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Weakly Coupled Constrained Markov Decision Processes in Borel Spaces
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Abstract— Consider a multi-agent stochastic control problem
where the agents have decoupled system dynamics. Each agent
has an associated cost function and a constraint function.
The agents want to find a control strategy which minimizes
their long term average cumulative cost function while keeping
the long term average cumulative constraint function below a
certain threshold. This problem is referred to as weakly coupled
constrained Markov decision process (MDP). In this paper, we
consider the problem of weakly coupled constrained MDP with
Borel state and action spaces. We use the linear programming
(LP) based approach of [1] to derive an occupation measure
based LP to find the optimal decentralized control strategies
for our problem. We show that randomized stationary policies
are optimal for each agent under some assumptions on the
transition kernels, cost and the constraint functions. We further
consider the special case of multi-agent Linear Quadratic
Gaussian (LQG) systems and show that the optimal control
strategy could be obtained by solving a semi-definite program
(SDP). We illustrate our results through numerical experiments.

I. INTRODUCTION

Consider a multi-agent system with N agents that have
decoupled dynamics, i.e, each agent’s state evolution depends
only on its own actions. Each agent has an associated cost
function and a constraint function that depend on its local
state and local action. The agents are coupled because the
time-average of the total constraint function (summed over
all agents and all times) must be kept below a thresh-
old. Such multi-agent problems are referred to as Weakly
coupled constrained Markov decision process (MDP) ([2],
[3]). Weakly coupled MDP have been used as a model
for online advertising [2], multi-server data center control
[3], robotics [4] etc. In this paper, we study such problems
with Borel state and action spaces. Our approach builds on
the occupation measure based approaches for single agent
constrained MDPs with Borel spaces [1].

For single-agent/centralized systems, constrained Markov
decision process (CMDP) is a popular model for sequential
decision making problems with constraints. The goal of
the agent is to minimize its long term expected cost while
keeping the constraint functions below a threshold. One
approach to solve such single agent problems is based on
the idea of occupation measures. These are joint measures
on the state and action spaces that can be used to quantify
the time-averaged cost and constraint values [1], [5-7]. Using
such measures, the strategy design problem can be written as
a linear program whose solution gives the optimal occupation
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measure. Linear programming (LP) based formulation are
presented in [5], [6] for CMDPs with finite/countable state
and action spaces. The idea of LP was extended for CMDPs
with Borel state and action spaces in [1], [7], [8].

Weakly coupled MDP with finite state and action spaces
have been studied in the literature. A resource allocation
problem for multiple task completion was modeled as a
weakly coupled MDP in [9]. Each individual task was
modeled as an MDP with instantaneous resource constraints
on control strategy. [2] considered the problem of budget al-
location across independent MDPs. Optimal value functions
are derived as a function of the available budget and the
allocation problem is posed as multi-item, multiple choice
knapsack problem for which a greedy algorithm is presented
to determine budget allocation. A distributed online learning
based algorithm was proposed for weakly coupled MDPs in
[3] where the system dynamics were assumed to be unknown.

In this paper, we consider the problem of weakly cou-
pled constrained MDP with Borel state and action spaces.
We use the linear programming based approach of [1] to
derive an occupation measure based LP to find the optimal
decentralized control strategies for our problem. Our main
contributions could be summarized as follows:

1) We formulate a LP to show that randomized station-
ary strategies are optimal for each agent under some
assumptions on the transition kernels, cost and the
constraint functions.

2) We consider the special case of multi-agent Linear
Quadratic Gaussian (LQG) systems and show that the
optimal control strategy could be obtained by solving a
semi-definite program (SDP).

Finally, we also present some numerical experiments for

a toy problem on multi-agent LQG. The following is the
outline of the paper: We will start with problem formulation
in section II and present the LP to solve the general Borel
case in section III. We consider the multi-agent LQG case
in section IV, provide numerical results in section V and
conclude in section VI.

