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Abstract—Joint optimization of scheduling and estima-
tion policies is considered for a system with two sensors
and two noncollocated estimators. Each sensor produces
an independent and identically distributed sequence of ran-
dom variables, and each estimator forms estimates of the
corresponding sequence with respect to the mean-squared
error sense. The data generated by the sensors are trans-
mitted to the corresponding estimators over a bandwidth-
constrained wireless network that can support a single
packet per time slot. The access to the limited communi-
cation resources is determined by a scheduler that decides
which sensor measurement to transmit based on both ob-
servations. The scheduler has an energy-harvesting bat-
tery of limited capacity, which couples the decision-making
problem in time. Despite the overall lack of convexity of
this problem, it is shown that this system admits a globally
optimal scheduling and estimation strategy pair under the
assumption that the distributions of the random variables
at the sensors are symmetric and unimodal. Additionally,
the optimal scheduling policy has a structure characterized
by a threshold function that depends on the time index and
energy level. A recursive algorithm for threshold computa-
tion is provided.

Index Terms—Decision theory, estimation, multi-agent
systems, networked control systems, optimization, quanti-
zation.

I. INTRODUCTION

R ELIABLE real-time wireless networking is an essential
requirement of modern cyber-physical and networked con-

trol systems [1], [2]. Due to their large scale, these systems
are typically formed by multiple physically distributed sub-
systems that communicate over a wireless network of limited
capacity. One way to model this communication constraint is
to assume that, at any time instant, only one packet can be
reliably transmitted over the network to its destination. This
constraint forces the system designer to use strategies that
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Fig. 1. Schematic diagram for the remote sensing system two sensor–
estimator pairs with an energy-harvesting scheduler.

allocate the shared communication resources among multiple
communicating nodes. In addition to degrading the performance
of the overall system, the fact that communication among the
different agents in cyber-physical systems is imperfect often
leads to team-decision problems with nonclassical information
structures. Such problems are usually nonconvex, and are, in
general, difficult to solve.

We consider a sequential remote estimation problem over a
finite time horizon with noncollocated sensors and estimators.
The system, shown in Fig. 1, is composed of multiple sensors,
each of which has a stochastic process associated with it. Each
sensor is paired with an estimator, which is interested in forming
real-time estimates of its corresponding source process. The
sensors communicate with their estimators via a shared com-
munication network. Due to the limited capacity, at most, one
of the sensor’s observations can be transmitted at each time.
To avoid collisions [3], [4], the communication is mediated by
a scheduler, which observes the realization of each source. The
scheduler decides at each time which of the observations (if any)
gets transmitted over the communication network. In addition
to the communication constraint, the framework also assumes
that the scheduler operates under an energy constraint through a
finite battery, which is capable of harvesting additional energy
from the environment.

The designer’s goal is to find scheduling and estimation strate-
gies that jointly minimize an objective function consisting of a
mean-squared estimation error criterion and a communication
cost. This joint design problem is a team-decision problem with
a nonclassical information structure for which obtaining globally
optimal solutions is a challenging task in general [5]. How-
ever, under certain assumptions on the underlying probabilistic
model, despite the difficulties imposed by lack of convexity,
this problem admits an explicit globally optimal solution, whose
derivation is the centerpiece of this article.
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This problem is also motivated by applications such as the
Internet of Things (IoT), where there exists a necessity to coor-
dinate access to limited communication resources by multiple
heterogeneous devices in real time. In addition to that, in IoT
applications, the network is expected to be able to support a
massive number of users for which the traditional scheduling
techniques based on random access, collision resolution, and
retransmission are not feasibly implementable. Therefore, new
scheduling schemes where decisions are driven by data such
as the one proposed herein are becoming increasingly more
relevant. This framework is also applicable to wireless body area
networks, which are systems where multiple biometric sensors
deployed on humans communicate with remote sensing stations
over a wireless network [6]–[8]. A mobile phone is used as a hub
to coordinate the access of the network among multiple sensors.
The phone acts as a scheduler by collecting data from different
biometric sensors and chooses in real time which one of the
measurements is transmitted over the network.

A. Related Literature, Connections with Prior Work, and
Contributions

Over the last few years, the problem of scheduling trans-
missions over limited capacity networks shared by multiple
estimators/control loops has received a lot of attention [9]–[11]
and references therein. To the best of our knowledge, the works
of Shi and Zhang [12] and Xia et al. [13] were among the
pioneers in characterizing the tradeoffs between communica-
tion frequency and the estimation error covariance for event-
triggered scheduling schemes. Molin et al. [14] proposed a
dynamic priority scheme for scheduling real-time data over a
shared network for state estimation using the notion of Value of
Information. Recently, the works of Knorn and Quevedo [15] and
Knorn et al. [16] incorporated the features of energy-harvesting,
energy-sharing, and energy-leaking sensor batteries in the com-
putation of optimal transmission scheduling schemes. Guo et al.
[17] addressed the critical issue of security and corresponding
robustness concerning cyber-attacks in the remote estimation of
multisystems scheduled over a shared collision channel.

There is a vast literature on scheduling in point-to-point
communication between a single sensor and estimator. The work
of Imer and Basar [18] and, subsequently, Lipsa and Martins
[19], Nayyar et al. [20], and Wu et al. [21] were among the first
to address the issues related to the joint design of scheduling and
estimation strategies. Since then, critical new features have been
incorporated into the base model. Leong et al. [22] characterized
structural results of the optimal transmission scheduling func-
tion, displaying a threshold in the estimation error covariance
and the battery’s energy level. Wu et al. [23] and Leong et al.
[24] studied the issue of learning the optimal scheduling strategy
when the probability of packet drop by the channel is unknown.
The works of Leong et al. [25] and Lu et al. [26] studied the
optimal design of a threshold strategy for remote estimation in
the presence of an eavesdropper under a secrecy constraint, also
showing that the optimal scheduling strategy has a threshold
structure.

Our work relates and contributes to the existing literature
in the following aspects. The problem formulation considered
herein can be seen as a generalization of the system studied
in [18] to the case of multiple sensors with the addition of
an energy-harvesting scheduler. Unlike other results that make
structural assumptions on the estimator (linearity or piecewise
linearity), our approach is to perform joint optimization without
making any structural assumptions, which often leads to in-
tractable optimization problems (see II-D). Our results, however,
make assumptions on the probabilistic model of the sources
similar to the ones in [19], [20], and [27]. Nonetheless, despite
the simplicity of the system model, our results do not follow
from trivial or any existing arguments.

