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Entrainment is the tendency of interlocutors to become more similar to each other in their way of speaking. This
phenomenon has been repeatedly documented and is associated with multiple social aspects of human-human
conversations. However, there is a dearth of research on the effects of spoken dialogue systems (SDSs) with
implemented acoustic-prosodic (dis)entrainment policies. The goal of the present work is to provide further
empirical evidence on how acoustic-prosodic (dis)entraining policies affect users. In particular, this article fo-
cuses on its effects on users’ trust toward the SDSs. In the experiments reported here we analyze if and how
different acoustic-prosodic (dis)entrainment policies affect users’ perception of a system’s ability. We collected
data from 98 unique participants, all native speakers of Argentine Spanish. Our results suggest that acoustic-
prosodic (dis)entrainment in spoken dialogue systems is effectively associated with the way users perceive the
capabilities of such systems. Characterizing these effects remains a challenging task. Overall, we observe a
positive effect on trust of entrainment on intensity and a negative effect of entrainment on pitch. Estimated effect
sizes are far from negligible.

1. Introduction

their operation, such as automatic speech recognition (ASR) systems,
natural language understanding (NLU) systems, and text-to-speech

Voice assistants such as Google Assistant, Amazon Alexa, Microsoft
Cortana and Apple Siri have revolutionized the way in which humans
and computers interact. Such has been the advance in these natural
language user interfaces that they have been embedded not only into
several popular operating systems (e.g. Google Assistant in Android,
Cortana in Windows, Siri in IOS), but in what, at the time, mass-media
called the “next big arms race in tech,”* were also incorporated into a
wide range of dissimilar products, such as smart speakers (e.g. Google
Voice, Amazon Echo), cars,? and smart appliances.3

This rise in the usability and popularity of voice assistants was fueled
largely by dramatic improvements in critical subsystems involved in

* Corresponding author.
E-mail address: rgalvez@dc.uba.ar (R.H. Galvez).

(TTS) synthesis. These improvements were driven mainly by advances
in deep neural networks trained on large corpora. The development of
these critical subsystems up to reliable production levels, leads to the
importance of studying other complementary components of speech
communication.

In spoken dialogue systems (SDSs), such as voice assistants, a feature
believed to be associated with improvement in user experience is their
naturalness (Crumpton and Bethel, 2016). Measuring naturalness in
dialogue involves a high degree of subjectivity (Hung et al., 2009), but,
in the context of SDSs, it is commonly associated with the degree in
which SDSs replicate behaviors and patterns observed in human-human

1 See https://www.fastcompany.com/3066831 (Fast Company), http://time.com/4624067 (TIME).

2 See https://www.bbc.com/news/technology-38526807 (BBC).
3 See https://technology.inquirer.net/57441 (Inquirer.net).
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conversations (Marge et al., 2010). That is, it is believed that SDSs which
replicate such human-human behaviors will lead to better interactions
with users, and thus to better conversation outcomes as well.

A phenomenon that has been repeatedly documented in human-
human conversations is the tendency of interlocutors to become more
similar to each other in the way they speak. This behavior, known in the
literature as entrainment, accommodation or adaptation, has been shown
to occur along several dimensions during human-human interaction,
including: pronunciation (Pardo, 2006); choice of referring expressions
(Brennan and Clark, 1996); syntactic structure (Reitter et al., 2011);
turn-taking cues (Levitan et al., 2015b); choice of intonational contour
(Gravano et al., 2015); and acoustic-prosodic behavior (Ward and Lit-
man, 2007; Levitan and Hirschberg, 2011). Although prevalent in
human-human conversations, the question of why entrainment occurs is
still an active research topic, and several theories have been developed
to explain it — many of which differ in the degree of control speakers
have over the behavior (see, for example, Natale, 1975; Giles et al.,
1991; Chartrand and Bargh, 1999; Pickering and Garrod, 2004; 2013).

