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Abstract. We introduce CLAIRE, a distributed-memory algorithm and software for solving constrained large deformation
diffeomorphic image registration problems in three dimensions. We invert for a stationary velocity field that parameterizes the
deformation map. Our solver is based on a globalized, preconditioned, inexact reduced space Gauss-Newton-Krylov scheme.

We exploit state-of-the-art techniques in scientific computing to develop an effective solver that scales to thousand of distributed
memory nodes on high-end clusters. Our improved, parallel implementation features parameter-, scale-, and grid-continuation
schemes to speedup the computations and reduce the likelihood to get trapped in local minima. We also implement an improved
preconditioner for the reduced space Hessian to speedup the convergence.

We test registration performance on synthetic and real data. We demonstrate registration accuracy on 16 neuroimaging datasets.
We compare the performance of our scheme against different flavors of the Demons algorithm for diffeomorphic image registration.
We study convergence of our preconditioner and our overall algorithm. We report scalability results on state-of-the-art supercom-
puting platforms. We demonstrate that we can solve registration problems for clinically relevant data sizes in two to four minutes
on a standard compute node with 20 cores, attaining excellent data fidelity. With the present work we achieve a speedup of (on
average) 5x with a peak performance of up to 17x compared to our former work.

Key words. diffeomorphic image registration; LDDMM,; distributed-memory algorithm; Newton-Krylov method; KKT precon-
ditioner; optimal control; PDE constrained optimization.
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1. Introduction. Deformable registration is a key technology in the medical imaging. It is about
computing a map y that establishes a meaningful spatial correspondence between two (or more) images mg
(the reference (fixed) image) and mr (the template (deformable or moving) image; image to be registered) of
the same scene [45,109]. Numerous approaches for formulating and solving image registration problems
have appeared in the past; we refer to [45,67,109,110,131] for lucid overviews. Image registration is
typically formulated as a variational optimization problem that consists of a data fidelity term and a
Tikhonov regularization functional to over-come ill-posedness [43,45]. In many applications, a key concern
is that y is a diffeomorphism, i.e., the map y is differentiable, a bijection, and has a differentiable inverse.
A prominent strategy to ensure regularity of y is to introduce a pseudo-time variable ¢ and invert for
a smooth, time-dependent velocity field v that parameterizes the map y [17,40, 107, 142]; existence of
a diffeomorphism y can be guaranteed if v is adequately smooth [17,31,40,137]. There exists a large
body of literature of diffeomorphic registration parameterized by velocity fields v that, in many cases,
focuses on theoretical considerations [40,107,145-147]. There is much less work on the design of efficient
solvers; examples are [8,9,11,13,17,36,71,116,142,148]. Most existing solvers use first order methods
for numerical optimization and/or are based on heuristics that do not guarantee convergence. Due to
computational costs, early termination results in compromised registration quality. Our intention in this
work is to deploy an efficient solver for diffeomorphic image registration problems that (i) uses state-of-
the art algorithms, (ii) is scalable to thousands of cores, (iii) requires minimal parameter tuning, (iv) and
produces high-fidelity results with guaranteed regularity on a discrete level.
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TaBLE 1
Notation and symbols.

Symbol  Description Acronym Description

Q spatial domain; Q := (0,27)® C R® CLAIRE constrained large deformation diffeomorphic image registration [?]
x spatial coordinate; x := (xl,xz,x3)T €R3 CFL Courant-Friedrichs-Lewy (condition)

t pseudo-time variable; ¢ € [0,1] CHEB(k) Chebyshev (iteration) with fixed iteration number k € N [56,61]
mg(x) reference image FFT fast Fourier transform

mr(x) template image (image to be registered) GPL GNU General Public License

v(x) stationary velocity field HPC high performance computing

y(x) deformation map KKT Karush-Kuhn-Tucker

m(x,t) state variable (transported intensities) LDDMM large deformation diffeomorphic metric mapping [17]

my (x) final state; mi(x) := m(x,t = 1) matvec matrix vector product

Alx, 1) adjoint variable MPIL Message Passing Interface

it (x, t) incremental state variable PETSc Portable Extensible Toolkit for Scientific Computation [14,15]
Alx, 1) incremental state variable PCG preconditioned conjugate gradient (method) [73]

L Lagrangian functional PCG(e) PCG method with relative tolerance e € (0,1)

g (reduced) gradient RK2 2nd order Runge-Kutta method

H (reduced) Hessian operator (S)DDEM (symmetric) diffeomorphic demons [140, 142]

9; partial derivative with respect x; (SLDDEM  (symmetric) log-domain diffeomorphic demons [141]

v gradient operator; V := (d1,92,03)7 TAQ Toolkit for Advanced Optimization [111]

V- divergence operator

A Laplacian operator (vectorial and scalar)

number of grid points; 1, = (11,12, 13)7
number of cells in temporal grid
number of unknowns; n = 3 - I"[?:1 n;

= I X
- o=

1.1. Outline of the Method. We use an optimal control formulation. The task is to find a smooth
velocity field v (the “control variable”’) such that the distance between two images (or densities) is min-
imized, subject to a regularization norm for v and a deformation model given by a hyperbolic PDE
constraint. More precisely, given two functions mpg(x) (reference image) and mr(x) (template image) com-
pactly supported on an open set ) C R® with boundary 90}, we solve for a stationary velocity field v(x)
as follows:

(1a) minimize % /Q(ml(x) —mg(x))?>dx 4+ S(v)

u,m
b subjectto om—+v-Vm=0 inQ x (0,1]
(1b) m=mp inQx{0}

with periodic boundary conditions on 0Q). Here, m(x,t) (the “state variable”) corresponds to the trans-
ported intensities of mr(x) subject to the velocity field v(x); in our formulation, mj (x) := m(x,t = 1)—i.e,,
the solution of (1b)—is equivalent to m7(y(x)) for all x in Q). The first part of the functional in (1a) mea-
sures the discrepancy between m; and mpg. The regularization functional S is a Sobolev norm that, if
chosen appropriately, ensures that v gives rise to a diffeomorphism y [17,40,69,137]. We augment the for-
mulation in (1) by constraints on the divergence of v to control volume change (see also [31,97]). Details
on our formulation can be found in §2.1.

Problem (1) is ill-posed and involves ill-conditioned operators. We use the method of Lagrange multi-
pliers to solve the constrained optimization problem (1). Our solver is based on an optimize-then-discretize
approach; we first derive the optimality conditions and then discretize in space using a pseudospectral
discretization with a Fourier basis. We use a globalized, inexact, preconditioned Gauss—-Newton-Krylov
method to solve for the first order optimality conditions [96]. The hyperbolic transport equations that
appear in our formulation are integrated using a semi-Lagrangian method [44, 132]. Our solver uses
distributed-memory parallelism and can be scaled up to thousands of cores [52,97].

1.2. Contributions. With this work we follow up on our former work on constrained diffeomorphic
image registration [96-99]. We focus on registration performance, implementation aspects and the deploy-
ment of our solver, and introduce additional algorithmic improvements. Our contributions are:

e We implement an improved preconditioner for the reduced space Hessian (originally described in [98]
for the two-dimensional case). We empirically evaluate several variants of this preconditioner.

e We introduce options for a grid, scale, and parameter continuation to our three-dimensional solver.

o We evaluate registration quality and compare our new, improved solver against different variants of
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the diffeomorphic Demons algorithm [141,142].
e We study strong scaling performance of our improved solver.
o We make our software termed CLAIRE [?] (which stands for constrained large deformation diffeomor-
phic image registration) available under GPL license. The code can be downloaded here:
https:/ /github.com /andreasmang/ claire.
The URL for the deployment page is https://andreasmang.github.io/claire.

1.3. Limitations and Unresolved Issues. Several limitations and unresolved issues remain: o We
assume similar intensity statistics for the reference image mpr and the template image mr. This is a
common assumption in many deformable image registration algorithms [17,69,90,112,143]. To enable the
registration of images with a more complicated intensity relationship, more involved distance measures
need to be considered [109,131]. e Our formulation is not symmetric, i.e., not invariant to a permutation
of the reference and template image. The extension of our scheme to the symmetric case is mathematically
straightforward [10,94,141] but its efficient implementation is nontrivial. This will be the subject of future
work. e We invert for a stationary velocity field v(x) (i.e., the velocity does not change in time). Stationary
paths on the manifold of diffeomorphisms are the group exponentials (i.e., one-parameter subgroups that
do not depend on any metric); they do not cover the entire space of diffeomorphisms. The definition
of a metric may be desirable in certain applications [17,105,148] and, in general, requires non-stationary
velocities. Developing an effective, parallel solver for nonstationary v requires more work.

1.4. Related Work. With this work we follow up on our prior work on constrained diffeomorphic
image registration [96,97,99,101,102]. We release CLAIRE, a software package for velocity-based diffeo-
morphic image registration. For excellent reviews on image registration see [67,109,131]. In diffeomorphic
registration, we formally require that det Vy does not vanish or change sign. An intuitive approach to
safeguard against non-diffeomorphic y is to add hard and/or soft constraints on det Vy to the variational
problem [30,65,118,123]. An alternative strategy is to introduce a pseudo-time variable ¢ and invert for
a smooth velocity field v that parameterizes y [17,40,107, 142]; existence of a diffeomorphism y can be
guaranteed if v is adequately smooth [17,31,40,137]. Our approach falls into this category. We use a
PDE-constrained optimal control formulation; we refer to [21,27,59,75,93] for insight into theory and
algorithmic developments in optimal control. In general, the solver has to be tailored to the structure
of the control problem, which is dominated by the PDE constraints; examples for elliptic, parabolic, and
hyperbolic PDEs can be found in [1,22], [2,51,103,133], and [19,26,72,90, 144], respectively. In our formu-
lation, the PDE constraint is—in its simplest form—a hyperbolic transport equation. Our formulation has
been introduced in [69,96,97]. A prototype implementation of our solver has been described in [96] and
improved in [98]. We have extend our original solver [96] to the 3D setting in [52,99]. The focus in [52,99]
is the scalability of our solver on HPC platforms. In [122] we presented an integrated formulation for
registration and biophysical tumor growth simulations that has been successfully applied to segmentation
of neuroimaging data [53,102].

Optimal control formulations that are related to ours have been described in [26,31,69,72,90,91,143].
Related formulations for optimal mass transport are described in [19,64,101,138]. Our work differs from
optimal mass transport in that intensities are constant along the characteristics (i.e., mass is not preserved).
Our formulation shares numerous characteristics with traditional optical flow formulations [77, 81, 120].
The key difference is that we treat the transport equation for the image intensities as a hard constraint.
PDE-constrained formulations for optical flow, which are equivalent to our formulation, are described
in [6,16,26,31]. Our work is closely related to the LDDMM approach [10,11,17,40,137,145], which builds
upon the pioneering work in [33]. LDDMM uses a non-stationary velocity but there exist variants that use
stationary v [7,8,71,94,95,142]; they are more efficient. If we are only interested in registering two images,
stationary v produce good results. Another strategy to reduce the size of the search space is geodesic
shooting [9,106,143,145,149]; the control variable is an initial momentum /velocity at t = 0.

Among the most popular, publicly available packages for diffeomorphic registration are Demons [141,
142], ANTs [11], PyCA [?], deformetrica [?,?,?,?] and DARTEL [8]. Other popular packages for deformable
registration are IRTK [119], elastix [86], NiftyReg [108], and FAIR [110]. The latter are, with the exception
of FAIR, based on (low dimensional) parametric deformation models. Unlike existing approaches, CLAIRE
features explicit control on the determinant of the deformation gradient; we introduce hard constraints
on the divergence of v. Our formulation was originally proposed in [97]; a similar approach is described
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in [26]. Other works that consider divergence-free v have been described in [31,74,104,120,121].

There exist few works on effective numerical methods. Despite the fact that first order methods
for optimization have poor convergence rates for non-linear, ill-posed problems, most works, with the
exception of ours [96-101] and [9,19,70,72,129,142], use first order gradient descent type approaches. We
use a globalized Newton-Krylov method, instead. For these methods to be efficient, it is critical to design
an effective preconditioner. (We refer to [18] for an overview on preconditioning of saddle point problems.)
Preconditioners for problems similar to ours can be found in [19,72,129]. Another critical component is
the PDE-solver. In our case, the expensive PDE operators are hyperbolic transport equations. Several
strategies to efficiently solve these equations have been considered in the past [17,19,26,31,69,96,97,99,
101,102,116,129]. We use a semi-Lagrangian scheme [17,31,99,102].

Another key feature of CLAIRE is that it can be executed in parallel [52,99]. Examples for parallel
solvers for PDE-constrained optimization problems can be found in [3, 4, 20, 21,23-25,128]. We refer
to [42,46,125,127] for surveys on parallel algorithms for image registration. Implementations, such as
Demons [141,142], ANTs [11], or elastix [86], which are largely based on kernels implemented in the ITK
package [79], exploit multi-threading for parallelism. GPU implementations of different variants of map-
based, low-dimensional parametric approaches are described in [108,124,126]. A GPU implementation of
a map-based non-parametric approach is described in [87]. GPU implementations with formulations that
are similar to ours are described in [?,?,62,63,130,138,139]. The work that is most closely related to ours,
is [62,63,139]. In [62,63] a (multi-)GPU implementation of the approach described in [80] is presented.
The work in [139] discusses a GPU implementation of DARTEL [8].

What sets our work apart are the numerics and our distributed-memory implementation: We use
high-order numerical methods (second order time integration, cubic interpolation, and spectral differen-
tiation). The linear solvers and the Gauss—Newton optimizer are built on top of PETSc [15] and TAO [111].
Our solver uses MPI for parallelism and has been deployed to HPC systems [52,97]. This allows us to
target applications of unprecedented scale (such as CLARITY imaging [136]) without posing the need to
downsample the data [88]. We will see that we can solve problems with 3221225472 unknowns in 2 min
on 22 compute nodes (256 MPI tasks) and in less than 5s if we use 342 compute nodes (4096 MPI tasks).
Exploiting parallelism also allows us to deliver run times that approach real-time capabilities.

1.5. Outline. We present our approach for large deformation diffeomorphic image registration in §2,
which comprises the formulation of the problem (see §2.1), a formal presentation of the optimality condi-
tions (see §2.2), and a discussion of the numerical implementation (see §2.3). Numerical experiments are
reported in §4. We conclude with §6. This publication is accompanied by supplementary material. There,
we report additional, more detailed results.

2. Methods. In what follows, we describe the main building blocks of our formulation, our solver,
and its implementation, and introduce new features that distinguish this work from our former work [52,
96-101].