Our approach is to first relax the problem by expanding the
information sets at the estimators. We proceed by solving the
relaxed problem using the common information approach [28].
We investigate the value functions of the dynamic program
and completely characterize the jointly optimal scheduling and
estimation strategies for the relaxed problem. We show that the
globally optimal solution for the relaxed problem is independent
of the additional information introduced in the expansion, and,
therefore, it is also optimal for the original problem.

The main contributions of this work are as follows:
1) We establish the joint optimality of a pair of scheduling

estimation strategies for a sequential problem formula-
tion with independent and identically distributed (i.i.d.)
sources and an energy-harvesting scheduler under sym-
metry and unimodality assumptions of the observations’
probability density functions (pdfs).

2) We provide a proof strategy that uses a combination of
the expansion of information structures and the common
information approach.

3) We illustrate our theoretical results with numerical exam-
ples.

B. Notation

We adopt the following notation: Random variables and ran-
dom vectors are represented using upper case letters, such as
X . Realizations of random variables and random vectors are
represented by the corresponding lower case letter, such as
x. We use Xa:b to denote the collection of random variables
(Xa, Xa+1, . . . , Xb). The pdf of a continuous random variable
X , provided that it is well defined, is denoted byπ. Functions and
functionals are denoted using calligraphic letters such as F . We
useN (m,σ2) to represent the Gaussian probability distribution
of meanm and varianceσ2, respectively. The real line is denoted
by R. The set of natural numbers is denoted by N. The set of
non-negative integers is denoted by Z≥0. The probability of an
eventE is denoted by P (E); the expectation of a random variable
Z is denoted by E[Z]. The indicator function of a statement S
is defined as follows:

I (S)
def
=

{
1 if S is true

0 otherwise.
(1)

We also adopt the following convention.
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1) Consider the set W
def
= {1, 2, . . . , N} and a function

F : W → R are given. If W is the subset of elements
that maximize F , then argmaxα∈W F(α) is defined as
the smallest number in W .

II. PROBLEM STATEMENT

A. Basic Definitions

Consider a system with two sensor–estimator pairs and one
energy-harvesting scheduler. All the subsequent results hold for
an arbitrary number of sensor–estimator pairs, a fact that will
be formally stated in IX-A. Therefore, the focus on two sensor–
estimator pairs is without loss of generality.

The system operates sequentially over a finite time horizon
T ∈ N. The role of the scheduler is to mediate the commu-
nication between the sensors and estimators such that, at any
given time step, at most, one sensor–estimator pair is allowed
to communicate. We proceed to define the stochastic processes
observed at the sensors. Let Xi

t ∈ Rni denote the random vec-
tor observed at the ith sensor, t ∈ {1, . . . , T}, i ∈ {1, 2}. Let
n1 + n2 = n. We shall refer to Xi

t , i ∈ {1, 2}, as outputs of
information sources at time t. Throughout the article, we assume
that the sources are i.i.d. in time. Moreover, the random variables
Xi

t admit a pdf πi for all i ∈ {1, 2} and t ∈ {1, . . . , T}. We as-
sume that the stochastic processes {X1

t , t ≥ 1} and {X2
t , t ≥ 1}

are independent.
The scheduler operates with a battery of finite capacity de-

noted by B ∈ N such that B < T . Let the state of the battery
Et be defined as the number of energy units available at time step
t. At each time t, the scheduler makes a decision Ut ∈ {0, 1, 2},
where Ut = 0 denotes that no transmissions are scheduled,
Ut = 1 denotes that the scheduler transmits X1

t , and Ut = 2
denotes that the scheduler transmits X2

t . Each transmission
depletes the battery by one energy unit and only no transmissions
can be scheduled if the battery is empty, i.e., if Et = 0. Thus,
the scheduling decision Ut ∈ U(Et), where

U(Et)
def
=

{
{0, 1, 2} if Et > 0

{0} if Et = 0.
(2)

At time t, the scheduler harvests Zt units of energy from the
environment. The random variable Zt is i.i.d. in time according
to a probability mass function pZ(z), z ∈ Z≥0, and is indepen-
dent of the information source processes. The state of the battery
evolves according to the following equation:

Et+1 = F(Et, Ut, Zt), t ∈ {1, . . . , T − 1} (3)

where

F(Et, Ut, Zt)
def
= min {Et − I (Ut �= 0) + Zt, B} (4)

and initial energy E1 = B.
We will assume that the communication between the sched-

uler and the estimators occurs over a so-called unicast net-
work, where only the intended estimator receives the transmitted
packet. For i ∈ {1, 2}, the observation of the estimator E i at
time t is denoted by Y i

t , which is determined according to

Y i
t = hi(Xi

t , Ut), where

hi(Xi
t , Ut)

def
=

{
Xi

t if Ut = i

∅ if Ut �= i.
(5)

Remark 1: One way to think about the unicast network
model is that there are independent point-to-point links between
different sensor and estimator pairs. At each time instant, the
scheduler chooses at most one of these links to be active, and
the others remain idle.

B. Information Sets and Strategies

Let Xt
def
=(X1

t , X
2
t ) and Yt

def
=(Y 1

t , Y
2
t ). The scheduler de-

cides what to transmit based on its available information at time
t, which is ISt def

= {X1:t, E1:t,Y1:t−1}. The decision variable Ut

is computed according to a function ft as follows:

Ut = ft(X1:t, E1:t,Y1:t−1). (6)

We refer to the collection f
def
= {f1, . . . , fT } as the scheduling

strategy of the scheduler.
Let i ∈ {1, 2}. The estimator E i computes the state estimate

based on the entire history of its observations, IEit
def
= {Y i

1:t},
according to a function git as follows:

X̂i
t = git(Y

i
1:t). (7)

We refer to the collection gi def= {gi1, . . . , giT } as the estimation
strategy of estimator E i.

Remark 2: From now on, we assume that ft, g1t , and g2t ,
t ∈ {1, . . . , T}, are measurable functions with respect to the
appropriate sigma-algebras.

C. Cost

We consider a performance index that penalizes the mean-
squared estimation error and a communication cost for every
transmission made by the scheduler.

The cost functional and optimization problem are defined as
follows:

J (
f ,g1,g2

) def
=

T∑
t=1

E

[ ∑
i∈{1,2}

‖Xi
t − X̂i

t‖2 + cI(Ut �= 0)

]
. (8)

Problem 1: For the model described in this section, given
the statistics of the sensor’s observations, the statistics of the
energy-harvesting process, the battery storage limit B, com-
munication cost c, and the horizon T , find scheduling and
estimation strategies f ,g1, and g2 that jointly minimize the cost
J (f ,g1,g2) in 8.

