u be a quadratic
function such that

∀(q, θ) :
∂u2(q, θ)

∂q2
= −1/d.

The penalty function φ is defined in (22), where d and λ are
positive scalars. Let max{qmax−Eθqa(θ),Eθq

a(θ)−qmin} ≤
ε, where qa(θ) ∈ [qmin, qmax], then the expected inflation of
the baseline report is bounded by

Eθδf
∗(p) = f∗ − Eqa(θ) ≤ (d+ λ)

pπ2

(1− p)
+ ε, (23)

and the mechanism is individually rational.

Proof. Refer Appendix.

IV. SO’S COST

The SO’s overall cost includes four terms: the cost to pur-
chase power from the wholesale market, the payment for DR
services, the retail energy payments and the recruitment cost.
We ignore the recruitment cost for the initial analysis here.
This allows us to mathematically derive an order approximate
expression, with respect to p, for the resultant cost. Using this
we show that p can be used as a lever to control SO’s cost as
well. This allows the SO to achieve an almost optimal cost in
this case by choosing a very small value for p.

We then discuss the case where the recruitment cost is
non-trivial. Here, we show that p is restricted as a lever for
controlling SO’s cost. This is because the recruitment costs
becomes unbounded as p → 0. However, we show, for a
typical DR scenario, that the SO’s cost is decreasing with p
up to a certain threshold value. This threshold value is small
enough that the cost can be significantly reduced by choosing
this threshold as the selection probability. This suggests that
the SO can still reduce its cost to significantly lower levels for
typical DR scenarios.

A. Without Recruitment Cost

Let Q denote the net energy purchased from wholesale
market, Π(Q) the wholesale market’s price, ∆Q̃ the measured
net load reduction provided by the called DR resources, and
π0 the retail energy price. Then, the SO’s overall cost, ignoring
the recruitment cost, is given by

JSO = Π(Q)Q+ Π(Q)∆Q̃− π0Q. (24)

Let Q0 denote the overall load had the DR resources not
been called to reduce load and ∆Q the true net reduction
provided by the called DR resources, then Q0 = Q+∆Q and
the SO’s cost can also be written as follows,

JSO = (Π(Q0 −∆Q)− π0)(Q0 −∆Q)+

Π(Q0 −∆Q)(∆Q+ ∆Q̃−∆Q), (25)

where ∆Q̃ − ∆Q corresponds to the inflation in net load
reduction estimate, which arises from the inflation in baseline
estimates of the recruited DR providers.

From Theorem 3, it follows that the inflation ∆Q̃−∆Q is
O(p) where p is the probability of calling a consumer, which is
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a design variable of the DR mechanism. Hence, in this case,
min∆Q,p=0 JSO = J∗SO, i.e., the SO’s optimal cost can be
achieved by driving the probability to zero. And so the optimal
reduction ∆Q∗ = arg min∆Q,p=0 JSO. From the convexity of
JSO, when p is zero, it follows that ∆Q∗ satisfies the first
order condition,

∆Q∗ = Q0 −Π′−1(π0/Q0). (26)

The market price corresponding to Q0 −∆Q∗ is exactly the
TMC price π∗ because Q0 − ∆Q∗ is the optimal reduction.
Consequently, ∆Q∗ satisfies

π∗ = Π(Q0 −∆Q∗). (27)

The SO recruits n = 1/p sets of consumers such that each
set can provide ∆Q∗ of load reduction when called for a DR
event. Hence, the cost for the SO (25) when a particular set
is called during a DR event is given by

JSO = (Π(Q0 −∆Q∗)− π0)(Q0 −∆Q∗)+

Π(Q0 −∆Q∗)(∆Q∗ + ∆Q̃−∆Q∗). (28)

Using definition of J∗SO,

JSO = J∗SO + Π(Q0 −∆Q∗)(∆Q̃−∆Q∗). (29)

Substituting for baseline inflation from Theorem 3,

JSO = J∗SO + Π(Q0 −∆Q∗)

(
N̄ d̄

pπ2

1− p

)
, (30)

where N̄ is the number of consumers in the set and d̄ is the
average rate of diminishment of the marginal utility across the
recruited consumers in the set, which is an unknown. The SO
chooses the reward rate as π2 = π∗, and therefore

JSO = J∗SO + (π∗)2

(
N̄ d̄

p

1− p

)
= J∗SO +O(p). (31)

Note that with the inclusion of deadband to ensure individ-
ual rationality, the SO’s cost becomes,

JSO = J∗SO + (π∗)2

(
N̄ d̄

p

1− p

)
+π∗N̄ε = J∗SO +O(p+ ε).

