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Abstract— We consider a multi-agent Linear-Quadratic (LQ)

reinforcement learning problem consisting of three systems, an

unknown system and two known systems. In this problem,

there are three agents – the actions of agent 1 can affect the

unknown system as well as the two known systems while the

actions of agents 2 and 3 can only affect their respective co-

located known systems. Further, the unknown system’s state

can affect the known systems’ state evolution. In this paper,

we are interested in minimizing the infinite-horizon average

cost. We propose a Thompson Sampling (TS)-based multi-

agent learning algorithm where each agent learns the unknown

system’s dynamics independently. Our result indicates that

the expected regret of our algorithm is upper bounded by

Õ(
p
T ) under certain assumptions, where Õ(·) hides constants

and logarithmic factors. Numerical simulations are provided to

illustrate the performance of our proposed algorithm.

I. INTRODUCTION

Many modern control systems such as networked control
systems and teams of autonomous systems consist of a group
of agents acting in collaboration with each other to achieve
a common goal under uncertainty [1]. Such systems have
motivated the investigation of multi-agent (decentralized)
control problems under various information structures [2–6].
Most of these works assume that the system model is known
precisely to all the agents in the system. However, for most
real-world systems the model and its parameters are often
not known perfectly to the agents. Reinforcement learning
provides a framework for controlling a dynamical system
in the absence of perfect knowledge of system parameters.
There exists a rich body of work in the field of multi-agent
reinforcement learning where the system is usually modeled
as a multi-agent Markov Decision Process (MDP) or a team
Markov game [7–11]. However, these works mostly deal in
a finite state space and action space setting and cannot be
extended trivially to a system with continuous state/action
space.

The adaptive control of a single-agent (centralized) linear
quadratic (LQ) control problem has been well-studied [12],
[13]. However, many of the available results are asymptotic
in nature and do not take into account the performance
during learning. Recently [14–17] have used online learning
methods for single-agent LQ control problems which provide
finite-time guarantees on the cost achieved by the learning
algorithm. Among these is the idea of Thompson Sampling
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(TS) which has gained wide attention due to its compu-
tational efficiency and performance. TS based algorithms
for single-agent LQ control problems have been proposed
in [16–19] which achieve a regret of Õ(

p
T ) over a time

horizon of T . Here Õ(·) hides constants and logarithmic
factors. This regret scaling is believed to be optimal for
single-agent control LQ problems except for logarithmic
factors.

We consider a multi-agent Linear-Quadratic (LQ) rein-
forcement learning problem consisting of three systems, an
unknown system and two known systems. In this problem,
there are three agents – the actions of agent 1 can affect the
unknown system as well as the two known systems while
the actions of agents 2 and 3 can only affect their respective
co-located known systems. Further, the unknown system’s
state can affect the known systems’ state evolution. In this
paper, we are interested in minimizing the infinite-horizon
average cost. Variations of this problem setting where the
dynamics of all systems are known have been studied in
the literature [20–22]. For our multi-agent learning problem,
we propose a Thompson Sampling (TS)-based multi-agent
learning algorithm where each agent learns the unknown sys-
tem’s dynamics independently. Our result indicates that the
expected regret of our algorithm is upper bounded by Õ(

p
T )

under certain assumptions, where Õ(·) hides constants and
logarithmic factors. Numerical simulations are provided to
illustrate the performance of our proposed algorithm.

A. Notation

The collection of matrices A1, A2, . . . , AN (resp. vectors
X1, X2, . . . , XN ) is denoted as A1:N (resp. X1:N ). Given
column vectors X1, X2, . . . , XN , the notation vec(X1:N )
is used to denote the column vector formed by stacking
vectors X1, X2, . . . , XN on top of each other. For random
variable/vector X , E[X] and cov(X) denote the expectation
of X and the covariance matrix of X , respectively. For a
strategy ⇡, we use E⇡[·] to indicate that the expectation
depends on the choice of ⇡. We use I to denote the identity
matrix and 0 to denote the zero matrix as well as the zero
vector.