D. Signaling

In problems of decentralized control and estimation with non-
classical information structures, the optimal solutions typically
involve a form of implicit communication known as signaling.
Signaling is the effect of conveying information through actions
[29], and it is the reason why problems within this class are
difficult to solve, e.g., [30].
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In order to illustrate the fundamental difficulty imposed by
signaling, consider the instance of 1 with two zero-mean inde-
pendent scalar sources, c = 0 and T = 1. Here, we will show
how the coupling between scheduling and estimation leads
to nonconvex optimization problems. First, consider a fixed
scheduling function f1 : R2 → {1, 2}. Let i, j ∈ {1, 2} such
that i �= j. Since the cost is the mean-squared error between
the observations and the estimates, the optimal estimator is the
conditional mean, i.e.,

gi�1 (y) = E
[
Xi

1 | Y i
1 = y

]
, i ∈ {1, 2}. (9)

When y = (i, xi
1), we have

gi�1 (i, xi
1) = xi

1, i ∈ {1, 2}. (10)

However, when y = ∅, we have

gi�1 (∅) = E[Xi | f1(X1
1 , X

2
1 ) �= i] (11)

from which two important points can be drawn: 1) The estimate
gi�1 (∅) is an implicit function of the scheduling function f1; 2)
the event that Xi was not transmitted always carries some im-
plicit information about Xi. It means that even no-transmission
symbols received over the network can be used as side informa-
tion for estimation. Therefore, solving the resulting optimization
problem for the scheduling function f1, which seeks to minimize
the cost functional

J (f1) =
∑

(i,j):i�=j

∫
R2

(
xi
1 − gi�1 (∅)

)2
I(f1(x

1
1, x

2
1) = j)π1(x

1
1)π2(x

2
1)dx

1
1dx

2
1 (12)

where gi�1 (∅) is given by 11, for arbitrary pdfs π1 and π2, is
intractable.

If on the other hand, we fix the estimation functions g11 and
g21 , such that the following identities are satisfied:

gi1(y) =

{
xi
1 if y = (i, xi

1)

ηi1 if y = ∅

(13)

where ηi1 ∈ R, the optimal scheduler is determined by the fol-
lowing inequality:

f�
1 (x1) = 1⇔ |x2

1 − η21 | < |x1
1 − η11 | (14)

which leads to the following nonconvex objective function:

J (g11 , g21) = E
[
min

{(
X1

1 − η11
)2

,
(
X2

1 − η21
)2}]

. (15)

In both cases, the globally optimal solution to 1 is nontrivial
for arbitrary pdfs π1 and π2 due to the coupling between f1, g21 ,
and g12 .

In this article, we attempt to solve the more general problem
statement for arbitrary T ≥ 1 and c ≥ 0 assuming that the pdfs
π1 and π2 satisfy certain properties.

III. MAIN RESULT

The following definition will be used to state our main result.
Definition 1 (Symmetric and unimodal pdfs): Let π :

Rn → R be a pdf. The pdf π is symmetric and unimodal around

a ∈ Rn if it satisfies the following property:

‖x− a‖ ≤ ‖y − a‖ ⇒ π(x) ≥ π(y), x, y ∈ Rn. (16)

Theorem 1: Provided that π1 and π2 are symmetric and
unimodal around a1 ∈ Rn1 and a2 ∈ Rn2 , respectively, the fol-
lowing scheduling and estimation strategies are globally optimal
for 1:

f�
t (x, e)

def
=

{
0, if maxi∈{1,2}

{‖xi − ai‖} ≤ τ�t (e)

argmaxi∈{1,2}‖xi − ai‖, otherwise
(17)

where τ�t : Z→ R is a threshold, and

gi�t (yi)
def
=

{
xi if yi = xi

ai if yi = ∅

(18)

for t ∈ {1, . . . , T}.

IV. INFORMATION STRUCTURES

Problem 1 can be understood as a sequential stochastic team
with three decision makers: The scheduler and the two esti-
mators. One key aspect to note is that Problem 1 has a non-
classical information structure. Such team problems are usually
nonconvex, and their solutions are found on a case-by-case basis.
Our analysis relies on the common information approach [28],
where the idea is to transform the decentralized problem into an
equivalent centralized one where the information for decision
making is the common information among all the decision
makers in the decentralized system.

We begin by establishing a structural result for the optimal
scheduling strategy. The following lemma states that the sched-
uler may ignore the past state observations at each sensor without
any loss of optimality.

Lemma 1: Without loss of optimality, the scheduler can be
restricted to strategies of the form

Ut = ft (Xt, E1:t,Y1:t−1) . (19)

Proof: Let the strategy profile of the estimators g1 and g2

be arbitrarily fixed. The problem of selecting the best scheduling
policy (for the fixed estimation strategy profiles g1 and g2)
simplifies to a Markov decision process (MDP), whose state

is defined as St
def
=(Xt, E1:t,Y1:t−1). Using simple arguments

involving conditional probabilities and the basic definitions
of II-A, we can show that the state process {St, t ≥ 1} is a
controlled Markov chain, i.e.,

P (St+1 | S1:t, U1:t) = P (St+1 | St, Ut). (20)

The cost incurred at time t of the equivalent MDP is

ρ(St, Ut)
def
=

∑
i∈{1,2}

∥∥Xi
t − X̂i

t

∥∥2 + cI(Ut �= 0) (21)

(a)
=

∑
i∈{1,2}

∥∥Xi
t − git(Y

i
1:t)
∥∥2 + cI(Ut �= 0) (22)

(b)
=

∑
i∈{1,2}

∥∥Xi
t − git

(
Y i
1:t−1, h

i(Xi
t , Ut)

) ∥∥2
+ cI(Ut �= 0) (23)
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where (a) follows from 7 and (b) follows from 5.
Thus, the problem of finding the optimal scheduling strategy

to minimize the costJ (f ,g1,g2) becomes equivalent to finding
the optimal decision strategy for an MDP with state process St

and instantaneous cost ρ(St, Ut). Standard results for MDPs
[31] imply that there exists an optimal scheduling strategy of
the form in lemma. Since this is true for any arbitrary g1 and
g2, it is also true for the globally optimal g1� and g2�. �

Under the structural result in 1, the information sets available
at the scheduler and estimators can be reduced to

ISt def
= {Xt, E1:t,Y1:t−1} (24)

IEit
def
=
{
Y i
1:t

}
, i ∈ {1, 2} (25)

without any loss of optimality. However, the information struc-
ture described by (24) and (25) do not share any common
information. In other words, the information sets ISt , IE1t , and
IE2t have no common random variables, a fact that limits the
utility of the common information approach. We resort to a
technique which consists of judiciously expanding the infor-
mation available at the decision makers such that the common
information approach can be more profitably employed.

