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Abstract—We study the problem of designing a dynamic
mechanism for security management in an interconnected multi-
agent system with N strategic agents and one coordinator. The
system is modeled as a network of N vertices. Each agent resides
in one of the vertices of the network and has a privately known
security state that describes its safety level at each time. The
evolution of an agent’s security state depends on its own state,
the states of its neighbors in the network and on actions taken
by a network coordinator. Each agent’s utility at time instant t
depends on its own state, the states of its neighbors in the network
and on actions taken by a network coordinator. The objective of
the network coordinator is to take security actions in order to
maximize the long-term expected social surplus. Since agents
are strategic and their security states are private information,
the coordinator needs to incentivize agents to reveal their infor-
mation. This results in a dynamic mechanism design problem
for the coordinator. We leverage the inter-temporal correlations
between the agents’ security states to identify sufficient conditions
under which an incentive compatible expected social surplus
maximizing mechanism can be constructed. We then identify two
special cases of our formulation and describe how the desired
mechanism is constructed in these cases.

Index Terms—dynamic mechanism design, interdependent val-
uations, social surplus maximization, incentive compatibility,
network security, multi-agent systems.

I. INTRODUCTION

Networked computing and communication systems are
ubiquitous and widely integrated in numerous contexts includ-
ing electronic commerce, telecommunications, smart grids,
cloud-based platforms as well as emerging intelligent trans-
portation systems. While the increasing prevalence of these
technologies in various industries enhances efficiency and
reliability in their operation, it also exposes the existing
infrastructures to new types of security threats in the form
of cyber attacks administered by various adversarial entities
[1]. Therefore, in tandem with further integration of advanced
computing and communication technologies into various es-
tablishments, sophisticated security machinery needs to be
devised and deployed so as to provide sufficient protection
against malicious infiltration.

In this work, we consider a networked cyber-physical sys-
tem which houses N strategic agents that interact with each
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other over a discrete infinite time horizon. These agents can
be viewed as the operators of computing units in a networked
computing environment. Each agent resides in one of the N
vertices of the network and has a security state that describes
its safety level at each time. For instance, in a computer
network the security state of each computing unit may indicate
whether or not that computer is infected with a computer virus.
The internal security of the network can be sabotaged through
cyber-attacks attempted by exogenous adversarial entities. Due
to the interconnections between agents in the network, once
an agent’s security is undermined its effects could spread
throughout the network and cause damage to other agents’
security as well. There is a network coordinator that has
security resources and takes actions to maximize the expected
social welfare of all the agents in the long run. In the context
of computer networks, the coordinator can be viewed as the
network manager who is in charge of preserving the long-
range network-wide security. It may have some computer se-
curity resources such as a limited number of antivirus software
licences, firewall technology with limited netwrok coverage,
etc. In this context, the actions available to the coordinator
can be its choices of the computers that it can select to invest
its limited security resources in so as to improve the network
security. The computers that are recipients of these security
resources will be more likely to remain secure afterwards
and/or recover from cyber attacks that have already happened.
To choose the best security enhancing action, the coordinator
needs the information about the security states of all the
agents at each time. Each agent’s security state at each time
is privately observed by that agent only and is not known to
others. The coordinator thus needs to elicit the information
about the security states of the agents in order to select the
optimal action. Since agents are self-interested and strategic,
they may not truthfully reveal their private information if
they believe that they can enhance their individual utility
by misreporting their security state. In order to resolve the
potential conflict of incentives that could arise between agents
and the coordinator, we borrow tools and principles from the
theory of dynamic mechanism design [2] to devise the rules
of interaction in the induced dynamic game in a way that the
objectives of all the participants get aligned in the emerging
equilibrium.
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A number of studies have adopted mechanism design prin-
ciples to model, formulate and address problems in the context
of networked systems security as surveyed in [3, Section 5].
Our work is inspired by the study of a network security
mangement problem in [4]. Farhadi et al in [4] consider a spe-
cific interdependent valuation model and develop an incentive
compatible expected social surplus maximizing mechanism for
managing network security in a given setup. In the present
work, we generalize the class of interdependent valuation
models for which an incentive compatible expected social
surplus maximizing mechanism can be obtained. The valuation
model considered in [4] can be viewed as a special case of
the broader family of the valuation models that is considered
in our work. We employ the idea of forming cross-inference
signals proposed in [4] to construct payment functions for a
truthfully implementable mechanism. While the authors in [4]
consider a particular cross-inference signal form to specify
the desired mechanism, we provide more general sufficient
conditions under which any proposed set of cross-inference
signals can be used to construct an incentive compatible
expected social surplus maximizing mechanism. Two special
instances of our formulation are provided in this paper to
demonstrate the construction of the desired mechanism.

The design of dynamic social surplus maximizing (efficient)
mechanisms was undertaken in the well-known studies [5] and
[6] for agents with independent private types. However, the
design of dynamic efficient mechanisms in presence of inter-
dependencies between the agents’ valuations was first studied
in [7] where existence of expected social surplus maximizing,
budget balanced and incentive compatible mechanisms was es-
tablished. The idea of exploiting the inter-temporal correlation
between agents’ states to design payment functions that would
ensure satisfaction of incentive compatibility constraints, was
also initially proposed in [7]. These ideas were applied in [4]
to design an incentive compatible, ex-ante budget balanced
and individually rational mechanism to maximize the long-
term expected social surplus in a given network model under
certain assumptions about the agents’ utility models and state
evolution dynamics of the network.

The rest of the paper is organized as follows: we discuss the
problem formulation and the mechanism setup in Section II. In
Section III, we construct an incentive compatible expected so-
cial surplus maximizing mechanism under a generic setup. In
Sections IV and V we describe the construction of the desired
mechanism for two special classes of problems. Section VI
discusses conditions for the satisfaction of ex-ante individual
rationality and budget balance constraints for an incentive
compatible mechanism. We summarize our findings and briefly
point out potential extensions to the current framework in
Section VII.