For two symmetric matrices A and B, A ⌫ B (resp.
A � B) means that (A � B) is positive semi-definite
(PSD) (resp. positive definite (PD)). The transpose, trace,
and spectral norm of matrix A are denoted by A|, tr(A),
and kAk, respectively. For a block matrix A, we use [A]m,n

to denote the block located at the m-th block row and
n-th block column of A. Consider matrices P,Q,R,A,B
of appropriate dimensions with P,Q being PSD matrices
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Fig. 1. Three-agent system model. Solid lines indicate communication
links, dashed lines indicate control links, and dash-dot lines indicate that
one system can affect another one.

and R being a PD matrix. We define ⌥(P,Q,R,A,B) and
 (P,R,A,B) as follows:

⌥(P,Q,R,A,B) :=Q+A|PA�
A|PB(R+B|PB)�1B|PA.

 (P,R,A,B) :=� (R+B|PB)�1B|PA.

Note that P = ⌥(P,Q,R,A,B) is the discrete-time alge-
braic Riccati equation.

II. PROBLEM FORMULATION

Consider a multi-agent linear system consisting of three
systems as shown in Figure 1. The linear dynamics of system
1 are given by

X1
t+1 = A11X1

t +B11U1
t +W 1

t , (1)

and the linear dynamics of systems 2 and 3 are given by

X2
t+1=A21X1

t +A22X2
t +B21U1

t +B22U2
t +W 2

t ,

X3
t+1=A31X1

t +A33X3
t +B31U1

t +B33U3
t +W 3

t , (2)

where, for n 2 {1, 2, 3}, Xn
t 2 Rdn

X is the state of
system n and Un

t 2 Rdn
U is the action of agent n. The

matrices An1, Ann, Bn1, Bnn, n 2 {2, 3}, of systems 2 and
3 are known matrices with appropriate dimensions. However,
A11 2 Rd1

X⇥d1
X and B11 2 Rd1

X⇥d1
U are unknown matrices

of system 1. We assume that the initial states X1:3
1 are zero

and for n 2 {1, 2, 3}, Wn
t , t � 1, is the system n-th noise

which has zero-mean and covariance matrix cov(Wn
t ) = I.

Furthermore, the collection of random variables W 1:3
1:t , t � 1,

are independent.
The overall system dynamics can be written as,

Xt+1 = AXt +BUt +Wt (3)

where we have defined

A =

2

4
A11 0 0
A21 A22 0
A31 0 A33

3

5 , B =

2

4
B11 0 0
B21 B22 0
B31 0 B33

3

5 ,

(4)

and Xt = vec(X1:3
t ), Ut = vec(U1:3

t ),Wt = vec(W 1:3
t ).

At each time t, the state X1
t of system 1 is directly

observed by all the agents. Also, agents 2 and 3 perfectly

observe the state of their respective co-located systems.
Agent n’s action Un

t at time t is a function ⇡n
t of its

information Hn
t , that is, Un

t = ⇡n
t (H

n
t ) where

H1
t = {X1

1:t, U
1
1:t�1},

Hn
t = {X1

1:t, X
n
1:t, U

1
1:t�1, U

n
1:t�1}, n 2 {2, 3}. (5)

Let ⇡ = (⇡1, ⇡2, ⇡3) where ⇡n = (⇡n
1 , ⇡

n
2 , . . .).

At time t, the system incurs an instantaneous cost
c(Xt, Ut), which is a quadratic function given by

c(Xt, Ut) = X|
t QXt + U|

t RUt, (6)

where Q is a known symmetric positive semi-definite (PSD)
matrix and R is a known symmetric positive definite (PD)
matrix with the following structure,

Q =

2

4
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

3

5 , R =

2

4
R11 R12 R13

R21 R22 R23

R31 R32 R33

3

5 .

(7)

A. The Optimal Multi-Agent Linear-Quadratic Problem

Let ⇥ := [A11, B11] be the dynamics parameter of the
system 1. When ⇥ is known to the agents, minimizing the
infinite horizon average cost is a multi-agent (decentralized)
stochastic Linear-Quadratic (LQ) problem. Let J(⇥) be the
optimal infinite horizon average cost under ⇥, that is,

J(⇥) = inf
⇡

lim sup
T!1

1

T

TX

t=1

E⇡[c(Xt, Ut)|⇥]. (8)

We make the following assumption about the multi-agent
stochastic LQ problem.

