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Abstract— Frequency regulation is crucial for balancing the
supply and demand of modern electricity grids. To provide
regulation services, it is important to understand the capability
of flexible resources to track regulation signals. This paper
studies the problem of submitting capacity bids to a forward
regulation market based on historical regulation signals. We
consider an aggregator who manages a group of flexible
resources with linear dynamic constraints. He seeks to find
the optimal capacity bid, so that real-time regulation signals
can be followed with an arbitrary guaranteed probability.
We formulate this problem as a chance-constrained program
with unknown regulation signal distributions. A sampling and
discarding algorithm is proposed. It provably provides near-
optimal solutions at a guaranteed probability of success without
knowing the distribution of the regulation signals. This result
holds for resources with arbitrary linear dynamics and allows
arbitrary intra-hour data correlations. We validate the proposed
algorithm with real data via numerical simulations. Two cases
are studied: (1) CAISO market, where providers separately
submit capacity estimates for regulation up and regulation
down signals, (2) PJM market, where regulation up and down
capacities are the same. Simulation results show that the
proposed algorithm provides near-optimal capacity estimates
for both cases.

I. INTRODUCTION

Increasing penetration of renewable energy poses significant
challenges for balancing supply and demand in modern
power grids. Among various ancillary services, the most
valuable balancing operation is frequency regulation [1],
where service providers adjust their power consumption to
counteract the second-to-second variation of power imbal-
ances. Frequency regulation is procured in a forward market.
Each service provider submits a capacity in a day-ahead or
hour-ahead market, and receives regulation signals within
this capacity range in real-time.

How does a regulation service provider decide the capacity
size in the forward regulation market? The optimal capacity
size depends on the cost of operating the flexible resources,
their dynamic constraints, and the statistics of regulation
signals. The challenges of capacity bidding arise from several
aspects. First, the service provider faces a trade-off among
operational costs, regulation revenue and market risks. The
cost models and risk attitudes are distinct for different
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market participants, and market rules change very often
[2]. Second, the resource constraints are diverse. Generators
have ramping constraints, batteries have capacity constraints,
and aggregated thermostatically controlled loads have time-
varying constraints that depend on external temperature and
occupancy level. Capturing all aspects of these dynamic con-
straints is hard. Third, the statistics of regulation signals are
unknown. The regulation signals have very strong correlation
in a short time window (a couple of seconds), and very weak
correlation in a longer horizon (one hour). Since resources
have dynamic constraints, intra-hour correlation of regulation
signals is important. However, this is challenging to capture
due to the large dimension of signals and the unknown
stochasticity that drives the system-wide imbalances.

A. Related Work

One way to address the capacity bidding problem is via
robust optimization [3]. This approach pursues the optimal
decision for the worst-case scenarios in the future. They typ-
ically assume the randomness is bounded in predetermined
intervals, and look for the capacity bids that accommodate
the worst case scenario within this bound [4], [5], [6],
[7]. However, since the worst scenario rarely happens in
practice, the robust approach often leads to over-conservative
solutions. This is particularly undesirable for resources with
high operational costs [8].

Another strand of work provides more aggressive capacity
estimates by allowing the violation of regulation contract. In
[9] and [10], the authors formulated a chance-constrained
program for the PEV aggregator to submit capacity bids
in a forward market. A scenario approach was adopted
in [11], where finite samples are drawn to approximate
the chance constraint. This work mainly focuses on hourly
dynamic constraints, neglecting the intra-hour correlations of
regulation signals. In [12], the authors formulated a Markov
decision problem for electric vehicles to optimize the capac-
ity bids. The integrated regulation signals are modeled as a
Markov random process. A similar model was proposed in
[13], where the regulation signals are represented by hourly
aggregate parameters. However, these models critically de-
pend on the fact that only instantaneous and cumulative
regulation signals matter, and this is largely due to the special
structure of battery dynamics. For more general cases (e.g.,
batteries with depreciation factor, generators, etc), the hourly
aggregate parameters can not fully capture the statistics of
regulation signals for capacity bidding. As an alternative,
[8] proposed an optimal bidding policy that maximizes the
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market profit of batteries without modeling the regulation
signals. The result of this paper still depends on the structure
of battery models, which is hard to generalize.