(32)
Thus, for this case, the SO’s cost is O(p) and O(ε) optimal
and the SO’s cost JSO approaches J∗SO when both p and ε
approach zero. This result suggests that the SO can achieve
an almost optimal cost in this case by choosing a very small
value for p.

B. With Recruitment Cost

Denote the recruitment cost per customer by πrec. Let NT
be the total number of consumers recruited. Then NT is given
by

NT =

n∑
i=1

N̄i,

where n = 1/p is the number of groups and N̄i is the number
of consumers in group i. Including the total recruitment cost,
which scales with NT , SO’s overall cost is given by

JSO = Π(Q) ·Q+ Π(Q) ·∆Q̃− π0 ·Q+ πrec ·NT . (33)

Note that, in this case, the optimal cost for SO J∗SO 6=
min∆Q,p=0 JSO. The reason is that the last term grows un-
boundedly as p → 0. This also suggests that, in this case, an
almost optimal cost cannot be achieved by choosing p to be
very small. This is illustrated in the example below.

We provide a simple example here to illustrate how the
SO’s cost varies with p when the recruited consumers provide
∆Q∗ reduction and when the recruitment cost is non-trivial.
In the example we consider here, c = 5 × 102 $/MWh,
π0 = $120/MWh, Q0 = 8000 MWh. We consider two
different values for d, i.e., d = 0.1, d = 0.01. The values
of d are derived from demand reduction provided by typical
customers assuming the payment to be $100/ MWh. The two
d values correspond to large industrial customers and commer-
cial places like retail stores etc. respectively [37]. We assume
that the supply ranges from 5000 MWh to 8000 MWh. Using
the representative supply curve from [38] we approximate the
inverse supply curve for this range by Π(Q) = aQ + bQ2

where a = −0.0415 in $/MWh and b = 8.3 × 10−6 in
$/MWh2. For this supply curve and Q0 = 8000 MWh,
π∗ ∼ $100/MWh and ∆Q∗ ∼ 1200 MWh. The reward
payment of $100/MWh and the aggregate load reduction of
1200 MWh are typical of DR programs spanning the region
covered by a SO [39].

The first two plots of Figure 3 provides the variation of
SO’s cost with respect to p when the recruitment cost is
πrec = $2/Customer for different values of d and the bottom
row plot of Figure 3 provides the variation of SO’s cost
when the recruitment cost πrec = $10/Customer. The former
recruitment cost, i.e. πrec = 2, is based on typical service
costs charged per customer on a monthly basis to recover
the metering implementation and maintenance cost [40]. In
our case, we consider the worst-case scenario where the SO
bears this cost instead of passing it on to the DR participants.
Note that the approximation of the SO’s cost by ignoring
recruitment cost, as in the previous section, is a reasonable
approximation of the SO’s cost up to a certain threshold
probability. This threshold probability is as low as 0.1 and
0.2 for the cases d = 0.1 and d = 0.01 respectively. These d
values and other parameter values are typical values as stated
before. Hence we expect that, in a typical scenario such as
this, a SO can still reduce its cost significantly by setting the
calling probability equal to this threshold value.