Notation

Random variables are denoted by upper case letters and
their realizations by corresponding small letters. X,.;, de-
notes the collection (X, X411, -+, Xp). Boldface letter X
is used to denote the collection (X!, X?2). E[] is the ex-
pectation of a random variable. For a collection of functions
g and a probability distribution f, we use Ef[] to denote
that the expectation depends on the choice of functions in
g and the distribution f. For any Borel space S, let B(S)
denote the set of all Borel sets of S. A = B means that
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(A — B) is positive semi-definite. N'(m,Y) denotes the
Gaussian distribution with mean m and covariance .

II. PROBLEM FORMULATION

Consider a two-agent dynamical system with state process
X; = (X}, X}?),t > 0. X} € X' is the state-component
associated with agent ¢ for i € {1,2}. The distribution of
the initial state X} is denoted by v*. X}, X2 are independent
and let v denotes the pair (v, 1?). At time ¢, agent i takes
a control action U} € U* and the states of the two agents
evolve in a decoupled manner according to the following
stochastic kernel:

X ~ Q' (X, Uy, )
X ~ Q°(1X7, U7). 2)
Information and Strategies

Each agent can observe its component of the state perfectly
at each time. Agents do not share any information with each
other. Hence, the information available to agent i at time
tis I} = {X{,, Ui, 1}. Agent i maps its information to
its corresponding action using a randomized strategy 7} as
follows,

Uy ~m(|T).
where 7i(+|Z}) is a probability distribution on the control
space U* of agent ;. We allow for randomized strategies be-
cause we are considering a control problem with constraints
[5]. The collection 7" = {7} };>0 denotes the control strategy

of agent i and the pair 7 = (7!, 72) is referred to as the joint
control strategy of the agents.

Cost and Constraints

Agent i incurs an instantaneous cost ¢!(X},U}) at each
time ¢. In addition, agent ¢ also has an associated constraint
cost function d*(X},U}) at time t. The long-term average
cost function and constraint function under a joint strategy
pair 7 and initial distribution pair v is defined as:

J(m, V)—hmbupTIE” Z thaUt)+c(Xt2aUt)

T— 00
3)
1 T—1 1
K(m,v) =limsup —E7 | > d'(X},U}) + d*(X?,U7)
T— o0 T =0 |
“4)

The objective of the agents is to jointly minimize their
long term average cost (3) while keeping the joint long
term average constraint function (4) below a threshold k.
We formally state the problem below.

Problem 1. Find a joint control strategy m and initial
distribution v for the agents which minimizes the cost J (7, v)

Assumption 1. Problem 1 is feasible i.e. there exists a pair
(m,v) such that K(mw,v) <k and J(m,v) < co.

Remark 1. Constrained problems which consider long term
average cost and a fixed initial distribution have been studied
for single agent systems in [3], [5], [6], [10]. These problems
are referred to as “ergodic” problems in the literature.
Problems which require the joint design of initial distribution
and control strategy (as in Problem 1) are referred to as
“minimum pair” problems. Such constrained problems have
been considered in [1], [11-14] for centralized (single-
agent) systems.

A. Discussion

Problem 1 is an instance of constrained team decision
problem with additive cost and constraint function. In the
absence of the constraint (5), this problem can be decom-
posed into two single agent (centralized) decision problems,
the solution to which can be obtained using Markov decision
theory [15]. However, constraint (5) couples the decision
making of the two agents. This is because the choice of
control strategy for agent 2 can affect the choice of control
strategy for agent 1 since (5) has to be satisfied jointly
by the two agents. This coupling makes this problem non-
trivial. Such problems are also referred to as weakly coupled
Markov decision problems ([2], [3]) since the coupling
among the agents is only due to the constraint (5).

The framework we discuss in this paper can be used to
model problems where the agents are working as a team
to achieve a common goal encoded by the constraint (5)
while trying to minimize their cumulative individual costs.
We give a few examples which can be posed as an instance
of Problem 1.

1) Resource constrained problems: Consider a problem
where the agents are sharing resources (e.g. control re-
sources, energy resources) with each other. The goal of the
agents is to minimize their total costs with a constraint on the
resource utilization. Problems of such type can be modeled
using the framework of Problem 1 where d'(X},U;) and
¢ (X}, U}) is the resource consumption and the cost respec-
tively for agent ¢. For example, consider a smart building
with two air conditioning systems which are maintaining
temperatures of two different rooms while sharing a common
power supply. The state X} denotes the temperature of room
i while U} denotes the amount of power consumed by air
conditioner ¢. Suppose the temperature of room ¢ evolves
as follows: X, , = A'X] + B'U} + W[, where W} is
random noise. The objective of the agents is to minimize the
deviation of the room temperature around a nominal value
while keeping the total power consumed below a certain
threshold i.e.