Assumption 1. (A,Q1/2) is detectable and (A,B) is sta-

bilizable. Furthermore, (Ann, (Qnn)1/2) is detectable and

(Ann, Bnn) is stabilizable for n 2 {2, 3}.

Lemma 1. Under Assumption 1, the optimal infinite horizon

cost J(⇥) is given by

J(⇥) = tr
⇣
[P (⇥)]1,1

⌘
+ tr(P̃ 2) + tr(P̃ 3), (9)

where P (⇥), P̃ 2
, and P̃ 3

are the unique PSD solutions to

the following Ricatti equations:

P (⇥) = ⌥(P (⇥), Q,R,A,B), (10)
P̃n = ⌥(P̃n, Qnn, Rnn, Ann, Bnn), n 2 {2, 3}. (11)

The optimal strategies ⇡⇤
are given by

2

4
U1
t

U2
t

U3
t

3

5 =

2

4
K1(⇥)
K2(⇥)
K3(⇥)

3

5

2

4
X1

t

X̂2
t

X̂3
t

3

5+

2

4
0

K̃2(X2
t � X̂2

t )
K̃3(X3

t � X̂3
t )

3

5 , (12)

where the gain matrices K(⇥) :=

2

4
K1(⇥)
K2(⇥)
K3(⇥)

3

5, K̃2
, and K̃3

are given by

K(⇥) =  (P (⇥), R,A,B), (13)
K̃n =  (P̃n, Rnn, Ann, Bnn), n 2 {2, 3}. (14)
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Furthermore X̂n
t = E⇡⇤

[Xn
t |H1

t ,⇥], n 2 {2, 3}, is the

estimate (conditional expectation) of Xn
t given H1

t and ⇥.

The estimates X̂n
t , n 2 {2, 3}, can be computed recursively

according to

X̂n
1 = 0, X̂n

t+1 = An1X1
t +AnnX̂n

t

+
⇣
Bn1K1(⇥) +BnnKn(⇥)

⌘
vec(X1

t , X̂
2
t , X̂

3
t ) (15)

The proof is omitted due to the space limitation (see [23]
for a proof).

B. The Multi-Agent Reinforcement Learning Problem

The problem we are interested in is to minimize the infinite
horizon average cost when the matrices A11 and B11 of
system 1 are unknown. In this case, the control problem can
be seen as a Multi-Agent Reinforcement Learning (MARL)
problem where all the three agents need to learn the system
parameter ⇥ = [A11, B11] in order to minimize the infinite
horizon average cost.

We adopt a Bayesian setting and assume that there is a
prior distribution µ1 for ⇥. Since the actual parameter ⇥
is unknown, we define the expected regret of a (potentially
randomized) policy ⇡ = (⇡1, ⇡2, ⇡3) up to time T as follows:

R(T, ⇡) = E⇡

"
TX

t=1

c(Xt, Ut)� TJ(⇥)

#
, (16)

which is the expected difference between the performance
of the agents under policy ⇡ and the optimal infinite horizon
cost under full information about the parameter ⇥ of system
1. Thus, the regret can be interpreted as a measure of the
cost of not knowing system 1. The above expectation is with
respect to the random noise of the overall system (W1:T ),
the prior distribution µ1, and randomization in the agents’
strategies. The learning objective is to find a multi-agent
strategy that minimizes the expected regret.

III. MAIN RESULTS

In this section, we propose the TS-MARL algorithm which
is a Thompson Sampling (TS)-based algorithm for our multi-
agent RL (MARL) problem. This algorithm is based on the
algorithm proposed in [16] to minimize the regret in a single-
agent LQ control problem.

Similar to [16], we make the following assumptions on
the prior distribution µ1.

Assumption 2. Let µ̄1 be a probability distribution on

Rd1
X⇥(d1

X+d1
U )

which is the product of independent dis-

tributions µ̄1(i), i = 1, . . . , d1X . We assume that µ̄1(i),
i = 1, . . . , d1X , is Gaussian with mean ⇥̂1(i) 2 Rd1

X+d1
U

and covariance matrix ⌃1 2 R(d1
X+d1

U )⇥(d1
X+d1

U )
where ⌃1

is positive definite
1
. Then, the prior distribution µ1 is the

projection of µ̄1 on a compact support ⌦1 ⇢ Rd1
X⇥(d1

X+d1
U )

.