A. Information Structure Expansion

We expand the estimators’ information sets to the following:

ĪE1t
def
=
{
E1:t,Y1:t−1, Y 1

t

}
(26)

ĪE2t
def
=
{
E1:t,Y1:t−1, Y 2

t

}
. (27)

The optimal cost for Problem 1 under an expanded infor-
mation structure is at least as good as the optimal cost under
the original information structure. (Having more information at
each estimator cannot worsen its performance.) Moreover, if the
optimal solution under the expanded information structure is
adapted to the original information structure, then this solution
is also optimal under the original information structure [5,
Proposition 3.5.1].

We proceed by defining another problem identical to Prob-
lem 1 but with expanded information sets at the estimators.

Problem 2: Consider the model of II with the expanded
information sets of (26) and (27) at the estimators E1 and E2,
respectively.

Given the statistics of the sensors’ observations, the statistics
of the energy harvested at each time, the battery storage limit
B, communication cost c, and the horizon T find the scheduling
and estimation strategies f ,g1, and g2 that jointly minimize the
cost J (f ,g1,g2) in 8.

Under the expanded information structure, the common in-
formation among the decision makers is

Icomt
def
= {E1:t,Y1:t−1} . (28)

Note that the common information contains several variables
that were not initially available to the estimators. However, we
will eventually show at the end of VI that the optimal estimation
strategy for 2 does not depend on this additional information. To
show this independence, we first establish the following lemma,

which provides a structural result for the estimation strategies
under the expanded information sets.

Lemma 2: Without loss of optimality, the search for optimal
strategies for estimator E i can be restricted to functions of the
form

git(E1:t,Y1:t−1, Y i
t ) =

{
Xi

t if Y i
t = Xi

t

g̃it(E1:t,Y1:t−1) otherwise.

(29)

Proof: Let the strategy of the scheduler be fixed to some
arbitrary f . We can view 2 from the perspective of the estimator
E i at time t as follows:

inf
gi
t

E
[
‖Xi

t − X̂i
t‖2
]
+ J̃ (30)

where

J̃ def
= E

[
T∑

k=1

cI(Uk �= 0) +

T∑
k=1

∑
j �=i

‖Xj
k − X̂j

k‖2

+
∑
k �=t

‖Xi
k − X̂i

k‖2
]
. (31)

Note that the estimation function git only affects the value of
the estimate X̂i

t , i.e.,

X̂i
t = git(ĪE

i

t ) (32)

which does not appear in 31. Since git does not affect J̃ , the
optimal estimate can be computed by solving

inf
gi
t

E
[
‖Xi

t − X̂i
t‖2
]
. (33)

This is the standard minimum mean-square error estimation
problem whose solution is the conditional mean, i.e.,

X̂i
t = E

[
Xi

t

∣∣ ĪEit

]
. (34)

Therefore, the optimal estimation strategy is of the form

gi�t (ĪEit ) =

{
Xi

t if Y i
t = Xi

t

E
[
Xi

t

∣∣ E1:t,Y1:t−1, Y i
t = ∅

]
otherwise.

(35)

Note that (E1:t,Y1:t−1) is known to E i in Problem 2. Thus

g̃it(E1:t,Y1:t−1)
def
= E

[
Xi

t

∣∣ E1:t,Y1:t−1, Y i
t = ∅

]
. (36)

Since 35 holds for any f , it also holds for the globally optimal
scheduling strategy f�. Therefore, the optimal estimate is of the
form given in the lemma. �

V. AN EQUIVALENT PROBLEM WITH A COORDINATOR

In this section, we will formulate a problem that will be
used to solve 2. We consider the model of II and introduce a
fictitious decision maker referred to as the coordinator, which
has access to the common information Icomt . The coordinator
is the only decision maker in the new problem. The scheduler
and the estimators act as “passive decision makers” to which
strategies chosen by the coordinator are prescribed.
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The equivalent system operates as follows: Let n1 and n2

denote the dimensions of the observation made by sensors 1 and
2, respectively. At each time t, based on Icomt , the coordinator
chooses a map Γt : Rn1 ×Rn2 → {0, 1, 2} for the scheduler,
and a vector X̃i

t ∈ Rni for each estimator E i, i ∈ {1, 2}. The
function Γt and vectors X̃1

t and X̃2
t are referred to as the

scheduling and estimation prescriptions. The scheduler uses its
prescription to evaluate Ut according to

Ut = Γt(Xt). (37)

The estimator E i uses its prescription to compute the estimate
X̂i

t according to

X̂i
t =

{
Xi

t if Y i
t = Xi

t

X̃i
t otherwise.

(38)

The coordinator selects its prescriptions for the scheduler and
the estimators using strategies dt, �1t , and �2t as follows:

Γt = dt(E1:t,Y1:t−1) (39)

and

X̃i
t = �it(E1:t,Y1:t−1), i ∈ {1, 2}. (40)

We refer to the collections d
def
= {d1, . . . , dT } and

�i
def
= {�it, . . . , �iT } as the prescription strategies for the scheduler

and the estimator E i, respectively. The strategies �1 and �2 must
be a valid estimation strategies in Problem 2. The strategy d
must be such that

ft(Xt, E1:t, Y1:t−1)
def
= [dt(E1:t, Y1:t−1)] (Xt) (41)

is a valid scheduling strategy in Problem 2. The cost incurred by
the prescription strategies d, �1, and �2 is identical as in 8, i.e.,

Ĵ (d, �1, �2) =
T∑

t=1

E

[
cI(Ut �= 0) +

∑
i∈{1,2}

‖Xi
t − X̂i

t‖2
]
.

(42)

Problem 3: Find prescription strategies d, �1, and �2 that
jointly minimize Ĵ (d, �1, �2).

Problem 3 is equivalent to Problem 2 in the sense that for
every scheduling strategy f and estimation strategies g1,g2 in
Problem 2, there exist prescription strategies d, �1, and �2 such
that J (f ,g1,g2) = Ĵ (d, �1, �2) and vice versa. Thus, solving
Problem 3 allows us to obtain optimal f�,g1�, and g2� for
Problem 2. The same technique is used in [20] to prove a similar
equivalence in a problem involving a single sensor–estimator
pair.

Problem 3 can be described as a centralized partially observed
Markov decision process (POMDP) as follows:

1) State process:

The state is St
def
=(Xt, Et).

2) Action process:
Let the set A(Et) be defined as the collection of all mea-
surable functions from Rn1 ×Rn2 → U(Et), where U
is defined in 2. The coordinator selects the prescription for
the network manager, Γt ∈ A(Et), and the prescriptions
for the estimators X̃1

t ∈ Rn1 and X̃2
t ∈ Rn2 .