2
subject to the constraint K (m,v) <k, ie., min lim sup — 1 ~ET Z Z IXi— X |2

T—o0 t=0 i=1

. T-1 2

fJ(m, ,
v (m,v) subject to limsup E” Z ZHU}Hz <k
subject to K(m,v) <k (5) T=o0 t=0 i=1
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2) Remote estimation: Consider an estimation problem
with multiple estimators. Estimator ¢ wants to form an
estimate X ! of a corresponding Markov source X/ at each
time ¢. The sources are being observed by a shared sensor.
In order to compute the estimate, estimator ¢ can request the
sensor to transmit X/ at time ¢ using the decision variable
Al € {0,1}. A% =1 indicates that estimator i has requested
an observation. Due to limited power supply, the sensor can
handle a limited number of observation requests on average.
The objective of the agents is to minimize the cumulative
estimation error such that the average cumulative number
of requested observations is below a certain threshold. This
problem can be easily modeled using the framework of
Problem 1 with X} as the state and (X}, A?) as the action
of agent .

3) Mean-field constraint: Consider a two-agent problem
where the state space X* = {0, 1}. Each agent has a control
cost given by c¢*(U}). The agents goal is to minimize the
time-averaged cost while keeping the time-averaged fraction
of agents in state 1 below a threshold, i.e.,

L=
lim sup ElZQZH Xl—ll k
t=0 =1

T—o0

III. OPTIMAL STRATEGIES

We are going to restrict our attention to the case when
the state space and the control space X U* are Borel
spaces ' (e.g. Euclidean space). Single agent constrained
Markov decision process in Borel spaces can be solved using
infinite dimensional linear programming approach [1]. In this
approach an optimal occupation measure (joint probability
measure) of the state and control is computed using a
linear program. The optimal pair of control strategy and an
initial distribution is obtained using the optimal occupation
measure.

Building on the single-agent solution, we will provide an
infinite dimensional LP which will characterize the solution
to our multi-agent problem described in Problem 1. To do
so, we will need the following definitions.

Definition 1.
1) Let wi(z*,u?) :=
inf,i g wi(a?, ub).
2) Let FY (X' x U*) be the vector space of measurable
functions from X x U to R with finite w' norm. That
is, ft € FY (X' xUY) if

1 + c(2t,u’) and 0'(z?) =

£, )]

——
e wiah )

sup
(z,u?)EXT X

3) Let M' (X" x U") be the vector space of positive

measures on X i x U with finite w' variations. That
is, pt € MIL(X" x UY) if

/ w'(z', u )y’ (dz’, du') < oo.
Xixui

A Borel space is a Borel subset of complete and separable metric space

4) Define the bilinear form (f*, u') for f* € FH(X* xU?),
pte MI(X' x UY) as follows:

(ffou'y = /X? y it u) (dmi,dui)

Let p' € M’ (X" x U") be a probability measure on the
joint state and action space. Note that any distribution p* €
M (X" x U) can be decomposed in terms of its marginal
on A and a conditional distribution over the control space
¢*(-|x?) such that
p(B',CY) = [ ¢'(C'la")p (da'),VB' € B(X
o ©

where p'(B",C") denotes the measure of the rectangle
Bix C%and i*(B?) := p'(B*,U") for all B* € B(X?) is the
marginal of ;¢ on X!, We will write the measure p’ = - ¢*
when the corresponding decomposition is as in (6).

We can now describe the linear program that characterizes
the optimal control strategies. Let u' € MY (X' x U') and
p? € M3(X%xU?). Consider the following linear program:

LP-1: min (p!, ) + (42, ¢?)
ut,u?

subject to: (p',d') + (u%,d%) < k 7

WU = [ QB (e ),
Xt xU?