2.1. Formulation. Given two images—the reference image mg(x) and the template image mr(x)—com-
pactly supported on Q = (0,27)® C R3, with boundary 9Q) and closure (), our aim is to compute a
plausible deformation map y(x) such that Vx € Q : mg(x) ~ mr(y(x)) [45,109,110]. We consider a map
y to be plausible if it is a diffeomorphism, i.e., an invertible map, which is continuously differentiable (a
Cl-function) and maps () onto itself. In our formulation, we do not directly invert for y; we introduce a
pseudo-time variable t € [0,1] and invert for a stationary velocity v(x), instead. In particular, we solve for
v(x) and a mass source map w(x) as follows [97]:

e . ,Bz/ ,Bw 2
(2a) minimize 2/ my — mg)? dx + < [v ],B[v])LZ(Q)s—i—?/QVw-Vw—I—w dx

m,v,w
subjectto oym+Vm-v=0 in Q x (0,1]
(2b) m=mr inQ x {0}
Veo=w inQ

with periodic boundary conditions on 0Q), and s > 0, B, > 0, B > 0. The state variable m(x,t) in (2b)
represents the transported intensities of m7 subjected to the velocity field v; the solution of the first
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F1G. 1. We compare results for CLAIRE and the diffeomorphic Demons algorithm. We consider the first two volumes of the NIREP dataset. We
report results for the symmetric diffeomorphic Demons algorithm (SDDEM) with regularization parameters (4, 0,,) determined by an exhaustive
search. We report results for CLAIRE for different choices for the regularization parameter for the velocity (B, = 3.70e—3 and B, = 5.50e—4;
determined by a binary search). We show the original mismatch on the left. For each variant of the considered algorithms we show the mismatch
after registration and a map for the determinant of the deformation gradient. We report values of the Dice score of the union of all available gray
matter labels below the mismatch. We also report the extremal values for the determinant of the deformation gradient. We execute the Demons
algorithm on one node of the CACDS’s Opuntia server (Intel ten-core Xeon E5-2680v2 at 2.80 GHz with 64 GB memory; 2 sockets for a total of
20 cores; [35]) using 20 threads. We use a grid continuation scheme with 15, 10, and 5 iterations per level, respectively. If we execute CLAIRE
on the same system, the runtime is 103 s and 202 s, respectively. If we increase the number of iterations of SDDEM to 150, 100, 50 per level,
we obtain a dice score of 0.75 and 0.86 with a runtime of 322s and 297 s, respectively. The results for CLAIRE are for 16 nodes with 12 MPI
tasks per node on TACC'’s Lonestar 5 system (2-socket Xeon E5-2690 v3 (Haswell) with 12 cores/socket, 64 GB memory per node; [135]). We
execute CLAIRE at full resolution using a parameter continuation scheme in By. Detailed results for these runs can be found in the supplementary
material, in particular Tab. SM7, Tab. SMS, and Tab. SM12.

equation in (2b), i.e., my(x) := m(x,t = 1), is equivalent to mr(y(x)), where y is the Eulerian (or pullback)
map. We use a squared L2-distance to measure the proximity between m; and mg. The parameters
Bo > 0 and By > 0 control the contribution of the regularization norms for v and w. The constraint on
the divergence of v in (2b) allows us to control the compressibility of y. If we set w in (2b) to zero y is
incompressible, i.e., Vx € ) : det Vy(x) = 1 up to numerical accuracy [60]. By introducing a nonzero
mass-source map w, we can relax this model to near-incompressible diffeomorphisms y; the regularization
on w in (2a) acts like a penalty on the divergence of v; we use an H!-norm.

Our solver supports different Sobolev (semi-)norms to regularize v. The choice of the differential
operator B not only depends on application requirements but is also critical from a theoretical point
of view; an adequate choice guarantees existence and uniqueness of an optimal solution of the control
problem [16,17,26,31,90] (subject to the smoothness properties of the images). We use an H'-seminorm,
ie, B =V, if we consider the incompressibility constraint. If we neglect the incompressibility constraint,
we use B = —A.

2.2. Optimality Condition and Newton Step. We use the method of Lagrange multipliers [93] to turn
the constrained problem (2) into an unconstrained one; neglecting boundary conditions, the Lagrangian
functional is given by

®)

1
Lim, A, p,w,v] ::E/Q(ml—mR)zdx—l—%<B[v],8[v]>L2(Q)S+ﬁ7w/QVw-Vw—l—w2dx

1
+ /0 (0sm + Vm -v,A) 12y dt + (m(t = 0) —mr, At = 0))120) — (V-0 —w,p) 120,
with Lagrange multipliers A : () x [0,1] — R for the transport equation (2b), and p : QO — R for the

incompressibility constraint (2b). Formally, we have to compute variations of £ with respect to the state,
adjoint, and control variables. We will only consider a reduced form (after eliminating the incompressibil-
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ity constraint) of the optimality system—a system of nonlinear PDEs for m, A, and v. Details on how we
formally arrive at this reduced from can be found in [96,97].

We use a reduced-space approach, in which we eliminate the state and adjoint variables, and iterate
in the inversion parameter space. The evaluation of the reduced gradient g (the first variation of the
Lagrangian £ in (3) with respect to v) for a candidate v requires several steps. We first solve the transport
equation (2b) with initial condition m(x,t = 0) = my(x) forward in time to obtain the state variable
m(x, t). Given m we then compute the adjoint variable A(x, t) by solving the adjoint equation

(4a) —A =V -Av =0 in Qx[0,1),
(4b) A=mg—m in O x {1},

with periodic boundary conditions on 9Q) backward in time. Once we have the adjoint and state fields,
we can evaluate the expression for the reduced gradient

1
5) ¢(0) == BoAlv] +/c[/0 AVmdt].

The differential operator A = B*B in (5) corresponds to the first variation of the regularization
norm for v in (3), resulting in an elliptic (A = —A), biharmonic (A = A?), or triharmonic (4 = A?)
control equation for v, respectively. The operator K projects v onto the space of incompressible or
near-incompressible velocity fields; we have K := I — V(By(Baw(—A +id))"! +id) 'A7!V- and K :=
id —VA~'V. for the incompressible case. If we neglect the incompressibility constraint (2b), K in (5)
is an identity operator. The dependence of m and A on v is “hidden” in the transport and continuity
equations (2b) and (4a), respectively.

The first order optimality condition (control or decision equation) requires that g(v*) = 0 for an
admissible solution v* to (2). Most available registration packages use gradient descent type optimiza-
tion schemes to find an optimal point [17,69,143]. Newton-type methods are expected to yield better
convergence rates [28,113]. However, if they are implemented naively, they can become computation-
ally prohibitive. The expressions associated with the Newton step of our control problem are formally
obtained by computing second variations of the Lagrangian in (3). In full space methods we find the New-
ton updates (i.e., the search direction) for the state, adjoint, and control variables of our control problem
simultaneously. That is, we iterate on all variables at once. In reduced space methods we only iterate on
the control variable v. Reduced space methods can be obtained from the full space KKT system by block
elimination [23-25,117]. The associated reduced space Newton system for the incremental control variable
D (search direction) is given by

(6) Ho =g

where g is the reduced gradient in (5). The expression for the (reduced space) Hessian matvec (action of
‘H on a vector ) in (6) is given by

1 ~
(7) H[D](v) := B, A[B] + K [/0 AV + AV dt | = Hreg[0] + Hdata[0)-
—Hreg 1] —Haal0

We use the notation H[?](v) to indicate that the Hessian matvec in (7) is a function of v through a set
of PDEs for m(x,t), fi(x,t), A(x,t), and A(x,t). The space-time fields m and A are found during the
evaluation of (2a) and (5) for a candidate v as described above. What is missing to be able to evaluate (7)
are the fields 7i1(x, t) and A(x,t). Given m(x,t), v(x), and &(x), we find 7(x, t) by solving

(8a) om+Vim-v+Vm-92=0 in Qx (0,1],
(8b) =0 in Q x {0},
forward in time. Now, given 7i1(x,t = 1), A(x,t), v(x), and ¥(x) we solve

(9a) —A — V- (Ao +A9) =0 in Qx[0,1),

(9b) A= —iit in Qx {1},

for A(x,t) backward in time.
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2.3. Numerics. In the following, we describe our distributed-memory solver for 3D diffeomorphic
image registration problems and provide additional information for our software package termed CLAIRE.

2.3.1. Discretization. We discretize in space on a regular grid Q" € R>""" with grid points x;, :=
2tk @ ny, k = (ki, ko, k3)T € N3, —n;/2+1 < k; < n;/2, i = 1,2,3, ny := (ny,n3,n3)7 € N® and
periodic boundary conditions; @ denotes the Hadamard division. In the continuum, we model images as
compactly supported (periodic), smooth functions. We apply Gaussian smoothing (in the spectral domain)
with a bandwidth of hy = (hy, hy, h3)T € R3? and mollify the discrete data to meet these requirements.
We rescale the images to an intensity range of [0,1] C R prior to registration. We use a trapezoidal
rule for numerical quadrature and a spectral projection scheme for all spatial operations. The mapping
between spectral and spatial domain is done using forward and inverse FFTs [50]. All spatial derivatives
are computed in the spectral domain; we first take the FFT, then apply the appropriate weights to the
spectral coefficients, and then take the inverse FFT. This scheme allows us to efficiently and accurately
apply differential operators and their inverses. Consequently, the main cost of our scheme is the solution
of the transport equations (2b), (4a), (8a), and (9a), and not the inversion of differential (e.g., elliptic or
biharmonic) operators. We use a nodal discretization in time, which results in n; + 1 space-time fields we
need to solve for. We use fully explicit, unconditionally stable semi-Lagrangian scheme [44,132] to solve
the transport equations that appear in our formulation ((2b), (4a), (8a), and (9a)). This allows us to keep
n small (we found empirically that n; = 4 yields a good compromise between runtime and numerical
accuracy). The time integration steps in our semi-Lagrangian scheme is implemented using a fully explicit
2nd order Runge-Kutta scheme. Interpolations are carried out using third-degree polynomials. Details
for our semi-Lagrangian scheme can be found in [52,98,99].

2.3.2. Newton—Krylov Solver. A prototype implementation of our Newton-Krylov solver is described
in [96,98]. We have already mentioned in §2.2 that we use a reduced space method. That is, we only iterate
on the reduced space for the control variable v € R", n = 3nynyn3. We globalize our method using an
Armijo linesearch, resulting in the iterative scheme

(10) Vi1 = Vi + apVy, H; vV, = —gx,

with iteration index k, step length a; > 0, iterate vy € R", search direction ¥, € R”", reduced gradient
gr € R" (see (5) for the continuous equivalent), and reduced space Hessian H; € R™", where

Hy = Hreg + Hdata,k

(see (7) for an expression for the Hessian matvec in the continuous setting). We refer to the steps for
updating v; as outer iterations and the steps for computing the search direction ¥ as inner iterations.

Algorithm 2.1 Inexact Newton—-Krylov method (outer iterations). We use the relative norm of the reduced
gradient (with tolerance €opt > 0 as stopping criterion.

1: initial guess vg < 0, k 0

2: mg < solve state equation in (2b) forward in time given v

: jo < evaluate objective functional (2a) given mg and vy

: Ag ¢ solve adjoint equation (4a) backward in time given vy and mg
: 8o < evaluate reduced gradient (5) given my, Ay and vy

. while [1g]3 > [lgo/3eopt do

Vi < solve Hy ¥ = —gj given my, Ay, vi, and gy (see Alg. 2.2)

ay < perform line search on ¥ subject to Armijo condition

Vi1 < Vi + oV

10:  my,q < solve state equation (2b) forward in time given vy

11:  jgyq < evaluate (2a) given my 1 and vy

12:  Agyq ¢ solve adjoint equation (4a) backward in time given vy 1 and my 4
13:  gry1 < evaluate (5) given my 1, Agyq and v g

14 k<+k+1

15: end while

O NSO U Ww
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Algorithm 2.2 Newton step (inner iterations). We illustrate the solution of the reduced KKT system (6)
using a PCG method at a given outer iteration k € N. We use a superlinear forcing sequence to compute
the tolerance 7 for the PCG method (inexact solve).

1: input: my, Ay, Vi, 8k, 80

. set egg + min(05, (g 12/ l1goll2)"/2), %o + 0,10 < —g

: zg + apply preconditioner M~ to rg

sg ¢ 2o, L <0

: while : < n do

m, < solve incremental state equation (8) forward in time given my, vy and ¥,
A, < solve incremental adjoint equation (9) backward in time given Ay, vi, m, and ¥,
§, < apply H, to s, given Ay, my, i, and A (Hessian matvec; see (7))

K, < <rz/ ZL>/<Sl/ §z>/ Vi1 <V + K8, Y41 1,—KS8

if ||1‘H_1H2 < €y break

z,,1 + apply preconditioner M~ ! to r, 1

Mo (21, t41) /{2, 8), Sy <2z 1+ s, 1 1+1

: end while

: output: Vi < V4

R IR U R o

e e e e
Ll

In what follows, we drop the dependence on the (outer) iteration index k for notational convenience.
The data term Hg,, of the reduced space Hessian H in (10) involves inverses of the state and adjoint
operators (a consequence of the block elimination in reduced space methods; see §2.2). This makes H a
non-local, dense operator that is too large to be computed and stored. (We have seen in §2.2 that each
matvec given by (7) requires the solution of (8) forward in time and (9) backward in time; see also lines 6
and 7 in Alg. 2.2). So, to form H we require a total of 2n PDE solves per outer iteration k.) Consequently,
direct methods to solve the linear system in (10) are not applicable. We use iterative, matrix-free Krylov
subspace methods instead. They only require an expression for the action of H on a vector, which is
precisely what we are given in (7). We use a PCG method [73] under the assumption that H is a symmetric,
positive (semi)definite operator. To reduce computational costs, we do not solve the linear system in (10)
exactly. Instead, we use a tolerance ey > 0 that is proportional to the norm of g (see lines 2 and 10 in
Alg. 2.2; details can be found in [39,41] and [113, p. 166ff]). We summarize the steps for the outer and
inner iterations of our Newton-Krylov solver in Alg. 2.1 and Alg. 2.2, respectively.

Since we are solving a non-convex problem it is not guaranteed that the Hessian H is positive definite.
As a remedy, we use a Gauss-Newton approximation H to H; doing so guarantees that H > 0 far away
from the (local) optimum. This corresponds to dropping all terms in (7) and (9) that involve the adjoint
variable A. We expect the rate of convergence of our solver to drop from quadratic to superlinear. As
A tends to zero (i.e., the mismatch goes to zero), we recover quadratic convergence. We terminate the
inversion if the £>-norm of the gradient in (5) is reduced by a factor of €, > 0, i.e., if ||g[|3 < €opt/|goll3,
where g; € R” is the gradient at (outer) iteration k € Ny and gy is the gradient for the initial guess vop = 0
(see line 6 in Alg. 2.1). In most of our experiments, we use €; = 5e—2. We also provide an option to set
a lower bound for the absolute /?>-norm of the gradient (the default value is le—6). CLAIRE also features
other stopping criteria discussed in [54,96,110] (not considered in this work).

2.3.3. Preconditioners for Reduced Space Hessian. We have seen that we need to solve two PDEs
every time H is applied to a vector. These PDE solves are the most expensive part of our solver. Con-
sequently, we have to keep the number of Hessian matvecs small for our solver to be efficient. This
necessitates the design of an effective preconditioner M. The speed of convergence of the linear solver
used to compute the search direction ¥ in (10) depends on the distance of M~'H from identity; ideally,
the spectrum of M~'H is clustered around one. We cannot form and store H (too expensive). Moreover,
we know that large eigenvalues of H are associated with smooth eigenvectors [96]. Consequently, stan-
dard preconditioners for linear systems are not applicable. In our former work, we have considered two
matrix-free preconditioners. Our first preconditioner is based on the (exact) inverse of the regularization
operator Hyeg; the regularization preconditioned Hessian is given by I + H;%Hdata. This is a common
choice in PDE-constrained optimization problems [5,29]. We used this preconditioner in [96,97,99-101].