3) Observations:
After choosing its action at time t, the coordinator ob-
serves Yt and Et+1.

4) Instantaneous cost:

Let X̃t
def
=(X̃1

t , X̃
2
t ). The instantaneous cost incurred is

given by

ρ(Xt,Γt, X̃t)
def
=

⎧⎪⎪⎨
⎪⎪⎩

∑
i∈{1,2}

‖Xi
t − X̃i

t‖2 if Γt(Xt) = 0

c+ ‖X2
t − X̃2

t ‖2 if Γt(Xt) = 1

c+ ‖X1
t − X̃1

t ‖2 if Γt(Xt) = 2.

(43)

5) Markovian dynamics:
Since Xt is an i.i.d process, Xt+1 is independent of St.
The evolution of the energy Et+1 is given by

Et+1 = min {Et − I (γt(Xt) �= 0) + Zt, B} . (44)

Noting that 44 can be written as a function of the state St,
action γt, and the noise Zt, the state St satisfies 20 and
forms a controlled Markov chain.

A. Dynamic Program

Having established that Problem 3 is a POMDP, the optimal
prescriptions can be computed by solving a dynamic program
whose information state is the belief of the state process given the
common information. However, since Et is perfectly observed,
the coordinator only needs to form a belief on Xt. Let x =
(x1, x2). We define the belief state at time t as follows:

Πt(x)
def
= P (Xt = x | E1:t,Y1:t−1) . (45)

Since the sources are i.i.d. and independent of the energy
process, we have

Πt(x) = π(x), t ∈ {1, . . . , T} (46)

where, due to the independence of the sources

π(x) = π1(x
1)π2(x

2). (47)

Lemma 3: Define the functions Vπ
t : Z→ R for t ∈

{0, 1, . . . , T + 1} as follows:

Vπ
T+1(e)

def
= 0, e ∈ {0, 1, . . . , B} (48)

and

Vπ
t (e)

def
= inf

x̃t,γt

E
[
ρ(Xt, γt, x̃t) + Vπ

t+1 (F (e, γt(Xt), Zt))
]

(49)

where x̃t ∈ Rn, γt ∈ A(e).
If the infimum in 49 is achieved, then at each time t ∈

{1, . . . , T} and for each e ∈ {0, 1, . . . , B}, the minimizing γt
and x̃t in 49 determines the optimal prescriptions for the network
manager and the estimators, respectively. Furthermore, V1(B)
is the optimal cost for Problem 3.

Proof: This result follows from standard dynamic program-
ming arguments for POMDPs. �
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VI. SOLVING THE DYNAMIC PROGRAM

In this section, we will find the optimal prescriptions using
the dynamic program in 3. For the remainder of this section,
without loss of generality, we will assume that π1 and π2 are
symmetric and unimodal around 0. The same arguments apply
for general ai ∈ Rni , i ∈ {1, 2}.

Note that each step of the dynamic program in 49 is an
optimization problem with respect to x̃t and γt. This is an
infinite-dimensional optimization problem since γt is a mapping
which lies in A(Et). The next lemma will describe the structure
of the optimal prescription for the scheduler and show that the
infinite-dimensional optimization in 49 can be reduced to a
finite-dimensional problem with respect to the vector x̃t. For
that purpose, we define the functions C0t+1, C1t+1 : Z→ R as
follows:

C0t+1(e)
def
= E

[Vπ
t+1 (min{e+ Zt, B})

]
(50)

C1t+1(e)
def
= c+ E

[Vπ
t+1 (min{e− 1 + Zt, B})

]
. (51)

Lemma 4: Suppose the prescription to the estimators are
x̃1
t , x̃

2
t at time t. Then, the optimal prescription to the scheduler

has the following form when e > 0:

γ�
t (xt)

def
=

{
0, if maxi∈{1,2}

{‖xi
t − x̃i

t‖
} ≤ τ�t (e)

argmaxi∈{1,2}
{‖xi

t − x̃i
t‖
}
, otherwise

(52)

where τ�t (e)
def
=
√
C1t+1(e)− C0t+1(e).

1 Moreover, the value

function Vπ
t of 3 can be obtained by solving the finite-

dimensional optimization in the following equation (53) shown
at the bottom of this page.

Proof: If e = 0, there is only one feasible scheduling policy

γ�
t (xt) = 0, xt ∈ Rn. (54)

Therefore

Vπ
t (0) = inf

x̃t

E

[ ∑
i∈{1,2}

‖Xi
t − x̃i

t‖2
]
+ C0t+1(0). (55)

If e > 0, the value function in 49 can be written as in the
following equation:

Vπt (e) = inf
x̃t

{
inf
γt

∫ [⎛⎝ ∑
i∈{1,2}

‖xi
t − x̃i

t‖2 + C0t+1(e)

⎞
⎠ I(γt(xt) = 0)

+
(
‖x2

t − x̃2
t ‖2 + C1t+1(e)

)
I(γt(xt) = 1)

+
(
‖x1

t − x̃1
t ‖2 + C1t+1(e)

)
I(γt(xt) = 2)

]
π(xt)dxt

}
. (56)

1The function C1t+1(e) is larger than C0t+1(e). Therefore, the threshold τ�t (e)
is a real number for all e ∈ {1, . . . , B} and t ∈ {1, . . . , T}.

For any fixed x̃i
t ∈ Rni , i ∈ {1, 2}, the scheduling prescrip-

tion that achieves the minimum in the inner optimization prob-
lem in 56 is determined as follows.

1) γ�
t (xt) = 0 if and only if

‖xi
t − x̃i

t‖2 ≤ C1t+1(e)− C0t+1(e), i ∈ {1, 2}. (57)

2) γ�
t (xt) = 1 if and only if

‖x1
t − x̃1

t‖2 > C1t+1(e)− C0t+1(e) (58)

and

‖x1
t − x̃1

t‖ ≥ ‖x2
t − x̃2

t‖. (59)

3) γ�
t (xt) = 2 if and only if

‖x2
t − x̃2

t‖2 > C1t+1(e)− C0t+1(e) (60)

and

‖x2
t − x̃2

t‖ > ‖x1
t − x̃1

t‖. (61)

Therefore

γ�
t (xt)

def
=

{
0, if maxi∈{1,2}

{‖xi
t − x̃i

t‖2
} ≤ C1t+1(e)− C0t+1(e)

argmaxi∈{1,2}
{‖xi

t − x̃i
t‖
}
, otherwise.