Vi, B € B(X") 8)

pHXLUY) =1, 0t € MU (X xUY) ©)

LP-1 is an infinite dimensional linear program whose
solution consists of a probability measure on the state and
action space for each agent. Theorem 1 characterizes the
solution to Problem 1 in terms of the solution to the LP-1
under the following assumption

Assumption 2.
1) ¢ (z,u?) is non-negative and inf-compact, d*(x*,u') is
non-negative and lower semi continuous Vi.
2) The transition kernel Q' is weakly continuous Vi.
3) die P’(Xi xU'), Vi
4) [0 (y)Q (dy'|-) € FH(X' x UY), Vi

Assumptlon 2 ensures that there exists a solution to LP-1.
Similar assumption has been made in the analysis of single
agent constrained MDP (see [1]). We are now ready to state
our main result.

Theorem 1. Under Assumption 1 and 2 there exists u*, 12
that achieve the optimal value of LP-1. Let pi = ji* - ¢%,i €
{1,2} be the decomposition of u! into the marginal and
conditional distribution as in (6). Then, an optimal control
strategy for agent i in Problem I is a randomized stationary
strategy ¢’ (-|x*) and the optimal initial distribution is i’ (-).
Moreover; the optimal cost achieved under (¢}, $?) when the
initial state distribution is (fiL, 02) is (ul,c') + (u?,c?).

Proof outline. The proof follows by considering a central-
ized problem where a single agent knows the entire state and
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action history and takes both actions. The optimal cost of the
centralized problem serves as a lower bound for Problem 1.
We then establish that this lower bound is achieved under the
control strategy and initial distribution described in Theorem
1. Note that Theorem 1 implies that each agent’s optimal
strategy is a stationary Markov strategy since the distribution
of U} depends only on X}. O

Remark 2. The results obtained in this section hold true
when the state space X' and action space U' are finite.
In this case, the infinite dimensional linear program LP-1
simplifies to the following finite dimensional linear program:

2
min 3 3 pa' o' )
wulip

=1 $i7ui

2
subject to Z Z ph(zt uh)d' (o u') < k

i=1 gi i

D it uh) =) QU u (vt ut) Vi,

yhul
Z pi(atu’) =1 and pi(z',u') >0 Vi, u’
xtul
Using Theorem 1, the optimal control strategy is the condi-
tional distribution of the action obtained from i, as follows:

gbi(uﬂa:’) = [Li(S?Z,Ul,Z)V
Zm P, uz)
In the finite case, it can be established that the optimal
cost is independent of the initial state distribution. Moreover,
the optimal control strategy is given by (10) for any initial
state distribution. Similar observations were made in [3].

(10)

Remark 3. Consider the case when the system has N > 2
agents under the same assumptions. In addition, the agents
have to satisfy multiple constraints of the form in (5). The
results obtained in this section can be easily generalized to
handle this case. We can write down the LP-1 in which each
agent has an associated measure 11 and add a constraint in
the linear program of the form in (7) corresponding to each
Jjoint constraint of the form in (5).

Theorem 1 applies to arbitrary dynamics, cost and con-
straint functions as described in (1)-(4). When the dynamics
and cost are specialized, the infinite dimensional linear
program may be reducible to more tractable optimization
problems. We demonstrate this for the linear quadratic sys-
tems in the next section.

IV. CONSTRAINED LINEAR QUADRATIC SYSTEMS

In this section, we consider an instance of Problem 1 when
the system dynamics are linear, cost and constraint function
have a quadratic form and the disturbances are Gaussian. We
refer to such systems as the constrained Linear Quadratic

where W/ ~ N(0,1), U} € R™ and A*, B* are matri-
ces of appropriate dimensions. The instantaneous cost and
constraint function are given as follows:

(X} U = (X)) QXj + (U)) RU;, - (12)
dU(X}, U = (X)) MIXE+ (U N'OE - a3)

where Q°, M*, R*, N* are symmetric positive definite ma-
trices for ¢ € {1,2}. This problem can be seen as a special
case of Problem 1 where the state and action spaces are Borel
spaces since X* = R™ ({* = R™i, It can be verified easily
that Assumption 2 holds true for this problem and hence
we can obtain the optimal control strategy by solving the
LP-1 and using Theorem 1. For that purpose, we define the
following moments associated with a measure p? on X' xU*,

m;:/ xui(dx7ui),zi$=/ wx'p (da, U°)

R™: R™:

mi:/ u;/(Xi,du),Efwz/ w1t (X7 du)
R™; R™q

I :/ xu' ' (dz, du)
R™i xR™i

The next theorem shows that in the case of LQG sys-
tems the infinite dimensional linear program (LP-1) can be
reduced to a finite dimensional semi-definite program (SDP).

