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Regret Analysis for Learning in a Multi-Agent Linear-Quadratic
Control Problem

Seyed Mohammad Asghari, Mukul Gagrani, and Ashutosh Nayyar

Abstract— We consider a multi-agent Linear-Quadratic (LQ)
reinforcement learning problem consisting of three systems, an
unknown system and two known systems. In this problem,
there are three agents — the actions of agent 1 can affect the
unknown system as well as the two known systems while the
actions of agents 2 and 3 can only affect their respective co-
located known systems. Further, the unknown system’s state
can affect the known systems’ state evolution. In this paper,
we are interested in minimizing the infinite-horizon average
cost. We propose a Thompson Sampling (TS)-based multi-
agent learning algorithm where each agent learns the unknown
system’s dynamics independently. Our result indicates that
the expected regret of our algorithm is upper bounded by
O(V/T) under certain assumptions, where O(-) hides constants
and logarithmic factors. Numerical simulations are provided to
illustrate the performance of our proposed algorithm.

I. INTRODUCTION

Many modern control systems such as networked control
systems and teams of autonomous systems consist of a group
of agents acting in collaboration with each other to achieve
a common goal under uncertainty [1]. Such systems have
motivated the investigation of multi-agent (decentralized)
control problems under various information structures [2—6].
Most of these works assume that the system model is known
precisely to all the agents in the system. However, for most
real-world systems the model and its parameters are often
not known perfectly to the agents. Reinforcement learning
provides a framework for controlling a dynamical system
in the absence of perfect knowledge of system parameters.
There exists a rich body of work in the field of multi-agent
reinforcement learning where the system is usually modeled
as a multi-agent Markov Decision Process (MDP) or a team
Markov game [7-11]. However, these works mostly deal in
a finite state space and action space setting and cannot be
extended trivially to a system with continuous state/action
space.

The adaptive control of a single-agent (centralized) linear
quadratic (LQ) control problem has been well-studied [12],
[13]. However, many of the available results are asymptotic
in nature and do not take into account the performance
during learning. Recently [14—17] have used online learning
methods for single-agent LQ control problems which provide
finite-time guarantees on the cost achieved by the learning
algorithm. Among these is the idea of Thompson Sampling
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(TS) which has gained wide attention due to its compu-
tational efficiency and performance. TS based algorithms
for single-agent LQ control problems have been proposed
in [16-19] which achieve a regret of O(y/T) over a time
horizon of T. Here O(-) hides constants and logarithmic
factors. This regret scaling is believed to be optimal for
single-agent control LQ problems except for logarithmic
factors.

We consider a multi-agent Linear-Quadratic (LQ) rein-
forcement learning problem consisting of three systems, an
unknown system and two known systems. In this problem,
there are three agents — the actions of agent 1 can affect the
unknown system as well as the two known systems while
the actions of agents 2 and 3 can only affect their respective
co-located known systems. Further, the unknown system’s
state can affect the known systems’ state evolution. In this
paper, we are interested in minimizing the infinite-horizon
average cost. Variations of this problem setting where the
dynamics of all systems are known have been studied in
the literature [20-22]. For our multi-agent learning problem,
we propose a Thompson Sampling (TS)-based multi-agent
learning algorithm where each agent learns the unknown sys-
tem’s dynamics independently. Our result indicates that the
expected regret of our algorithm is upper bounded by O( \/T)
under certain assumptions, where O() hides constants and
logarithmic factors. Numerical simulations are provided to
illustrate the performance of our proposed algorithm.

A. Notation

The collection of matrices A', A%, ... AN (resp. vectors
X' X2, ..., XN) is denoted as AV (resp. X!V). Given
column vectors X', X2 ... XN the notation vec(X!V)
is used to denote the column vector formed by stacking
vectors X', X2,..., X" on top of each other. For random
variable/vector X, E[X] and cov(X) denote the expectation
of X and the covariance matrix of X, respectively. For a
strategy m, we use E"[] to indicate that the expectation
depends on the choice of m. We use I to denote the identity
matrix and O to denote the zero matrix as well as the zero
vector.