Notations: 1111×k is the k dimensional all ones vector. Z+

is the set of positive integers. For a set A, |A| denotes
the cardinality of A. 1{·} is the indicator function that
equals 1 if the statement in its subscript is true and is 0
otherwise. E denotes the expectation operator. For a random
variable/random vector θ, Eθ denotes that the expectation is

with respect to the probability distribution of θ. P denotes the
probability measure. x1:n and y1:m are shorthands for vectors
(x1, . . . , xn) and (y1, . . . , ym), respectively. For the vector
y1:m, y−j is the shorthand for (y1, . . . , yj−1, yj+1, . . . , ym).

II. PROBLEM FORMULATION

Consider N strategic agents that interact with each other
through an interconnected network over time steps t ∈ T :=
{0, 1, 2, . . .}. Let the graph G = (N , E) denote the network
with N := {1, 2, . . . , N} denoting the set of vertices and E
denoting the set of (directed) edges in this graph. Each agent
resides in one of the vertices in G. Let N i := {j ∈ N : j 6=
i , (j, i) ∈ E} denote the set of input neighbors of agent i.
Let Oi := {j ∈ N : j 6= i , (i, j) ∈ E} denote the set of
output neighbors of agent i.

In the context of computer networks, presence of an edge
(i, j) in the network graph can represent a communication link
from node i to node j through which node i can send data to
node j. Consequently, security of the computer at node j can
be impacted by the security of the computer at node i.

A. System Dynamics

Let Sit denote the security state of agent i at time t.
The realization of Sit is privately observed by agent i only
and is unknown to others. Sit takes values in a discrete set
S. For example S could be the set {0, 1}, where 0 and 1
represent “unsafe” and “safe” security states, respectively. The
network has a central coordinator1 that takes an action At
at time t. Actions are chosen from a finite set of admissible
actions denoted by A. For instance, consider A = N , where
action At = i denotes that the coordinator is applying a
security measure at node i in the network at time t. Let
S1:N
t := (S1

t , . . . , S
N
t ) denote the network state profile at time

t. It evolves according to the following Markovian dynamics:

P(S1:N
t+1 = s1:Nt+1 | S1:N

t , At)

=
N∏
i=1

P(Sit+1 = sit+1 | Sit , {S
j
t }j∈N i , At) , s

1:N
t+1 ∈ SN .

(1)

Thus, the probability distribution of an agent’s state at time
t+1 depends on its own state, the states of its input neighbors
and the coordinator’s action at time t. We also assume that the
states evolution dynamics are time-invariant, that is for any
t, t′ ∈ T, x1:N , y1:N ∈ SN and a ∈ A,

P(S1:N
t+1 = x1:N | S1:N

t = y1:N , At = a)

= P(S1:N
t′+1 = x1:N | S1:N

t′ = y1:N , At′ = a). (2)

B. Consumer Valuation and Utility Models

An agent’s valuation at time t is a function of its own state,
the states of its input neighbors and the action taken by the
coordinator. Agent i’s valuation at time t is given as:

vi(S1:N
t , At) =

∑
j∈N i

αji (S
i
t , At) S

j
t + βi(Sit , At), (3)

1By ”central” we mean that the coordinator has some network-wide
execution power.
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where αji (·, ·) and βi(·, ·) are publicly known functions. The
term

∑
j∈N i

αji (S
i
t , At) S

j
t is a weighted sum of the states of

agent i’s input neighbors at time t where the weights depend
on agent i’s current state Sit and the coordinator’s action At.
The term βi(Sit , At) in (3) reflects the intrinsic benefit to agent
i when action At is taken and its state is Sit . Note that agent
i’s valuation at time t is affine in its input neighbors’ states
but can depend on its own state and coordinator’s action in a
non-linear way through the functions αji (·, ·) and βi(·, ·).

Assumption 1. We assume that the valuation functions in (3)
are uniformly bounded, i.e., there is a positive number B <∞
such that:

max
s1:N∈SN ,a∈A

|vi(s1:N , a)| < B , ∀i ∈ N . (4)

The valuation model in (3) implies that the agents’ val-
uations are interdependent: each agent’s utility is directly
influenced by its input neighbors’ states as well as its own
state.

Remark 1. The valuation model considered in [4] (Equa-
tions (3)-(4) in [4]) is a special case of the family
of models in (3) that results by setting αji (S

i
t , At) =

α 1{Si
t=1 or At=i}

lji∑
k∈Ni lki

and βi(Sit , At) = Sit , under S =

{0, 1} and A = N . As defined in [4], lji ∈ (0, 1] denotes the
probability of attacks spreading from j to i and 0 < α < 1
indicates value of a safe neighborhood to each agent residing
in the network. We refer the reader to [4, Section 2] for precise
definition of the parameters as well as interpretation of the
specific model in the setup studied therein.

Let pit denote the payment charged to agent i at time t.
Then, agent i’s net utility at time t is:

ui(S1:N
t , At, p

i
t) = vi(S1:N

t , At)− pit. (5)

We assume that all agents discount the future with a common
discount factor δ ∈ (0, 1). The total utility of agent i across
the entire time horizon is given by:

U i := (1− δ)
∞∑
t=0

δtui(S1:N
t , At, p

i
t). (6)

The coordinator’s objective is to maximize the expected social

surplus E
{

(1− δ)
∞∑
t=0

δt
[ N∑
i=1

vi(S1:N
t , At)− c(At)

] }
where,

c(·) is a bounded function such that c(a) denotes the cost
incurred due to taking action a ∈ A.