Theorem 2. Consider the following SDP:

2
i Tr(Q'SL,) + Tr(R'S]
i Izr;lilnzq‘, Z T(Q 1730) + 7"( uu)

' uu'Tru ;__
i=1

LOG-SDP :

2
subject to :ZTT(MiZiz) +Tr(N'S )<k (14)
i=1
Sa = A'S5(A) + A'SL, (B
+ B'Y(AY) + B'E,,(B) + 1
15)

(Cew) T
Suppose XL* Nix % s the solution of the LQG-SDP.
Then, the Gaussian measure on X' X U' with mean 0
and second moments X1% Yb* S0* s optimal for LP-1.
Moreover, the optimal control strategy for agent i is a
Gaussian stationary randomized policy given as:

QLU X)) ~ N (mi\z» Eiu)

E

a7

where mi, = TiH(SE)TIX and T, = i -
RN TINb for i € {1,2}. Also, the corresponding
optimal initial distribution V¢ for agent i is N'(0,X5%).

Proof. We will first show that it is sufficient to consider

Gaussian measures for LP-1. Consider a measure u’ on
X' x U* with means m’,m!, and second moment matrix

Gaussian (LQG) multi-agent systems. [(;m)/ ;:’;Lvu] Now, observe that,
The state X; € R™ of agent 7 evolves according to the wu wud o o
following linear dynamics: (u',c') =Tr(Q'E,,) + Tr(R'S,,),
Xi, = A'X] + BUU} + W (11) (u',d')y =Tr(M'S5,) + Tr(N'EL,).
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Suppose (X%, U?) ~ p' and let X' = A'X? + BU" +
W' be the next state. Then, (8) encodes the constraint that
distribution of X% and X’ should be the same. Let 1% be
a feasible measure for LP-1 which satisfies (8). This means
that the first and the second moment of X and X should
match when (X U?) ~ i, ie.,

ml = A'ml + B'm!, (18)
S = A'E5,(AY) + AT, (BY) + B'E, (A"
+ B (BY +1 (19)

Now, consider a Gaussian measure u; which has the same
1%t and 2"¢ moments as p’. If (X* U?) ~ ,ug are jointly
Gaussian then X? = A'X" + B'U" + W' is also Gaussian
with mean and covariance given by the right hand side of
(18) and (19) above. Thus, X?, X* are both Gaussian with
same mean and covariance since (18),(19) holds true for the
moments of 4. Hence, 1 satisfies (8). Also, (ug,c’) =
(W' ') and (ug,d') = (u',d') as p',py have the same
second moments. Thus, for any feasible ' there exists a
feasible Gaussian measure uf] which achieves the same value
of the linear program. Hence, it is sufficient to consider
the class of Gaussian measures in LP-1. Since a Gaussian
measure can be characterized only by the first and the second
moments, we can reduce LP-1 to the SDP presented in the
lemma by setting m‘, = m!, = 0 without loss of generality.

Finally, using theorem 1 and the fact that optimal p’
is Gaussian, it can be easily shown using that the optimal
control strategy is Gaussian with mean m/’ Equ as defined

) u|x?
in the lemma. O

Based on the optimal randomized strategy in Theorem 2
(see (17)), one can write the optimal action of agent i as
follows:

Uit = KX+ V],
where K| := X33 (355) " and Vi ~ N(0,% ). Note
that agent ¢ is using its local state in a linear fashion.

As noted earlier, in the absence of the constraint (5), Prob-
lem 1 would decompose into two single agent unconstrained
LQG control problem. This would imply that the optimal
unconstrained controller for each agent is also a linear
function of its local state. However, the gain matrix in the
unconstrained problem may be different from that obtained in
Theorem 2. Also, the optimal constrained controller obtained
via Theorem 2 has a noise term V' in contrast with the
deterministic linear controller in the unconstrained case.
In the next lemma, we show that the agents can in fact
ignore the control noise and use a deterministic linear control
strategy.