REMARK 1. Hyeg is a discrete representation of the regularization operator. The computational costs for inverting
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and applying this operator are negligible (two FFTs and a diagonal scaling). Notice, that the operator Hyeg is singular
if we consider a seminorm as regularization model in (2). We bypass this problem by setting the zero singular values
of the regularization operator to one before computing the inverse.

The second preconditioner uses an inexact inverse of a coarse grid approximation to the Hessian H.
This preconditioner was proposed and tested in [98] for the 2D case. A similar preconditioner has been
developed in [2,22]. It is based on the conceptual idea that we can decompose the reduced Hessian
H into two operators H; and Hp that act on the high and low frequency parts of a given vector ¥,
respectively [2,22,55,82-84]. We denote the operators that project on the low and high frequency subspaces
by F; : R" — R" and Fy : R" — R”, respectively. With Fy 4+ F; = I, we have

He, = (FH + FL)H(FH + FL)ek = FyHFye; + FLHF e,

under the assumption that the unit vector e € R", (ex); = lifk =iand (ex); =0fori #k,i,k=1,...,n,
is an eigenvector of H so that (F HFpy)e; = (FyHF)ey = 0. We note that this assumption will not
hold in general. However, since we are only interested in developing a preconditioner, an approximate
decomposition of the solution of the reduced space system is acceptable. Using this approximation we
can represent the solution of H¥ = —g as ¥ = ¥ + ¥y, where ¥; and ¥y are found by solving

HLVL = (FLHFL)VL = —FLg and HHVH = (FHHFH)VH = —FHg,

respectively.

We discuss how we use this decomposition to design a preconditioner, next. Let s € R” denote the
vector we apply our preconditioner to. Since we use an approximation of the inverse of H, we have to
design a scheme for approximately solving Hu = s. We find the smooth part of u by (iteratively) solving

(11) Hii; = QrFys,

where H € R and @iy € RC represent coarse grid approximations of H; and uj, respectively, and
Qr : R" — R is a restriction operator. We do not iterate on the oscilatory components of s (i.e., we replace
Hpy by I). The solution u of Hu = s is given by u = up + uy =~ QpF i + Fys, where G} ~ HleRFLs
and Qp : R® — R" is a prolongation operator. We use spectral restriction and prolongation operators. The
projection operators Fy and F; are implemented as cut-off filters in the frequency domain.

An important aspect of our approach is that we do not apply our two-level preconditioner to the
original Hessian H. Since we can invert Hreg = 0 explicitly, we consider the (symmetric) regularization
split-preconditioned system (I + H;elészataH;eléz)w = —H;elg/zg instead, where w := Hll.éng Notice, that
the inverse of Hyeg acts as a smoother. This allows us to get away with not treating high-frequency errors
in our scheme. Our approach can be interpreted as an approximate two-level multigrid V-cycle with an
explicit (algebraic) smoother given by Hyes?.

The final questions are how to discretize and solve (11). We can use a Galerkin and a direct (non-
Galerkin) discretization to implement the coarse grid operator H. Using the fact that Qg and Qp are
adjoint operators, the Galerkin discretization is formally given by H = QrHQp [58, p. 75]. The drawback
of using a Galerkin operator is that every matvec requires the solution of the incremental forward and
adjoint equations on the fine grid. This is different if we directly discretize the matvec on the coarse grid.
To save computational costs, we opt for this approach. For the iterative solver to approximately invert H
we have tested several variants, all of which are available in CLAIRE. We can use a nested PCG. This requires
a tolerance €y > 0 for the nested solver for the preconditioner that is only a fraction of the tolerance used
to solve for the Newton step ¥ on the fine grid, i.e., ey = xeg with x € (0,1). This is due to the fact that
Krylov subspace methods are nonlinear operators. We refer to this solver as PCG(x). Another possibility
is to use use a semi-iterative Chebyshev method [61] with a predefined number of iterations k > 0; this
results in a fixed linear operator for a particular choice of eigenvalue bounds [56]. The eigenvalue bounds
can be estimated using a Lanczos method. We refer to this strategy as CHEB(k). If we would like to use
PCG with a fixed number of iterations as a nested solver, we can also replace the solver for the Newton
step with a flexible Krylov subspace method [12,115]. We observed that the performance deteriorated
significantly as we reduce the regularization parameter. We disregard this approach.
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3. Implementation and Software Aspects. We make CLAIRE [?] available under GPL license. CLAIRE
is written in C/C++ and implements data parallelism via MPIL. The source code can be downloaded from
the github repository

https:/ / github.com/andreasmang/claire.

The URL for the deployment page of CLAIRE is https://andreasmang.github.io/claire. Here, one can
find a detailed documentation as well as use cases for CLAIRE. In what follows, we (i) describe implemen-
tation aspects, (ii) list features implemented in CLAIRE, and (iii) provide information relevant to potential
users of CLAIRE. It is important to note that we will not be able to cover all implementation aspects, and
we are continuously making improvements to our software. We refer to the README files in the code repos-
itory and the deployment page for updates and detailed information on how to compile, execute, and run
CLAIRE on various systems.

3.1. Executables. CLAIRE has two main executables, claire and clairetools. The registration solver
can be executed with the claire executable. The clairetools executable serves as a post-processing
tool that allows users to, e.g., compute deformation measures (examples include the deformation map vy,
the determinant of the deformation gradient, or a RAVENS map), or transport images or label maps for
the evaluation of registration performance. We will keep adding features to these executables in future
releases. Both executables provide a help message that briefly explains to users how control their behavior
and how to set parameters. To access this help message, the user can simply execute the binaries without
any parameters or add a -help flag to the executable (i.e., for instance execute claire -help from the
command line window). The main output of claire is the computed velocity field. These fields can
subsequently be used within clairetools to compute additional outputs. We explain the most common
options for both executables in greater detail in the README files in the repository.

3.2. External Dependencies and I0. CLAIRE depends on four software packages. We use the PETSc
library [14,15] for linear algebra, and PETSc’s TAO package [14,111] for numerical optimization (TAO is
included in PETSc). We use the AccFFT package [49,50]—a parallel, open-source FFT library for CPU/GPU
architectures developed in our group, to apply spectral operators. AccFFT requires FFTW [47,48]. We use
niftilib [38] for IO. As such, CLAIRE currently supports IO of (uncompressed and compressed in gzip
format) files in nifti-1 (*.nii or *.nii.gz) and Analyze 7.5 (*.hdr and *.img/*.img.gz) format. The
default output format of CLAIRE is in *.nii.gz. We optionally support the PnetCDF format (*.nc) [92,114]
for IO in parallel. The revision and version numbers for these libraries used in our experiments can be
found in the references.

3.3. Compilation and Installation. Our solver supports single and double precision. (The precision
is handed down by the PETSc library.) Our current software uses make for compilation. We provide scripts
in the repository to download and compile the external libraries mentioned above using default settings
that have worked most consistently on the systems we have executed CLAIRE on. Switches for controlling
the precision are provided in the makefile. The user needs to compile PETSc and FFTW in single precision
to be able to run CLAIRE in single precision. We have compiled, tested, and executed CLAIRE on HPC
systems at TACC [135] (Stampede, Stampede 2, Lonestar 5, and Maverick), at HLRS (Hazelhen/CRAY
XC40) [76] and at CACDS [35] (Opuntia and Sabine). Specifications of some of these systems can be found
in §4.1. While we recommend the execution of CLAIRE on multi-core systems (to reduce the runtime), it
is not a prerequisite to have access to HPC systems. CLAIRE has been successfully executed on personal
computers and local compute servers with no inter-node communication. Large-scale systems are only
required to significantly reduce the runtime or when considering large-scale applications (image sizes of
5123 and beyond). We provide additional help for compilation and installation of CLAIRE in the repository.

3.4. Parallel Algorithms and Computational Kernels. The main computational kernels of CLAIRE are
FFTs (spectral methods) and scattered data interpolation operations (semi-Lagrangian solver; see [52,98,
99] for details). We use the AccFFT package [49,50] to perform spectral operations (a software package
developed by our group). This package dictates the data layout on multi-core systems: We partition the
data based on a pencil decomposition for 3D FFTs [37,57]. Let n, = p;p> denote the number of MPI tasks.
Then each MPI task gets (n1/p,) X ("2/p,) x n3 grid points. That is, we partition the domain Q of size 3 x
ny X np X n3 along the x1- and x,-axis into subdomains €;, i = 1,..., 1, of size 3 x (m/p;) x (12/p,) X n3.
There is no partitioning in time.


https://github.com/andreasmang/claire
https://andreasmang.github.io/claire

CLAIRE: A SOLVER FOR DIFFEOMORPHIC IMAGE REGISTRATION 11

S

Fic. 2. 2D illustration of the data layout and the communication steps for the evaluation of the interpolation kernel. The original grid at
timepoint t+1 is distributed across n, = 4 processors Pi, i = 1,2,3,4. To solve the transport problem using a semi-Lagrangian scheme, we have
to trace a characteristic for each grid point x; backward in time. This requires a scattered data interpolation step. The deformed configuration of
the grid (i.e., the departure points) originally owned by P4 (red points) are displayed in overlay. We illustrate three scenarios: The departure point
is located (i) on P4 (left; x; — §;), (ii) on a different processor P1 (left; x; — §;), and (iii) between processors P3 and P4 (right). For the first
case, no communication is required. The second case requires the communication of y; to P1, and the communication of the interpolation result

back to P4. For the third case, we add a ghost layer with a size equal to the support of the interpolation kernel (4 grid points in our case) to each
processor; the evaluation of the interpolation happens on the same processor (like in the first case). Notice that the communication of the departure
points (for the forward and backward characteristics) needs to be performed only once per Newton iteration, since our velocity field is stationary.

The scalability of the 3D FFT is well explored [37,50,57]. We refer to [50,97] for scalability results for
AccFFT. If we assume that the number of grid points n;, i = 1,2, 3, is equal along each spatial direction,
ie, i = ny = ny = ng, each 3D FFT requires O(371log(#)/2n,) computations and O(2/npts + (2°/n,)ty)
communications, where t; > 0 is the startup time for the data transfer and t,, > 0 represents the per-word
transfer time [57].

The parallel implementation of our interpolation kernel is introduced in [99] and improved in [52]. We
use a tricubic interpolation model to evaluate off-grid points in our semi-Lagrangian scheme (see [98,99]
for a detailed description of our solver). The polynomial is implemented in Lagrange form. The evalua-
tion of the interpolation kernel requires the computation of twelve basis polynomials. The local support
of the cubic basis is 4% grid points. Overall, this results in a complexity of O(2567°/n,) computations.
We have implemented a SIMD vectorization based on advanced vector extensions (AVX2) for Haswell
architectures for the evaluation of the interpolation kernel (available for single precision only). Compared
to our initial work in [99] our method is now bound by communication time instead of time spent in the
interpolation. The communication costs are more difficult to estimate; they not only depend on the data
layout but also on the characteristics obtained for a given velocity field. If a departure point is owned
by the current processor, we require no communication. If the values for a departure point are owned
by another processor/MPI task (the “worker”), we communicate the coordinates from the “owner” to the
“worker.” We then evaluate the interpolation model on the “worker” and communicate the result back to
the “owner.” This results in a communication cost of 4t,, per off-grid point not owned by a processor. To
evaluate the interpolation model at off-grid points not owned by any MPI task (i.e., located in-between
the subdomains €);), we add a layer of four ghost points (scalar values to be interpolated; see Fig. 2, right).
This results in an additional communication cost of ns(2n3(n1/p; + 12/ ps )ty ) + 4ts for each MPI task for the
four face neighbors, where #; is the size of layer for the ghost points (in our case four). The communication
with the four corner neighbors can be combined with the messages of the edge neighbors, by appropriate
ordering of the messages. Notice that the communication of the departure points (for the forward and
backward characteristics) needs to be performed only once per Newton iteration, since our velocity field
is stationary. We perform this communication when we evaluate the forward and the adjoint operators,
i.e., during the evaluation of the objective functional and the reduced gradient.

3.5. Memory Requirements. In our most recent implementation, we have reduced the memory foot-
print for the Gauss—Newton approximation; we only store the time history of the state and incremental
state variable. This is accomplished by evaluating the time integrals that appear in the reduced gradient
in (5) and the Hessian matvec in (7) simultaneously with the time integration of the adjoint and incre-
mental adjoint equations (4) and (9), respectively. With this we can reduce the memory pressure from
O((2n; + 8)nynyns) (full Newton) to O((n; + 7)nynyns) (Gauss—Newton) for the gradient (see (5)) and
from O((4n; 4+ 13)nynyng) (full Newton) to O((n; + 10)nynynz) (Gauss—Newton) for the Hessian matvec
(see (7)), respectively. Notice that we require 0.5x the memory of the Hessian matvec, if we consider the
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TABLE 2
Parameters available in CLAIRE (there are more, but these are the critical ones).

variable  meaning suggested value determined automatically
Bo regularization parameter for v — yes
Bw regularization parameter for w = le—4 no
€ relative tolerance for gradient 5e—2 no
ny number of time steps 4 no
€ bound for det Vy~! 0.25 (H'-div) or 0.1 (H?)  no
(ol shees)

reference image mpg template image mp reference image mp template image mp

F1c. 3. Illustration of exemplary datasets from the NIREP dataset [32]. Left: Volume rendering of an exemplary reference image mpg(x)
(dataset na01) and an exemplary template image mr(x) (dataset na03), respectively. Right: Axial slice for these datasets together with label
maps associated with these data. Each color corresponds to one of the 32 individual anatomical gray matter regions that serve as a ground truth
to evaluate the registration performance.

two-level preconditioner. The spectral preconditioner does not add to the memory pressure.

3.6. Additional Software Features. We provide schemes for automatically selecting an adequate
regularization parameter. This a topic of research by itself [66, 68]. Disregarding theoretical require-
ments [17,40,137], one in practice typically selects an adequate regularization norm based on application
requirements. From a practical point of view we are interested in computing velocities for which the
determinant of the deformation map does not change sign/is strictly positive for every point inside the
domain. This guarantees that the transformation is locally diffeomorphic (subject to numerical accuracy).
Consequently, we determine the regularization parameter 8, for the Sobolev norm for the velocity based
on a binary search (this strategy was originally proposed in [96]; a similar strategy is described in [66]). We
control the search based on a bound for the determinant of the deformation gradient. That is, we choose
By so that the determinant of the deformation gradient is bounded below by €; and bounded above 1/¢j,
where €] € (0,1) is a user defined parameter. This search is expensive, since it requires a repeated solution
of the inverse problem. (For each trial B, we iterate until we meet the convergence criteria for our Newton
solver and then use the obtained velocity as an initial guess for the next 8,.) We assume that, once we have
found an adequate f,, we can use this parameter for similar registration problems. Such cohort studies
are quite typical in medical imaging.

CLAIRE features several well established schemes to accelerate the rate of convergence and reduce the
likelihood to get trapped in local minima. The user can choose between (i) parameter continuation in g,
(starting with a default value of B, = 1 we reduce B, until we reach a user defined parameter §}; we
found this scheme to perform best), (i7) grid continuation, i.e., a coarse-to-fine multi-resolution scheme
with a smoothing of ¢ = 1 voxels (consequently, the standard deviation increases for coarser grids), and
(iif) scale continuation using a scale-space representation of the image data (again, coarse-to-fine).