For two symmetric matrices A and B, A = B (resp.
A > B) means that (A — B) is positive semi-definite
(PSD) (resp. positive definite (PD)). The transpose, trace,
and spectral norm of matrix A are denoted by AT, tr(A),
and ||A||, respectively. For a block matrix A, we use [A], »
to denote the block located at the m-th block row and
n-th block column of A. Consider matrices P,Q, R, A, B
of appropriate dimensions with P,(Q being PSD matrices
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Fig. 1. Three-agent system model. Solid lines indicate communication
links, dashed lines indicate control links, and dash-dot lines indicate that
one system can affect another one.

and R being a PD matrix. We define Y(P,Q, R, A, B) and
U(P,R, A, B) as follows:
Y(P,Q,R,AB):=Q+ ATPA—
ATPB(R+ BTPB) 'BTPA.
U(P,R,A,B):=— (R+ BTPB) 'BTPA.

Note that P = Y(P,Q, R, A, B) is the discrete-time alge-
braic Riccati equation.

II. PROBLEM FORMULATION

Consider a multi-agent linear system consisting of three
systems as shown in Figure 1. The linear dynamics of system
1 are given by

X = AVX) + BUUS + W, (1)
and the linear dynamics of systems 2 and 3 are given by
X2 =A% X! + A®X? + B*'U} + B?U? + W7,
XP=AX) + APX} + BYU + BRUP + WP, ()

where, for n € {1,2,3}, X} € RI is the state of
system n and U € R is the action of agent n. The
matrices A"t A" B™ B"" n € {2, 3}, of systems 2 and
3 are known matrices with appropriate dimensions. However,
Al e Réxxdx and B! € RIxXU are unknown matrices
of system 1. We assume that the initial states X{** are zero
and for n € {1,2,3}, W/, t > 1, is the system n-th noise
which has zero-mean and covariance matrix cov(W;") = L
Furthermore, the collection of random variables Wllf’ t>1,
are independent.
The overall system dynamics can be written as,

Xip1 = AXy + BU + W, 3
where we have defined
AT 0 0 Bl 0 0
A=A 422 o0 B=|B* B2 0
431 9 433 ’ B3 o0 B33 ’

“4)

and X; = vec(X}3),U; = vec(U}3), W; = vec(W3).
At each time ¢, the state X} of system 1 is directly
observed by all the agents. Also, agents 2 and 3 perfectly

observe the state of their respective co-located systems.
Agent n’s action U;* at time t is a function 7" of its
information H}', that is, U* = w}*(H]") where
1 1 o7l
Hy ={X1., U1}
1 1
th = {X1:t7Xﬁt’U1:t—1vUﬁt—l}7 ne {273} (5)
Let 7 = (7!, 7%, 7%) where 7" = (7}, 7}, ...).
At time ¢, the system incurs an instantaneous cost
¢(X¢, Uy), which is a quadratic function given by

C(Xt, Ut) = XtTQXt + UtTRUt, (6)

where @ is a known symmetric positive semi-definite (PSD)
matrix and R is a known symmetric positive definite (PD)
matrix with the following structure,

Q1 Q2 QB Rl R1Z R13
0=10" Q2 Q»|, R=|R" R R
Q¥ Q2 QB R31 R32 R33

)
A. The Optimal Multi-Agent Linear-Quadratic Problem

Let © = [A!!, B!!] be the dynamics parameter of the
system 1. When © is known to the agents, minimizing the
infinite horizon average cost is a multi-agent (decentralized)
stochastic Linear-Quadratic (LQ) problem. Let J(©) be the
optimal infinite horizon average cost under O, that is,

T
J(O) = inf lim sup 1 ZE”[C(Xt, U)|8]. (8)
T Tooo 1 —1

We make the following assumption about the multi-agent
stochastic LQ problem.

Assumption 1. (A, Q'/?) is detectable and (A, B) is sta-
bilizable. Furthermore, (A™,(Q™™)/?) is detectable and
(A™™, B™) is stabilizable for n € {2, 3}.