Lemma 1. Let i be the following deterministic stationary
linear controller:

gL(X]) =B X (20)

where Z;;, 0% are obtained from the SDP in Theorem 2.

Then, g is an optimal control strategy for agent 1.

Proof Outline. 1t can be shown, using an induction argu-
ment, that the expected instantaneous cost and constraint
under the optimal policy ¢, = (¢L,¢?) from theorem 2
is lower bounded by the expected instantaneous cost and
constraint under g, = (g!,¢2) when the initial distribu-
tion is .. That is, EZ" [c(Xy, Up)] > EZ- [e(Xy, Uy)] and
]Eﬁ [d(Xy, Uy)] > EF” [d(Xy, Uy)] for all time ¢. Therefore,
the average cost and constraint function achieved under the
pair (gx, fi.) is not more than the average cost and constraint
function achieved under the pair (¢., ji.). Hence, g is also
an optimal control strategy for agent 4. O

So far we assumed that the noise in the system dynamics
W was Gaussian. The following extends our results to non-
Gaussian noise.

Lemma 2. Suppose the system dynamics are as in (11) and
the noise W} is non-Gaussian with mean 0 and covariance
matrix 1. The results of Theorem 2 and Lemma 1 hold true
for this case.

Proof Outline. Tt can be shown that LQG-SDP is a relaxation
of LP-1 when the system dynamics are as in (11) with non-
Gaussian noise and the cost, constraint function have the
quadratic form in (12),(13). Therefore, the optimal value of
this SDP is a lower bound for the optimal value of LP-1.
We can further show that this lower bound is achieved if the
agents follow the control strategy g’ as described in Lemma
1. Therefore, g’ is optimal in the non-Gaussian case as well.

O

V. NUMERICAL EXPERIMENTS

In this section, we will present numerical experiments for
a multi-agent LQ problem with constraints. Consider a two
agent system where X; € R? and U; € R? for i = 1,2. The
system dynamics is characterized by the following matrices:

o2 o 301
S (T £
A? = A B2 = BL.

The cost matrices are given as follows:

o[ He- [ 2
@ =[ot o] =3 1]

The constraint matrices are set to the following:
M= [(1):; 0().?5: = {8::1; ?:ﬂ ’

e [ 12 e o1 01

Let J(t) = 3020 iy (X1) Q'XI + (UD) R'UI be
the running average cost and similarly K (¢) be the running
average constraint function. We will compare these running
averages under the optimal constrained controller obtained
from the SDP in Theorem 2 with the optimal unconstrained
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Fig. 1: Trajectory of the running average cost
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Fig. 2: Trajectory of the running average constraint function

controllers for each agent. The optimal unconstrained con-
trollers can be obtained by solving the discrete Riccati
equation for each agent [16].

Figure 1 shows the average cost J(¢) as a function of time
for the optimal constrained controller (referred to as SDP
controller in the figure) and the optimal unconstrained con-
troller. It can be seen that the optimal constrained controller
performs worse than the optimal unconstrained controller
in terms of the achieved average cost. Figure 2 shows
the average constraint K (t) as a function of time for the
optimal constrained and unconstrained controller when the
constraint threshold is set to & = 7.6. It can be observed
that the controller obtained via the SDP is able to satisfy the
constraint threshold while the unconstrained controller could
not. Thus, the optimal constrained controller is able to meet
the constraint at the expense of higher cost compared to the
optimal unconstrained controller.

VI. CONCLUSION

We considered the problem of weakly coupled constrained
MDP with Borel state and action spaces. We showed that
randomized stationary policies are optimal for each agent

under some assumptions on the transition kernels, cost and
the constraint functions. Our approach was to consider a
centralized problem where a single agent knows the entire
state and action history and takes both the actions. We solve
the centralized problem using the occupation measure based
LP of [1] and established that the obtained solution is optimal
for our original problem. Further, we considered the case of
multi-agent LQG and showed that the infinite dimensional
LP can be simplified to a SDP for obtaining the optimal
control strategy. Finally, we illustrated our results through
some numerical experiments.
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