We assume that the network configuration specified by
G = (N , E), the network state evolution dynamics in (1)-(2)
and the probability distribution of the network state profile at
time t = 0, i.e., π0(s1:N0 ) := P(S1:N

0 = s1:N0 ),∀s1:N0 ∈ SN
are common knowledge. The security states of the agents
however, are their private information. In order to maximize
its objective, the coordinator needs to incentivize the agents to
reveal their private state information at each time. Therefore,
the coordinator’s problem can be posed as a mechanism design
problem. We describe this problem in the following sections.

C. Mechanism Setup

We consider a dynamic direct mechanism where at each
time step t ∈ T, each agent reports a state from the set S
to the coordinator. Let sit and rit denote agent i’s true and
reported states at time t, respectively. Each agent can misreport
its state and thus, rit may be different from sit.

2 Define
ht := {r1:N0:t−1, a0:t−1}, where, r1:Nt denotes the reported state
profile at time t and at is the action taken at time t. We call
ht the public history at time t. Let Ht denote the set of all
possible values of ht. Let hit denote all the information that
is known to agent i at time t prior to observing Sit . Thus,
hit := {ht, si0:t−1}. Let Hit denote the set of all possible values
of hit.

A mechanism needs to specify actions and payments at each
time t. Such a mechanism consists of a sequence of action
functions qt, t ∈ T and a sequence of payment functions
pt, t ∈ T. For any ht ∈ Ht, and any reported state profile
r1:Nt ∈ SN at time t, qt(ht, r1:Nt ) ∈ A and pt(ht, r1:Nt ) ∈ RN .
qt(ht, r

1:N
t ) gives the action to be taken at time t and the

ith component of the payment vector pt(ht, r1:Nt ) denoted by
pit(ht, r

1:N
t ) gives the payment charged to agent i at time t.3

D. Incentive Compatibility

In a dynamic incentive compatible (IC) mechanism, truthful
reporting of private information (security states at each time
in our setup) constitutes an equilibrium of the dynamic game
induced by the mechanism. Here we adopt the periodic ex
post notion of incentive compatibility defined in [5], [6].
A dynamic direct mechanism (qt, pt)t∈T is periodic ex post
incentive compatible (p-EPIC) if at each time t every agent
i would prefer to report its true state regardless of its private
history hit and the states of other agents at that time (s−it ),
provided that all other agents adopt truth-telling strategy. (p-
EPIC) constraint is thus described as follows

E
[

(1− δ)
∞∑
t′=t

δt
′−t×

ui
(
S1:N
t′ , qt′(Ht′ , S

1:N
t′ ), pit′(Ht′ , S

1:N
t′ )

)
| hit, s1:Nt

]
≥ E

[
(1− δ)

∞∑
t′=t

δt
′−t×

ui
(
S1:N
t′ , qt′(Ht′ , S

−i
t′ , σ

i
t′(H

i
t′ , S

i
t′)),

pit′(Ht′ , S
−i
t′ , σ

i
t′(H

i
t′ , S

i
t′))
)
| hit, s1:Nt

]
,

∀s1:Nt ∈ SN , ∀hit ∈ Hit , ∀σit , ∀i ∈ N , ∀t ∈ T, (7)

where, σit′ : Hit′×S −→ S denotes agent i’s reporting strategy
at time t′, Ht′ and Hi

t′ are random vectors describing the
public history and agent i’s private history at time t′.

2For example in a computer network, a strategic operator may down-report
its computer security level to selfishly enhance its likelihood of receiving the
antivirus software license.

3Note that the payment functions can output both positive and negative
values, indicating taxes and subsidies, respectively.
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E. Coordinator’s Problem Formulation

The expected social surplus under the IC mechanism

(qt, pt)t∈T is E
{

(1−δ)
∞∑
t=0

δt
[ N∑
i=1

vi
(
S1:N
t , qt(Ht, S

1:N
t )

)
−

c
(
qt(Ht, S

1:N
t )

)] }
when all the agents adopt the truthful

strategy.4 The expected social surplus maximization problem
can thus be formulated as

max
(qt,pt)t∈T

E
{

(1− δ)
∞∑
t=0

δt
[ N∑
i=1

vi
(
S1:N
t , qt(Ht, S

1:N
t )

)
− c
(
qt(Ht, S

1:N
t )

)] }
subject to (7). (8)

When agents report their states truthfully, the best action policy
is given by the solution of an infinite-horizon MDP with state
dynamics given by (1) and (2) and the total reward being the
social surplus. We formalize this observation in the following
lemma.

Lemma 1. Under an incentive compatible mechanism the
optimal action policy is a stationary Markov policy ρ∗ :
SN −→ A that selects a maximizing action in the following
Bellman equation [8]:

V (s1:N ) = max
a∈A

{ N∑
i=1

vi(s1:N , a)− c(a)

+ δ ES1:N [V (S1:N ) | s1:N , a ]
}
,∀s1:N ∈ SN .

(9)

Proof. The proof follows from classical results for infinite-
horizon discounted MDPs [9].

Note that there exist well-known solution methods for
solving Bellman equations such as linear programming meth-
ods [8, Chapter 6]. It thus remains to construct payment
functions pt, t ∈ T, that would guarantee satisfaction of the
IC constraints in (7).

III. INCENTIVE COMPATIBLE EXPECTED SOCIAL SURPLUS
MAXIMIZING MECHANISM

In this section we borrow the approach of using cross-
inference signals proposed in [4] to construct payment func-
tions that align agents’ incentives with those of the coordina-
tor’s. We exploit the correlation between each agent i’s state
at time t (Sit) and its output neighbors’ states at time t + 1
(Sjt+1, j ∈ Oi) to form the cross-inference signal mi

t from
which Sit can be inferred at time t + 1. We then propose
payment functions of the form pit+1(mi

t, r
−i
t , at), i ∈ N that

determine agent i’s payments based on the cross-inference
signal mi

t rather than agent i’s report rit. We provide sufficient
conditions for the cross-inference signals that ensure incentive
compatibility. We elaborate on our approach below.