B. Our Contribution

This paper studies the problem of submitting capacity bids
to a forward regulation market based on historical regulation
data. We consider an aggregator who manages a group of
flexible resources with dynamic constraints. He seeks to find
the maximum regulation capacity, so that real-time regulation
signals can be followed with an arbitrary guaranteed proba-
bility. The major contributions of this paper are summarized
as follows:

• We formulate the problem as a chance-constrained pro-
gram. An efficient sampling and discarding algorithm
is proposed. It provably provides near-optimal solutions
that address the trade-off between regulation payments
and market risks at a guaranteed probability of success.
The proposed method is completely model-free: we do
not need any model for the regulation signal. The result
holds for arbitrary resources with linearly constrained
dynamics and allows arbitrary intra-hour correlations
of regulation signals.

• We address some practical concerns for implementing
the sampling and discarding algorithm. We show that
enough data is available to run the proposed algorithm.
We also propose an efficient algorithm that improves
the optimality loss by accurately approximating optimal
constraint removal.

• We validate the proposed algorithm with real data
via numerical simulations. Two cases are studied: (1)
CAISO market, where providers separately submit ca-
pacity estimates for regulation up and regulation down
signals, (2) PJM market, where regulation up and down
capacities are the same. Simulation results show that
the proposed algorithm provides near-optimal capacity
estimates for both cases.

The remainder of this paper proceeds as follows. The ca-
pacity problem is formulated in Section II, followed by the
main results presented in Section III and Section IV. Section
V presents the numerical studies to validate the proposed
approach. Last, concluding remarks and future directions are
given in Section VI.

II. CAPACITY BIDDING PROBLEM

Consider an aggregator who manages a group of flexible
resources to provide frequency regulation service. The re-
sources are diverse and have dynamic constraints, such as
energy storage, generators, aggregation of responsive loads
[14], etc. At time t0, the aggregator submits a capacity bid
to the regulation market. During the delivery window [0, T ],
the system operator sends back regulation signals within

Time t

submit capacity

t = t0

dispatch resources

delivery window
t ∈ [0, T ]

• • •

Fig. 1. Timeline of the capacity bididng problem.

the capacity range. After receiving the regulation signal, the
aggregator dispatches its resources to collectively track the
regulation signal. Regulation markets are typically operated
on an hourly basis: each delivery window is one hour, and the
capacity is constant throughout this hour. As capacity bidding
for consecutive hours is not strongly coupled, we focus on
a single delivery window (hour) throughout the paper. The
timeline of the problem is illustrated in Figure 1.

A. Modeling Signals and Resources

Divide the delivery window [0, T ] into T contiguous periods.
At each period t, the system operator sends out a regulation
signal et ∈ [−1, 1] to all market participants. Upon receiving
the signal, each provider multiplies et by the respective
capacity1, and is obligated to track this power trajectory. Let
e = (e1, . . . eT ) denote the signal trajectory for the hour.
Assume that e ∈ ∆, with ∆ ⊂ RT , and let P be a probability
measure on ∆. We assume measure P is unknown.

Consider a group of N flexible resources with linear con-
straints. These constraints define a set of feasible energy
outputs throughout the horizon. Let sti be the net energy
output of resource i with respect to a reference output at time
t. Note hat sti can be either positive or negative. For flexible
resources that only consume energy (e.g., demand response)
or produce energy (e.g., generator), sti is the difference
between the energy output and the nominal reference point.
Let si = (s1

i , . . . , s
T
i ) be the energy output trajectory in the

horizon T . We assume that si takes values in the set Si,
which satisfies the following assumption:

Assumption 1: Si is a bounded and convex polytope in RT ,
and 0 ∈ Si for all i = 1, . . . , N .

The condition 0 ∈ Si trivially holds if the resources simply
follow the reference power trajectory. This polytope model
captures a rich variety of flexible resources. It includes
any resource with linear dynamic constraints. Meanwhile, it
can also capture resources with time-varying dynamic con-
straints. For instance, the flexibility of commercial buildings
is different from hour to hour due to change in occupancy
level and outside temperature. This is significantly different
from a vast number of works, which focus on batteries [5],
[8], [15].