(62)

Using the optimal scheduling prescription in 62, the value
function becomes

Vt(e) = inf
x̃t

E
[
min

{‖X1
t − x̃1

t‖2 + ‖X2
t − x̃2

t‖2 + C0t+1(e),

‖X2
t − x̃2

t‖2 + C1t+1(e), ‖X1
t − x̃1

t‖2 + C1t+1(e)
}]

. (63)

�
Lemma 4 implies that the optimal solution to 3 can be found

by solving the finite-dimensional optimization problem in 53.
We will show that 53 admits a globally optimal solution under
certain conditions on the probabilistic structure of the problem.

Lemma 5: Let X1
t and X2

t be independent continuous
random vectors with pdfs π1 and π2. Provided that π1 and π2 are
symmetric and unimodal around zero2 then x̃�

t = 0 is a global
minimizer in 53 for all e ∈ {0, 1, . . . , B}.

Proof: The proof is in Appendix B. �
We are now ready to provide the proof of 1.

Proof of Theorem 1: We will first show that (f�,g1�,g2�)
as defined in 1 is globally optimal for 2.

2This assumption is without loss of generality. The same result holds for pdfs
symmetric and unimodal around arbitrary ai ∈ Rni , i ∈ {1, 2}, with x̃�

t =

(a1, a2) instead of x̃�
t = 0.

Vπ
t (e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
inf
x̃t

E

[ ∑
i∈{1,2}

‖Xi
t − x̃i

t‖2
]
+ C0t+1(e) if e = 0

inf
x̃t

E

[
min

{ ∑
i∈{1,2}

‖Xi
t − x̃i

t‖2 + C0t+1(e), ‖X2
t − x̃2

t‖2 + C1t+1(e), ‖X1
t − x̃1

t‖2 + C1t+1(e)

}]
if e > 0

(53)
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The optimal prescriptions for 3 are obtained using 4 5. The
optimal prescription for the scheduler is given by

γ�
t (xt)

def
=

⎧⎨
⎩
0, if max

i∈{1,2}
{‖xi

t‖
}
< τ�t (e)

arg max
i∈{1,2}

{‖xi
t‖
}
, otherwise

(64)

whose threshold functions τ�t (e) can be computed recursively
(see VII); and the optimal prescription for the estimators are

x̃i�
t = 0, i ∈ {1, 2}. (65)

Therefore, using the equivalence between 2 and 3, the optimal
strategy profiles for 2 are

f�
t (xt, et)

def
=

{
0, if maxi∈{1,2}

{‖xi
t‖
}
< τ�t (et)

argmaxi∈{1,2}‖xi
t‖, otherwise

(66)

and

gi�t
(
yit
) def
=

{
xi
t if yit = xi

t

0 if yit = ∅.
, i ∈ {1, 2} (67)

Moreover, since the solution to 2, (f�,g1�,g2�) does not
depend on the additional information provided to the estima-
tors and is adapted to the original information structure of the
estimators in 1, it is also a globally optimal strategy profile
for 1. �

VII. COMPUTATION OF OPTIMAL THRESHOLDS

Once the structural result in 1 is established, the optimal
scheduling strategy is completely specified by the sequence of
optimal threshold functions τ�t , t ∈ {1, . . . , T}. The thresholds
τ�t (e) are obtained using the functions C0t+1(e), C1t+1(e) in (50)
and (51). The functionsC0t (·), C1t (·) can be computed by comput-
ing the value functions Vπ

t via a backward inductive procedure.
Note that we can simplify the expression for the value function
using 5 and 53 to

Vπ
t (0) = E

[‖X1
t ‖2 + ‖X2

t ‖2 + Vπ
t+1 (min{Zt, B})

]
(68)

and

Vπ
t (e) = E

[
min

{‖X1
t ‖2 + ‖X2

t ‖2 + C0t+1(e),

‖X2
t ‖2 + C1t+1(e), ‖X1

t ‖2 + C1t+1(e)
}]

if e > 0. (69)

The following algorithm outlines the recursive computation
of the threshold function τ�t :

Remark 3: The expectations in the algorithm are taken
with respect to the random vectors X1

t and X2
t . Computing

these expectations for high-dimensional random vectors may
be computationally intensive for some source distributions, but,
in practice, they can be approximated using Monte Carlo meth-
ods. The remaining operations in the algorithm admit efficient
implementations.

VIII. ILLUSTRATIVE EXAMPLES

A. Optimal Blind Scheduling

Before we provide a few numerical examples, it is useful to
introduce a scheduling strategy which is based exclusively on the

Algorithm 1: Computing the Optimal Threshold Functions
τ�t .

Initialization:
t← T
Set Vπ

T+1(e)← 0 for e ∈ {0, . . . , B}
while t ≥ 1 do

Compute C0t+1(e) and C1t+1(e) using (50) and (51) for
e ∈ {1, . . . , B}
Set τ�t (e)←

√
C1t+1(e)− C0t+1(e) for e ∈ {1, . . . , B}

Compute Vπ
t (e) using 68 and 69 for e ∈ {0, . . . , B}

t← t− 1
end while

statistics of the sources and not on the observations. Consider the
following blind scheduling strategy: If the battery is not empty,
transmit the source whose variance is the largest, i.e.,

fblind
t (et)

def
=

{
0 if et = 0

argmaxi∈{1,2}
{

E
[‖Xi

t − E[Xi
t ]‖2

]}
otherwise.

(70)

The estimation strategies associated with blind scheduling are

gblind i
t

(
yit
) def
=

{
xi
t if yit = xi

t

E[Xi
t ] if yit = ∅.

, i ∈ {1, 2} (71)

The performance of the blind scheduling and the estimation
strategies is given by

J blind(B)
def
=

T∑
t=1

⎡
⎣P (Et = 0)

∑
i∈{1,2}

E
[‖Xi

t − E[Xi
t ]‖2

]

+(1− P (Et = 0)) min
i∈{1,2}

{
E
[‖Xi

t − E[Xi
t ]‖2

]}]
(72)

where the probabilities {P (Et = 0), t ∈ {1, . . . , T}} are com-
puted recursively using 3 and 4 and assuming E1 = B > 0 with
probability 1.

Example 1 (Limited number of transmissions): Consider
the scheduling of two i.i.d. zero-mean scalar Gaussian sources
with variances σ2

1 = σ2
2 = 1. Assume that the total system de-

ployment time is T and that during that time, the scheduler is
only allowed to transmitB < T times. Furthermore, assume that
during that time, there is no energy being harvested, i.e., Zt = 0
with probability 1, and there are no additional communication
costs, i.e., c = 0.

The algorithm outlined in VII is used to compute the optimal
thresholds, which are functions of the time index and the energy
level at the battery. Fig 2a displays the optimal thresholds
computed for this example with T = 100 and B = 30.