Assumption 3. For any ⇥ 2 ⌦1, the Riccati equation (10)
with [A11, B11] = ⇥ has a unique positive definite solution.

1Note that all distributions µ̄1(i), i = 1, . . . , d1X , have the same
covariance matrix ⌃1.

Further, the projection set ⌦ is such that for any ⇥ =
[A11, B11] and ⇥̃ in ⌦, the closed-loop matrix A+BK(⇥̃)
has spectral norm less than �, that is, kA + BK(⇥̃)k  �
where � < 1 is an initial parameter of the algorithm.

Note that Assumption 3 ensures that the closed-loop
system is stable under the learning algorithm.

Similar to [16], we present the following result which
provides an update rule for the posterior belief µt.

Lemma 2. Let µt is the posterior belief on the unknown

parameter ⇥ at time t. Then, µt is the projection of a

distribution µ̄t on a compact support ⌦1 ⇢ Rd1
X⇥(d1

X+d1
U )

.

µ̄t is the product of independent Gaussian distributions

µ̄1(i), i = 1, . . . , d1X with mean ⇥̂t(i) and covariance

⌃t that can be sequentially updated using observations as

follows.

⇥̂t+1(i) = ⇥̂t(i) +
Z|
t ⌃t(X1

t+1(i)� ⇥̂t(i)Zt)

1 + Z|
t ⌃tZt

(17)

⌃t+1 = ⌃t �
⌃tZtZ

|
t ⌃t

1 + Z|
t ⌃tZt

(18)

where Zt = vec(X1
t , U

1
t ) 2 Rd1

X+d1
U .

Lemma 2 can be proved using arguments for the least
square estimator (for example, see [24]).

Now, we introduce the TS-MARL algorithm. This algo-
rithm is a multi-agent algorithm which is performed inde-
pendently by all three agents. TS-MARL algorithm operates
in episodes. Let tk be start time of the k-th episode and
Tk = tk+1 � tk be the length of this episode with the
convention T0 = 1. From the description of the algorithm,
t1 = 1 and tk+1, k � 1, is given by

tk+1 = min{t > tk : t > tk + Tk�1

or det(⌃t) < 0.5 det(⌃tk)}. (19)

At the beginning of episode k, each agent generates a random
sample ⇥k from its posterior µtk and computes the gain
matrix K(⇥k) from (13). Then, during episode k, agent
n uses the gain matrix K(⇥k) to compute its action Un

t .
Note that agents 2 and 3 need K̃2 and K̃3 respectively
to calculate their actions U2

t and U3
t . However, we know

from (14) that K̃2 and K̃3 are independent of the unknown
parameter ⇥ and hence, they can be calculated prior to
the beginning of the algorithm. After the execution of the
actions U1:3

t by the agents, all the agents observe the new
state X1

t+1 of the system 1 and the agents 2 and 3 further
observe the new states X2

t+1 and X3
t+1 of their co-located

systems, respectively. Then, each agent n independently uses
the following equation to compute X̌2

t+1 and X̌3
t+1,

X̌m
t+1 = Am1X1

t +AmmX̌m
t +

⇣
Bm1K1(⇥k) +BmmKm(⇥k)

⌘
vec(X1

t , X̌
2
t , X̌

3
t )

m 2 {2, 3}. (20)

Finally, each agent n independently uses its own gain matrix
K(⇥k) to update µt+1 according to (17)-(18).
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One important feature of TS-MARL algorithm is that its
episode lengths are not fixed. The length Tk of each episode
is dynamically determined according to two stopping criteria:
(i) t > tk +Tk�1, and (ii) det(⌃t) < 0.5 det(⌃tk). The first
stopping criterion provides that the episode length grows at
a linear rate without triggering the second criterion. The
second stopping criterion ensures that the determinant of
sample covariance matrix during an episode should not be
less than half of the determinant of sample covariance matrix
at the beginning of this episode.