At each time t, mi
t is defined as

mi
t := f i({rjt+1}j∈Oi , r−it , at), (10)

4Note that truthful reporting equilibrium may not be the unique equilibrium
of the induced game.

where, f i(·), i ∈ N are some time-invariant mappings that
are publicly known. mi

t as defined in (10) can be viewed as
a proxy signal that informs the coordinator about the security
state of agent i at time t based on the reports of agent i’s
output neighbors at time t + 1 ({rjt+1}j∈Oi ) as well as the
coordinator’s action (at) and other agents’ reports (r−it ) at
time t.

The following theorem describes conditions under which
cross-inference signals can be used to construct IC expected
social surplus maximizing mechanisms.

Theorem 1. Suppose the network G = (N , E) is such that
Oi 6= ∅,∀i ∈ N . Suppose the cross-inference signals in (10)
are such that

E[mi
t | s1:Nt , at] = sit , ∀s1:Nt ∈ SN ,∀at ∈ A,∀i ∈ N , (11)

where the expectation is taken assuming that all agents except
i truthfully report their states.

Then, the payment functions and action policies defined be-
low constitute an expected social surplus maximizing incentive
compatible mechanism:

qt(ht, r
1:N
t ) := ρ∗(r1:Nt ) for all ht, r1:Nt , t, (12)

pit+1(mi
t, r
−i
t , at) := −1

δ

[∑
j 6=i

vj(r−it ,mi
t, at)− c(at)

]
,

i ∈ N , t ∈ T, (13)

pi0 := γi , i ∈ N , (14)

where, ρ∗(·) is the stationary Markov policy characterized in
Lemma 1 and γi is a constant participation fee charged to
agent i at time t = 0.

Proof. See Appendix A.

The key implication of Theorem 1 is the following: if we can
construct cross-inference signals of the form in (10) such that
(11) holds, then Theorem 1 provides an optimal mechanism for
the coordinator (given by (12)-(14)). Thus, the coordinator’s
mechanism design problem has been reduced to the problem
of constructing appropriate cross-inference signals.

Using (10) in (11) and evaluating the expectation on the
left-hand side results in the following equations:∑
{yj}

j∈Oi∈S|Oi|

f i({yj}j∈Oi , s
−i, a) ×

P
(
{Sj

t+1}j∈Oi = {yj}j∈Oi | S−i
t = s−i, Si

t = si, At = a
)

= si ,

si ∈ S. (15)

Note that for each (s−i, a) ∈ SN−1 × A, (15) is a linear
system of equations in the variables f i(·, s−i, a). Thus, if these
linear systems of equations have a solution, then the solution
gives us the desired cross-inference signal. The cross-inference
signals computed as such can then be used to determine the
payments through the payment form in (13).

We next consider two special families of states evolution dy-
namics under which the linear systems of equations described
by (15) have solutions. Therefore, for these special families
of problems, an optimal mechanism is given by Theorem 1.
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IV. BINARY SECURITY STATES

In this section we restrict our attention to the case where
each agent’s security state can take only two possible values:
safe state, indicated by 1 and unsafe state, indicated by 0; that
is S = {0, 1}. In the following lemma we identify a condition
on the state evolution dynamics under which an IC expected
social surplus maximizing mechanism can be obtained.

Lemma 2. Consider the network G = (N , E) in which Oi 6=
∅,∀i ∈ N . Suppose for each agent i ∈ N and for each profile
s−it ∈ {0, 1}N−1 and each action at ∈ A, there exists some
profile {sjt+1}j∈Oi for which the following condition holds
true:

P
(
{Sjt+1}j∈Oi = {sjt+1}j∈Oi | s−it , Sit = 0, at

)
6= P

(
{Sjt+1}j∈Oi = {sjt+1}j∈Oi | s−it , Sit = 1, at

)
, (16)

that is, P
(
{Sjt+1}j∈Oi | s−it , Sit = 0, at

)
and

P
(
{Sjt+1}j∈Oi | s−it , Sit = 1, at

)
are two distinct probability

mass functions (PMFs). Then, there always exist inference
signals mi

t = f i({rjt+1}j∈Oi , r−it , At) such that Equation (11)
of Theorem 1 is satisfied.

Proof. See Appendix C.

Example 1. Consider a network G = (N , E) in which Oi 6=
∅,∀i ∈ N , S = {0, 1} and A := N . The state dynamics are
given as:

P(Sit+1 = 1|Sit , {S
j
t }j∈N i , At) =

h̃(1− di)
∏

j∈N i:Sj
t=0

(1− lji) if Sit = 0 , At 6= i

h(1− di(1− h))
∏

j∈N i:Sj
t=0

(1− lji) if Sit = 0 , At = i

(1− di)
∏

j∈N i:Sj
t=0

(1− lji) if Sit = 1 , At 6= i

(1− di(1− h))
∏

j∈N i:Sj
t=0

(1− lji) if Sit = 1 , At = i

,

(17)

and P(Sit+1 = 0|Sit , {S
j
t }j∈N i , At) = 1 − P(Sit+1 =

1|Sit , {S
j
t }j∈N i , At). The above dynamics model a network

where each agent’s security state can change due to direct
external attacks or through indirect attacks from unsafe neigh-
bors. The action At = i denotes that the coordinator is
applying a security measure at node i in the network. The
parameters of the model are explained below.

1) h ∈ (0, 1) is the probability with which an agent’s safety
can be restored when it is in unsafe state and is the
recipient of the security measure. h is also the probability
with which an agent’s safety is preserved after it is subject
to an external attack, provided that the security measure
is applied to this agent at the time the attack takes place.
These objectives are achieved independently for an agent
that is the recipient of the security measure at a given
time.

2) di ∈ (0, 1) is the probability of agent i being the target
of external attack when it is in a safe state.

3) lji ∈ (0, 1) denotes the probability of attacks spreading
from agent j ∈ N i to agent i.