Note that when the energy level is greater than the remaining
deployment time, the optimal threshold is zero, that is, the
observation with the largest magnitude is always transmitted.
On the other hand, if the power level is below the remaining
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Fig. 2. Optimal threshold function for the scheduling of two i.i.d. stan-
dard Gaussian sources. The threshold is a function of the energy level
and time. (a) No energy harvesting. (b) Energy harvesting with p1Z .

deployment time, the optimal threshold is strictly positive, and
it increases as the power level decreases. It means that as the
battery depletes, the scheduler will only transmit observations
whose magnitudes are increasingly larger.

Example 2 (Energy-harvesting scheduler): Consider a
setup identical to that in 1 withT = 100, but, in addition, assume
that the energy-harvesting process Zt is distributed according to
two possible probability mass functions

p1Z(z) =

⎧⎪⎨
⎪⎩
0.85 z = 0

0.1 z = 1

0.05 z = 2

or p2Z(z) =

⎧⎪⎨
⎪⎩
0.7 z = 0

0.2 z = 1

0.1 z = 2

(73)

yielding on average 0.2 and 0.4 energy units per time step,
respectively.

The optimal thresholds obtained for the energy-harvesting
system under p1Z are shown in Fig. 2(b), and they are uniformly
smaller than the ones of the system without harvesting. We also
note a change in the “curvature” of the threshold function for a
fixed t.

Fig 3 shows the performance of the optimal strategy and the
blind scheduling scheme as a function of the battery capacity B
for the three systems: No harvesting, harvesting with p1Z and p2Z .
The optimal scheme proposed in this article leads to a significant
improvement upon the blind scheduling strategy of 70. For B =
10, without energy harvesting, the optimal performance isJ � ≈
147.37. However, in order to achieve a comparable performance
using blind scheduling, a battery of capacity equal to 53 energy
units would be required. Therefore, the energy savings in this
case is of approximately 81.13%.

Finally, Fig. 4 illustrates the performance of the systems
with and without harvesting for the scheduling of two standard
Gaussian sources over a horizon T = 100 and a battery of fixed
size B = 30 as a function of the communication cost c.

IX. EXTENSIONS

A. The N Sensor Case

Theorem 1 holds for any number of sensors (N ≥ 2). Let
xt = (x1

t , x
2
t , . . . , x

N
t ), where xi

t ∈ Rni is the observation at
the ith sensor. Provided that the observations are mutually

Fig. 3. Comparison between the performances of the optimal open-
loop and closed-loop strategies as a function of the battery capacity B.
The relative gap between these two curves is defined as the value of
information.

Fig. 4. Optimal performance J � of the systems with and without har-
vesting of Examples 1 and 2 as a function of the communication cost
c.

independent and their pdfs are symmetric and unimodal around
a1, a2, . . . , aN , where ai ∈ Rni , i ∈ {1, 2, . . . , N}, the jointly
optimal scheduling and estimation strategies are

f�
t (xt, et)

def
=

{
0, if maxi∈{1,...,N}

{‖xi
t − ai‖} ≤ τ�t (et)

argmaxi∈{1,...,N}
{‖xi

t − ai‖} , otherwise

(74)

and

gi�t
(
yi
) def
=

{
xi
t if yit = xi

t

ai if yit = ∅.
, i ∈ {1, . . . , N} (75)

B. Unequal Weights and Communication Costs

In specific applications, each sensor may be assigned a dif-
ferent weight in the expected distortion metric. This new metric
is used to emphasize the importance of the observations made
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by one sensor relative to another. Additionally, different sensors
may also have different communication costs, which may reflect
the dimension of the measurements or used to preserve the
battery power, for instance. These cases are captured by the
following cost functional:

J (f ,g1,g2
) def
=

T∑
t=1

E

[ ∑
i∈{1,2}

wi‖Xi
t − X̂i

t‖2+ciI(Ut= i)

]
.

(76)

The globally optimal scheduling and estimation strategies for
the more general cost functional in 76 are given by the following
equations:

gi�t
(
yit
) def
=

{
xi
t if yit = xi

t

ai if yit = ∅

, i ∈ {1, 2} (77)

where the thresholds τ1t and τ2t are computed by modified
version of Algorithm 1, described in Appendix C. Eqn. (78)
is shown at the bottom of this page.

X. CONCLUSION

This article studied the problem of optimal scheduling in a se-
quential remote estimation system where noncollocated sensors
and estimators communicate over a shared medium. The access
to the communication resources was granted by an energy-
harvesting scheduler, which implements an observation-driven
medium access control scheme to avoid packet collisions. The
underlying assumption is that the sensors make measurements
that are i.i.d. in time, but the energy level at the scheduler
has a stochastic dynamics, which couples the decision-making
process in time. The optimal solutions to such remote estimation
problems are typically challenging to find due to the presence
of signaling between the scheduler and estimators.

The main result herein is to establish, under certain assump-
tions on the probabilistic model of the sources, the joint opti-
mality of a pair of scheduling and estimation strategies. More
important, the globally optimal solution is obtained despite the
lack of convexity in the objective function being introduced
by signaling. The overarching proof consists of a judicious
expansion of the information sets at the estimators, which en-
ables the use of the common information approach to solving
a single dynamic program from the perspective of a fictitious
coordinator. Finally, by noting that the optimal solution to this
“relaxed” problem does not depend on the additional informa-
tion introduced in the expansion, it is also shown to be optimal
for the original optimization problem. As a byproduct, our proof
technique also applies to more general settings with an arbitrary
number of sensors, unequal weights, and communication costs.
Future work in this problem includes the scheduling of correlated
sources, but independent in time, independent Gauss–Markov

sources (some progress in this area was reported in [32]), and
networks prone to packet drops.

APPENDIX A
AUXILIARY RESULTS

The following two definitions and theorem can be found in
[33] and [34].

Definition 2 (Symmetric rearrangement): Let A be a mea-
surable set of finite volume in Rn. Its symmetric rearrangement
A∗ is defined as the open ball centered at 0n whose volume
agrees with A.

Definition 3 (Symmetric decreasing rearrangement): Let
f : Rn → R be a non-negative measurable function that van-
ishes at infinity. The symmetric decreasing rearrangement f ↓ of
f is

f ↓(x) def=
∫ ∞
0

I (x ∈ {ξ ∈ Rn | f(ξ) > t}∗) dt. (79)

Theorem 2 (Hardy–Littlewood inequality): If f and g are
two non-negative measurable functions defined on Rn which
vanish at infinity, then the following holds:∫

Rn

f(x)g(x)dx ≤
∫

Rn

f ↓(x)g↓(x)dx (80)

where f ↓ and g↓ are the symmetric decreasing rearrangements
of f and g, respectively.