Algorithm TS-MARL for agent 1

Input: ⌦1; ✓̂1(1), . . . , ✓̂1(d1X); ⌃1

Initialization: t 1; t0  0;
⇥̂1(i) = ✓̂1(i), i = 1, . . . , d1X

for episodes k = 1, 2, ...
tk  t
Tk�1  tk � tk�1

Generate ⇥k ⇠ µtk

Compute K(⇥k) from (13)
while t  tk + Tk�1 and det(⌃t) � 0.5 det(⌃tk)

Apply U1
t = K1(⇥k)vec(X1

t , X̌
2
t , X̌

3
t )

Observe new state X1
t+1

Compute X̌2
t+1 and X̌3

t+1 using (20)
Compute Zt =

⇥
I (K1(⇥k))|

⇤|
X1

t

Use Zt to update µt+1 according to (17)-(18)
t t+ 1

Algorithm TS-MARL for agent n, n = 2, 3

Input: ⌦1; ✓̂1(1), . . . , ✓̂1(d1X); ⌃1

Initialization: t 1; t0  0;
⇥̂1(i) = ✓̂1(i), i = 1, . . . , d1X

for episodes k = 1, 2, ...
tk  t
Tk�1  tk � tk�1

Generate ⇥k ⇠ µtk

Compute K(⇥k) from (13)
while t  tk + Tk�1 and det(⌃t) � 0.5 det(⌃tk)

Apply Un
t = Kn(⇥k)vec(X1

t , X̌
2
t , X̌

3
t )

+K̃n(Xn
t � X̌n

t )
Observe new states X1

t+1 and Xn
t+1

Compute X̌2
t+1 and X̌3

t+1 using (20)
Compute Zt =

⇥
I (K1(⇥k))|

⇤|
X1

t

Use Zt to update µt+1 according to (17)-(18)
t t+ 1

Remark 1. Note that X̌2
t+1 and X̌3

t+1 in the TS-MARL
algorithm (given by (20)) are proxies for X̂2

t+1 and X̂3
t+1 of

(15) where instead of the unknown parameter ⇥, we have

⇥t.

Remark 2. Although all agents start with the same initial

parameters (and hence the same prior µ1), due to the

independent execution of the TS-MARL algorithm, agents

might generate different samples ⇥1 from µ1. As a result,

the computed gain matrices K(⇥1) by the agents can be

different. Since each agent uses its own K(⇥1) to update

the posterior belief, the new posterior µ2 can be different

among the agents. This difference in µ2 among the agents

will also lead to different µt, t > 2.

In order to avoid issues pointed out in Remark 2, we
make an assumption about how samples are generated by
the agents.

Assumption 4. All agents use the same sampling seed for

generating samples from their posteriors µt.

Now, we present our main result which is based on
Assumption 4.

Theorem 1. Under Assumptions 1-4, TS-MARL algorithm

achieves a Õ(
p
T ) regret for the MARL problem.

Remark 3. While the result of this paper has been presented

for the case of 1 unknown system and 2 known systems, the

result can be easily extended to the case of 1 unknown system

and arbitrary number N of known systems.

IV. PROOF OF THEOREM 1
We first prove some preliminary results in the following

lemmas which will be used in the proof of Theorem 1.

Lemma 3. Under Assumption 4, at each time t, X̌2
t , X̌3

t ,

and µt calculated independently by the agents are all equal.

Lemma 4. Let Sn
t be a random process that evolves as

Sn
t+1 = CnSn

t +Wn
t , Sn

1 = 0, (21)

where Cn = Ann + BnnK̃n
. Define �n

t = cov(Sn
t ), then

the sequence of matrices �n
t , t � 1, is increasing

2
and it

converges to a PSD matrix �n
as t!1.