Lemma 1. Under Assumption 1, the optimal infinite horizon
cost J(O) is given by
J(©) =tr ([P(O)]1.1) +tr(P?) + tx(P*),  (9)

where P(O©), P2, and P? are the unique PSD solutions to
the following Ricatti equations:

P(©) =T(P(©),Q,R, A, B),
Pn _ T(pn’anann’Anannn)’

(10)
ne{2,3}. (11)

The optimal strategies " are given by

Ul [KY©)] [X: 0
Ul = [K2(©) | | XP| + | K2(XP - XP) |, (12)
Uy K*(©)] | X} K3(XP - X})
K'(O)] ~
where the gain matrices K(©) := |K%*(0)|, K2, and K3
K*(©)
are given by
K(©) =¥(P(0),R, A, B), (13)
K" = U(P", R"™ A" B™), ne{2,3}. (14
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Furthermore X = E™ [XP'|HL, 0], n € {2,3}, is the
estimate (conditional expectation) of X' given H} and ©.
The estimates XZL n € {2,3}, can be computed recursively
according to

X{ =0, X7\ =A"X] 4 A"KYy
+ (B K (©) + B K™(0)) vee(X!, X2, X})  (15)

The proof is omitted due to the space limitation (see [23]
for a proof).

B. The Multi-Agent Reinforcement Learning Problem

The problem we are interested in is to minimize the infinite
horizon average cost when the matrices A'' and B! of
system 1 are unknown. In this case, the control problem can
be seen as a Multi-Agent Reinforcement Learning (MARL)
problem where all the three agents need to learn the system
parameter © = [A'!, B'] in order to minimize the infinite
horizon average cost.

We adopt a Bayesian setting and assume that there is a
prior distribution py for ©. Since the actual parameter ©
is unknown, we define the expected regret of a (potentially

randomized) policy 7 = (7!, 72, 7) up to time 7 as follows:

R(T,m) =E" | > (X, Uy) = TJ(O)]

t=1

(16)

which is the expected difference between the performance
of the agents under policy 7 and the optimal infinite horizon
cost under full information about the parameter © of system
1. Thus, the regret can be interpreted as a measure of the
cost of not knowing system 1. The above expectation is with
respect to the random noise of the overall system (W7.7),
the prior distribution f;, and randomization in the agents’
strategies. The learning objective is to find a multi-agent
strategy that minimizes the expected regret.

III. MAIN RESULTS

In this section, we propose the TS—-MARL algorithm which
is a Thompson Sampling (TS)-based algorithm for our multi-
agent RL (MARL) problem. This algorithm is based on the
algorithm proposed in [16] to minimize the regret in a single-
agent LQ control problem.

Similar to [16], we make the following assumptions on
the prior distribution ;.

Assumption 2. Let fiy be a probability distribution on
Rx *(dx+dv) yphich is the product of independent dis-
tributions [i1(i), i = 1,...,d%. We assume that [i1(i),
i = 1,...,d%, is Gaussian with mean ©1(i) € R¥x+dy
and covariance matrix ¥, € RUx+du)x(dx+dv) ywhere ¥,
is positive definite'. Then, the prior distribution 11, is the
projection of i1 on a compact support 2y C Rk X (dx+dpy)

Assumption 3. For any © € ()4, the Riccati equation (10)
with [AY, BY] = © has a unique positive definite solution.

'Note that all distributions fiq (4), i« = 1,...
covariance matrix 1.

1 , ,
,dX, have the same

Further, the projection set () is such that for any © =
[A™, BM] and © in Q, the closed-loop matrix A+ BK (0)
has spectral norm less than ¢, that is, ||A+ BK(O)| < ¢

where § < 1 is an initial parameter of the algorithm.

Note that Assumption 3 ensures that the closed-loop
system is stable under the learning algorithm.

Similar to [16], we present the following result which
provides an update rule for the posterior belief ;.

Lemma 2. Let py is the posterior belief on the unknown
parameter © at time t. Then, p; is the projection of a
distribution iy on a compact support 11 C Rk X (dx+dpy)
it is the product of independent Gaussian distributions
fi(@), i = 1,...,d% with mean ©,(i) and covariance
> that can be sequentially updated using observations as
follows.

ZI5 (X () — 0:(i) Z;)

Or1(i) = 6:(6) + 1+ 2757, {an
t
DWAASN
Vppr =5y — oot 18
t+1 t 1 + Z;EtZt ( )

where Z; = vec(X},U}) € Rix+dv

Lemma 2 can be proved using arguments for the least
square estimator (for example, see [24]).