1In CAISO market, the regulation signal is multiplied by regulation up
capacity if et > 0, and regulation down capacity if et < 0
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B. Problem Statement

Regulation markets do not require all participants to exactly
follow the regulation signals. For instance, PJM market
maintains a performance score for all market participants
[16]. Each participant is qualified as long as its service
performance is scored above 75%. At the end of the
day, market participants are compensated by a pay-for-
performance scheme: they receive higher payments for better
performance. This provides the opportunity to bid capacities
aggressively. In this paper, we seek the optimal capacity bid-
ding strategy that maximizes overall revenue of the service
provider. The solution shall address the trade-offs between
regulation payments and the risk of being disqualified.

To formulate this problem, we define α ∈ Rd as the capacity
bid of the service provider (aggregator). Note that α is not
necessarily a scalar. For instance, in CAISO market, each
participant submits separate capacity bids for regulation up
signals and down signals. This leads to a vector capacity
bid, i.e., d = 2. In contrast, the PJM market requires
resources to be symmetric: the regulation up capacity equals
the regulation down capacity. In this case, the capacity bid
is a scalar, i.e., d = 1. For notation convenience, we define
L : Rd×RT → RT as a mapping L(α, e) from α and e to the
power trajectory to be followed by the aggregator. In the PJM
case, L(α, e) = αe, whereas in the CAISO case, the positive
signals are multiplied by α(1) and the negative signals are
multiplied by α(2), i.e., L(α, e) = α(1)e+ + α(2)e−.

Assume that π ∈ Rd is the per-unit capacity price for
regulation services. We cast the capacity bidding problem
as follows:

max
α

π · α (1)

{
P{L(α, e) ∈ S1 ⊕ S2 ⊕ · · · ⊕ SN} ≥ 1− ε, (2a)
0 ≤ α ≤ ᾱ, (2b)

where π · α denotes the inner product of π and α, ᾱ is
sufficiently large upper bound on α to guarantee existence
of a finite solution, and ⊕ represents the Minkowski sum of
sets, i.e., A⊕B = {a+ b|a ∈ A, b ∈ B}. This is a chance-
constrained program. The chance constraint (2a) dictates that
under capacity α, the aggregator can cover the regulation
signals with probability of greater than 1− ε.

Remark 1: The capacity bidding problem (1) is parametrized
by ε. When ε is bigger, service reliability is worse, and
regulation capacity bid is more aggressive. Therefore, the
reliability parameter ε essentially captures the trade off
between regulation payment and market risks. In this paper,
we only consider the case where the aggregator has already
come up with a target reliability ε. Our end product will be an
algorithmic procedure that determines the optimal capacity
for any ε in the practical regime of interest.

III. RANDOMIZED SOLUTION

For notation convenience, let us define Xe as a set of capacity
bids that cover the signal e:

Xe = {α ∈ Rd|L(α, e) ∈ S1 ⊕ · · · ⊕ SN}.

Xe is a set parameterized by e. Since Si is convex and
L(α, e) is linear in α, we can easily verify that Xe is closed
and convex for any e ∈ RT . Under this notation, the capacity
bidding problem (1) can be reformulated as:

J∗ε = max
α≤ᾱ

π · α (3)

s.t. P{α ∈ Xe} ≥ 1− ε,

where J∗ε is the optimal value of (3).

In general, finding a solution carrying an arbitrary probability
of constraint satisfaction is a non-trivial task, especially when
the probability measure P is unknown. In this paper, we
consider a randomized solution that uses historical data to
provide an accurate approximation of the optimal solution
to (3). We divide historical regulation signals into vectors
corresponding to contiguous hours, i.e., em ∈ RT , where
m = 1, 2, . . . corresponds to each hour. Assume that em is
independently drawn from P:

Assumption 2: Assume that the data e1, e2, . . . are indepen-
dently drawn from the same distribution P.