Entrainment has been associated with multiple social aspects in
human-human conversations (Benus, 2014), such as degree of success in
completing tasks (Nenkova et al., 2008; Reitter and Moore, 2014),
perception of competence and social attractiveness (Street Jr, 1984;
Levitan et al., 2011; Benus et al., 2014; Michalsky and Schoormann,
2017; Schweitzer and Lewandowski, 2014), and degree of speaker
engagement (De Looze et al., 2014; Gravano et al., 2015). Disentrainment
— speakers actively adapting to become more dissimilar to each other
(Healey et al., 2014; De Looze et al., 2014; Reichel et al., 2018a) — has
also been correlated with social aspects of conversations. Early research
documents evidence suggesting that speakers disentrain to show dislike
and to distance themselves from their interlocutor. For example, Welsh
subjects broadened their Welsh accent significantly when interviewed
by an arrogant interviewer with a strong English accent who called
Welsh “a dying language with a dismal future” (Bourhis and Giles,
1977). However, more recent research shows that disentrainment may
also be related to positive social outcomes. For example, Pérez et al.
(2016) show that metrics which consider entrainment and disentrain-
ment behavior capture perceived positive and negative social outcomes
of conversations (e.g. engagement, boredom) in a better way than
metrics which only consider entrainment behavior.

Even when acoustic-prosodic (dis)entrainment has consistently been
reported to occur and correlate with social outcomes across different
types of dialogues (e.g. competitive, cooperative), languages (see Levi-
tan et al., 2015a), and tasks, previous research suggests that the phe-
nomenon has many subtleties. For example, evidence suggests the
following: (1) People generally entrain more to those with high levels of
power than with low ones (see Danescu-Niculescu-Mizil et al., 2012),
which might lead to asymmetrical behaviors in entrainment. (2)
Entrainment on some features of language does not necessarily translate
into speakers converging in all features (Giles et al., 1991; Reichel et al.,
2018a). In fact it may be the case that entrainment on an
acoustic-prosodic feature might be associated with disentrainment on
another. (3) Entrainment in excess may even be perceived negatively.
For example, in an empirical study aimed at finding optimal levels of
entrainment, Giles (1979) found that simultaneously entraining on three
levels of language — pronunciation, speech rate, and message content —
was found to be perceived as patronizing. (4) Entrainment may be
stronger at the dialog-act level (see Reichel et al., 2018b; Gauder et al.,
2018), which can be taken as an indication that entrainment may not be
an automatic process but that it may be actively controlled, at least
partially. Subtleties like these make the characterization of
acoustic-prosodic (dis)entrainment and its effects quite challenging.

The effects of SDSs entraining to a user’s way of speaking is a topic
which has been little discussed in the literature. Previous research on
entraining SDSs focused mainly on the effects of systems which entrain
on lexical or syntactic features (see, for example, Brockmann et al.,
2005; Buschmeier et al., 2009; Hu et al., 2016; Lopes et al., 2015) or
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high-level concepts believed to be conveyed by prosody, such as
entraining on emotions and politeness (see, for example, Acosta and
Ward, 2011; De Jong et al., 2008). But there is a dearth of research on
the effects of systems which follow acoustic-prosodic (dis)entrainment
policies. Fandrianto and Eskenazi (2012) explore, in the context of an
information-driven spoken dialog system, ways to induce users to reduce
two particular speaking styles: shouting and hyperarticulation. To do so,
they test different strategies. One of these strategies involves disen-
training to the way users speak (i.e. reducing the TTS volume if the user
shouts, raising the TTS speech rate if the user hyperarticulates). Their
results suggest that disentrainment strategies do alleviate these two
particular speaking styles, performing better for shouting than for
hyperarticulation. Levitan (2014) and Levitan et al. (2016) propose a
way of integrating acoustic-prosodic (dis)entrainment into existing
SDSs, and present results from a series of pilot studies of the effects of
four acoustic-prosodic (dis)entrainment policies. In Lubold et al. (2015)
a pitch-adapting dialogue system is proposed, they also study how
different ways of matching to users’ mean pitch relate with third party
perception of naturalness and rapport. In a follow-up study (Lubold
et al., 2018), the authors explore how a teachable robot which entrains
and introduces social dialogue influences rapport and learning. They
find that a robot that entrains and speaks socially results in significantly
more learning. Sadoughi et al. (2017) report an approach for online
acoustic synchrony on pitch and intensity by using a dynamic Bayesian
network learned from prior recordings of child-child play. When testing
their system on a robot interacting with children, they report a signifi-
cant order effect: children that began with a synchronous robot main-
tained their own synchrony to it and achieved higher engagement than
those that did not. Although these efforts already suggest that
acoustic-prosodic entrainment may be related to and may even influence
users’ behavior, results are far from conclusive. Acoustic-prosodic
entrainment is a complex phenomenon, and how systems should adapt
and which features they should entrain on is far from clear. This is why
further empirical evidence on the effects of different acoustic-prosodic
entrainment policies is still needed.