We summarize the critical parameters of CLAIRE in Tab. 2.

4. Experiments. We evaluate the registration accuracy for 16 segmented MRI brain volumes [32].
Details on the considered datasets can be found in §4.2. We showcase two exemplary datasets in Fig. 3.
Notice, that these datasets have been rigidly preregistered. We directly apply our method to this data
(without an additional affine preregistration step). The runs were executed on the CACDS’s Opuntia
server or on TACC’s Lonestar 5 system. The specs of these systems can be found below. Notice that we
accompany this document with supplementary material that provides more detailed results for some of the
experiments conducted in this study.

4.1. Setup, Implementation, and Hardware. We execute the runs on CACDS’s Opuntia system (Intel
ten-core Xeon E5-2680v2 at 2.80 GHz with 64 GB memory; 2 sockets for a total of 20 cores [35]) and
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TACC’s Lonestar 5 system (2-socket Xeon E5-2690 v3 (Haswell) with 12 cores/socket, 64 GB memory per
node [135]). Our code is written in C++ and uses MPI for parallelism. It is compiled with the default Intel
compilers available on these systems at the time (Lonestar 5: Intel 16.0.1 and Cray MPICH 7.3.0; Opuntia:
Intel PSXE 2016, Intel ICS 2016, and Intel MPI 5.1.1). We use CLAIRE commit v0.07-131-gbb7619e to
perform the experiments. For the software packages/libraries used in combination with CLAIRE we refer
to §3. The versions of the libraries used for our runs can be found in the references.

4.2. Real and Synthetic Data. We report results for the NIREP (“Non-Rigid Image Registration Evaluation
Project”) data [32]. This repository contains 16 rigidly aligned T1-weighted MRI brain datasets (na01-
nal6; image size: 256 x 300 x 256 voxels) of different individuals. Each dataset comes with 32 labels of
anatomical gray matter regions. (Additional information on the data sets, the imaging protocol, and the
pre-processing can be found in [32].) We illustrate an exemplary dataset in Fig. 3. The initial Dice score
(before registration) for the combined label map (i.e., the union of the 32 individual labels) is on average
5.18e—1 (mean) with a maximum of 5.62e—1 (dataset na08) and a minimum of 4.38e—1 (dataset na14).
We generate the data for grids not corresponding to the original resolution based on a cubic interpolation
scheme.

The scalability runs reported in §5.2 are based on synthetic test data. We use a template image
mr(x) = ((sinxq)(sinx1) + (sinxy)(sinxy) + (sinx3)(sinx3))/3. The reference image mpg(x) is computed
by solving the forward problem for a predefined velocity field v*(x) = (v%(x),v5(x),v5(x))T, where
v} (x) = sin x3 cos X, sin x, v3(x) = sin xq cos x3 sin x3, and v5(x) = sin x, cos x1 sin x1.

4.3. Convergence: Preconditioner. We study the performance of different variants of our precondi-
tioner for the reduced space Hessian.

Setup. We solve the KKT system in (7) at a true solution v*. This velocity v* is found by registering
two neuroimaging data sets from the NIREP dataset (na0O1 and na02). The images are downsampled to a
resolution of 128 x 150 x 128 (half the original resolution). We consider an H!-div regularization model
with B, = le—2 and By, = le—4 and an H? regularization model with B, = le—4 with a tolerance e, =
le—2 to compute v*. Once we have found v*, we generate a synthetic reference image mp by transporting
the reference image using v*. We use the velocity v* as an initial guess for our solver, and iteratively solve
for the search direction ¥ using different variants of our preconditioner. The number of time steps for the
PDE solves is set to n; = 4. We fix the tolerance for the (outer) PCG method to ey = 1e—3. We consider
an inexact Chebyshev semi-iterative method with a fixed number of k € {5,10,20} iterations (denoted by
CHEB(k)) and a nested PCG method with a tolerance of ep = le—1ey (denoted by PCG(le—1)) for the
iterative inversion of the preconditioner. Details can be found in §2. We compare these strategies to a
spectral preconditioner (inverse of the regularization operator .4; used in [52,99,100]). We study the rate
of convergence of the PCG solver for a vanishing regularization parameter 8,. We consider mesh sizes of
128 x 150 x 128 and 256 x 300 x 256. We execute CLAIRE on a single node of Opuntia with 20 MPI tasks.

Results. We display the trend of the residual with respect to the (outer) PCG iterations in Fig. 4
(H?-seminorm for v, ie., A = —A, with Bo € {le—2,5e—3,1e—3,5e—4,1e—4}) and in Fig. 5 (H'-
div regularization model with an Hl-seminorm for v, i.e., A = V with penalty for V - v, with 8, €
{le—1,5e—2,1e—2,5e—3} and By = le—4), respectively. Detailed results for these runs can be found in
Tab. SM1 and Tab. SM2 in the supplementary material.

Observations. The most important observations are:

e The PCG method converges significantly faster for the two-level preconditioner.

e The performance of all preconditioners considered in this study is not independent of the regulariza-
tion parameter B,. The workload increases significantly for vanishing regularity of the velocity v for
all preconditioners. The plots in Fig. 4 and Fig. 5 imply that the convergence of the PCG method for
the two-level preconditioner is less sensitive to (or even independent of) ,. The work goes to the
inversion of the reduced space Hessian on the coarse grid (cf. Tab. SM1 and Tab. SM2 in the sup-
plementary material for details). If we further reduce the regularization parameter (below le—5 for
the H2-regularization model and below le—4 for the H!-div regularization model) the performance
of our preconditioners deteriorates further; the runtime becomes impractical for all preconditioners.

o The rate of convergence of the PCG method is (almost) independent of the mesh size for all precon-
ditioners. We note that we apply a smoothing of ¢ = 2 along each spatial dimension so that the
input image data is resolved on the coarse grid of size 128 x 150 x 128. The same frequency content
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F1G. 4. Convergence of Krylov solver for different variants of the preconditioner for the reduced space Hessian. We consider an H>-seminorm

as regularization model for the velocity. We report results for different reqularization weights B, € {le—2,5e—3,1e—3,5e—4, 1le—4}. We report
the trend of the relative residual for the outer Krylov method (PCG) versus the iteration count. We report results for the spectral preconditioner
and the two-level preconditioner. We use different iterative algorithms to compute the action of the inverse of the preconditioner: CHEB(k) with
k € {5,10,20} refers to a CHEB method with a fixed number of k iterations; PCG(le—1) refers to a PCG method with a tolerance that is 0.1x
smaller than the tolerance used for the outer PCG method.
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Fic. 5. Convergence of Krylov solver for different variants of the preconditioner for the reduced space Hessian. We consider an H'-div regu-

larization model with an H'-seminorm for the velocity. We report results for different regularization weights B, € {le—1,5e—2,1e—2,5e—3}.
We set B, = le—4. We report the trend of the relative residual for the outer Krylov method (PCG) versus the iteration count. We report
results for the spectral preconditioner and the two-level preconditioner. We use different algorithms to compute the action of the inverse of the
preconditioner: CHEB(k) with k € {5,10,20} refers to a CHEB method with a fixed number of k iterations; PCG(1e—1) refers to a PCG method
with a tolerance that is 0.1x smaller than the tolerance used for the outer PCG method.

is presented to the solver on the fine grid of size 256 x 300 x 256.

The PCG method converges significantly faster if we consider an H!-regularization model for v. This
is a direct consequence of fact that the condition number of the Hessian increases with the order of
the regularization operator A.

The differences of the performance of the preconditioners are less pronounced for an H!-div regu-
larization model for v than for an H2-regularization model. For an H? regularization model with
Bo = le—4 we require more than 200 iterations for the spectral preconditioner.

Considering runtime (not reported here), we obtain a speedup of up to 2.9 for the H?-regularization
model (see run #20 in Tab. SM1 in the supplementary material) and a speedup of up to 2.6 for the
H'-div regularization model (see run #40 in Tab. SM2 in the supplementary material). The coarser the
grid, the less effective is the two-level preconditioner, especially for vanishing regularization parame-
ters By. This is expected, since we cannot resolve high-frequency components of the fine level on the
coarse level. Secondly, we do not use a proper (algorithmic) smoother in our scheme to reduce the
high-frequency errors.

o The performance of the CHEB and the nested PCG method for iteratively inverting the reduced space
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Hessian are similar. There are differences in terms of the mesh size. For a coarser grid (128 x 150 x 128)

the CHEB seems to perform slightly better. For a grid size of 256 x 300 x 256 the nested PCG method

is slightly better.

Conclusions. (i) The two-level preconditioner is more effective than the spectral preconditioner.
(i7) The nested PCG method is more effective than the CHEB method on a finer grid (and does not require
a repeated estimation of the spectrum of the Hessian operator). (iii) The PCG method converges faster if
we consider an H!-div regularization model for v. (iv) Designing a preconditioner that delivers a good
performance for vanishing regularization parameters requires more work.

4.4. Convergence: Newton-Krylov Solver. We study the rate of convergence of our Newton-Krylov
solver for the entire inversion. We consider the neuroimaging data described in §4.2. We report additional
results for a synthetic test problem (ideal case) in the supplementary material.

Setup. We register the datasets na02 through na16 (template images) with na01 (reference image).
We execute the registration in full resolution (256 x 300 x 256; 58 982400 unknowns). We consider and
H'-div regularization model (H'-seminorm for v with B, = le—2 and B, = le—4; the parameters are
chosen empirically). The number of Newton iterations is limited to 50 (not reached). The number of
Krylov iterations is limited to 100 (not reached). We use a tolerance of 5e—2 and le—6 (the latter is
not reached) for the relative reduction and the absolute £>-norm of the reduced gradient as a stopping
criterion, respectively. We use n; = 4 time steps for numerical time integration. We compare results
obtained for the two-level preconditioner to results obtained using a spectral preconditioner (inverse of
the regularization operator). We use a nested PCG method with a tolerance of ep = 0.1ey for computing
the action of the inverse of the two-level preconditioner. We do not perform any parameter, scale, or grid
continuation. (We note that we observed that these continuation schemes are critical when performing
runs for smaller regularization parameters.) We compare results obtained for single (32bit) and double
(64 bit) precision. We execute these runs on TACC’s Lonestar 5 system (see §4.1 for specs).

Results. We show convergence plots for all datasets in Fig. 6. We plot the relative reduction of the
mismatch (left column), the relative reduction of the gradient (middle column), and the relative reduction
of the objective functional (right column) with respect to the Gauss—-Newton iterations. The top row shows
results for the spectral preconditioner; the other two rows show results for the two-level preconditioner
(middle row: double precision; bottom row: single precision). The run time for the inversion is reported
in the plot at the top right of Fig. 6. An exemplary trend for the residual of the PCG method per Gauss-
Newton iteration is displayed at the bottom right of Fig. 6. These plots summarize results reported in the
supplementary material; results for the spectral preconditioner are reported in Tab. SM3; results for the
two-level preconditioner are reported in Tab. SM4 (double precision) and Tab. SM5 (double precision). We
also report a comparison of the performance of our solver for single (32 bit) and double (64 bit) precision
in Tab. SM6 for two exemplary images of the NIREP dataset.

Observations. The most important observations are:

e Switching from double to single precision does not affect the convergence of our solver (see Fig. 6;
detailed results are reported in Tab. SM6 in the supplementary material).

e The two-level preconditioner executed with single precision yields a speedup of up to 6x (with an
average speedup of 4.4 & 0.8) compared to our baseline method (spectral preconditioner executed in
double precision) [52,99] (see Fig. 6 top right). Switching from single to double precision yields a
speedup of more than 2x (detailed results are reported in Tab. SM6 in the supplementary material).

e The average runtime of our improved solver is 85s £ 225 with a maximum of 140s (see run #13 in
Tab. SM5 in the supplementary material for details) and a minimum of 56 s (see run #7 in Tab. SM5 in
the supplementary material for details).

e We obtain a very similar convergence behavior for the outer Gauss-Newton iterations for different
variants of our solver (see Fig. 6). We can reduce the /2-norm of the gradient by 5e—2 in 6 to 14
Gauss-Newton iterations (depending on the considered pair of images).

e The mismatch between the deformed template image and the reference image stagnates once we have
reduced the gradient by more than one order of magnitude (for the considered regularization weight).

e We oversolve the reduced space KKT system if we consider a superlinear forcing sequence in combi-
nation with a nested PCG method (see Fig. 6 bottom right). This is different for synthetic data (we
report exemplary results in the supplementary material).
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F1G. 6. Convergence of CLAIRE's Newton—Krylov solver for neuroimaging data for different realizations of the preconditioner. Top row:
inverse regularization operator. Middle and bottom row: two-level preconditioner using PCG(le—1) for double (64 bit; middle row) and single
(32bit; bottom row) precision, respectively. We report results for 15 multi-subject brain registration problems (na02 through na16 of the NIREP
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reduction of (i) the mismatch (squared L2-distance between the images to be registered), (i) the reduced gradient, and (iii) the objective functional,
with respect to the Gauss—Newton iterations. We use a relative change of the gradient of 5e—2 as a stopping criterion (dashed red line in second
column). We also report the run time in seconds for each registration problem (right plot at top) and an exemplary plot of the reduction of the
residual of the (outer) PCG solver per Newton iteration (right plot at bottom; the Newton iterations are separated by vertical dashed lines). The
runs are performed on one node of TACC's Lonestar 5 system. The results reported here correspond to those in Tab. SM3, Tab. SM4, and Tab. SM5
in the supplementary material.

100 Fic. 7. Convergence results for the parame-
ter continuation scheme implemented in CLAIRE.
We report results for the registration of na03 to
na01 (run #8 in Tab. ??). We report the reduction
of the mismatch (left) the reduced gradient (right)
per level versus the number of Gauss—Newton it-
erations. The individual levels are separated by
vertical, dashed lines. The horizontal dashed line
in the right plot shows the tolerance for the rela-
tive reduction of the gradient for the inversion.
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Conclusions. (i) Our improved implementation of CLAIRE yields an overall speedup of 4x for real
data if executed on a single resolution level. (i7) Executing CLAIRE in single precision does not deteriorate
the performance of our solver (if we consider an H'-regularization model for the velocity).

5. Time-to-Solution. We study the performance of CLAIRE. We note that the Demons algorithm re-
quires between approximately 30s (3 levels with 15, 10, and 5 iterations) and 3600s (3 levels with 1500,
1000 and 500 iterations) until “convergence”” on the same system (depending on the parameter choices;
this includes a grid continuation scheme; see §5.1 for details).

REMARK 2. Since we perform a fixed number of iterations for the Demons algorithm, the runtime only depends
on the execution time of the operators. The reqularization parameters control the support of the Gaussian smoothing
operator; the larger the parameters, the longer the execution time. This is different for CLAIRE; large regularization
parameters result in fast convergence and, hence, yield a short execution time. A simple strategy to obtain competitive
results in terms of runtime would be to also execute CLAIRE for a fixed number of iterations. We prefer to use a
tolerance for the relative reduction of the gradient, instead, since it yields consistent results across different datasets.