V. SELF-REPORTED BASELINE VS. OTHER BASELINE
ESTIMATION METHODS

Here, we shall use the CAISO m/m method [9] for our
comparative study. We emphasize here that a similar analysis
applies to other estimation methods like control group meth-
ods. In CAISO’s m/m method, the SO computes the average
consumption of the most recent m similar but non-event days
and uses this average-based estimate as the baseline. Hence,
the baseline estimate is a moving average of the consumption
profile of the consumers. Typically this average-based estimate
from past consumption data is corrected by an adjustment
factor to account for any variation in the consumption pattern
from the past. This adjustment factor is common to all baseline
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Fig. 3. SO cost vs p when load reduction is ∆Q∗ during a DR event. Top:
πrec = $2/Customer, bottom:πrec = $10/Customer.

estimation methods and is highly recommended. As we shall
see this factor is the primary cause for the existence of adverse
incentives to inflate baseline. Hence, the analysis to follow
equally applies to all current baseline methods that use an
adjustment factor, which includes the control group methods.

As discussed before, the individual optimal consumption
decision depends on whether the consumer is signaled or not
for reduction on a particular day. Also the baseline estimate
used for the payments depends on the consumption in the
days prior to the DR event. So the payments made during
future DR events can influence the consumer to inflate their
consumption during a non-event day. On a particular day,
the consumer’s benefit depends on whether the consumer is
signaled or not. As explained in Section III-A, if the consumer
is participating in the DR program and is signaled to reduce,
its total cost is Jc(q, f, θ) given by (13) where f is the baseline
estimate obtained by the CAISO m/m method. However, if
the consumer is not signaled, its cost is Ja(q, θ) (see equation
7). Unlike the incentive-based DR program with self-reported
baseline, the CAISO program does not impose a penalty, and
the consumer’s cost is the same as if it were not participating
in the DR program, when it is not called.

Let TN denote the set of most recent m similar but non-
event days, and let f c denote the baseline calculated in
CAISO’s m/m model. Then,

f c =
1

m

∑
τ∈TN

qτ , (34)

where {qτ : τ ∈ TN} is the set of consumption for the
near past m similar non-event days. The baseline estimation
f c is multiplied by an adjustment factor Cf to account for
any variation in the consumption pattern. Hence, the CAISO
baseline with adjustment factor is given by

f̄ c = f cCf ,

where f c was defined in (34). Let q denote the consumption on
the current DR event day, and q− the consumption on the day

before. Let TE be the set of days before the days in the set TN ,
and define f− = 1

m

∑
τ∈TE q

−
τ as the average consumption of

the days in the set TE . The correction factor for the current
DR day is then computed as

Cf =
q−

f−
. (35)

Typically, the consumers are signaled a day ahead of the
DR event. So, the reward during the DR event on the cur-
rent day can influence the consumer to inflate its day-ahead
consumption q−. The day-ahead consumption is obtained by
minimizing the joint cost of the current DR day and the day
before with respect to q−, as these are the only two terms in
the overall cost of the consumer that q− can influence. The
joint cost for the two days is given by Ja(q−, θ) + Jc(q, θ),
where

Ja(q−, θ) = π0q
− − u(q−, θ),

Jc(q, f̄ c, θ) = π0q − u(q, θ)− π2(f̄ c − q).

Here, for illustration purposes, we have assumed identical
utility functions and retail price for both the days. The analysis
can be trivially extended to the general case where they are
not identical. The term π2(f̄ c − q) is the payment that the
consumer receives for reducing consumption and the value of
θ is realized when the consumption decision is made.

By definition it follows that the optimal consumption q−∗

on the day before the current DR event day is given by

q−∗(θ, f̄ c) = arg min
q−

(Ja(q−) + Jc(q, f̄ c)). (36)

From the first order optimality condition it follows that q−∗

should satisfy

π0 − µ(q−, θ)− π2
∂f̄ c(q−)

∂q−
= 0. (37)

On the DR event day, f c and f− are constants. This implies,

∂f̄ c(q−)

∂q−
=

f c

f−
. (38)

Hence, the optimal consumption on the day before the current
DR event day is

q−∗(θ) = µ−1

(
π0 − π2

f c

f−
, θ

)
. (39)

Using this result, we provide a lower bound for the expected
value of baseline inflation in the CAISO m/m method with
adjustment factor, when the utility function is quadratic, in
the following lemma.