4) h̃ ∈ (0, h) is the probability with which an agent can
restore its safety when it is in unsafe state and the security
measure is not applied to it.

The above model is similar to the network security model
described in [4]. The key difference in our model and the
model in [4] is that if agent i is in unsafe state at time t, i.e.,
Sit = 0, and does not receive the security measure at that time,
i.e., At 6= i, under the dynamics in (17) it can still restore
its safety with probability h̃ ∈ (0, h) through some internal
protection mechanism that each agent is endowed with.

We observe that under the dynamics in (17) the following
inequalities hold true:

P(Sjt+1 = 1|s−it , Sit = 1, at) > P(Sjt+1 = 1|s−it , Sit = 0, at) ,

∀s−it ∈ SN−1,∀at ∈ A, ∀j ∈ Oi.

Considering some profile s−it ∈ SN−1 and some action at ∈
A, from the above inequalities it follows that

P
(
{Sjt+1}j∈Oi = 1111×|Oi| | s−it , Sit = 1, at

)
=
∏
j∈Oi

P(Sjt+1 = 1|s−it , Sit = 1, at)

>
∏
j∈Oi

P(Sjt+1 = 1|s−it , Sit = 0, at)

= P
(
{Sjt+1}j∈Oi = 1111×|Oi| | s−it , Sit = 0, at

)
.

Since the profile s−it and the action at were
picked arbitrarily, this observation implies that
the PMFs P({Sjt+1}j∈Oi | s−it , Sit = 0, at) and
P({Sjt+1}j∈Oi | s−it , Sit = 1, at) are indeed distinct for
all s−it ∈ SN−1, at ∈ A. Hence, the dynamics in (17)
satisfy the condition in (16). Therefore, based on the results
of Lemma 2 and Theorem 1 we conclude that under the
dynamics in (17) an IC expected social surplus maximizing
mechanism can be obtained. In particular, for each agent i
and each profile (s−i, a) ∈ {0, 1}N−1×A the cross-inference
signals f i(·, s−i, a) are given by the solution to the systems
of linear equations in (15). The cross-inference signals
computed as such can then be used in Theorem 1 to obtain
an IC expected social surplus maximizing mechanism (as
specified by (12)-(14)).

V. AFFINE DYNAMICS MODEL

In this section we consider the case where S ⊂ Z and
the state dynamics are an affine function of the neighbors’
states. Positive and negative state values indicate safety and
insecurity, respectively. Larger positive numbers indicate in-
creasingly safer states while smaller negative numbers are
indicators of increasingly poorer security states. Zero suggests
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a neutral security state. The security state of agent i evolves
according to the following dynamics:

Sit+1 =
∑
l∈N i

wil(S
i
t , At)S

l
t + µi(Sit , At) +Di(Sit , At), (18)

where At is the action taken at time t. The term∑
l∈N i

wil(S
i
t , At)S

l
t is a weighted sum of the states of agent

i’s input neighbors at time t where the weights depend on
agent i’s current state Sit and the coordinator’s action At. The
weights wil(·, ·) are integer-valued quantities. We assume that
wil(·, ·) 6= 0 for all l ∈ N i. Di(Sit , At) is the disturbance term
that takes values in the set {0,±1,±2, . . . ,±m},m ∈ Z+

according to the PMF ḡ(Sit , At) such that E[Di(sit, at)] = 0
for all sit ∈ S, at ∈ A. We can see that under the dynamics
specified in (18), agent i’s state at time t+1 is in affine relation
to the states of its input neighbors at time t but can depend on
its own state and the action at time t in an arbitrary fashion.

In the following lemma, we construct cross-inference sig-
nals of the form mi

t := f i({rjt+1}j∈Oi , r−it , at) which can be
used in Theorem 1 to construct an IC expected social surplus
maximizing mechanism.

Lemma 3. For the affine dynamics model in (18), define the
cross-inference signal mi

t as follows:

mi
t :=

1

|Oi|
∑
j∈Oi

1

wji (r
j
t , at)

×(
rjt+1 −

∑
l∈N j

l 6=i

wjl (r
j
t , at) r

l
t − µj(r

j
t , at)

)
, i ∈ N . (19)

Then, the above cross-inference signals satisfy Equation (11)
of Theorem 1.

Proof. The proof is omitted due to space limitation.

With the cross-inference signals defined in Lemma 3, The-
orem 1 provides the IC expected social surplus maximizing
mechanism.

VI. PARTICIPATION AND BUDGET CONSTRAINTS

In this section we provide further conditions under which
a dynamic mechanism satisfies individual rationality (IR) and
budget balance (BB) constraints.

Assumption 2. We make the following assumptions:
(i) Once each agent decides whether or not they want to

participate in the mechanism at time t = 0, they remain
committed to that decision and will not revise it in future.

(ii) If any of the agents opts out of the mechanism at time
t = 0, the coordinator will default to a neutral action
ā ∈ A from time t = 0 onward, which indicates
the absence of any regulatory efforts exerted by the
coordinator to preserve or enhance the network security
state. Under this mode of the mechanism’s operation,
no security resources are allocated to the agents and no
payment is charged to any of the agents across the entire
time horizon.

A. Individual Rationality

Individual rationality (IR) constraint ensures that each
agent’s expected total utility at the truthful reporting equilib-
rium weakly exceeds the expected reservation utility that this
agent would obtain if it unilaterally opts out of the mechanism.
The ex-ante5 IR constraint can be described as follows:

E
[

(1− δ)
∞∑
t=0

δtui
(
S1:N
t , qt(Ht, S

1:N
t ), pit(Ht, S

1:N
t )

) ]
≥ E

[
(1− δ)

∞∑
t=0

δtui
(
S1:N
t , ā, 0

) ]
,∀i ∈ N , (20)

where the expression on the right-hand side denotes the
expected total utility that agent i would obtain when the
mechanism operates under the neutral action ā after agent i
opts out at time t = 0. We say that a mechanism (qt, pt)t∈T
is individually rational if it satisfies the ex-ante IR constraints
in (20).