Our approach for the proof of Theorem 1 is to construct
an auxiliary Single-Agent Reinforcement Learning (SARL)
problem based on the MARL problem of Section II. This
auxiliary SARL problem is used for the regret analysis of
the TS-MARL algorithm. We proceed in three steps:

• Step 1: Constructing an auxiliary SARL problem
• Step 2: Showing the connection between the auxiliary
SARL problem and the MARL problem

• Step 3: Using the SARL problem to bound the regret of
the MARL problem

Step 1: Constructing an auxiliary SARL problem

Consider a single-agent system with dynamics

X⇧
t+1 = AX⇧

t +BU⇧
t + vec(W 1

t ,0,0), (22)

where X⇧
t 2 Rd1

X+d2
X+d3

X is the state of the system, U⇧
t 2

Rd1
U+d2

U+d3
U is the action of the auxiliary agent, W 1

t is the
noise vector of system 1 defined in (1), and matrices A and
B are as defined in (4). The initial state X⇧

1 is assumed to be
zero. The action U⇧

t = ⇡⇧
t (H

⇧
t ) at time t is a function of the

history of observations H⇧
t = {X⇧

1:t, U
⇧
1:t�1}. The auxiliary

agent’s strategy is denoted by ⇡⇧ = (⇡⇧
1 , ⇡

⇧
2 , . . .). The

2Note that increasing is in the sense of partial order ⌫, that is, �n
1 �

�n
2 � �n

3 � . . .
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instantaneous cost c(X⇧
t , U

⇧
t ) of the system is a quadratic

function given by

c(X⇧
t , U

⇧
t ) = (X⇧

t )
|QX⇧

t + (U⇧
t )

|RU⇧
t , (23)

where matrices Q and R are as defined in (6).
When ⇥ = [A11, B11] (note that A11 and B11 are

sub-block matrices of A and B as described in (4)) is
known to the auxiliary agent, minimizing the infinite horizon
average cost is a single-agent stochastic Linear-Quadratic
(LQ) control problem. Let J⇧(⇥) be the optimal infinite
horizon average cost under ⇥, that is,

J⇧(⇥) = inf
⇡⇧

lim sup
T!1

1

T

TX

t=1

E⇡⇧
[c(X⇧

t , U
⇧
t )|⇥]. (24)

The above single-agent stochastic LQ control problem has
been widely studied in the literature. It is well-known that
under Assumption 1, the optimal infinite horizon cost J⇧(⇥)
is given by J⇧(⇥) = tr([P (⇥)]1,1) where P (⇥) is as
defined in (10). Furthermore, the optimal strategy ⇡⇧⇤ is
given by U⇧

t = K(⇥)X⇧
t where K(⇥) is as defined in (13).

When ⇥ is unknown, this single-agent stochastic LQ
control problem becomes a Single-Agent Reinforcement
Learning (SARL) problem. We define the expected regret of
a policy ⇡⇧ up to time T compared with the optimal infinite
horizon cost J⇧(⇥) to be

R⇧(T, ⇡⇧) = E⇡⇧

"
TX

t=1

c(X⇧
t , U

⇧
t )� TJ⇧(⇥)

#
. (25)

The above expectation is with respect to the random noise of
system 1 (W 1

1:T ), the prior distribution µ1, and randomization
in the auxiliary agent’s strategy.

For this SARL problem, the TS-based algorithm of [16],
referred to as TS-SARL algorithm hereafter, achieves a
Õ(
p
T ) expected regret for the SARL problem, that is,

R⇧(T,TS-SARL)  Õ(
p
T ), (26)

where Õ(·) hides constants and logarithmic factors.

Step 2: Showing the connection between the auxiliary SARL
problem and the MARL problem

We present the following two lemmas that show the
connection between the auxiliary SARL problem and the
MARL problem.

Lemma 5. Let J⇧(⇥) be the optimal infinite horizon cost

of the auxiliary SARL problem when ⇥ is known, J(⇥) be

the optimal infinite horizon cost of the MARL problem when

⇥ is known, and �n
, n 2 {2, 3}, be as defined in Lemma 4.

Then,

J(⇥) = J⇧(⇥) + tr(D2�2) + tr(D3�3), (27)

where we have defined Dn := Qnn + (K̃n)|RnnK̃n
for

n 2 {2, 3}.