Now, we introduce the TS—-MARL algorithm. This algo-
rithm is a multi-agent algorithm which is performed inde-
pendently by all three agents. TS-MARL algorithm operates
in episodes. Let t; be start time of the k-th episode and
T, = try1 — tx be the length of this episode with the
convention Ty = 1. From the description of the algorithm,
ty =1 and ty41,k > 1, is given by

thetr =min{t > tg: t>tp+Tr1

or det(Sy) < 0.5det(;,)}.  (19)

At the beginning of episode k, each agent generates a random
sample © from its posterior yu;, and computes the gain
matrix K(©y) from (13). Then, during episode k, agent
n uses the gain matrix K(Oy) to compute its action U;".
Note that agents 2 and 3 need K2 and K respectively
to calculate their actions U? and U}. However, we know
from (14) that K2 and K are independent of the unknown
parameter © and hence, they can be calculated prior to
the beginning of the algorithm. After the execution of the
actions U*® by the agents, all the agents observe the new
state X/, ; of the system 1 and the agents 2 and 3 further
observe the new states X7,; and X7 ; of their co-located
systems, respectively. Then, each agent n independently uses
the following equation to compute X2, and X7, |,

Xm, = A™MX) 4 AR
(Blel(Gk.) + Bmme(@k)) vec(X}, X2, X3)
m e {2,3). (20)

Finally, each agent n independently uses its own gain matrix
K (Og) to update p;4q according to (17)-(18).
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One important feature of TS-MARL algorithm is that its
episode lengths are not fixed. The length T} of each episode
is dynamically determined according to two stopping criteria:
(i) t > tg +Ti—1, and (ii) det(X;) < 0.5 det(X;, ). The first
stopping criterion provides that the episode length grows at
a linear rate without triggering the second criterion. The
second stopping criterion ensures that the determinant of
sample covariance matrix during an episode should not be
less than half of the determinant of sample covariance matrix
at the beginning of this episode.

Algorithm TS-MARL for agent 1

Input: Ql; él(l)7 N ,él(d%(); 21
Initialization: ¢t < 1; tg < O;
6.(i) = 01(i),i=1,...,d%
for episodes £k =1,2, ...
tr <t
Th1 g —tp—1
Generate O ~ (i,
Compute K (Oy) from (13)
while ¢ < tk + Tk—l and det(Et) > 0.5 det(Etk)
Apply U} = K'(©y) vec(X}, X7, X})
Observe new state X}
Compute X7, and X}, using (20)
Compute Z; = [I (K1(©))7]" X}
Use Z; to update p;41 according to (17)-(18)
t—t+1

Algorithm TS-MARL for agent n, n = 2,3
Input: Ql; él(l)7 N 7é1(d%(); 21
Initialization: ¢t < 1; tg < O;
0.(i) = 01(i),i=1,...,d%
for episodes £k =1,2, ...
tr <t
Th1 g —tp—1
Generate O ~ (i,
Compute K (Oy) from (13)
while ¢ <t + Tk—l and det(Et) > 0.5 det(Etk)
Apply Up* = K™(0y) vee(X}, X2, X7)
+KM(X] — X7
Observe new states X} ; and X},
Compute X7, and X}, using (20)
Compute Z; = [I (K*(©))7]" X}
Use Z; to update p41 according to (17)-(18)
t—t+1

Remark 1. Note that Xf+1 and XEH in the TS-MARL
algorithm (given by (20)) are proxies for Xt2+1 and XE_,_1 of
(15) where instead of the unknown parameter ©, we have

0.

Remark 2. Although all agents start with the same initial
parameters (and hence the same prior 1), due to the
independent execution of the TS—-MARL algorithm, agents
might generate different samples ©1 from 1. As a result,
the computed gain matrices K(©1) by the agents can be
different. Since each agent uses its own K(0©1) to update

the posterior belief, the new posterior uo can be different
among the agents. This difference in uo among the agents
will also lead to different g, t > 2.

In order to avoid issues pointed out in Remark 2, we
make an assumption about how samples are generated by
the agents.

Assumption 4. All agents use the same sampling seed for
generating samples from their posteriors ;.

Now, we present our main result which is based on
Assumption 4.