B. Budget Balance

Budget balance (BB) constraint guarantees that at the
truthful reporting equilibrium, the expected value of all the
monetary payments collected from the agents minus the
expected value of all the monetary subsidies paid to the
agents across the entire time horizon is equal to zero. Ex-
ante budget balance constraint would thus ensure that at the
truthful reporting equilibrium, in expectation, the monetary
transfers get accumulated neither on the agents’ side nor on
the coordinator’s side, but rather are in constant circulation
to ensure proper functioning of the entire network. Ex-ante
budget balance constraint is expressed as follows:

E
[

(1− δ)
∞∑
t=0

δt
N∑
i=1

pit(Ht, S
1:N
t )

]
= 0. (21)

We say that a mechanism (qt, pt)t∈T is budget balanced if it
satisfies the ex-ante BB constraint in (21).

In the following lemmas we provide sufficient conditions
that an IC mechanism needs to satisfy in order to respect the
BB and IR constraints in (21) and (20), respectively.

Lemma 4. Consider the IC mechanism (ρ∗, pt)t∈T where ρ∗

is the stationary Markov policy characterized in Lemma 1 and
payment functions pt, t ∈ T, are of the form pit+1(mi

t, r
−i
t , at),

i ∈ N , with mi
t being as defined in (10). Suppose the

participation fees charged to the agents at time t = 0 are
of the following form:

pi0 := −E
[ ∞∑
t=0

δt+1 pit+1(mi
t, S
−i
t , at)

]
, i ∈ N . (22)

where, at := ρ∗(S1:N
t ) is the action taken at time t and mi

t

is the inference signal defined in (10). The expectation in (22)
is taken with respect to the evolution dynamics of the network

5For the distinction between the various phases (ex-ante, interim and ex-
post) in the timeline of a game induced under a given mechanism, we refer
the reader to [10, Section 3.2.2]
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state profile given in (1)-(2) and the initial distribution of the
network state profile, i.e., π0(·).

Then the mechanism (ρ∗, pt)t∈T is budget balanced.

Proof. See Appendix D.

In order to guarantee satisfaction of the IR constraints in
(20) we make the following assumption.

Assumption 3. We assume that the valuation functions in (3)
are such that

E
[ ∞∑
t=0

δt vi(S1:N
t , ρ∗(S1:N

t ))
]
≥ E

[ ∞∑
t=0

δtvi
(
S1:N
t , ā

) ]
,

∀t , ∀i ∈ N , (23)

where, ρ∗ is the expected social surplus maximizing action
policy characterized in Lemma 1.

The above assumption essentially means that in expectation,
each agent’s accumulated utilities over the entire time horizon
when the coordinator takes actions given by the expected
social surplus maximizing policy ρ∗ (see Lemma 1), exceeds
that under the coordinator’s inaction (ā).

The following lemma provides sufficient conditions that an
IC mechanism needs to satisfy in order to respect the IR
constraints in (20).

Lemma 5. Consider the IC mechanism (ρ∗, pt)t∈T where ρ∗

is the stationary Markov policy characterized in Lemma 1 and
payment functions pt, t ∈ T, are of the form pit+1(mi

t, r
−i
t , at),

i ∈ N , with mi
t being as defined in (10). Suppose the

participation fees charged to the agents at time t = 0 are of the
form given in (22). Then, under Assumption 3 the mechanism
(ρ∗, pt)t∈T is individually rational.

Proof. See Appendix E.

VII. CONCLUSION

The problem of designing a dynamic mechanism for se-
curity enhancement in an interconnected multi-agent system
with N strategic agents and one coordinator was considered.
We modeled the system as a network with N vertices. Each
agent lives in one of the vertices of the network and has a
security state that describes its safety level at each time and is
privately observed by that agent only. In our setup each agent’s
security state evolution dynamics follows a Markovian model
and depends on its own state, the states of its neighbors in
the network and on actions taken by the network coordinator.
The agents have interdependent valuations in the sense that
each agent’s utility at each time is directly influenced by
its own state as well as the states of its neighbors in the
network. The network coordinator chooses security actions
so as to maximize the expected social surplus in the long
run. The coordinator therefore needs to elicit agents’ private
security state information to choose the best action at each
time. Since agents are strategic and self-interested they need
to be incentivized to truthfully reveal their private information.
The coordinator’s problem was therefore posed as a dynamic

mechanism design problem. We used the inter-temporal corre-
lations between the agents’ security states to specify sufficient
conditions under which an incentive compatible expected
social surplus maximizing mechanism can be obtained. We
then described construction of the desired mechanism for two
special classes of problems.

Extending these results under richer valuation models that
can incorporate more sophisticated forms of interdependencies
is an interesting future direction. Moreover, it would be
interesting to study the design of dynamic security enhancing
mechanisms that also exhibit desirable revenue properties for
a coordinator that seeks to earn profits through providing
security preserving services to the network.

APPENDIX A
PROOF OF THEOREM 1

We first prove the following lemma which will be used to
establish Theorem 1.

Lemma 6. Consider the mechanism (qt, pt)t∈T described in
Theorem 1. Suppose this mechanism satisfies the following
condition:

E[ pit+1(mi
t, S
−i
t , At) | s1:Nt , at ] = −1

δ

[∑
j 6=i

vj(s1:Nt , at)− c(at)
]
,

∀s1:Nt ∈ SN ,∀at ∈ A, ∀i ∈ N ,∀t ∈ T, (24)

where mi
t is given by (10) and the expectation is taken

under truthful reporting strategies for all agents other than i.
Then, the mechanism of Theorem 1 is an incentive compatible
expected social surplus maximizing mechanism.

Proof. See Appendix B.