Since each data em is a vector in RT , i.e., em =
(e1
m, . . . , e

T
m), we shall emphasize that Assumption 2 only

imposes i.i.d. assumptions between random vectors ei and
ej , but does not impose any conditions on intra-vector cor-
relations. In fact, we allow arbitrary intra-hour correlations
between regulation signals et1m and et2m. This is distinct from
many model-based approaches in the literature.

Remark 2: We impose the i.i.d. assumption to establish
theoretical guarantees for the performance of our proposed
approach. However, actual regulation signals are not neces-
sarily i.i.d. We will show that our approach performs well on
real data, thus justifying the use of our approach in (possibly)
non-i.i.d. cases.

From the regulation data, we randomly select M samples,
e1, . . . , eM , and solve the following program that simultane-
ously enforces the M sampled constraints:

max
α≤ᾱ

π · α (4)

s.t. α ∈ Xem , ∀m ∈M.

where M = {1, . . . ,M}. A distinct feature of (4) is that it
has finite number of linear constraints. When the number
of M is not too large, it can be efficiently solved as a
linear program [17]. On the other hand, a natural question is
whether the solution to (4), denoted as α∗M, respects the
feasibility constraint of (3). In other words, whether the
proportion of constraints that is violated by α∗M is greater
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than 1 − ε under the probability measure P. We define the
notion of violation probability as follows:

Definition 1: The violation probability of a given α ∈ Rd is
defined as V (α) = P{e ∈ ∆ : α /∈ Xe}.

The feasibility constraint of (3) requires that V (α∗M) ≤ ε. To
this end, we can solve the scenario program (4) that satisfies
the M sampled constraints, hoping that a vast majority of
unseen constraints automatically take care of themselves.
Intuitively, the more samples we draw, the smaller violation
probability we have. This indicates that a desired violation
probability can be obtained by controlling the size of sam-
ples.

Papers [18] and [19] pioneered a feasibility theory that
provides a sample complexity upper bound to guarantee any
violation probability ε. In [19], the authors show that the
violation probability of α∗M satisfies the following condition:

PM{V (α∗M) ≥ ε} ≤
(
M

d

)
(1− ε)M−d (5)

where PM is the product measure on the space ∆×· · ·×∆.
It also shows that this upper bound is tight for all fully-
supported problems (see definition in [19]). However, when
the problem is not fully-supported, this bound may be over-
conservative: the actual violation probability of the random-
ized solution is lower than desired, leading to small capacity
estimates. Unfortunately, this is the case for the capacity
bidding problem: using real data from PJM market, we find
that the optimality loss of this approach can be greater than
50% compared to the optimal solution to (3).

Rooted in this optimality loss is the fact that the sample
complexity bound (5) guarantees feasibility (chance con-
straint) but ignores optimality (objective value). This reveals
a fundamental trade-off between feasibility and optimality:
more samples provide a better feasibility guarantee, but lead
to a higher optimality loss. One way to address this trade-
off is sampling and discarding: we first generate M samples
in ∆, then select k out of M samples to be discarded, and
solve the scenario program (4) with the remaining M − k
samples. The optimal value of (4) will be improved due
to constraint removal, and feasibility can be maintained if
M − k is large. Clearly, this method works best if the
constraints are optimally removed: discarded constraints lead
to the best improvement in the cost objective among all
possible eliminations of k samples out of M . For notation
convenience, denote A as the set of all subsets of M with
cardinality k, i.e., A = {A|A ⊆M, |A| = k}, then optimal
removal can be defined as follows:

Definition 2: Given M samples e1, . . . , eM , Aopt ∈ A is an
optimal removal if it is the optimal solution to the following
subset selection problem:

max
A,α

π · α (6)

s.t. α ∈ Xei , ∀i ∈M\A,A ∈ A

Remark 3: In general, optimal removal (6) is a non-trival
combinatorial problem. The computational burden of (6) can
be prohibitive with large numbers of M and k. One way to
address this is a greedy algorithm that removes constraints
sequentially, which however, is still impractical for medium-
sized problems. In this paper, we will develop an alternative
algorithm that provides efficient and accurate approximation
for the capacity bidding problem in Section IV.