Lemma 3. Let the consumer’s utility u be a quadratic function
such that ∀(q, θ) : ∂u2(q,θ)

∂q2 = −1/d where d is a positive
scalar, then the baseline report f̄ c satisfies

Eθ(f̄
c − qa(θ)) > dπ2. (40)

Proof. Refer Appendix.

In the proposed DR mechanism, the expected baseline infla-
tion with quadratic utility and penalty function was obtained in
Theorem 4. From the discussion in the previous two sections,
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it follows that λ and p can be used as levers to control
baseline. Hence by choosing λ and p to be sufficiently small
and provided ε is not comparable to dπ2, which is the case
when π2 ∼ O(π0), we get that

Eθ(f
∗ − qa(θ))� dπ2 < Eθ(f̄

c − qa(θ)). (41)

Thus, in the self-reported approach, we can ensure that
the inflation in baseline per consumer is significantly smaller
compared to conventional baseline estimation methods, such
as CAISO’s m/m method, that uses an adjustment factor.

VI. CONCLUSION

We proposed a mechanism for incentive-based DR pro-
grams where the only information that is elicited from each
consumer is a self-report of its baseline consumption. The
mechanism entails a calling probability for each consumer and
a penalty when the consumer is not called. The mechanism
provides the required service reliably by selecting a certain
set of consumers during every DR event. We showed that the
probability of calling and the penalty can be used to control
the baseline inflation. We also justified that the mechanism’s
cost can be significantly reduced by deploying DR resources.
Finally, we showed that the self-reported baseline estimates a
better baseline estimate than conventional methods such as the
CAISO’s m/m method.
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APPENDIX

A. Proof of Lemma 1

In order to prove the second statement, we note that
Jb(f, q, θ) is the sum of two convex functions U1(q) =
π0q−u(q, θ) and U2(f, q) = φ(f−q). The minimizer of U1 is
qa(θ) and the minimizer of U2 is q = f . Then the minimizer
of Jb = U1 + U2 necessarily lies between the minimizers of
U1 and U2 which implies that qb(f, θ) lies between qa(θ) and
f . The first statement follows from (15), (9) and the properties
of the consumer’s utility that is monotone increasing.

B. Proof of Lemma 2

We start by showing that 0 ≤ α(f, θ) < 1, where α

is the cost sensitivity defined as α(f, θ) = dqb(f,θ)
df . The

optimal consumption qb(f, θ) satisfies (11). Holding θ fixed
and differentiating (11) further we get,(

φ′′(f − q)− ∂2u(q, θ)

∂q2

)
dqb(f, θ)

df
− φ′′(f − q) = 0.

Convexity of φ and strict convexity of−u implies the existence
of dqb

df and is given by

α(f, θ) =

(
φ′′(f − qb)− ∂2u(qb, θ)

∂q2

)−1

φ′′(f − qb),

and satisfies 0 ≤ α < 1. Next, we differentiate H(f) twice to
show that H ′′(f) > 0. Differentiating H(f) we get

H ′(f) = (1− p)Eθ
dJb(f, qb, θ)

df
+ pEθ

dJc(f, qc, θ)

df

= (1− p)Eθφ′(f − qb)− pπ2.

Differentiating once again, we get

H ′′(f) = (1− p)Eθ (1− α(f, θ))φ′′(f − qb).

Before we showed that (1− α(f, θ)) > 0. Then, it follows that
H(f) is (strictly) convex if and only if φ is (strictly) convex.

C. Proof of Theorem 1

The optimal forecast f∗ satisfies the first order condition:

H ′(f) = (1− p)Eθ
dJb(f, qb, θ)

df
+ pEθ

dJc(f, qc, θ)

df
= 0.