We will now show that condition (11) of Theorem 1
implies condition (24) of Lemma 6. This would mean that the
mechanism of Theorem 1 is an incentive compatible expected
social surplus maximizing mechanism. If all agents except i
are truthful, we can use the definition of payment functions in
(13) to write

E
[
pit+1(mi

t, S
−i
t , At) | s1:Nt , at

]
= −1

δ
E
[ ∑
j 6=i

vj(S−it ,mi
t, At)− c(At) | s1:Nt , at

]
= −1

δ

{ ∑
j 6=i

j:i∈N j

E
[
αij(S

j
t , At)m

i
t +

∑
l∈N j

l 6=i

αlj(S
j
t , At)S

l
t

+ βj(Sjt , At) | s1:Nt , at

]
+
∑
j 6=i

j:i/∈N j

E
[ ∑
l∈N j

αlj(S
j
t , At)S

l
t + βj(Sjt , At) | s1:Nt , at

]

− c(at)
}
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= −1

δ

{ ∑
j 6=i

j:i∈N j

(
αij(s

j
t , at)E[ mi

t|s1:Nt , at ]︸ ︷︷ ︸
sit

+
∑
l∈N j

l 6=i

αlj(s
j
t , at)s

l
t + βj(sjt , at)

)

+
∑
j 6=i

j:i/∈N j

( ∑
l∈N j

αlj(s
j
t , at)s

l
t + βj(sjt , at)

)
− c(at)

}

= −1

δ

[∑
j 6=i

( ∑
l∈N j

αlj(s
j
t , at)s

l
t + βj(sjt , at)

)
− c(at)

]
= −1

δ

[∑
j 6=i

vj(s1:Nt , at)− c(at)
]
.

Thus, condition (24) of Lemma 6 is true and hence the
mechanism of Theorem 1 is an incentive compatible expected
social surplus maximizing mechanism.

APPENDIX B
PROOF OF LEMMA 6

In order to prove that the described mechanism is IC in the
periodic ex post sense expressed in (7), we need to argue that
at each time t, agent i can maximize its expected continuation
utility by truthfully reporting its state at that time regardless
of its private history hit and the states of other agents s−it
at that time, provided that all other agents adopt truth-telling
strategy. According to the one-shot deviation principle [6], [5]
it suffices to argue that agent i is deterred from deviating from
truth-telling strategy in a single time step and then reverting
to truthful reporting afterwards. That is, we need to show
that reporting sit is the best response to agent i’s problem of
maximizing its expected continuation utility at time t as given
below:6

max
rit∈S

{
vi(s1:Nt , qt(ht, r

i
t, s
−i
t ))− pit(mi

t−1, r
−i
t−1, at−1)︸ ︷︷ ︸
†

+ δ E[ vi(S1:N
t+1 , qt+1(Ht+1, S

1:N
t+1 ))

− pit+1(mi
t, s
−i
t , qt(ht, r

i
t, s
−i
t )) | s1:Nt , hit ]

+ E
[ ∞∑
t′=t+2

δt
′−t
(
vi(S1:N

t′ , qt′(Ht′ , S
1:N
t′ ))

− pit′(mi
t′−1, S

−i
t′−1, qt′−1(Ht′−1, S

1:N
t′−1))

)
| s1:Nt , hit

] }
.

(25)

6Note that the participation fee charged to agent i at time 0 as given in
(14), is independent of agent i’s future reports and thus can be dismissed in
agent i’s best response optimization problem in (25).

Noting that the term † in (25) does not depend on rit and using
(12), the objective in (25) can be rewritten as

max
rit∈S

{
vi(s1:Nt , ρ∗(rit, s

−i
t ))

+ δ E[ vi(S1:N
t+1 , ρ

∗(S1:N
t+1 ))

− pit+1(mi
t, s
−i
t , ρ∗(rit, s

−i
t )) | s1:Nt ]

+ E
[ ∞∑
t′=t+2

δt
′−t
(
vi(S1:N

t′ , ρ∗(S1:N
t′ ))

− pit′(mi
t′−1, S

−i
t′−1, ρ

∗(S1:N
t′−1))

)
| s1:Nt

] }
. (26)

From (24) it follows that:

E[pit+1(mi
t, s
−i
t , ρ∗(rit, s

−i
t )) | s1:Nt ]

= −1

δ

[∑
j 6=i

vj(s1:Nt , ρ∗(rit, s
−i
t ))− c(ρ∗(rit, s−it ))

]
,

and that,

E[ pit+2(mi
t+1, S

−i
t+1, ρ

∗(S1:N
t+1 )) | s1:Nt ]

= E[ E[pit+2(mi
t+1, S

−i
t+1, ρ

∗(S1:N
t+1 )) |s1:Nt , S1:N

t+1 ] | s1:Nt ]

= E[ E[pit+2(mi
t+1, S

−i
t+1, ρ

∗(S1:N
t+1 )) |S1:N

t+1 ] | s1:Nt ]

= E[−1

δ

[∑
j 6=i

vj(S1:N
t+1 , ρ

∗(S1:N
t+1 ))− c(ρ∗(S1:N

t+1 ))
]
| s1:Nt ]

= −1

δ
E
[∑
j 6=i

vj(S1:N
t+1 , ρ

∗(S1:N
t+1 ))− c(ρ∗(S1:N

t+1 )) | s1:Nt
]
.