Setup. We use the dataset na02 and na03 as a template images, and register them to na01 (reference
image). We consider and H!-div regularization model (H'-seminorm for v with 8, € {le—2,1e—3} and
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TABLE 3

We compare different schemes implemented in CLAIRE for stabilizing and accelerating the computations. We consider two datasets as a
template image (na03 and na10). We use an H'-div regularization model with B, = le—4. We consider regularization parameters B, = le—2
and B, = 1le—3. We execute the inversion with a spectral preconditioner (double precision) to establish a baseline (run #1, run #6, run #11, and
run #16, corresponds to the method presented in [99]). The remaining results are obtained with a two-level preconditioner using a nested PCG
method with a tolerance of le—1ey to compute the action of the inverse of the preconditioner. For each dataset and each choice of B, we report
results for (from top to bottom) for a two-level preconditioner without any accelerations and a parameter continuation scheme (PC) scheme. We
report (from left to right) the number of Gauss—Newton iterations per level (#iter; the total number for the entire inversion is the sum), the number
of Hessian matvecs per level (#matvecs; the total number for the entire inversion is the sum), the number of PDE solves (on the fine grid; #PDE),
the relative reduction of the mismatch, the absolute >-norm of the reduced gradient (||g*||2), and the relative £2-norm of the reduced gradient
after convergence (||g* ||1). We also report the runtime (in seconds) as well as the speedup compared to our baseline method presented in [99].

Bo #iter  #matvecs #PDE  mismatch | g*|2 [lg* ||rer runtime  speedup
#1 na03 le-2 — 9 83 187  8.47e-2 4.63e—4  4.71e—-2  6.05e+2
#2 — 9 9 39  8.60e—2 4.65e—4  4.73e—2  1.22e+42 5.0
#3 PC 4,32 432 46 9.84e—2 8.66e—4  4.77e—2  9.33e+1 6.5
#4 le-3 — 7 128 273 2.88e—-2 397e—4  494e-2  8.97e+2
#5 — 12 12 73 2.56e—2 3.72e—4  4.63e—2 7.17e+2 1.3
#6 PC 4322 4,322 56  3.37e-2 8.25e—4  4.55e—2  1.6le+2 5.6
#7 nal0 le-2 — 7 52 121 9.67e—2 498e—4 491le—2  3.84e+2
#8 — 7 7 31 9.62e—2 499%—4  4.92e—2  9.35e+1 41
#9 PC 3,32 3,32 42 1.10e—-1 9.55e—4  498e—2  9.04e+1 42
#10 le-3 — 7 134 285  3.17e-2 3.46e—4  424e—2  1.04e+3
#11 — 8 16 51 3.11e-2 3.85e—4  4.73e—2  4.78e+2 22
#12 PC 3322 3,323 54  3.78e-2 74le—4  3.86e—2  1.87e+2 5.6

Bw = le—4; these parameters are chosen empirically). The number of Newton iterations is limited to 50
(not reached). The number of Krylov iterations is limited to 100 (not reached). We use a tolerance of
5e—2 for the relative reduction of the ¢2-norm of the gradient and a tolerance of le—6 (not reached) for
its £2-norm as a stopping criterion. We use n; = 4 time steps for numerical time integration. We compare
results obtained for the two-level preconditioner (runs executed in single precision) to results obtained
using a spectral preconditioner (inverse of the regularization operator; runs executed in double precision;
the baseline method described in [99]). We use a nested PCG method with a tolerance of ep = le—1ep for
computing the action of the inverse of the two-level preconditioner. We execute CLAIRE using a parameter
continuation scheme. That is, we reduce the regularization weight be one order of magnitude (starting
with B, = 1) until we reach the target regularization parameter. We execute these runs on one node of the
Opuntia system using 20 MPI tasks (see §4.1 for specs).

Results. We report the results in Tab. 3. We report the number of Gauss-Newton iterations, the
number of Hessian matrix vector products (per level), the number of PDE solves (per level), the relative
reduction of the mismatch, the £2-norm of the reduced gradient, the relative reduction of the 2-norm of the
gradient, the run time, and the associated speedup compared to a full solve disregarding any acceleration
schemes. We showcase the trend of the mismatch and the £2-norm of the gradient for different levels of
the parameter continuation scheme in Fig. 7. We show exemplary registration results for the parameter
continuation in Fig. 8 (for the registration of na10 to na01).

Observations. The most important observations are:

e The parameter continuation scheme in 5, yields a speedup between 4x and 6x (run #3, run #6,
run #9, and run #12 in Tab. 3) even if we reduce the target regularization parameter from le—2 to
le—3. The runtime range between 9.04e+1s (run #9) and 1.87e+2s (run #12) depending on problem
and parameter selection.

o The results obtained for the different schemes are qualitatively and quantitatively very similar. We
obtain similar values for the relative mismatch, e.g., between 1.10e—1 and 9.62e—2 for §, = le—2 and
between 3.78e—2 and 3.11e—2 for 8, = le—3 for the registration of na10 to na01.

Conclusions. (i) Introducing the parameter continuation stabilizes the computations (similar results
can be observed for grid and scale continuation schemes; not reported here). While the speedup for the
preconditioner deteriorates as we reduce B, (see, e.g., run #2 and run #5 in Tab. 3), we can observe a
speedup of about 5x for the parameter continuation scheme irrespective of §,. We note that for small
regularization parameters it is critical to execute CLAIRE using a parameter continuation scheme. That
is, for certain problems we observed a stagnation in the reduction of the gradient if CLAIRE is executed
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before registration mismatch < > after registration

coronal

axial

sagittal

F1G. 8. Exemplary results for the parameter continuation scheme implemented in CLAIRE. We consider the datasets nal0 (template image)
to na01 (reference image). We show (from top to bottom) coronal, axial and sagittal slices. The three columns on the left show the original data
(left: reference image mg; middle: template image mr; right: mismatch between mg and mr before registration). The four columns on the right
show results for the parameter continuation scheme (run #9 in Tab. 3; from left to right: mismatch between mg and my (after registration); a map
of the orientation of v; a map of the determinant of the deformation gradient (the color bar is shown at the top); and a deformed grid illustrating
the in plane components of y).

without a parameter continuation scheme for small regularization parameters. We attribute this behavior
to the accumulation of numerical errors in our scheme. This observation requires further exploration.
(i7) Depending on the desired mismatch and regularity requirements, we achieve a runtime that is almost
competitive with the Demons algorithm using the same system (i.e., the same number of cores). We expect
to obtain an additional speedup by combining grid and parameter continuation. Designing an effective
algorithm that combines these two approaches requires more work.

5.1. Registration Quality. We study registration accuracy for multi-subject image registration prob-
lems based on the NIREP dataset (see §4.2). We compare results for our method to different variants of the
diffeomorphic Demons algorithm.

Setup. We consider the entire NIREP data repository. We register the dataset na02 through na16
(template images) to na01 (reference image). The data has been rigidly preregistered [32]. We do not
perform an additional affine preregistration step. Each dataset comes with a label map that contains 32
labels (ground truth segmentations) identifying distinct gray matter regions (see Fig. 3 for an example).
We quantify registration accuracy based on the Dice coefficient (the optimal value is one) for these labels
after registration. For ease of presentation we limit the evaluation to the union of the 32 labels (we report
results for the individual 32 labels for CLAIRE in Fig. SM2 of the supplementary material). We assess
the regularity of the computed deformation map based on the extremal values for the determinant of
the deformation gradient. The analysis is limited to the foreground of the reference image (i.e., the area
occupied by brain, identified by thresholding using a threshold of 0.05). We compare the performance of
our method against different variants of the diffeomorphic Demons algorithm. We execute all runs on one
node of the Opuntia system using 20 MPI tasks (see §4.1 for specs).

e Demons: We consider (non-)symmetric diffeomorphic ((S)DDEM; diffeomorphic update rule) [140,142], and
the (non-)symmetric log-domain diffeomorphic Demons algorithm ((S)LDDDEM; (symmetric) log-domain
update rule) [141]. We have tested different settings for these methods (see below). We limit our study
to the default parameters suggested in the literature, online resources, and the manual of the software.
We use the code available at [78]. We compile in release mode, with the -03 option. The code has
been linked against ITK version 4.9.1 [79,85]. Notice that the implementation uses multi-threading
based on pthreads to speed up the computations. We use the default setting, which corresponds to
the number of threads being equal to the number of cores of the system. We use the symmetrized force
for the symmetric strategies. We consider the gradient of the deformed template as a force for the non-
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symmetric strategies. We use a nearest-neighbor interpolation model to transform the label maps. We
perform various runs to identify adequate parameters. For the first set of runs we use a three-level grid
continuation scheme with 15, 10, and 5 iterations per level (the default), respectively. We estimate an
optimal combination of regularization parameters ¢, > 0, o; > 0, and ¢, > 0 based on an exhaustive
search. This search is limited to the datasets na0O1 (reference image) and na02 (template image). We
define the optimal regularization parameter to be the one that yields the highest Dice score subject
to the map y being diffeomorphic. We note that accurately computing det Vy is challenging. The
values reported in this study have to be considered with the numerical accuracy in mind. For Demons
we report the values generated by the software. We refine this parameter search by increasing the
number of iterations per level by a factor of 2, 5, 10, and 100 to make sure that we have “converged”
to an “optimal” solution. We apply the best variants identified by this exhaustive search to the entire

NIREP data.

e CLAIRE: We consider an H!-div regularization model (H'-seminorm for v, i.e., A = —A, with an
additional penalty for V - v). We set the regularization weight for the penalty for the divergence of

v to By = le—4. To select an adequate regularization parameter f3,, we use a binary search. We

set the bounds for the determinant of the deformation gradient to 0.25 and 0.30, respectively. We set

the number of time steps of the SL scheme to n; = 4. The number of maximal iterations is set to 50

(not reached). The number of Krylov iterations is limited to 100 (not reached). We use a tolerance of

5e—2 and 1le—6 for the relative and absolute reduction of the reduced gradient as a stopping criterion.

We use n; = 4 time steps for numerical integration. We run the registration on full resolution and

(based on the experiments in §5) use a parameter continuation scheme in B, to solve the registration

problem. Probing for an optimal regularization parameter is expensive. We limit this estimation to

the datasets na01 (reference image) and na02 (template image), assuming that we can estimate an
adequate parameter for a particular application based on a subset of images. We execute CLAIRE on
the remaining images using the identified parameters. We compute det Vy directly from v by solving

a transport equation (see [96,100] for details). We transport the label maps to generate results that

are consistent with the values reported for the determinant of the deformation map. This requires an

additional smoothing (standard deviation: one voxel) and thresholding (threshold: 0.5) step.

Results. We illustrate the search for an optimal regularization weight for CLAIRE in Fig. 9. We show-
case an exemplary result for the rate of convergence of SDDEM and CLAIRE in Fig. 10 (the software is
executed at full image resolution). We summarize exemplary registration results for all datasets in Fig. 11.
Here, D1, D2, D3, C1, and C2 correspond to different variants of the Demons algorithm and CLAIRE. C1
corresponds to CLAIRE with regularization weight of 9.72e—3 (¢; = 0.3) and C2 to CLAIRE with a regu-
larization weight of 5.50e—4 (¢; = 0.25). The first Demons variant D1 is SDDEM with (o3, 04) = (0,3.5)
(smooth setting). It yields results that are competitive with CLAIRE in terms of the determinant of the
deformation gradient. The second variant D2 is SDDEM with (o, 04) = (0,3.0), which gave us the best
result (highest attainable Dice score with the determinant of the deformation gradient not changing sign
for the training data na01 and na02). The third variant D3 is SDDEM with (cy,0;) = (0,1.0) (aggressive
setting). We achieve results that are competitive with CLAIRE in terms of the Dice score. We execute the
Demons algorithm with a three-level grid continuation scheme with 150, 100, and 50 iterations per level,
respectively.

We refer the interested reader to the supplementary material for more detailed results for these runs
and an additional insight into the parameter search we have conducted to identify the best variant of the
Demons algorithm. Detailed results for the CLAIRE variant C1 are reported in Tab. SM7. Detailed results for
the CLAIRE variant C2 are reported in Tab. SM8. For CLAIRE, we report Dice coefficients for the individual
32 gray matter labels in Fig. SM2. Results for probing for adequate regularization parameters oy, 0, and
oy for different variants of the Demons algorithm are reported in Tab. SM9 and Tab. SM10 (exhaustive
search). Building up on these results we extend this search by additionally increasing the iteration count.
These results are reported in Tab. SM11. We determined that SDDEM gives us the best results in terms of
the Dice coefficient. Detailed results for the variants D1, D2, and D3 can be found in Tab. SM12.

Observations. The most important observations are:

e CLAIRE yields a smaller mismatch/higher Dice coefficient with a better control of the determinant
of the deformation gradient (see Fig. 11). We obtain an average Dice coefficient of 8.38e—1 with

(min, max) = (4.14e—1,1.11e+1) as extremal values for the determinant of the deformation gradient
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Fic. 9. Estimation of the regularization param-
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(on average). The Dice score for the best variant of the Demons algorithm, SDDEM, is 8.42e—1. To attain
this score we have to commit to non-diffeomorphic deformation maps (as judged by the values for the
determinant of the deformation gradient reported by the Demons software). An extension of CLAIRE,
which we did not consider in this work, is to enable a monitor for the determinant of the deformation
gradient that increases the regularization parameter if we hit the bound we used to estimate §,. This
would prevent the outliers we observe in this study, without having to probe for a new regularization
parameter for each individual datasets.

e For CLAIRE, the average runtime (across all registrations) is 1.08e+2s and 2.43e+2s for B, = 9.72e—3
and B, = 5.50e—4, respectively. This is between 1.5x and 5x slower than the Demons algorithm if
we execute Demons using 15, 10, and 5 iterations per level. Notice, that Demons is executed for a
fixed number of iterations. The runs reported here use 10x more iterations per level (which slightly
improves the performance of Demons; we refer the interested reader to Tab. SM11 in the supplementary
material for details). This increases the runtime of the Demons algorithm by roughly a factor of 10.
CLAIRE uses a relative tolerance for the gradient as a stopping criterion. Moreover, Demons uses a
grid continuation scheme. We execute these runs on the fine resolution, and perform a parameter
continuation instead (since we observed it is more stable for vanishing B,; see §5).

e On the fine grid (single-level registration), CLAIRE converges significantly faster than the Demons algo-
rithm. We reach a Dice score of more than 0.8 for CLAIRE after only three Gauss-Newton iterations
(see Fig. 10).

Conclusions. With CLAIRE we achieve (i) a computational performance that is close to that of the
Demons algorithm (1.5 to 5x slower for the fastest setting we used for Demons) with (i) a registration
quality that is superior (higher Dice coefficient with a better behaved determinant of the deformation
gradient).

5.2. Scalability. We study strong scaling of our improved implementation of CLAIRE for up to 3221225472
unknowns for a synthetic test problem consisting of smooth trigonometric functions (see §4.2).

Setup. We consider grid sizes 1283, 256°, 5123, and 1024%. We use an H'-div regularization model
with By = 1le—3 and B, = le—4. We use the two-level preconditioner with a nested PCG method with
a tolerance of le—1ley to compute the action of the inverse of the preconditioner. We set the tolerance
for the stopping condition for the relative reduction of the reduced gradient to le—2 (with an absolute
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Fic. 11. Registration results for the NIREP data. We
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F1c. 12. Strong scaling results for a synthetic test problem on TACC’s Lonestar 5 system (see §4.1 for specs). We use 12 MPI tasks per
node. We report the runtime (time-to-solution) for the entire inversion (in seconds). Our Newton—Krylov solver converges in three iterations
(with three Hessian matvecs and a total of 15 PDE solves on the fine level). We consider grid sizes 1283, 256%, 5123, and 1024 (from left to
right). The largest run uses 4096 MPI tasks on 342 compute nodes (we solve for 3221225472 unknowns).

tolerance of 1le—6 (not reached)). We execute the runs on TACC’s Lonestar 5 system (see §4.1 for specs).