The goal of the present work is to provide further empirical evidence
of how acoustic-prosodic (dis)entraining SDSs policies affect users. We
focus on studying the effects of different acoustic-prosodic entrainment
policies on induced trust.*

To explore this research question, we adapted, implemented, and
carried out a large experimental study focused on analyzing if and how
different acoustic-prosodic (dis)entrainment policies affect users’
perception of SDSs’ ability and, consequently, their trustworthiness (i.e.
their quality of being trusted).” Studies were carried out in Argentina
over the course of two years.

Additionally, as research on the effects of acoustic-prosodic
entrainment is based primarily on corpus studies, this article also de-
tails on the challenges and nuances of approaching the topic using an
experimental setup. We believe these insights may also be of use for
future research.

The rest of this article is structured as follows. Section 2 provides
details on the experimental task, on the dialogue system used (including
how acoustic-prosodic entrainment was implemented), and on the way
the data was analyzed. Section 3 presents the main results. Section 4
discusses these results, proposes future work, and concludes.

4 Trust is defined as the “willingness of a party to be vulnerable to the actions of
another party based on the expectations that the other will perform a particular
action important to the trustor, irrespective of the ability to monitor or control that
other party” (Mayer et al., 1995, p. 712).

5 Ability — “that group of skills, competencies, and characteristics that enable a
party to have influence within some specific domain” (Mayer et al., 1995, p. 717)
— is one of three factors believed to affect trust (the other two being benevo-
lence and integrity).
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* ¢ Qué carta pido?

* ¢ Qué te parece que haga?

* ¢ Qué pensas que conviene?
* ¢ Qué me recomendas?

* ¢ Qué hago ahora?

Fig. 1. Screenshot of a non-practice GoFishWithHelpers game.

2. Material and methods

This section first describes the task chosen for making participants
interact with virtual assistants which adapt to the users’ way of
speaking. We then describe the procedure for experimental data
collection, as well as the (dis)entrainment policies followed by the vir-
tual assistants. Finally, we describe the statistical analyses strategy.

2.1. Experimental task

We tackle our research question through an experimental approach.
In particular, we make use of an experimental setup in which partici-
pants must interact with virtual helpers that entrain to their speech
following predefined entrainment policies.

We chose GoFishWithHelpers (Levitan, 2014; Levitan et al., 2016) as
the experimental task for this study. GoFishWithHelpers is an adaptation
of the canonical game of Go Fish, a multiplayer card game. In GoFish-
WithHelpers, instead of playing against human opponents, each
participant is instructed to play against a computer system. At the
beginning of each game the player and the system are each dealt a hand
of seven cards. The player’s goal is to acquire cards from the system’s
hand to earn points. In the canonical Go Fish game, the player can ask
her opponent for cards of any rank that she already has in her own deck,
and the opponent must then give her all the cards of that same rank in
his hand. If the opponent has no cards of the requested rank, the player
has to “Go Fish,” selecting a card from the top of the deck.

In GoFishWithHelpers the participant, instead of freely choosing any
rank in her deck, must ask for advice from one of possibly multiple
virtual helpers. The helper then suggests a rank and the user is forced to
follow the helper’s advice. The player’s goal is to gain as many points as
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possible. The player receives 10 points for each card she gets from the
system and 100 points for completing a “set” (a rank in all four suits).
She loses 50 points for “Go Fish”.° Importantly, as we will explain below,
the more points a player earns, the higher the monetary prize she will
receive.

Each participant plays four games, first a practice game and then
three non-practice games — which are relevant ones for our analysis. In
the practice game, which consists of five requests for advice, or turns, the
participant can only request advice from a single helper (Verénica). In
addition, any points earned during this game do not count for the
monetary compensation. The goal of this practice game is to introduce
the subject to the system and the game rules, as well as measuring the
acoustic-prosodic features’ base levels of the participant’s speech. Dur-
ing this practice game the helper does not adapt its speech in any way.

The following three games consist of fifteen turns each, and in each
turn the participant has to choose to ask advice from one of two helpers,
named Amanda and Eugenia. More precisely, at the beginning of each
turn, the player’s hand is disabled and she cannot ask the system for a
rank directly. Instead, she presses a button and verbally requests advice
from the avatar she specifies by name. Importantly, during these games,
helpers may adapt their speech to the way participants ask for advice.
Once a game ends, the sum of points collected in its fifteen turns is
recorded. In between these non-practice games, participants are shown
on-screen the amount of points they have earned in each game. Finally,
based on all points collected in the three non-practice games, monetary
prizes are awarded.