Lemma 6. At each time t, the following equality holds

between the expected cost under the policies of the TS-SARL
and the TS-MARL algorithms,

ETS-MARL [c(Xt, Ut)] = ETS-SARL [c(X⇧
t , U

⇧
t )]

+ tr(D2�2
t ) + tr(D3�3

t ). (28)

Step 3: Using the SARL problem to bound the regret of the

MARL problem

In this step, we use the connections between the auxiliary
SARL problem and our MARL problem, which was estab-
lished in Step 2, to prove Theorem 1. Note that from the
definition of the expected regret in the the MARL problem
given by (16), we have,

R(T,TS-MARL) = ETS-MARL

"
TX

t=1

c(Xt, Ut)� TJ(⇥)

#

=
TX

t=1

ETS-SARL [c(X⇧
t , U

⇧
t )] +

TX

t=1

[tr(D2�2
t ) + tr(D3�3

t )]

� T E[J⇧(⇥)]� T tr(D2�2)� T tr(D3�3)

=
TX

t=1

ETS-SARL [c(X⇧
t , U

⇧
t )� TJ⇧(⇥)]

+
TX

t=1

[tr(D2(�2
t ��2)) + tr(D3(�3

t ��3))]

= R⇧(T,TS-SARL) +
TX

t=1

[tr(D2(�2
t ��2))

+ tr(D3(�3
t ��3))]  R⇧(T,TS-SARL)  Õ(

p
T ),

(29)

where the second equality is correct because of Lemma 5,
Lemma 6, and the fact that J(⇥) is independent of the
policy of the TS-MARL algorithm, that is, ETS-MARL[J(⇥)] =
E[J(⇥)]. Furthermore, the third equality is correct due to
the fact that J⇧(⇥) is independent of the policy of the
TS-SARL algorithm, that is, E[J⇧(⇥)] = ETS-SARL[J⇧(⇥)],
the fourth equality is correct by definition of the expected
regret in the SARL problem, and the penultimate inequality
is correct because from Lemma 4, the sequence of matrices
�n

t is increasing, that is, �n ��n
t ⌫ 0 and Dn is positive

semi-definite, and consequently, tr(Dn(�n
t � �n))  0,

n 2 {2, 3}. Finally, the last inequality is correct because of
(26). This proves the statement of Theorem 1.

V. EXPERIMENTS

In this section, we illustrate the performance of the
TS-MARL algorithm through numerical experiments.

We consider an instance of the MARL problem where
system 1 (which is unknown to the agents in our problem),
has the following parameters (which are the same as the
model studied in [25]) with d1X = d1U = 3,

A11 =

2

4
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

3

5 , B11 = I3, (30)
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Fig. 2. Expected regret under the TS-MARL algorithm

and systems 2 and 3 are one-dimensional, that is, d2X =
d3X = d2U = d3U = 1, with the following parameters,

A21 = B21 =
⇥
1 0 1

⇤
, A22 = 1.01, B22 = 1 (31)

A31 = B31 =
⇥
0 1 1

⇤
, A33 = 1.01, B33 = 1. (32)

Further, we consider the following matrices (with the same
structure as the model in [25]) for the cost function,

Q = 10�3I5, R = I5. (33)

The prior distribution used in TS-MARL algorithm is set
according to Assumptions 2 and 3 with ⇥̂1(i), i = 1, 2, 3,
to be an all-one vector, ⌃1 = I6, and ⌦1 = {⇥̃ : kA +
BK(⇥̃)k  �} where we use � = 0.99 for the simulations.

While the theoretical result of Theorem 1 required the
same sampling seed among the agents (i.e., Assumption 4),
we consider both cases of same sampling seed and arbitrary
sampling seed for the experiments. We ran 50 simulations
and show the mean of regret with the 95% confidence interval
for each scenario.

As it can be seen from Figure 2, for both of theses cases,
our proposed TS-MARL algorithm achieves a Õ(

p
T ) regret

for our MARL problem, which matches the theoretical results
of Theorem 1.

VI. CONCLUSION

In this paper, we studied a multi-agent Linear-Quadratic
(LQ) reinforcement learning problem consisting of three
systems, an unknown system and two known systems, and
three agents. The goal was to minimize the infinite-horizon
average cost. We proposed a Thompson Sampling (TS)-
based multi-agent learning algorithm where each agent learns
the unknown system’s dynamics independently. We showed
that the expected regret of our algorithm is upper bounded
by Õ(

p
T ) under certain assumptions where Õ(·) hides

constants and logarithmic factors.
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