Results. We report strong scaling results for CLAIRE in Fig. 12. We report the time-to-solution and
compare it to the runtime we expect theoretically. We report detailed results, which form the basis of the
run times reported in Fig. 12, in Tab. 4. Here, we report the execution time of the FFT and the interpolation
kernels on the coarse (two-level preconditioner) and fine grid, the runtime of our solver (time-to-solution),
and the strong scaling efficiency of our improved implementation of CLAIRE. We refer to [52,99] more
detailed results on the scalability of our original implementation of CLAIRE

Observations. The most important observations are:

e We obtain a good strong scaling efficiency that is at the order of 60%.

e The strong scaling results are in accordance with the performance reported in [52,97]. The key dif-
ference is that the scalability of our new solver is dominated by the coarse grid discretization within
the preconditioner. That is, we do not observe the scalability reported in [52,97] if we execute CLAIRE
with the same amount of resources for a given resolution of the data. However, if we compare the
scalability results reported in [52] with a resolution that matches the coarse grid in the preconditioner,
we can observe a similar strong scaling efficiency.

e We can solve clinically relevant problems in about 2s if we execute CLAIRE with 256 MPI tasks (see
run #14 in Tab. 4).

e We can solve problems with up to 3221225472 unknowns in less then 5s with 4096 MPI tasks on 342
compute nodes on TACC’s Lonestar 5 system (see run #25 in Tab. 4). The solver converges in 1.37e+2s
if we execute the run on 22 nodes with 256 MPI tasks.

Conclusions. With CLAIRE we deploy a solver that scales on HPC platforms. CLAIRE approaches
run-times that represent a significant step towards providing “real-time” capabilities for clinically relevant
problem sizes (inversion for ~50 million unknowns in 2.34 s using 256 MPI tasks; see also [52,99]). Further
accelerations for the basis of our current work. CLAIRE can also be used to solve diffeomorphic image
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TABLE 4
Scalability results for CLAIRE for a synthetic test problem. We report strong scaling results for up to 3221225472 unknowns (grid sizes:
1283, 2563, 1523, and 10243). We execute these runs on TACC’s Lonestar 5 system (see §4.1 of the main manuscript for the specs). We consider
an H'-div reqularization model with B, = le—3 and B, = le—4. We use a two-level preconditioner with a nested PCG method. We terminate
the inversion if the gradient is reduced by le—2. We execute these runs in single precision. We use 12 MPI tasks per node. We report the
execution time for the FFT and the interpolation (on the coarse and the fine grid; in seconds), the runtime of the solver (time-to-solution; in
seconds), and the strong scaling efficiency.

grid run nodes tasks fine grid coarse grid runtime  efficiency
FFT interpolation FFT interpolation
128° #1 1 2 425 (32%)  2.82 (21%)  2.21 (17%)  1.73 (13%)  1.33e+1
#2 1 4 245 (32%)  1.46 (19%)  1.29 (17%)  9.22e—1  (12%) 7.49 89%
3 1 8 135 (32%)  8.14e—1  (19%) 7.32e—1 (17%) 5.13e—1 (12%) 4.26 78%
#4 2 16 73%—-1 (28%) 5.69e—1 (22%) 4.37e—-1 (17%) 3.1le-1 (12%) 2.59 64%
#5 3 32  416e—-1 (28%) 39le-1 (21%) 3.78e—1 (21%) 2.55e—1  (14%) 1.82 46%
#6 6 64 3.12e—1 (26%) 3.45e—1 (28%) 1.52e—1 (13%) 1.22e—-1 (10%) 121 34%
256° #7 1 2  555e+1  (40%) 277e+1  (20%) 2.08e+1  (15%) 147e+1  (11%)  1.39e+2
#3 1 4 270e+1  (37%) l4le+1  (19%) 1.18e+1  (16%)  7.59 (10%)  7.23e+1  96%
#9 1 8 145e+1  (37%) 7.70 (20%)  6.30 (16%)  4.14 (11%)  3.92e+1  89%
#10 2 16 687 (35%)  3.50 (18%)  3.41 (18%) 213 (11%)  1.95e+1  89%
#11 3 32 4.06 (36%)  1.94 (17%)  2.01 (18%) 115 (10%)  1.13e+1  77%
#12 6 64 215 (35%)  1.04 (17%)  1.05 (17%)  6.38e—1  (10%) 6.14 71%
#13 11 128 1.20 (33%)  6.26e—1  (17%) 592e—1  (16%) 3.90e—1 (11%) 3.63 60%
#14 22 256  7.08e—1  (30%) 4.38e—1  (18%) 3.34e—1 (14%) 258e—1 (11%) 2.34 47%
5123 #15 2 16  8.0let+l  (41%) 3.26e+1  (17%) 3.3%+1 (17%) 1.85e+1  (10%)  1.94e+2
#16 3 32 452e+1 (41%) 1.79e+1  (16%) 1.94e+1  (18%) 9.86 (9%) 1.0%+2  89%
#17 6 64  22le+1  (40%) 8.87 (16%)  1.03e+1  (19%) 5.08 (9%) 554e+1  88%
#18 11 128  1.07e+1  (38%)  4.30 (15%)  5.59 (20%)  2.68 (10%)  2.8le+1  86%
#19 22 256 570 (37%)  2.26 (15%)  3.16 (20%)  1.58 (10%)  1.56e+1  78%
#20 43 512 3.00 (35%) 145 (17%) 140 (16%)  9.39%e—1  (11%)  8.66 70%
10243 #21 22 256  5.69e+1  (42%) 216e+1  (16%) 2.68e+1  (20%) 1.l14e+1  ( 8%) 1.37e+2
#22 43 512 2.85e+1  (39%) 1.06e+1  (14%) 1.70e+1  (23%)  6.42 (9%) 7.34e+1  93%
#23 86 1024 145e+1  (39%) 523 (14%)  7.75 (21%)  3.29 (9%) 3.74e+1  92%
#24 171 2048 7.22 (35%)  3.26 (16%)  4.13 (20%)  2.15 (10%)  2.08e+1  82%
#25 342 4096 449 (28%)  2.30 (15%)  3.20 (21%) 176 (11%)  1.55e+1  55%

registration problems of unprecedented scale, something that is of interest for whole body imaging [89,
134] or experimental, high-resolution microscopic imaging [34, 88,136]. The largest problem we have
solved with our original implementation of CLAIRE is 25769803776 unknowns (see [52]). To the best of
our knowledge, CLAIRE is the only software for large deformation diffeomorphic registration with these
capabilities.

6. Conclusions. With this publication we release CLAIRE, a memory-distributed algorithm for station-
ary velocity field large deformation diffeomorphic image registration in 3D. This work builds up on our
former contributions on constrained large deformation diffeomorphic image registration [52,96-100]. We
have performed a detailed benchmark study of the performance of CLAIRE on synthetic and real data. We
have studied the convergence for different schemes for preconditioning the reduced space Hessian in §4.3.
We have examined the rate of convergence of our Gauss—Newton-Krylov solver in §4.4. We have reported
results for different schemes available in CLAIRE in §5 to study the time-to-solution. We have compared the
registration quality obtained with CLAIRE to different variants of the diffeomorphic Demons algorithm in
§5.1. We have also reported strong scaling results for our improved memory-distributed solver on super-
computing platforms (see §5.2). We note that we accompany this work with supplementary material that
provides a more detailed picture about the performance of our method. The most important conclusions
are:

e CLAIRE delivers high-fidelity results with well-behaved deformations. Our results are in accordance
with observations we have made for the two-dimensional case [97]. Our H!-div formulation outper-
forms the diffeomorphic Demons algorithm in terms of data fidelity and deformation regularity (as
judged by the higher dice score and more well-behaved extremal values for the determinant of the
deformation gradient; see Fig. 11 in §5.1).

e Our Gauss-Newton-Krylov solver converges after only a few iterations to high-fidelity results. The
rate of convergence of CLAIRE is significantly better than that of the Demons algorithm (if we run the
code on a single resolution level; see Fig. 10 in §5.1).
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e CLAIRE introduces different acceleration schemes. These schemes not only stabilize the computations
but also lead to a reduction in runtime (see Tab. 3 in §5). CLAIRE delivers a speedup of 5x for the
parameter continuation. We observed a speedup of up to 17x when considering a grid continuation
scheme (results not reported here). We disregarded this scheme, because we observed a significant
dependence of the performance on the regularity of the velocity. Combining the grid and parameter
continuation scheme may yield an even better performance. Designing an effective schedule for a
combined scheme remains subject to future work.

o Our two-level preconditioner is effective. We achieve the best performance if we compute the action of
its inverse with a nested PCG method. This allows us to avoid a repeated estimation of spectral bounds
of the reduced space Hessian operator, which is necessary if we consider a semi-iterative Chebyshev
method. For real data, we achieve a moderate speedup of about 4 x for the entire inversion compared
to our prior work [97]. Moreover, we saw that the performance of our schemes for preconditioning the
reduced space Hessian is not independent of the regularization parameter for the velocity. Designing
a preconditioner that yields a good performance for vanishing regularity of the objects requires more
work.

e CLAIRE delivers good scalability results. In this work, we showcase results for up to 3221225472
unknowns on 342 compute nodes of TACC’s Lonestar 5 system executed with 4096 MPI tasks. This
demonstrates that we can tackle applications that require the registration of high-resolution imag-
ing data such as, e.g., CLARITY imaging (a new optical imaging technique that delivers sub-micron
resolution [34, 88,136]). Further, we demonstrated that CLAIRE can deliver run-times that represent
a significant step towards providing “'real-time” capabilities for clinically relevant problem sizes (in-
version for ~50 million unknowns in about 2s using 256 MPI tasks). To the best of our knowledge,
CLAIRE is the only software with these capabilities. Further run time accelerations form the basis of
our current work.

With this work we have identified several aspects of CLAIRE that need to be improved. The time-to-
solution on a single workstation is not yet fully competitive with the diffeomorphic Demons algorithm. We
are currently working on improvements to our computational kernels to further reduce the execution time
of CLAIRE. In addition to algorithmic improvements, we are also actively working on a GPU implementa-
tion of CLAIRE. As we have mentioned in the limitations, CLAIRE does not support non-stationary velocities.
The design of efficient numerical schemes for non-stationary (time dependent) velocities is something we
will address in our future work. Moreover, we are currently adding support for new distance measures to
enable multi-modal registration.

REFERENCES

[1] S. S. Apavant anD G. Biros, Fast algorithms for source identification problems with elliptic PDE constraints, SIAM Journal on
Imaging Sciences, 3 (2008), pp. 791-808. 3
[2] , Multigrid algorithms for inverse problems with linear parabolic PDE constraints, SIAM Journal on Scientific Computing, 31
(2008), pp. 369-397. 3,9
[3] V. AkceLik, G. Biros, AND O. GHATTAS, Parallel multiscale Gauss-Newton-Krylov methods for inverse wave propagation, in Proc
ACM/IEEE Conference on Supercomputing, 2002, pp. 1-15. 4
[4] V. AkcELIK, G. Biros, O. GHATTAS, ]. Hitr, D. KEYES, AND B. VAN BLOEMEN WANDERS, Parallel algorithms for PDE constrained
optimization, vol. 20 of Parallel Processing for Scientific Computing, SIAM, Philadelphia, Pennsylvania, US, 2006, ch. 16,
pp- 291-322. 4
[5] A. ALEXANDERIAN, N. PETRA, G. STADLER, AND O. GHATTAS, A fast and scalable method for A-optimal design of experiments for
infinite-dimensional Bayesian nonlinear inverse problems, SIAM Journal on Scientific Computing, 38 (2016), pp. A243-A272.
8
[6] R. ANDREEV, O. SCHERZER, AND W. ZULEHNER, Simultaneous optical flow and source estimation: Space—time discretization and
preconditioning, Applied Numerical Mathematics, 96 (2015), pp. 72-81. 3
[7] V. Arsieny, O. ComMmowIck, X. PENNEC, AND N. AYacHE, A Log-Euclidean framework for statistics on diffeomorphisms, in Proc
Medical Image Computing and Computer-Assisted Intervention, vol. LNCS 4190, 2006, pp. 924-931. 3
[8] J. ASHBURNER, A fast diffeomorphic image registration algorithm, Neurolmage, 38 (2007), pp. 95-113. 1, 3, 4
[9] J. AsuBURNER AND K. J. FrIsTON, Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation, Neurolmage,
55 (2011), pp. 954-967. 1, 3
[10] B. B. Avants, C. L. ErsTEIN, M. BrossMAN, AND J. C. GEE, Symmetric diffeomorphic image registration with cross-correlation:
Evaluating automated labeling of elderly and neurodegenerative brain, Medical Image Analysis, 12 (2008), pp. 26—41. 3
[11] B. B. AvanTs, N. J. TusTIsoN, G. SoNgG, P. A. Cook, A. KLEIN, AND J. C. GEE, A reproducible evaluation of ANTs similarity metric
performance in brain image registration, Neurolmage, 54 (2011), pp. 2033-2044. 1, 3, 4
[12] O. AxELSSON AND P. S. VAassILEVSKI, A black box generalized conjugate gradient solver with inner iterations and variable step precon-




24

[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

ANDREAS MANG ET AL.

ditioning, SIAM Journal on Matrix Analysis and its Applications, 12 (1991), pp. 625-644. 9

R. Azencorr, R. GLowinskl, J. HE, A. Jajoo, Y. L1, A. MARTYNENKO, R. H. W. HorPE, S. BENZEKRY, AND S. H. L1TTLE, Diffeo-
morphic matching and dynamic deformable surfaces in 3D medical imaging, Computational Methods in Applied Mathematics,
10 (2019), pp. 235-274. 1

S. Baray, S. ABHYANKAR, M. FE. Apawms, J. BRowN, P. BRUNE, K. BuscuELMAN, L. DaLciN, A. DeENER, V. Egykaoutr, W. D.
Grorr, D. KausHik, M. G. KNEPLEY, D. A. May, L. C. McInNEs, R. T. MiLLs, T. MunsoN, K. Rurp, PaTrIcK, B. F. SMITH,
S. Zamring, H. ZHANG, AND H. ZHANG, PETSc Webpage. https://www.mcs.anl.gov/petsc. 2, 10

S. BALAy, S. ABHYANKAR, M. F. Apawms, J. BRown, P. BRung, K. BuscHELMAN, V. Eijkaout, W. D. Grorp, D. KausHik, M. G.
KNEPLEY, L. C. McINNESs, K. Rurp, B. F. SmitH, AND H. ZHANG, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.7,
Argonne National Laboratory, 2016. 2, 4, 10

V. BARBU AND G. MARINOSCHI, An optimal control approach to the optical flow problem, Systems & Control Letters, 87 (2016),
pp-1-9.3,5

M. F. BEG, M. I. MILLER, A. TROUVE, AND L. YouNEs, Computing large deformation metric mappings via geodesic flows of diffeomor-
phisms, International Journal of Computer Vision, 61 (2005), pp. 139-157. 1, 2, 3,4, 5, 6, 11