Theorem 1. Under Assumptions 1-4, TS-MARL algorithm
achieves a O(\/T) regret for the MARL problem.

Remark 3. While the result of this paper has been presented
for the case of 1 unknown system and 2 known systems, the
result can be easily extended to the case of 1 unknown system
and arbitrary number N of known systems.

IV. PROOF OF THEOREM 1

We first prove some preliminary results in the following
lemmas which will be used in the proof of Theorem 1.

Lemma 3. Under Assumption 4, at each time t, Xz} Xf,
and p; calculated independently by the agents are all equal.

Lemma 4. Let S} be a random process that evolves as

i1 =C"SE+ WS, ST =0, 21

where C" = A" + B"EK". Define A} = cov(S!), then
the sequence of matrices A}, t > 1, is increasing® and it
converges to a PSD matrix A™ as t — oo.

Our approach for the proof of Theorem 1 is to construct
an auxiliary Single-Agent Reinforcement Learning (SARL)
problem based on the MARL problem of Section II. This
auxiliary SARL problem is used for the regret analysis of
the TS-MARL algorithm. We proceed in three steps:

e Step 1: Constructing an auxiliary SARL problem

o Step 2: Showing the connection between the auxiliary
SARL problem and the MARL problem

o Step 3: Using the SARL problem to bound the regret of
the MARL problem

Step 1: Constructing an auxiliary SARL problem

Consider a single-agent system with dynamics

X7, = AX? + BUS + vec(W},0,0), (22)

where X? € RIx+dx+dx s the state of the system, U €
Rév+d5+d% g the action of the auxiliary agent, W} is the
noise vector of system 1 defined in (1), and matrices A and
B are as defined in (4). The initial state X7 is assumed to be
zero. The action Uy = 7f (HY) at time ¢ is a function of the
history of observations Hy = {X7t.,,U},_;}. The auxiliary
agent’s strategy is denoted by 7° = (ny,7S,...). The

2Note that increasing is in the sense of partial order >, that is, A? =<
A AR <.
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instantaneous cost ¢(X7,U;) of the system is a quadratic
function given by

o X7, U7) = (XP)TRXT + (UP)TRUY,  (23)
where matrices () and R are as defined in (6).

When © = [A!'' B!!] (note that A!'! and B! are
sub-block matrices of A and B as described in (4)) is
known to the auxiliary agent, minimizing the infinite horizon
average cost is a single-agent stochastic Linear-Quadratic
(LQ) control problem. Let J°(©) be the optimal infinite

horizon average cost under O, that is,

J°(©) = inflimsup Z E’T [e(X7,U2)0]. (24

™ Too

The above single-agent stochastic LQ control problem has
been widely studied in the literature. It is well-known that
under Assumption 1, the optimal infinite horizon cost J°(©)
is given by J°(©) = tr([P(©)];,1) where P(O) is as
defined in (10). Furthermore, the optimal strategy 7°* is
given by Uy = K(0)Xy where K(O) is as defined in (13).

When © is unknown, this single-agent stochastic LQ
control problem becomes a Single-Agent Reinforcement
Learning (SARL) problem. We define the expected regret of
a policy 7° up to time 7' compared with the optimal infinite
horizon cost J°(©) to be

R°(T, Z (X?,Uf) —TJ°(©) (25)
The above expectation is with respect to the random noise of
system 1 (W), the prior distribution 41, and randomization
in the auxiliary agent’s strategy.

For this SARL problem, the TS-based algorithm of [16],
referred to as TS—SARL algorithm hereafter, achieves a
O(V/T) expected regret for the SARL problem, that is,

R®(T, TS-SARL) < O(VT), (26)

where O(-) hides constants and logarithmic factors.

Step 2: Showing the connection between the auxiliary SARL
problem and the MARL problem

We present the following two lemmas that show the
connection between the auxiliary SARL problem and the
MARL problem.

Lemma 5. Let J°(O) be the optimal infinite horizon cost
of the auxiliary SARL problem when © is known, J(©) be
the optimal infinite horizon cost of the MARL problem when
O is known, and A™, n € {2,3}, be as defined in Lemma 4.
Then,

(27)

J(©) = J°(O©) + tr(D?A?) + tr(D3A3),

= Q" + (K

where we have defined D™
n € {2,3}.