The proposed sampling and discarding algorithm is summa-
rized in Algorithm 1. When constraint removal is optimal, we
refer to it as the optimal sampling and discarding algorithm.

Algorithm 1 The optimal sampling and discarding algorihtm
Initialization: Number of samples M and number of dis-

cards k.
1: Randomly draw M samples independently from the

distribution P.
2: Remove k samples out of M by solving the optimal

removal problem (6) and obtain Aopt.
3: Solve the following scenario program with the remaining
M − k constraints:

max
α≤ᾱ

π · α (7)

s.t. α ∈ Xei , ∀i ∈M\Aopt.

Output: The optimal solution α∗.

Intuitively, Algorithm 1 can guarantee feasibility by tuning
M (and potentially k), and improves optimality loss by
tuning k. When constraint removal is handled optimally, the
algorithm can provide near optimal solutions to the chance-
constrained problem (3):

Theorem 1: Let β ∈ (0, 1) be a small confidence parameter
and v ∈ (0, ε) be a performance degradation parameter. If
M and k are such that:(

k + d− 1

k

) k+d−1∑
i=0

φ(ε, i) +

M∑
i=k+1

φ(ε− v, i) ≤ β. (8)

With probability at least 1− β, the solution to Algorithm 1
simultaneously satisfies:
(i): V (α∗) ≤ ε
(ii): π · α∗ ≥ J∗ε−v ,
where φ(ε, i) =

(
M
i

)
εi(1 − ε)M−i, and J∗ε−v is the optimal

value to the perturbed problem:

J∗ε−v = max
α

π · α (9)

s.t. P{α ∈ Xe} ≥ 1− ε+ v.

Furthermore, result (i) holds even if constraint removal is not
optimal.

The proof of Theorem 1 can be found in [20]. Result (i) is
a feasibility result, and it is important to note that it holds
regardless of whether constraint removal is optimal or not.
Result (ii) states that the performance of the optimal sam-
pling and discarding is no worse than that of the perturbed
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problem (9), where v is the degradation margin. Clearly, v is
not a direct measure for the optimality loss, However, when
the optimal value of (9) is Lipschitz continuous with respect
to v, the degradation margin can be used to control optimality
loss. The result of Theorem 1 is very general: it holds for
any d and any convex sets Xei . It is further proved that for
any β and v < ε, M and k always exist to satisfy (8), and
can be found in a principled manner [20].

IV. IMPLEMENTING RANDOMIZED SOLUTION IN
CAPACITY BIDDING

This section addresses some practical concerns for im-
plementing the sampling and discarding algorithm in the
capacity bidding problem. Since historical data on regulation
signals is limited [16], and the optimal removal is generally
intractable, we will look into the following questions:
Is there enough data for Algorithm 1 to provide good
guarantee for reliability?
How to approximately implement optimal removal?

A. Data Adequacy

This section investigates the data adequacy problem. In
order to implement Algorithm 1, we need at least M data
points from the past. More data is needed to evaluate the
performance of Algorithm 1. This is because we further need
to separate the data set into training data and testing data.

PJM regulation market provides historical regulation signals
for the year of 2017 [16]. The data is recorded every 2
seconds, and normalized between −1 and +1. It indicates
the imbalance of the overall system between the supply and
demand. Since each year has 8760 hours, we have up to
8760 samples. To implement Algorithm 1 with these data,
we shall make sure that for β, v and ε in the practical
regime of interest, the minimum number of samples needed
for condition (8) does not exceed 8760.

To verify data adequacy, we let β = 0.01, and v = 0.05.
For d = 1 and d = 2, we draw the minimum number of
samples and discards under different target reliability 1− ε.
The result is shown in Figure 2. It is clear that 8760 data is
enough for our problem.
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Fig. 2. The number of samples and discards.

Remark 4: In Figure 2, the number of samples first decreases
and then increases. The increase is because v has to be
smaller than ε, so we decrease v as ε is smaller than 0.05.
However, the decrease of sample complexity in Figure 2 is
counter-intuitive: within certain range, to achieve a higher
reliability, the algorithm needs less samples. This is because
reliability is not the only criteria. When 1 − ε is small,
the algorithm has to discard more samples to bound the
performance degradation. In order to remove an extra sample
without affecting feasibility, the algorithm may have to draw
more than one extra sample points.