The sensitivity of optimal cost Jb(f, qb, θ) with respect to f
is given by

dJb(f, qb, θ)

df
= π0α(f, θ)− ∂u(qb, θ)

∂q
α(f, θ)

− φ′(f − qb)(α(f, θ)− 1),

where α(f, θ) = dqb(f,θ)
df . Then, taking into account that

qb(f, θ) satisfies (11), we get

dJb(f, qb, θ)

df
= φ′(f − qb). (42)

The sensitivity of optimal cost Jc(f, qc, θ) with respect to f
is given by

dJc(f, qc, θ)

df
= π0β(θ)− ∂u(qc, θ)

∂q
β(θ)− π2(1− β(θ)),

where β(θ) = dqc(θ)
df . As before, qc(θ) satisfies (14) and we

get

dJc(f, qc, θ)

df
= −π2 = π0 −

∂u(qc, θ)

∂q
. (43)

From equations (42) and (43), we obtain

Eθφ
′(f∗ − qb(f∗, θ)) =

pπ2

1− p
. (44)

The optimality condition follows from equations (11) and (14)
because

π0 = (1− p)Eθ
∂u(qb, θ)

∂q
+ pEθ

∂u(qc, θ)

∂q
. (45)

The right hand side in (45) is the expected marginal utility
which implies that π0 = M(f∗). Since φ was selected to
be convex, from Lemma 2, f∗ is a global minimizer of
H(f). Moreover, if φ is a strictly convex function, again from
Lemma 2, f∗ is unique.

D. Proof of Theorem 2

From equation (44), we have

Eθφ
′(f∗ − qb(f∗, θ)) = Eθ1/λ(f∗ − qb(f∗, θ)) =

pπ2

1− p
.

This implies,

lim
p→0

f∗ − Eθqb = lim
p→0

Eθδf̃
∗(θ) = 0.

From the optimality condition for qb(f∗, θ) (11) and when
∂u2(q,θ)
∂q2 = −1/d,

qb(f∗, θ) = qa(θ) + d/λ(f∗ − qb(f∗, θ)).

Taking expectations on both sides we get

lim
p→0

Eqb(f∗, θ) = Eqa(θ).

That is,

lim
p→0

f∗ − Eθqa = lim
p→0

Eθδf
∗(θ) = 0.

E. Proof of Theorem 3

The consumptions qa(θ) and qc(θ) have the expressions:

qa(θ) = µ−1(π0, θ),

qc(θ) = µ−1(π0 + π2, θ).

Also from (45), we get

π0 = (1− p)Eθ
∂u(qb, θ)

∂q
+ pEθ

∂u(qc, θ)

∂q

= (1− p)Eθ
∂u(qb, θ)

∂q
+ p(π0 + π2).
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This implies,

Eθµ(qb(θ), θ) = π0 −
p

1− p
π2.

Since the utility function u is quadratic in q, the marginal
utility µ = u′ is affine in q. Moreover, since µ′ is independent
of the random variable θ, it holds

Eθµ−1(Eθµ(q(θ), θ), θ) = Eθq(θ),

and substituting qb(θ) in the previous expression, we obtain

Eθqb(θ) = Eθµ−1

(
π0 −

p

1− p
π2, θ

)
.

The consumer’s utility u and the penalty φ are quadratic
functions, then their derivatives u′ and φ′ are affine and their
inverse functions are also affine. Moreover, the derivative of
the inverse functions satisfy:

∂k

∂xk
µ−1(x) =

{
d, if k = 1,
0, if k > 1.

dk

dxk
φ′−1(x) =

{
λ, if k = 1,
0, if k > 1.

Then, the expressions of µ−1
(
π0 − pπ2

1−p , θ
)

and

φ′−1
(
pπ2

1−p

)
become

µ−1

(
π0 −

pπ2

1− p
, θ

)
= µ−1(π0, θ) + d

pπ2

1− p
= qa(θ) + d

pπ2

1− p
,

and

φ′−1

(
pπ2

1− p

)
= λ

pπ2

1− p
.

Using (44), we get

f∗ = Eθqb(θ) + φ′−1

(
p

1− p
π2

)
. (46)

By taking expectations,

Eθqb(θ) = Eθqa(θ) + d
pπ2

1− p
. (47)

and by substitution in (46), we obtain

f∗ = Eθq
a(θ) + (d+ λ)

pπ2

1− p
.