”)TR"”K” for

Lemma 6. At each time t, the following equality holds
between the expected cost under the policies of the TS—SARL
and the TS—-MARL algorithms,

ETSMRL [0( X, Uy)| = EFS 75382 [o( X9, U?))

+tr(D?A2) + tr(D3A3).  (28)

Step 3: Using the SARL problem to bound the regret of the
MARL problem

In this step, we use the connections between the auxiliary
SARL problem and our MARL problem, which was estab-
lished in Step 2, to prove Theorem 1. Note that from the
definition of the expected regret in the the MARL problem
given by (16), we have,

T
R(T, TS-MARL) = E™"ARE Z (X, Uy) —TJ(O)

+tr(D3AY)]

I
[M]=

T
ETS—SARL ){f7 UO Z tI‘ D2

~
Il
-

— TE[J®(0)] — Ttr(D?*A?) — Ttr(D3A3)

ETS*SARL [C(Xf, Uto)

I
M=

—TJ%(0)]

o~
Il
-

[tr(D*(A7 = A%)) + tr(D*(AF — A%))]

M=

+

o~
Il
i

T
R°(T, TS-SARL) + Z [tr(D?(A2 — A?))

<O(VT),
(29)

where the second equality is correct because of Lemma 3,
Lemma 6, and the fact that J(©) is independent of the
policy of the TS—-MARL algorithm, that is, E"****[J(0©)] =
E[J(©)]. Furthermore, the third equality is correct due to
the fact that J°(©) is independent of the policy of the
TS—-SARL algorithm, that is, E[J°(©)] = ET ****[J°(0)],
the fourth equality is correct by definition of the expected
regret in the SARL problem, and the penultimate inequality
is correct because from Lemma 4, the sequence of matrices
A} is increasing, that is, A” — A} > 0 and D" is positive
semi-definite, and consequently, tr(D"(A} — A™)) < 0,
n € {2,3}. Finally, the last inequality is correct because of
(26). This proves the statement of Theorem 1.

+tr(D*(A? — A%))] < R®(T, TS-SARL) <

V. EXPERIMENTS

In this section, we illustrate the performance of the
TS—-MARL algorithm through numerical experiments.

We consider an instance of the MARL problem where
system 1 (which is unknown to the agents in our problem),
has the following parameters (which are the same as the
model studied in [25]) with d} = dj, = 3,

1.01 001 0
At =10.01 1.01 0.01|, BY =I5, (30)
0 001 1.01
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Fig. 2. Expected regret under the TS-MARL algorithm

and systems 2 and 3 are one-dimensional, that is, dg( =
d% = d}, = d}, = 1, with the following parameters,

A =p*'=[1 0 1], A*®=101, B*=1 31
A =p3 =0 1 1], A¥ =101, B*®=1 (32

Further, we consider the following matrices (with the same
structure as the model in [25]) for the cost function,

Q=10"°%1;, R=1Is. (33)

The prior distribution used in TS-MARL algorithm is set
according to Assumptions 2 and 3 with ©,(i), i = 1,2,3,
to be an all-one vector, ¥; = Ig, and Q; = {0 : ||A +
BK(0)|| < &} where we use § = 0.99 for the simulations.

While the theoretical result of Theorem 1 required the
same sampling seed among the agents (i.e., Assumption 4),
we consider both cases of same sampling seed and arbitrary
sampling seed for the experiments. We ran 50 simulations
and show the mean of regret with the 95% confidence interval
for each scenario.

As it can be seen from Figure 2, for both of theses cases,
our proposed TS—MARL algorithm achieves a O(\/T) regret
for our MARL problem, which matches the theoretical results
of Theorem 1.

VI. CONCLUSION

In this paper, we studied a multi-agent Linear-Quadratic
(LQ) reinforcement learning problem consisting of three
systems, an unknown system and two known systems, and
three agents. The goal was to minimize the infinite-horizon
average cost. We proposed a Thompson Sampling (TS)-
based multi-agent learning algorithm where each agent learns
the unknown system’s dynamics independently. We showed
that the expected regret of our algorithm is upper bounded
by O(v/T) under certain assumptions where O(-) hides
constants and logarithmic factors.
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