B. Optimal Constraint Removal

Optimal constraint removal involves a subset selection prob-
lem (6). This is an NP hard combinatorial problem. In this
subsection, we discuss (approximate) solutions to (6) for
PJM market and CAISO market separately.

1) PJM Market: In the context of PJM market, the exact
solution to the optimal removal problem (6) can be easily
solved. This is due to the following proposition:

Proposition 1: When d = 1, α ∈ Xei if and only if α ≤ α∗i ,
where α∗i satisfies:

α∗i = max
α≤ᾱ

α (10)

s.t. α ∈ Xei .

Proposition 1 simply follows from the fact that the
Minkowski sum of Si is convex, and 0 is contained in all
the set Si. It indicates that the scenario program (4) can be
transformed to the following form:

max
0≤α≤ᾱ

α

s.t. α ≤ α∗i , ∀i ∈M.

This can be solved by computing α∗i for each ei individually,
and choose the smallest α∗i among all i ∈ M. It further
implies that the subset selection problem (6) can be solved
by computing α∗i for all i ∈ M and discarding k samples
with the smallest αi, which only involves computing α∗i and
sorting the vector (α∗1, . . . , α

∗
M ).

2) CAISO Market: In CAISO market, each provider submits
separate capacity estimates for regulation up and down
signals, i.e., d = 2. Due to the combinatorial nature of
the optimal removal problem, we can not derive the opti-
mal solution to (6) within reasonable computation time. To
approximate the solution to (6), one way is to recursively
and optimally eliminate groups of p constants (p � k) at
a time. When p = 1, this reduces to a greedy algorithm.
In greedy algorithms, the scenario program is solved MK
times. This is rather challenging given the size of M and
k. Another choice is to progressively update the solution by
eliminating all the active constraints at the currently reached
solution. This approach requires light computation, but we
find that its optimality loss can be more than 15%.
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In this paper, we propose Algorithm 2 to approximate the
solution to (6). It is motivated by the active-set method
in convex optimization [21], where we remove samples
one by one, and at each time, we choose the sample that
corresponds the “most” binding constraints. In our algorithm,
the “most” binding sample ei is measured by the infinity
norm of Lagrange multiplier λi associated with the inequality
constraints of this sample. Formally, λi is defined as the
Lagrange multiplier for (12b) (note that based on [17], (11)-
(12) is equivalent to (6)). To implement Algorithm 2, we
roughly need to run the scenario program (11) for k times.
This is much faster than greedy algorithms.

Algorithm 2 Heuristics for optimal constraint removal
Initialization: M samples and number of discards k.
1: while Cardinality of A is less than k do
2: Solve the scenario program to obtain λi:

max
α,{V i

n}i,n
π · α (11) L(α, ei) =

N∑
n=1

V in, ∀i ∈M\A, (12a)

V in ∈ Si, ∀i ∈M\A,∀n ∈ N . (12b)

3: Find sample i∗ that contributes the most binding
constraint, i.e., ||λi∗ ||∞ ≥ ||λi||∞ for ∀i ∈M \A.

4: Update the set of discarded samples, A = {A, i∗}.
5: end while

Output: The set of removed samples A.

V. CASE STUDIES

This section validates the proposed sampling and discarding
algorithm for the capacity bidding problem with real data.
We consider both PJM and CAISO regulation markets and
show that the proposed algorithm attains satisfying perfor-
mance in both cases.

A. Simulation Setup

Consider an aggregator with N batteries. Each battery is
fully described by the following parameters: capacity con-
straint Ci, maximum charging rate constraint ci, maximum
discharging rate constraint di, and initial state of change s0

i .
Given this, resource model Si is a polytope, and each si ∈ Si
satisfies the following constraints:{

−di ≤ sti ≤ ci, ∀i, t.
−Cis0

i ≤
∑t
k=1 s

t
i ≤ Ci − Cis0

i , ∀i, t.
(13)

To setup realistic battery parameters, we take the Nissan Leaf
EV as an example. The battery of Nissan Leaf has a capacity
of 40kWh. A Level 3 charger can provide 80% capacity
within 30 minutes [22], so the maximum charging rate is
roughly 1kWh/Min. Typically the maximum discharging rate
for battery is greater than the charging rate, so we set it

to be around 1.5kWh/Min. After these base parameters are
set, we randomly generate the parameters of N batteries
according to a uniform distribution in ±25% neighborhood
of the base value. The initial state of charge is uniformly
generated between 20%− 80%.