We followed the strategy presented in Levitan (2014) and Levitan
et al. (2016) to choose what advice the helper would provide. To
encourage participants to rely subconsciously on paralinguistic cues to
choose their helper, it was important to prevent participants from

6 Note that a single request for advice may lead to both “Go Fish” and a “set”,
as the card selected from the top of the deck may eventually lead to completing
a set. In this case the end result is that she earns 50 points.
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deciding whom to trust based on performance. Choosing among possible
helpers’ advice is not trivial, given that for each turn there are several
different outcomes, depending on which rank is requested. To ensure
that helpers behave as similarly as possible to each other, each helper is
programmed to give advice according to an algorithm that keeps a
“persona’s global advice score” — the overall perceived quality of the
advice it has given so far, corresponding to the number of points earned
by following that advice — as close to zero as possible. This is done by
assigning each rank a score based on what its outcome would be. If the
rank would complete a set, its score is 5; if it would result in “Go Fish,”
its score is — 15; otherwise, its score is the number of cards the system
has of that rank (1-3). Using this scheme, at each turn, the helper giving
advice selects the rank whose score would bring the helper’s global
advice score closer to zero.” The subject’s score is reset to 0 at the
beginning of each game. Additionally, to further obscure the quality of
the advice received, the system is dealt a new hand after every turn, so
that the player cannot infer the contents of a hand based on responses to
her previous requests.

Fig. 1 shows a screenshot of a non-practice GoFishWithHelpers
game. The top left and bottom left corners of the screen contain the
system’s and participant’s cards respectively. The top right corner
contains a push-to-talk button. The bottom right corner contains the
suggested phrases the participant may use to request advice as well as
the helpers’ avatars and names.

2.2. Data collection procedure

Experiments were carried out in the city of Buenos Aires, Argentina.
Participants were publicly recruited, and, during recruitment, were
notified that they would be paid for participating. The payment was of
up to roughly 9 US dollars per hour in local currency; $4.5 per hour plus
up to $4.5 based on their performance in the proposed task. Participants
were required to be native Argentine Spanish speakers and to be be-
tween 18 and 65 years old.

Upon arrival at the lab, participants were instructed to read and sign
an informed consent form.® Although all helpers a given participant
interacts with generate their advice following exactly the same strategy
(as reported above), they were told that they would be playing a com-
puter game in which competing Artificial Intelligence (AI) algorithms
were being tested. They then sat in front of a desktop computer wearing
a headset with microphone (Genius HS-400A headset) and were handed
written instructions describing GoFishWithHelpers. Importantly, the
instructions stated that each helper was going to give advice using one of
two particular Al algorithms, one being “more advanced” than the other,
and that, even though both helpers tend to give good advice, they also
make mistakes once in a while, which translates into occasional bad
advice. Additionally, these instructions explicitly stated that, to gain
more points during the game, their goal as participants was to discover
which helper was driven by the “smarter” Al algorithm. Participants
were also notified that they would receive additional money based on
the number of points they gained. In this way participants were given
strong incentives to search for the competent helper — even when in fact
both behaved in the same way — and would consider it risky to delegate
their choice to the helper perceived as “less advanced.”

Once participants declared that they understood the rules, they
played the practice game. In between the practice and the three non-

7 Scores were empirically determined in Levitan (2014) based on observing
and discussing the game with subjects of a pilot study. There they expressed
frustration at losing points to “Go Fish” that far outweighed their satisfaction at
receiving cards from a successful request.

8 Our protocol and all forms were evaluated and approved by the Research
Ethics Committee at the Centro de Educaciéon Médica e Investigaciones Clinicas
(CEMIC) “Norberto Quirno”, Buenos Aires, Argentina, on July 18, 2014, valid
through August 31, 2017.
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practice games, the computer screen indicated that, if they had any
doubts regarding the task rules, the lab assistant could be asked for help
and they were also reminded that their ultimate goal was to discover
which helper was driven by the “smarter” Al algorithm. They then
proceeded to play the three non-practice games. Next, they were handed
a questionnaire with questions related to the helper voices, and a second
one with sociodemographic questions. Finally, they received payment
for the points earned, were handed a debriefing form, were given the
chance to ask questions regarding the experiment, and left the lab. The
whole procedure lasted nearly an hour on average. Sessions were ran in
groups of four participants in parallel in a quiet, large computer labo-
ratory, so in an hour, data from four subjects could be acquired.