M. Benzi, G. H. GoLus, aAND J. LIESEN, Numerical solution of saddle point problems, Acta Numerica, 14 (2005), pp. 1-137. 4

M. Benzi, E. HABER, AND L. TARALLI, A preconditioning technique for a class of PDE-constrained optimization problems, Advances
in Computational Mathematics, 35 (2011), pp. 149-173. 3, 4

L. T. BieGLER, O. GHATTAS, M. HEINKENSCHLOSS, D. KEYES, AND B. VAN BLOEMEN WAANDERS, Real-time PDE-constrained
optimization, SIAM, 2007. 4

L. T. BIEGLER, O. GHATTAS, M. HEINKENSCHLOSS, AND B. VAN BLOEMEN WAANDERS, Large-scale PDE-constrained optimization,
Springer, 2003. 3, 4

G. Biros AND G. DodaN, A multilevel algorithm for inverse problems with elliptic PDE constraints, Inverse Problems, 24 (2008). 3,
9

G. Biros AND O. GHATTAS, Parallel Newton-Krylov methods for PDE-constrained optimization, in Proc ACM/IEEE Conference on
Supercomputing, 1999, pp. 28-40. 4, 6

, Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization—DPart I: The Krylov-Schur solver, SIAM

Journal on Scientific Computing, 27 (2005), pp. 687-713. 4, 6

, Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization—Part 1I: The Lagrange-Newton solver and
its application to optimal control of steady viscous flows, SIAM Journal on Scientific Computing, 27 (2005), pp. 714-739. 4, 6

A. Borzl, K. Ito, aND K. Kunisc, Optimal control formulation for determining optical flow, SIAM Journal on Scientific Comput-
ing, 24 (2002), pp. 818-847. 3,4, 5

A. Borzi AND V. Scuurz, Computational optimization of systems governed by partial differential equations, SIAM, Philadelphia,
Pennsylvania, US, 2012. 3

S. Boyp AND L. VANDENBERGHE, Convex Optimization, Cambridge University Press, 2004. 6

T. Bur-THaNH, O. GHATTAS, ]. MARTIN, AND G. STADLER, A computational framework for infinite-dimensional Bayesian inverse
problems Part I: The linearized case, with application to global seismic inversion, SIAM Journal on Scientific Computing, 35
(2013), pp. A2494-A2523. 8

M. BURGER, J. MODERSITZKI, AND L. RUTHOTTO, A hyperelastic regularization energy for image registration, SIAM Journal on
Scientific Computing, 35 (2013), pp. B132-B148. 3

K. CHEN AND D. A. LoRENZ, Image sequence interpolation using optimal control, Journal of Mathematical Imaging and Vision, 41
(2011), pp. 222-238. 1,2,3,4,5

G. E. CHRISTENSEN, X. GENG, J. G. KuHi, J. Bruss, T. J. GRABOwsKI, I. A. PIRWANI, M. W. VANNIER, J. S. ALLEN, AND H. Dama-
s10, Introduction to the non-rigid image registration evaluation project, in Proc Biomedical Image Registration, vol. LNCS
4057, 2006, pp. 128-135. 12, 13, 18

G. E. CHRISTENSEN, R. D. RaBBITT, AND M. I. MILLER, Deformable templates using large deformation kinematics, Image Processing,
IEEE Transactions on, 5 (1996), pp. 1435-1447. 3

K. CHuNG aND K. DE1sseroTH, CLARITY for mapping the nverous system, Nature Methods, 10 (2013), pp. 508-513. 21, 23

CORE FACILITY FOR ADVANCED COMPUTING AND DATA SciENCE, CACDS Webpage. https:/ /www.uh.edu/cacds. 4, 10, 12

W. R. CruMm, C. TANNER, AND D. J. HawkEs, Anisotropic multi-scale fluid registration: Evaluation in magnetic resonance breast
imaging, Physics in Medicine and Biology, 50 (2005), pp. 5153-5174. 1

K. CzecHowski, C. BarracLino, C. McCrLaNaHAN, K. IYER, P-K. YEUNG, AND R. Vupuc, On the communication complexity of
3D FFTs and its implications for exascale, in Proc ACM/IEEE Conference on Supercomputing, 2012, pp. 205-214. 10

Dara FORMAT WORKING GROUP OF THE NEUROIMAGING INFORMATICS TECHNOLOGY INITIATIVE, niftilib. http://niftilib.
sourceforge.net, 2019. 10

R. S. DEMBO, S. C. EIsENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM Journal on Numerical Analysis, 19 (1982),
pp- 400-408. 8

P. Dururs, U. GERNANDER, AND M. I. MILLER, Variational problems on flows of diffeomorphisms for image matching, Quarterly of
Applied Mathematics, 56 (1998), pp. 587-600. 1, 2, 3, 11

S. C. E1sENTAT AND H. F. WALKER, Choosing the forcing terms in an inexact Newton method, SIAM Journal on Scientific Computing,
17 (1996), pp. 16-32. 8

A. EXLUND, P. DUFORT, D. FORSBERG, AND S. M. LACONTE, Medical image processing on the GPU-past, present and future, Medical
Image Analysis, 17 (2013), pp. 1073-1094. 4

H. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of inverse problems, Kluwer Academic Publishers, Dordrecht, NL, 1996.
1

M. FaLcoNE AND R. FERRETTI, Convergence analysis for a class of high-order semi-Lagrangian advection schemes, SIAM Journal on
Numerical Analysis, 35 (1998), pp. 909-940. 2, 7

B. FISCHER AND ]. MODERSITZKI, [ll-posed medicine — an introduction to image registration, Inverse Problems, 24 (2008), pp. 1-16.
1,5



https://www.mcs.anl.gov/petsc
https://www.uh.edu/cacds
http://niftilib.sourceforge.net
http://niftilib.sourceforge.net

[46]
[47]
[48]
[49]
[50]
[51]

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]
[62]

[63]
[64]
[65]
[66]

[67]
[68]

[69]
[70]
[71]

[72]
[73]

[74]
[75]
[76]
[77]
[78]

[79]
[80]

[81]
[82]
[83]
[84]

[85]

CLAIRE: A SOLVER FOR DIFFEOMORPHIC IMAGE REGISTRATION 25

O. Fruck, C. VETTER, W. WEIN, A. KAMEN, B. PREIM, AND R. WESTERMANN, A survey of medical image registration on graphics
hardware, Computer Methods and Programs in Biomedicine, 104 (2011), pp. e45-e57. 4

M. Frico AND S. G. JounsoN, FFTW Webpage. http:/ /www.fftw.org. 10

M. FriGo AND S. G. JouNsON, The design and implementation of FFTW3, in Proc of the IEEE, vol. 93, 2005, pp. 216-231. 10

A. GHOLAMI AND G. Biros, AccFFT GitHub repository. https:/ /github.com/amirgholami/accfft. 10

A. GHorLAM, J. HiLL, D. MALHOTRA, AND G. Biros, AccFFT: A library for distributed-memory FFT on CPU and GPU architectures,
arXiv e-prints, (2016). https://arxiv.org/abs/1506.07933. 7, 10

A. GHOLAMI, A. MANG, AND G. BIrOS, An inverse problem formulation for parameter estimation of a reaction-diffusion model of low
grade gliomas, Journal of Mathematical Biology, 72 (2016), pp. 409—433. https://doi.org/10.1007/s00285-015-0888-x. 3

A. GHOLAMI, A. MANG, K. ScHEUFELE, C. DavaTtzikos, M. MEHL, AND G. Biros, A framework for scalable biophysics-based image
analysis, in Proc ACM/IEEE Conference on Supercomputing, 2017, pp. 19:1-19:13. http://doi.acm.org/10.1145/3126908.
3126930. 2, 3, 4,5,7,10,11, 13, 15, 21, 22

A. GHOLAMI, S. SUBRAMANIAN, V. SHENOY, N. HIMTHANT, X. YUE, S. ZHAO, P. JiN, G. Biros, AND K. KEUTZER, A novel domain
adaptation framework for medical image segmentation, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries, vol. LNCS 11384, 2019, pp. 289-298. 3

P. E. GiLL, W. MURRAY, AND M. H. WRIGHT, Practical optimization, Academic Press, Waltham, Massachusetts, US, 1981. 8

L. Giraup, D. Ruiz, aND A. TounAMI, A comparitive study of iterative solvers exploiting spectral information for SPD systems, SIAM
Journal on Scientific Computing, 27 (2006), pp. 1760-1786. 9

G. H. GorLu AND R. S. VARGA, Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order
Richardson iterative methods, Numerische Mathematik, 3 (1961), pp. 147-156. 2, 9

A. GraMa, A. Gurta, G. Karyris, AND V. KuMAR, An Introduction to parallel computing: Design and analysis of algorithms,
Addison Wesley, second ed., 2003. 10, 11

W. Gricgs, V. E. HENSON, AND S. FE. McCorwmick, A multigrid tutorial, SIAM, 2000. 9

M. D. GUNZBURGER, Perspectives in flow control and optimization, SIAM, Philadelphia, Pennsylvania, US, 2003. 3

M. E. GURTIN, An introduction to continuum mechanics, vol. 158 of Mathematics in Science and Engineering, Academic Press,
1981. 5

M. GUTKNECHT AND S. ROLLIN, The Chebisyev iteration revisited, Parallel Computing, 28 (2002), pp. 263-283. 2, 9

L. Ha, J. KRUGER, S. JosHi1, AND C. T. S1Lva, Multiscale unbiased diffeomorphic atlas construction on multi-GPUs, in CPU Comput-
ing Gems Emerald Edition, Elsevier Inc, 2011, ch. 48, pp. 771-791. 4

L. K. Ha, J. KRUGER, P. T. FLETCHER, S. JosH1, AND C. T. Sirva, Fast parallel unbiased diffeomorphic atlas construction on multi-
graphics processing units, in Proc Eurographics Conference on Parallel Grphics and Visualization, 2009, pp. 41-48. 4

E. HaBER AND R. HorEsH, A multilevel method for the solution of time dependent optimal transport, Numerical Mathematics:
Theory, Methods and Applications, 8 (2015), pp. 97-111. 3

E. HABER AND ]. MODERSITZKI, Image registration with guaranteed displacement regularity, International Journal of Computer
Vision, 71 (2007), pp. 361-372. 3

E. HaBER AND D. OLDENBURG, A GCV based method for nonlinear ill-posed problems, Computational Geosciences, 4 (2000),
pp- 41-63. 11,12

J. V.HajNaL, D. L. G. HiLr, AND D. ]. HAWKES, eds., Medical Image Registration, CRC Press, Boca Raton, Florida, US, 2001. 1, 3

P. C. HANSEN, Rank-deficient and discrete ill-posed problems, SIAM Monographs on Mathematical Modeling and Computation,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Philadelphia, Pennsylvania, US, 1998. 11

G. L. Harr, C. ZacH, AND M. NIETHAMMER, An optimal control approach for deformable registration, in Proc IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 9-16. 2, 3, 4, 6

M. HERNANDEZ, Gauss-Newton inspired preconditioned optimization in large deformation diffeomorphic metric mapping, Physics in
Medicine and Biology, 59 (2014), pp. 6085-6115. 3

M. HERNANDEZ, M. N. Bossa, AND S. OLMos, Registration of anatomical images using paths of diffeomorphisms parameterized with
stationary vector field flows, International Journal of Computer Vision, 85 (2009), pp. 291-306. 1, 3

R. HERZOG, ]. W. PEARSON, AND M. StoLL, Fast iterative solvers for an optimal transport problem, arXiv e-prints, (2018). . 3, 4

M. R. HEsTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, Journal of Research of the National
Bureau of Standards, 49 (1952), pp. 409-436. 2, 8

J. HINKLE, P. T. FLETCHER, B. WANG, B. SALTER, AND S. JosHI, 4D MAP image reconstruction incorporating organ motion, in Proc
Information Processing in Medical Imaging, no. LNCS 5636, 2009, pp. 676-687. 3

M. Hinzg, R. PINNAU, M. ULBRICH, AND S. ULBRICH, Optimization with PDE constraints, Springer, Berlin, DE, 2009. 3

HOCHSTLEISTUNGSRECHENZENTRUM STUTTGART, HLRS Webpage. https:/ /www.hlrs.de. 10

B. K. P. HorN AND B. G. SHUNCK, Determining optical flow, Artificial Intelligence, 17 (1981), pp. 185-203. 3

H. JounsonN AND ]J. Matsui, BRAINSia/LogSymmetricDemons GitHub repository. https://github.com/BRAINSia/
LogSymmetricDemons. 18

H. J. JounsoN, M. M. McCorMick, AND L. IBANEz, The ITK software guide: Design and functionality, Kitware Inc., 2015. 4, 18

S. JosHi, B. Davis, M. JoRNIER, AND G. GERIG, Unbiased diffeomorphic atlas construction for computational anatomy, Neurolmage,
23 (2005), pp. S151-5160. 4

E. M. KaLMOUN, L. GARRIDO, AND V. CASELLES, Line search multilevel optimization as computational methods for dense optical flow,
SIAM Journal on Imaging Sciences, 4 (2011), pp. 695-722. 3

B. KALTENBACHER, On the regularizing properties of a full multigrid method for ill-posed problems, Inverse Problems, 17 (2001),
pp. 767-788. 9

, V-cycle convergence of some multigrid methods for ill-posed problems, Mathematics of Computation, 72 (2003), pp. 1711-
1730. 9

J. T. KING, On the construction of preconditioners by subspace decomposition, Journal of Computational and Applied Mathematics,
29 (1990), pp. 195-205. 9

KITwARE, Insight Segmentation and Registration Toolkit (ITK) Webpage. https:/ /itk.org. 18



http://www.fftw.org
https://github.com/amirgholami/accfft
https://arxiv.org/abs/1506.07933
https://doi.org/10.1007/s00285-015-0888-x
http://doi.acm.org/10.1145/3126908.3126930
http://doi.acm.org/10.1145/3126908.3126930
https://arxiv.org/abs/1801.04172
https://www.hlrs.de
https://github.com/BRAINSia/LogSymmetricDemons
https://github.com/BRAINSia/LogSymmetricDemons
https://itk.org

26

[86]
[87]
[88]
[89]
[90]
[91]
[92]

[93]
[94]

[95]
[96]
[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]

[113]
[114]

[115]
[116]

[117]
[118]

[119]

ANDREAS MANG ET AL.