To evaluate the performance of the proposed algorithm, we
set N = 5 and T = 12. This corresponds to a regulation
signal every 5 minutes. We emphasize that the proposed
algorithm only involves linear programs, and scales polyno-
mially with respect to N and T (even including T = 1800:
one signal every 2 seconds). We choose these parameters
to be small, as for evaluating the proposed approach, we
have to run Algorithm 1 many times to validate the chance-
constraint feasibility and obtain the average optimality loss.
In addition, we also need to compute the empirical optimal
solution as the benchmark, which is rather computationally
intensive for large values of N and T . When Algorithm 1
is applied in practice, it only runs once for each delivery
hour, and there is no need to compute the empirical optimal
solution. Therefore, the proposed algorithm is still tractable
when N and T scale up to much a larger size.

We use regulation signal data from PJM for year 2017 [16].
The signal is normalized between −1 and 1, and recorded
at a 2 second resolution. Since T = 12, we pick the signal
at the beginning of each 5 minute interval, and obtain 8760
signal trajectories. Throughout this section, we set β = 0.01,
v = 0.05, and ε varies from 0.01 to 0.3. Since v < ε, when
ε ≤ 0.05, we scale down v accordingly.

B. PJM Regulation Market

To test the sampling and discarding approach, we run Al-
gorithm 1 in the context of PJM market with the previously
specified data. In this case, d = 1 and optimal removal can
be efficiently realized via the method described in Section
IV-B.1. The numerical simulation focuses on feasibility and
optimality: we will validate the violation probability of the
solution to Algorithm 1, and compute its optimlality loss
compared to the empirical optimal solution.

We compute the violation probability of the solution to
Algorithm 1 in the following manner: at each hour τ of
the year 2017, we run Algorithm 1 by randomly sampling
data points from the past, and discarding samples optimally.
For any given ε, the number of samples and discards are
selected according to Figure 2. We denote the outcome of
this algorithm as α∗τ , and test whether the signal for time
τ + 1 is contained in this capacity range, i.e., whether
α∗τeτ+1 ∈ S1 ⊕ · · · ⊕ SN or not. Next, roll the horizon
one step forward. Repeat this procedure for τ + 1, and then
do the same for τ + 2, τ + 3, . . .. We use the proportion of
time instance at which capacity estimates covers the next
signal as an indicator of service reliability 1 − ε. Figure 3
shows the empirical reliability as a function of the anticipated
reliability. The curve of empirical reliability is slightly above
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Fig. 3. The empirical service reliability of the
capacity estimates for PJM market.
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Fig. 4. The capacity bids by the proposed
algorithm and brute-force empirical approach for
PJM market.
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Fig. 5. The percentage optimality loss of the
proposed algorithm for PJM market.
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Fig. 6. The empirical service reliability of the
capacity estimates for CAISO market.
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Fig. 7. The capacity bids by the proposed
algorithm and brute-force empirical approach for
CAISO market.
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Fig. 8. The percentage optimality loss of the
proposed algorithm for CAISO market.

the 45◦ line, indicating that the capacity estimate meets the
feasibility requirement.

To obtain the optimality loss, we compare the optimal value
of Algorithm 1 with that of (3). Since solution to Algorithm 1
is random, we use the mean of πα∗τ to represent its optimal
value. As the probability measure P is unknown, we compute
the empirical solution to (3) as the benchmark. In particular,
we discretize the space of α, and for each α in the space,
we empirically compute the violation probability of α by
testing whether αei ∈ S1 ⊕ · · · ⊕ SN for all signals, i.e.,
i = 1, . . . , 8760. This leads to a monotonically decreasing
curve for service reliability as a function of α. Based on this
curve, one can find the capacity estimates for any service
reliability. Figure 4 show the capacity bids for the proposed
algorithm and the empirical optimal solution as a function of
1−ε. Clearly, the proposed method closely approximates the
optimal solution. According to Figure 5, the sampling and
discarding algorithm has at most 1.5% error as compared to
the empirical optimal solution.