Importantly, each participant was randomly assigned to one of two
different types of helpers:

1. Mirrored format: Each of the two helpers follows an opposing (dis)
entrainment strategy — for example, if one helper entrains on pitch,
the other one disentrains on pitch.

2. Against-static format: One helper (dis)entrains on a given acoustic-
prosodic feature, and the other helper does not adapt its speech at all.

In this article we present results coming from four consecutive ses-
sions of games, each consisting of around 72 games, for a total of 98
unique participants. We adopted a strategy of running a session of games
testing the effects of a particular (dis)entrainment policy, and, based on
the analysis of the results obtained in it, deciding which policies to test
in the following session. For example, as we will see below, during the
first session of games we tested only the effects of (dis)entrainment on
speech rate. We then analyzed the data we obtained from these exper-
iments and, based on that analysis, decided to run a session of games
allowing helpers to also (dis)entrain on pitch and intensity.

2.3. Dialogue system

This section describes the ways users and system interact by means of
an acoustic-prosodic entraining dialogue system. We focus on how the
system measures participants’ acoustic-prosodic features, and how the
helpers entrain to participants’ speech.

Given the task design, the way participants interact with helpers is
limited, since they only request and receive advice from helpers. Both
interactions are done through spoken dialogue. To ask for advice, par-
ticipants use the computer mouse to select a microphone icon placed in
the top right corner of the game screen (see Fig. 1). The button works
using the well-known push-to-talk paradigm. Pressing the button triggers
the recording and releasing it stops it. Once the recording is complete, it
is sent to an ASR module and, in parallel, to an acoustic-prosodic feature
extraction module.

Based on the time-aligned transcription produced by the ASR mod-
ule, the identity of the requested helper is identified, and, based on its
global advice score, the requested helper provides its advice. Impor-
tantly, the acoustic-prosodic feature values of this response will depend
on the entrainment policy assigned to the helper (as will be described in
Section 2.3.2).

Participants are instructed and required by the system to ask for help
using one of a fixed number of request options (which they can toggle
freely between turns). As seen in Fig. 1, these options are shown in the
bottom right corner of the screen. Additionally, each request for advice
must either start or end with a helper’s name. For example, a participant
can say “;Amanda, qué carta pido?” (“Amanda, which card should I ask
for?”) or “;Qué carta pido Amanda?” (“Which card should I ask for,
Amanda?”). Subsequently, the selected helper is highlighted and her
advice synthesized — e.g. “Te recomiendo pedir un nueve” (“I recommend
asking for a nine”). The player completes the turn by clicking the sug-
gested card, which serves as a request for that rank of card to be pro-
vided by the opponent.
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2.3.1. Measuring acoustic-prosodic features and synthesizing speech with
varying prosody

The computer helpers implemented in our experiments either entrain
or disentrain on three acoustic-prosodic features: speech rate (measured
in syllables per second), pitch (measured as FO mean in Hz) and intensity
(measured as mean energy in dB). The proposed (dis)entrainment pol-
icies rely on three processes: (1) Being able to measure and keep a record
of the acoustic-prosodic features of the interlocutor’s speech, (2)
determining how to adapt the acoustic-prosodic features of the synthe-
sized speech to those of the participants, (3) synthesizing speech with
the desired acoustic-prosodic features. Here we cover (1) and (3); we
will discuss (2) in Section 2.3.2.

Measuring acoustic-prosodic features values We use the PocketSphinx
toolkit (Huggins-Daines et al., 2006) with a restricted grammar to obtain
a time-aligned transcription of each utterance and then estimate its
syllable count using a pre-defined dictionary. PocketSphinx returns an
error when a piece of audio cannot be matched with high confidence to
the proposed grammar — in which case the participant is asked to repeat
their request for advice. Tests carried out before beginning data
collection indicated that the system was quite strict when accepting an
utterance as valid. When looking at the collected data, in 4.8% of all
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non-practice turns participants were asked to repeat their request for
advice. (This number equals 15.7% for practice turns, suggesting that
participants learned how to ask for advice during the training game.)
Participants’ hesitations and (slightly) different formulations than the
prompted text may introduce acoustic-prosodic features measurement
errors (particularly when measuring speech rate). To get an estimate of
the prevalence of these effects, we randomly sampled 200 audio clips
from the collected data and checked for the presence of disfluencies and
formulations which differ from the prompted text. We almost did not
register disfluencies (only in 1 of all sampled clips). The prevalence of
slight variations in the formulation was infrequent. We found slight
variations in 6.5% of all sampled clips. We found no evidence suggesting
that this prevalence varied across helpers with differing
acoustic-prosodic entrainment policies.