F. Proof of Theorem 4

Define a family of penalty functions with deadband as
follows:

φ∆(x) =


0, if |x| < ε−∆,
(|x|+ ∆− ε)3/(6λ∆), if ε−∆ ≤ |x| ≤ ε,
∆2/(6λ) + (|x| − ε)∆/(2λ)
+(|x| − ε)2/(2λ), if |x| > ε,

for 0 ≤ ∆ < ε. Note that φ∆ is continuous with continuous
derivatives up to second order for 0 < ∆ < ε, and it ap-
proaches the penalty function φ given by (22) as ∆ approaches
zero, i.e. φ = lim∆→0+ φ∆.

The derivative of φ∆ is:

φ′∆(x) =

 0, if 0 ≤ x < ε−∆,
(x+ ∆− ε)2/(2λ∆), if ε−∆ ≤ x ≤ ε,
∆/(2λ) + (x− ε)/λ, if x > ε.

for x ≥ 0 and φ′∆(x) = −φ′∆(−x) for x ≤ 0, which is
invertible for any x 6= 0.

From the fact that this penalty function is double differ-
entiable, the optimality conditions established before hold for
this specific case as well. We do a case based analysis.

Case f∗ ≥ Eθq
a(θ) + ε: From Lemma 1 we have that

f∗ ≥ qb(f∗, θ) ∀θ. Then using (44), the convexity of φ′ for
x ≥ 0, that f∗ ≥ qb(f∗, θ) ∀θ and Jensen’s inequality, we get

φ′(Ef∗ − qb(f∗, θ)) ≤ Eθφ′(f∗ − qb(f∗, θ)) =
pπ2

1− p
.

It is always possible to choose ∆ such that

0 <
∆

2λ
<

pπ2

1− p
.

For this value of ∆, φ′∆(x) is always restricted to x > ε.
Since φ′∆ is affine and invertible, we get

φ′−1
∆

(
pπ2

1− p

)
= λ

pπ2

1− p
− ∆

2
+ ε.

Since E(f∗ − qb(f∗, θ)) ≥ 0, the fact that φ′ is increasing
for x ≥ 0 and from the previous equation it follows that

f∗ ≤ Eθqb(θ) + φ′−1
∆

(
p

1− p
π2

)
,

and substituting the value of Eθqb(θ) given by (47), we obtain

f∗ ≤ Eθqa(θ) + (d+ λ)
pπ2

1− p
− ∆

2
+ ε.

Hence, the result for the penalty function with deadband φ
defined in (22) is obtained by taking limit when ∆ approaches
zero,

f∗ ≤ Eθqa(θ) + (d+ λ)
pπ2

1− p
+ ε.

Case f∗ < Eθqa(θ) + ε: By this case it follows that

f∗ ≤ Eθqa(θ) + (d+ λ)
pπ2

1− p
+ ε.

Individual Rationality: For an ε such that max{qmax −
Eθq

a(θ),Eθq
a(θ) − qmin} ≤ ε, the report f = Eθq

a(θ)
is individually rational. Thus the optimal baseline report f∗

should be individually rational. Hence proved.

G. Proof of Lemma 3

We start by showing that f c > f−. Recall that f− is the
average of consumption on the days prior to the previous m
non-event days. The consumption on these days only appear in
the denominator of the CAISO’s baseline estimate for future
DR events. Hence, the incentive for the consumer is to reduce
the consumption on these days so as to inflate the baseline. On
the other hand, f c is the average of the consumption on the
previous m non-event days. And the consumption on these
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days only appear in the numerator of the baseline estimate
for any future DR events, through the term f c. Hence, the
incentive for the consumer is to increase the consumption on
these days. Since everything else is the same for the day prior
to the non-event day and the non-event day except for this
incentive to reduce and increase, respectively, we conclude
that f c > f−. This implies:

q−∗(θ) > µ−1(π0 − π2, θ).

Hence,

f̄ c − qa(θ) > µ−1(π0 − π2, θ)− µ−1(π0, θ)

= dπ2.

Taking expectation with respect to θ we obtain

Eθ(f̄
c − qa(θ)) > dπ2,

and this completes the proof.