C. CAISO Regulation Market

In CAISO regulation market, each participant submits sepa-
rate capacity bids for regulation up and down signals. In this
paper, we use PJM regulation data to evaluate the algorithm
performance in the CAISO market. This can be done by
applying a simple transformation of data: if the regulation
signal is positive, each agent multiplies the signal by the

regulation up capacity. Otherwise, the signal is multiplied
by the regulation down capacity.

When d = 2, the optimal constraint removal is not tractable.
Therefore, we test the feasibility and optimality of Algorithm
1 by a heuristic approximation of optimal constraint removal
(Algorithm 2). We let the regulation up price and down price
to be the same and unitless, i.e., π(1) = π(2) = 1.

To reduce computation time, we compute the violation prob-
ability and optimality loss in the following manner: first, we
randomly draw some samples from the entire historical data.
The number of samples and discards is selected according
to Figure 2. Second, we discard samples by running the
heuristic approximation in Algorithm 2. The outcome of this
procedure provides an optimal solution α∗. Third, repeat
this entire process multiple times. With multiple draws of
α∗, we compute their average and denote the mean value
as ᾱ∗. Fourth, evaluate the empirical violation probability
by testing whether L(ᾱ∗, ei) ∈ S1 ⊕ · · · ⊕ SN is true
for all signals, i.e., i = 1, . . . , 8760. Last, compare the
optimal value π · ᾱ∗ with the empirical optimal value, which
is derived by discretizing the space of α and empirically
evaluating the violation probability over all data. Figure 6
shows the empirical service reliability as compared to the
anticipated reliability. It indicates that the capacity estimate
of the proposed algorithm meets the feasibility requirement.
Figure 7 show the capacity bids for the proposed algorithm
and the empirical optimal solution. The optimality loss is
between 6%− 13% (see Figure 8).
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Remark 5: For d = 1, we evaluate the feasibility of Algo-
rithm 1 by repeatedly evaluating the solution for thousands
of times. This is tractable mainly because we only need to
solve (10) once, and then obtain each α∗τ by simply sorting
α∗i . However, this is not possible as the result in Section IV-
B.1 is no longer true for d = 2. Therefore, we evaluate the
performance of CAISO market in a slightly different way,
which requires less computation.

Remark 6: Computing the empirical optimal solution for
(3) is rather challenging when d ≥ 2. This computational
burden can be slightly mitigated if we have a good es-
timate of the optimal solution and only search the space
within a small neighborhood around the estimated value.
When computational resource permits, the best heuristics
for solving (3) is to combine Algorithm 1 and the brute-
force search: we run Algorithm 1 as a warm-up, which
provides an accountable estimation of the optimal solution,
then we search within 10% of its neighborhood by computing
the empirical violation probability. We emphasize that this
approach cannot be realized without the proposed algorithm
providing an initial guess, and the brute-force search does
not scale for d greater than 2. In contrast, the proposed
sampling and discarding algorithm has great potential in
higher dimensions.

VI. CONCLUSION

This paper studies capacity bidding problem for providing
frequency regulation services. The service provider estimates
the capacity of his resources in advance, so that the real-
time regulation signals can be covered with a guaranteed
probability. As the regulation signal has an unknown dis-
tribution, we proposed a constraint sampling and discarding
algorithm, which draws random samples from historical data,
and optimally removes samples to maximize the regulation
revenue. We show that the algorithm can obtain reliable
solutions with bounded optimality loss. We also address the
practical concerns for implementation of the algorithm in
the capacity bidding problem, including data adequacy and
optimal constraint removal. The algorithm is validated with
real data. Numerical simulations show that it has promising
performance. In future work, we will extend the proposed
framework to the energy reserve procurement [17], where
the dimension of the problem can be much larger.
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