S. KLEIN, M. STARING, K. MURPHY, M. A. VIERGEVER, AND J. P. W. PLumm, ELASTIX: A tollbox for intensity-based medical image
registration, Medical Imaging, IEEE Transactions on, 29 (2010), pp. 196-205. 3, 4

L. KOENIG, J. RUEHAAK, A. DERKSEN, AND ]J. LELLMANN, A matrix-free approach to parallel and memory-efficient deformable image
registration, SIAM Journal on Scientific Computing, 40 (2018), pp. B858-B888. 4

K. S. KurtEN, N. CHARON, M. I. MILLER, J. T. RATNANATHER, K. DEISSEROTH, L. YE, AND ]J. T. VOGELSTEIN, A diffeomorphic
approach to multimodal registration with mutual information: Applications to CLARITY mouse brain images, in Proc Medical
Image Computing and Computer-Assisted Intervention, vol. LNCS 10433, 2017, pp. 275-282. 4, 21, 23

E. E. LEcouver, Whole-body MR imaging: Musculoskeletal applications, Radiology, 279 (2016), pp. 345-365. 21

E. LEe AND M. GUNZBURGER, An optimal control formulation of an image registration problem, Journal of Mathematical Imaging
and Vision, 36 (2010), pp. 69-80. 3, 5

, Anaysis of finite element discretization of an optimal control formulation of the image registration problem, SIAM Journal on
Numerical Analysis, 49 (2011), pp. 1321-1349. 3

J. L1, W. L1ao, A. CHOUDHARY, R. Ross, R. THAKUR, W. GROPP, R. LATHAM, A. SIEGEL, B. GALLAGHER, AND M. ZINGALE, Parallel
netCDF: A scientific high-performance 1/O interface, in Proc ACM/IEEE Conference on Supercomputing, 2003, p. 39. 10

J. L. L1oNs, Optimal control of systems governed by partial differential equations, Springer, 1971. 3, 5

M. Lorenzr, N. AvacHE, G. B. Frisont, AND X. PENNEC, LCC-demons: a robust and accurate symmetric diffeomorphic registration
algorithm, Neurolmage, 81 (2013), pp. 470-483. 3

M. Lorenzr AND X. PENNEC, Geodesics, parallel transport and one-parameter subgroups for diffeomorphic image registration, Interna-
tional Journal of Computer Vision, 105 (2013), pp. 111-127. 3

A. MaNG aAND G. Biros, An inexact Newton—-Krylov algorithm for constrained diffeomorphic image registration, SIAM Journal on
Imaging Sciences, 8 (2015), pp. 1030-1069. https://doi.org/10.1137/140984002. 2, 3, 4, 5, 7, 8,12, 19, 22

, Constrained H'-regularization schemes for diffeomorphic image registration, SIAM Journal on Imaging Sciences, 9 (2016),

pp- 1154-1194. https://doi.org/10.1137/15M1010919. 2, 3, 4, 5, 8, 10, 21, 22, 23

, A semi-Lagrangian two-level preconditioned Newton—Krylov solver for constrained diffeomorphic image registration, SIAM
Journal on Scientific Computing, 39 (2017), pp. B1064-B1101. https://doi.org/10.1137/16M1070475. 2, 3, 5,7, 9, 10, 11,
22

A. MaNG, A. GHoLamI, AND G. Biros, Distributed-memory large-deformation diffeomorphic 3D image registration, in Proc
ACM/IEEE Conference on Supercomputing, no. 72, 2016. https://doi.org/10.1109/5C.2016.71. 2, 3, 4, 5, 7, 8, 10,
11, 13,15, 17, 21, 22

A.MAaNG, A. GHOLAMI, C. DAVATZIKOS, AND G. Biros, PDE-constrained optimization in medical image analysis, Optimization and
Engineering, 19 (2018), pp. 765-812. https://doi.org/10.1007/s11081-018-9390-9. 3, 5, 8, 13, 19, 22

A. MaNG anD L. RutHOTTO, A Lagrangian Gauss—Newton—Krylov solver for mass- and intensity-preserving diffeomorphic image
registration, SIAM Journal on Scientific Computing, 39 (2017), pp. B860-B885. https://doi.org/10.1137/17M1114132. 3,
4,5,8

A. MANG, S. THARAKAN, A. GHOLAMI, N. NIMTHANI, S. SUBRAMANIAN, ]J. LEviTt, M. AzmAT, K. SCHEUFELE, M. MEHL,
C. DavaTzikos, B. BARTH, AND G. Biros, SIBIA-GIS: Scalable biophysics-based image analysis for glioma segmentation, in Proc
BraTS 2017 Workshop (MICCAI), 2017, pp. 197-204. 3, 4

A.MaNG, A. Toma, T. A. SCHUETZ, S. BECKER, T. Eckey, C. MOHR, D. PETERSEN, AND T. M. Buzug, Biophysical modeling of brain
tumor progression: From unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for
model calibration, Medical Physics, 39 (2012), pp. 4444-4459. https://doi.org/10.1118/1.4722749. 3

T. Mans1, X. PENNEC, M. SERMESANT, H. DELINGETTE, AND N. AYACHE, iLogDemons: A demons-based registration algorithm for
tracking incompressible elastic biological tissues, International Journal of Computer Vision, 92 (2011), pp. 92-111. 3

M. I. M1LLER, Computational anatomy: Shape, growth and atrophy comparison via diffeomorphisms, NeuroImage, 23 (2004), pp. S19-
S33. 3

M. I. MILLER, A. TROUVE, AND L. YOUNES, Geodesic shooting for computational anatomy, Journal of Mathematical Imaging and
Vision, 24 (2006), pp. 209-228. 3

M. I. MILLER AND L. YounEs, Group actions, homeomorphism, and matching: A general framework, International Journal of
Computer Vision, 41 (2001), pp. 61-81. 1, 3

M. Mopar, G. R. Ripgway, Z. A. TAYLOR, M. LEEMANN, J. BArRNEs, D. J. Hawkes, N. C. Fox, AND S. OURSELIN, Fast free-form
deformation using graphics processing units, Computer Methods and Programs in Biomedicine, 98 (2010), pp. 278-284. 3, 4

J. MopErsiTzKI, Numerical methods for image registration, Oxford University Press, New York, 2004. 1, 3, 5

, FAIR: Flexible algorithms for image registration, SLAM, Philadelphia, Pennsylvania, US, 2009. 1, 3, 5, 8

T. MUNSON, ]. SARICH, S. WILD, S. BENsON, AND L. C. McINNEs, TAO 3.7 users manual, Argonne National Laboratory, Mathe-
matics and Computer Science Division, 2017. 2, 4, 10

O. MUSEYKO, M. STIGLMAYR, K. KLAMROTH, AND G. LEUGERING, On the application of the Monge-Kantorovich problem to image
registration, SIAM Journal on Imaging Sciences, 2 (2009), pp. 1068-1097. 3

J. NocepAL AND S. ]. WRIGHT, Numerical Optimization, Springer, New York, New York, US, 2006. 6, 8

NORTHWESTERN UNIVERSITY AND ARGONNE NATIONAL LABORATORY, PnetCDF: A parallel 1/O library for NetCDF file access.
https:/ /trac.mcs.anl.gov/projects/parallel-netcdf. 10

Y. Nortay, Flexible conjugate gradients, SIAM Journal on Scientific Computing, 22 (2000), pp. 1444-1460. 9

T. PoLzIN, M. NIETHAMMER, M. P. HEINRICH, H. HANDELS, AND ]. MODERSITZKI, Memory efficient LDDMM for lung CT, in Proc
Medical Image Computing and Computer-Assisted Intervention, vol. LNCS 9902, 2016, pp. 28-36. 1, 4

E. E. PRUDENCIO, R. BYRD, AND X.-C. Ca1, Parallel full space SQP Lagrange—Newton—Krylov-Schwarz algorithms for PDE-constrained
optimization problems, SIAM Journal on Scientific Computing, 27 (2006), pp. 1305-1328. 6

T. RoHLFING, C. R. MAURER, D. A. BLUEMKE, AND M. A. Jacoss, Volume-preserving nonrigid registration of MR breast images using
free-form deformation with an incompressibility constraint, Medical Imaging, IEEE Transactions on, 22 (2003), pp. 730-741. 3

D. Rueckerr, L. I. Sonopa, C. Haves, D. L. G. Hitt, M. O. LeacH, aND D. J. HawkEs, Non-rigid registration using free-form
deformations: Application to breast MR images, Medical Imaging, IEEE Transactions on, 18 (1999), pp. 712-721. 3



https://doi.org/10.1137/140984002
https://doi.org/10.1137/15M1010919
https://doi.org/10.1137/16M1070475
https://doi.org/10.1109/SC.2016.71
https://doi.org/10.1007/s11081-018-9390-9
https://doi.org/10.1137/17M1114132
https://doi.org/10.1118/1.4722749
https://trac.mcs.anl.gov/projects/parallel-netcdf

[120]
[121]

[122]

[123]
[124]
[125]
[126]
[127]

[128]

[129]
[130]
[131]
[132]
[133]
[134]

[135]
[136]

[137]
[138]
[139]
[140]
[141]

[142]
[143]

[144]
[145]
[146]
[147]
[148]

[149]

CLAIRE: A SOLVER FOR DIFFEOMORPHIC IMAGE REGISTRATION 27

P. RuBENAU AND C. SCHNORR, Optical Stokes flow estimation: An imaging-based control approach, Experiments in Fluids, 42 (2007),
pp- 61-78. 3

K. A. Sapp1, C. CHEFD'HOTEL, AND F. CHERIET, Large deformation registration of contrast-enhanced images with volume-preserving
constraint, in Proc SPIE Medical Imaging, vol. 6512, 2008, pp. 651203-1-651203-10. 3

K. ScHEUFELE, A. MANG, A. GHoLAMI, C. Davarzikos, G. Biros, AND M. MeHL, Coupling brain-tumor biophysical models and
diffeomorphic image registration, Computer Methods in Applied Mechanics and Engineering, 347 (2019), pp. 533-567.
https:/ /doi.org/10.1016/j.cma.2018.12.008. 3

M. Spbika, A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization, Medical
Imaging, IEEE Transactions on, 27 (2008), pp. 271-281. 3

J. SHACKLEFORD, N. KANDASAMY, AND G. SHARP, On developing B-spline registration algorithms for multi-core processors, Physics
in Medicine and Biology, 55 (2010), pp. 6329-6351. 4

, High performance deformable image registration algorithms for manycore processors, Morgan Kaufmann, Waltham, Mas-
sachusetts, US, 2013. 4

D. P. Suamonin, E. E. Bron, B. P. F. LELIEVELDT, M. SMiTs, S. KLEIN, AND M. STARING, Fast parallel image registration on CPU
and GPU for diagnostic classification of Alzheimer’s disease, Frontiers in Neuroinformatics, 7 (2014), pp. 1-15. 4

R. Snawms, P. SADEGHI, R. A. KENNEDY, AND R. I. HARTLEY, A survey of medical image registration on multicore and the GPU, Signal
Processing Magazine, IEEE, 27 (2010), pp. 50-60. 4

O. SHENK, M. MANGUOGLU, A. SAMEH, M. CHRISTEN, AND M. SATHE, Parallel scalable PDE-constrained optimization: Antenna
identification in hyperthermia cancer treatment planning, Computer Science—Research and Development, 23 (2009), pp. 177-
183. 4

V. SimoNcINTI, Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems, Compu-
tational Optimization and Applications, 53 (2012), pp. 591-617. 3, 4

S. SOMMER, Accelerating multi-scale flows for LDDKBM diffeomorphic registration, in Proc IEEE International Conference on
Computer Visions Workshops, 2011, pp. 499-505. 4

A. Sotiras, C. Davarzikos, AND N. PARAGIOS, Deformable medical image registration: A survey, Medical Imaging, IEEE Transac-
tions on, 32 (2013), pp. 1153-1190. 1, 3

A. STANTFORTH AND J. COTE, Semi-Lagrangian integration schemes for atmospheric models—A review, Montly Weather Review, 119
(1991), pp. 2206-2223. 2,7

M. StoLL AND T. BREITEN, A low-rank in time approach to PDE-contrained optimization, SIAM Journal on Scientific Computing,
37 (2015), pp. B1-B29. 3

D. L. TARNOKI, A. D. TARNOKI, A. RICHTER, K. KARLINGER, V. BERCzI, AND D. PickutH, Clinical value of whole-body magnetic
resonance imaging in health screening of general adult population, Radiology and Oncology, 49 (2015), pp. 10-16. 21

Texas ADVANCED COMPUTING CENTER, TACC Webpage. https:/ /www.tacc.utexas.edu. 4, 10, 12

R. ToMER, L. YE, B. HsueH, AND K. De1ssEroTH, Advanced CLARITY for rapid and high-resolution imaging of intact tissues, Nature
protocols, 9 (2014), pp. 1682-1697. 4, 21, 23

A. TroUVE, Diffeomorphism groups and pattern matching in image analysis, International Journal of Computer Vision, 28 (1998),
pp-213-221. 1, 2,3, 11

T. UrR REHMAN, E. HABER, G. PRYOR, J]. MELONAKOS, AND A. TANNENBAUM, 3D nonrigid registration via optimal mass transport on
the GPU, Medical Image Analysis, 13 (2009), pp. 931-940. 3, 4

P. VALERO-LARA, Multi-GPU acceleration of DARTEL (early detection of Alzheimer), in Proc IEEE International Conference on
Cluster Computing, 2014, pp. 346-354. 4

T. VERCAUTEREN, X. PENNEC, A. PERCHANT, AND N. AYACHE, Diffeomorphic demons using ITK's finite difference solver hierarchy,
The Insight Journal, 1926/510 (2007). http://hdl.handle.net/1926/510. 2, 18

, Symmetric log-domain diffeomorphic registration: A demons-based approach, in Proc Medical Image Computing and

Computer-Assisted Intervention, vol. LNCS 5241, 2008, pp. 754-761. 2, 3, 4, 18

, Diffeomorphic demons: Efficient non-parametric image registration, Neurolmage, 45 (2009), pp. S61-572. 1, 2, 3, 4, 18

E-X. ViaLARD, L. Risser, D. RUECKERT, AND C. J. COTTER, Diffeomorphic 3D image registration via geodesic shooting using an
efficient adjoint calculation, International Journal of Computer Vision, 97 (2012), pp. 229-241. 3, 6

L. C. WiLcox, G. STADLER, T. Bul-THANH, AND O. GHATTAS, Discretely exact derivatives for hyperbolic PDE-constrained optimization
problems discretized by the discontinuous Galerkin method, Journal of Scientific Computing, 63 (2015), pp. 138-162. 3

L. YOUNEs, Jacobi fields in groups of diffeomorphisms and applications, Quarterly of Applied Mathematics, 650 (2007), pp. 113-134.
1,3

, Shapes and diffeomorphisms, Springer, 2010. 1

L. Younes, F. ARRATE, AND M. I. MILLER, Evolutions equations in computational anatomy, Neurolmage, 45 (2009), pp. S40-S50. 1

M. ZuaNG aND P. T. FLETCHER, Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability, Medical
Image Analysis, 25 (2015), pp. 3744. 1, 3

M. Znanc AND P. T. FLETCHER, Finite-dimensional Lie algebras for fast diffeomorphic image registration, in Proc Information
Processing in Medical Imaging, vol. 24, 2015, pp. 249-259. 3



https://doi.org/10.1016/j.cma.2018.12.008
https://www.tacc.utexas.edu
http://hdl.handle.net/1926/510

	Introduction
	Outline of the Method
	Contributions
	Limitations and Unresolved Issues
	Related Work
	Outline

	Methods
	Formulation
	Optimality Condition and Newton Step
	Numerics
	Discretization
	Newton–Krylov Solver
	Preconditioners for Reduced Space Hessian


	Implementation and Software Aspects
	Executables
	External Dependencies and IO
	Compilation and Installation
	Parallel Algorithms and Computational Kernels
	Memory Requirements
	Additional Software Features

	Experiments
	Setup, Implementation, and Hardware
	Real and Synthetic Data
	Convergence: Preconditioner
	Convergence: Newton–Krylov Solver

	Time-to-Solution
	Registration Quality
	Scalability

	Conclusions
	References