APPENDIX B
PROOF OF 5

A. Empty Battery

Let e = 0. The value function in 53 is given by

Vπ
t (0) = inf

x̃t

E

⎡
⎣ ∑
i∈{1,2}

‖Xi
t − x̃i

t‖2
⎤
⎦+ C0t+1(0). (81)

The infimum in the expression above is achieved by

x̃�
t =

(
E[X1

t ],E[X2
t ]
)
. (82)

Since π1 and π2 are symmetric around 0

x̃�
t = 0. (83)

Therefore, if e = 0, the infimum in 53 is achieved by

x̃�
t = 0, i ∈ {1, 2}. (84)

B. Nonempty Battery

Let e > 0. The value function in 53 is given by

Vπ
t (e) = inf

x̃t

E
[
min

{‖X1
t − x̃1

t‖2 + ‖X2
t − x̃2

t‖2 + C0t+1(e),

‖X2
t − x̃2

t‖2 + C1t+1(e), ‖X1
t − x̃1

t‖2 + C1t+1(e)
}]

. (85)

f�
t (xt, et) =

⎧⎪⎨
⎪⎩
0, if ‖x1

t − a1‖ ≤ τ1t (et), ‖x2
t − a2‖ ≤ τ2t (et)

1, if ‖x1
t − a1‖ > τ1t (et), w1‖x1

t − a1‖2 − w2‖x2
t − a2‖2 ≥ w1

(
τ1t (et)

)2 − w2

(
τ2t (et)

)2
2, otherwise

(78)
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The optimization problem in 85 is equivalent to

inf
x̃t

E
[
min

{‖X1
t − x̃1

t‖2 + ‖X2
t − x̃2

t‖2,

‖X2
t − x̃2

t‖2 + κt(e), ‖X1
t − x̃1

t‖2 + κt(e)
}]

(86)

where

κt(e)
def
= C1t+1(e)− C0t+1(e). (87)

Consider the auxiliary cost function J e
t : Rn1 ×Rn2 → R

defined as follows:

J e
t (x̃t)

def
= E

[
min

{‖X1
t − x̃1

t‖2 + ‖X2
t − x̃2

t‖2,
‖X2

t − x̃2
t‖2 + κt(e), ‖X1

t − x̃1
t‖2 + κt(e)

}]
(88)

where the expectation is taken with respect to the random vectors
X1

t and X2
t .

The remainder of the proof consists of solving the following
optimization problem:

inf
x̃t

J e
t (x̃t). (89)

Define the function G : Rn ×Rn → R such that

Get (x̃t;xt)
def
= min

{‖x1
t − x̃1

t‖2 + ‖x2
t − x̃2

t‖2,
‖x2

t − x̃2
t‖2 + κt(e), ‖x1

t − x̃1
t‖2 + κt(e)

}
. (90)

Using the fact that X1
t and X2

t are independent and the function
Get defined in 90, we can rewrite the function J e

t (x̃t) in integral
form as follows:

J e
t (x̃t) =

∫
Rn2

[∫
Rn1

Get (x̃t;xt)π1(x
1
t )dx

1
t

]
π2(x

2
t )dx

2
t .

(91)

The function Get can be alternatively represented as follows:

Get (x̃t;xt) = min
{‖x2

t − x̃2
t‖2 + κt(e),

‖x1
t − x̃1

t‖2 +min
{
κt(e), ‖x2

t − x̃2
t‖2
}}

. (92)

Finally, let the function He
t : Rn ×Rn → R be defined as

follows:

He
t (x̃t;xt)

def
= ‖x2

t − x̃2
t‖2 + κt(e)− Get (x̃t;xt). (93)

Note that the functionHe
t vanishes as the norm of x1

t tends to
infinity, i.e.,

lim
‖x1

t ‖→+∞
He

t (x̃t;xt) = 0. (94)

From the Hardy–Littlewood inequality (see Appendix A), we
have∫

Rn1

He
t (x̃t;xt)π1(x

1
t )dx

1
t ≤

∫
Rn1

He↓
t (x̃t;xt)π

↓
1(x

1
t )dx

1
t

(95)

where π↓1 and He↓
t denote the symmetric decreasing rearrange-

ments of π1 andHe
t , respectively. The following facts hold.

1) Since π1 is symmetric and unimodal around 0

π↓1 = π1. (96)

2) Since He
t (x̃t;xt), as a function of x1

t , is symmetric and
unimodal around x̃1

t (a fact that can be verified by inspec-
tion), we have

He↓
t (x̃t;xt) = He

t

((
0, x̃2

t

)
;xt

)
. (97)

Therefore, the Hardy–Littlewood inequality implies that∫
Rn1

He
t (x̃t;xt)π1(x

1
t )dx

1
t≤
∫

Rn1

He
t

((
0, x̃2

t

)
;xt

)
π1(x

1
t )dx

1
t

(98)

which is equivalent to∫
Rn1

Get
((
0, x̃2

t

)
;xt

)
π1(x

1
t )dx

1
t ≤
∫

Rn1

Get (x̃t;xt)π1(x
1
t )dx

1
t.

(99)

Therefore

x̃1�
t = 0. (100)

Fixing x̃1�
t = 0 and following the same sequence of argu-

ments exchanging the roles of x1
t and x2

t , we show that x̃2�
t = 0.

Therefore

x̃�
t = 0. (101)

APPENDIX C
OPTIMAL THRESHOLDS FOR THE ASYMMETRIC CASE

In the case of asymmetric costs and weights, the modified
recursive algorithm is as follows. For t ∈ {1, . . . , T − 1}, com-
pute the function C0t+1 according to (50) and C1t+1 and C2t+1 for
according to

Cit+1
def
= ci + E

[Vπ
t+1 (min{e− 1 + Zt, B})

]
, i ∈ {1, 2}

(102)

where

Vπ
t (0)

def
= E

⎡
⎣ ∑
i∈{1,2}

wi‖Xi
t − ai‖2 + Vπ

t+1 (min{Zt, B})
⎤
⎦

(103)

and

Vπ
t (e)

def
= E

⎡
⎣min

⎧⎨
⎩
∑

i∈{1,2}
wi‖Xi

t − ai‖2 + C0t+1(e),

w2‖X2
t − a2‖2 + C1t+1(e), w1‖X1

t − a1‖2 + C2t+1(e)
}]

.
(104)

Finally, the optimal thresholds are given by

τ i�t (e)
def
=

√
Cit+1(e)− C0t+1(e)

wi
, i ∈ {1, 2}. (105)
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