(27)

Using similar steps as in (27), it can be shown that:

E[ pit+k+1(mi
t+k, S

−i
t+k, ρ

∗(S1:N
t+k)) | s1:Nt ]

= −1

δ
E
[∑
j 6=i

vj(S1:N
t+k , ρ

∗(S1:N
t+k))− c(ρ∗(S1:N

t+k)) | s1:Nt
]
,

for k > 1. (28)

Using the above equations, (26) can be simplified and written
as:

max
rit∈S

{ N∑
j=1

vj(s1:Nt , ρ∗(rit, s
−i
t ))− c(ρ∗(rit, s−it ))

+ E
[ ∞∑
t′=t+1

δt
′−t
( N∑
j=1

vj(S1:N
t′ , ρ∗(S1:N

t′ ))

− c(ρ∗(S1:N
t′ ))

)
| s1:Nt

] }
. (29)

From (29) we observe that agent i’s expected continuation
utility at time t is in alignment with expected continuation
social surplus at time t. Since ρ∗(sit, s

−i
t ) is the expected social
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surplus maximizing action7 when the network state profile is
(sit, s

−i
t ), it follows that

N∑
j=1

vj(s1:Nt , ρ∗(sit, s
−i
t ))− c(ρ∗(sit, s−it ))

+ E
[ ∞∑
t′=t+1

δt
′−t
( N∑
j=1

vj(S1:N
t′ , ρ∗(S1:N

t′ ))

− c(ρ∗(S1:N
t′ ))

)
| s1:Nt

]
≥

N∑
j=1

vj(s1:Nt , ρ∗(rit, s
−i
t ))− c(ρ∗(rit, s−it ))

+ E
[ ∞∑
t′=t+1

δt
′−t
( N∑
j=1

vj(S1:N
t′ , ρ∗(S1:N

t′ ))

− c(ρ∗(S1:N
t′ ))

)
| s1:Nt

]
,

∀rit ∈ S. (30)

That is, the truthful report sit is the best response to agent
i’s problem of maximizing its expected continuation utility at
time t (see (25)) under the mechanism described in Lemma 6.
This in turn implies that indeed under the described mecha-
nism the expected social surplus maximizing action ρ∗(s1:Nt )
corresponding to the true state profile s1:Nt will be selected
at each time t. Therefore, provided that the conditions in
(24) are satisfied, the mechanism described in Theorem 1 is
incentive compatible and expected social surplus maximizing.
This completes the proof.

APPENDIX C
PROOF OF LEMMA 2

Given that sit ∈ {0, 1}, for each agent i and each s−it ∈
{0, 1}N−1, at ∈ A, the conditions in (11) result in the
following system of linear equations:∑
{sjt+1}j∈Oi∈{0,1}|Oi|

f i({sjt+1}j∈Oi , s−it , at)

P
(
{Sjt+1}j∈Oi = {sjt+1}j∈Oi | s−it , Sit = x, at

)
= x ,

x ∈ {0, 1}, (31)

where the unknowns are agent i’s cross-inference signal values
f i({sjt+1}j∈Oi , s−it , at) corresponding to each of the profiles
{sjt+1}j∈Oi , given the profile s−it and the action at. The
condition in (31) represents a system of linear equations with
a 2×2|O

i| dimensional coefficients matrix. This system admits
at least one solution if its coefficients matrix is full rank,
i.e., if its rows are linearly independent. It is straightforward
to verify that two distinct PMFs give rise to two linearly
independent vectors. Therefore, provided the conditions in
(16) are satisfied, there always exist cross-inference signals
mi
t = f i({rjt+1}j∈Oi , r−it , At),∀i ∈ N ,∀t ∈ T such that

Equation (11) of Theorem 1 holds true. These signals are given

7See characterization of ρ∗(·) in Lemma 1.

by a solution to the system of linear equations in (31). This
completes the proof.

APPENDIX D
PROOF OF LEMMA 4

We need to argue that the described mechanism satisfies the
BB constraint given in (21). Let us rewrite the left-hand side
in (21) as:

(1− δ)E
[ N∑
i=1

pi0 +
∞∑
t=0

δt+1
N∑
i=1

pit+1(mi
t, S
−i
t , at)

]
= (1− δ)E

[ N∑
i=1

pi0 +
N∑
i=1

∞∑
t=0

δt+1pit+1(mi
t, S
−i
t , at)

]
= (1− δ)E

[ N∑
i=1

(
pi0 +

∞∑
t=0

δt+1pit+1(mi
t, S
−i
t , at)

) ]
= (1− δ)

N∑
i=1

E
[
pi0 +

∞∑
t=0

δt+1pit+1(mi
t, S
−i
t , at)

]
.

Using the value of pi0 given in (22), it is straightforward to
see that the above expression is equal to 0. This completes the
proof.

APPENDIX E
PROOF OF LEMMA 5

Given the mechanism (ρ∗, pt)t∈T is IC and the participation
fees pi0, i ∈ N , are of the form given in (22), agent i’s
maximum expected total utility is given by:

E
[

(1− δ)
∞∑
t=0

δtui
(
S1:N
t , ρ∗(S1:N

t ), pit

) ]
= E

{
(1− δ)

[
vi(S1:N

0 , ρ∗(S1:N
0 ))− pi0

+

∞∑
t=0

δt+1
(
vi(S1:N

t+1 , ρ
∗(S1:N

t+1 ))− pit+1(mi
t, S
−i
t , ρ∗(S1:N

t ))
) ] }

= E
{

(1− δ)
∞∑
t=0

δt vi(S1:N
t , ρ∗(S1:N

t ))
}

− E
{

(1− δ)
[
pi0 +

∞∑
t=0

δt+1 pit+1(mi
t, S
−i
t , ρ∗(S1:N

t ))
]}

︸ ︷︷ ︸
=0

(32)

= E
[
(1− δ)

∞∑
t=0

δt vi(S1:N
t , ρ∗(S1:N

t ))
]

≥ E
[

(1− δ)
∞∑
t=0

δtvi
(
S1:N
t , ā

) ]
(33)

= E
[

(1− δ)
∞∑
t=0

δtui
(
S1:N
t , ā, 0

) ]
.

Note that the second term in (32) is zeroed out because pi0
is of the form given in (22). The inequality in (33) followed
from Assumption 3. This establishes satisfaction of the IR
constraints in (20).

1636
Authorized licensed use limited to: University of Southern California. Downloaded on February 17,2021 at 02:07:40 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES
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