PocketSphinx provides timestamps at the word level in seconds. We
define utterance duration as the time elapsed between the beginning of
the utterance’s first word and the end of its last. We thus estimate speech
rate as the ratio between syllable count and utterance duration,
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capturing the average number of syllables per second in an utterance.
Additionally, we use Praat (Boersma and Weenink, 2018) to estimate
mean pitch9 (in Hz) and mean intensity10 (in dB), extracted from the
beginning of the first word to the end of the last one.

Speech synthesis To synthesize the helpers’ responses we use an HMM-
based voice built with a corpus of read speech recorded by a female
professional speaker of Argentine Spanish (further details in Violante
et al., 2013). This TTS system uses MaryTTS as its front-end,'! which
allows us to modify speech rate and pitch level on a percent basis using
Speech Synthesis Markup Language (SSML) tags. SSML is a markup
language which provides a standard way to annotate text for the gen-
eration of synthetic speech. For example, when +10% is introduced in
the pitch tag, the system is instructed to synthesize speech with a 10%
higher pitch (in Hz) relative to the voice’s default value. We modify
intensity using the open-source sound processing toolbox SoX.'? In this
case, as we use decibels to measure intensity, a +4% tag indicates that
the final audio will have a +4% higher intensity measured in decibels.'®

Before running our first session of games, we ensured that the desired
acoustic-prosodic variations given as input to the TTS system were
achieved accurately. We synthesized 11,978 audio files, each containing
one of nine possible helper responses, with one of the multiple combi-
nations of values for the target acoustic-prosodic features. We then
followed the same procedure described above for measuring the values
of such features. Fig. 2 shows the distributions of measured vs. desired
variations for each acoustic-prosodic feature. Ideally, one would want
the boxes to be as short as possible and to progress along a 45° line.

Fig. 2 shows that, for pitch and intensity, the targets were met quite
accurately — and in the case of pitch almost exactly. For speech rate, the
degree of accuracy is lower, but there is a strong positive relation be-
tween desired and measured variation.'*

2.3.2. Entrainment algorithm

According to Levitan et al. (2011), three forms of acoustic-prosodic
entrainment can be distinguished: proximity (acoustic-prosodic fea-
tures having similar values across interlocutors over the entire conver-
sation), convergence (acoustic-prosodic features increasing in similarity
across interlocutors over time), and synchrony (speakers adjusting the
values of their acoustic-prosodic features in accordance to that of their
interlocutor). Note that synchrony may occur without proximity. Fig. 3
illustrates these phenomena.

In our experimental task we make use of entrainment policies
designed to (dis)entrain according to (anti-)synchrony.'® In particular,
the proposed (dis)entrainment policies build upon the one presented in
Levitan et al. (2016). These policies measure how much the
acoustic-prosodic feature values of a user utterance deviate from their
respective base values (which depend on the user), and give a response
in which the TTSs’ acoustic-prosodic features deviate accordingly. For
example, in the case of an entrainment policy on acoustic-prosodic
feature k, if the user produces an utterance with feature k 10% higher
than his/her own base value for k, the policy instructs the TTS system to
synthesize speech with a value of k 10% higher relative to the TTS
default value (10% lower for the case of a policy disentraining on feature
k). The rest of this section details how the system achieves this.

9 http://fon.hum.uva.nl/praat/manual/Sound_To_Pitch__.html.

10 http://fon.hum.uva.nl/praat/manual/Sound_To_Intensity__.html.

1 http://mary.dfki.de.

http://sox.sourceforge.net.

Note that decibels is a logarithmic scale.

During the development of the experimental task we tested alternative
proprietary TTS systems with Spanish trained voices. Neither achieved better
accuracy than the one used in this work.

!5 Anti-synchrony stands for the tendency of speakers to distance their speech
from the other’s, resulting in mirrored or anti-correlated patterns (Looze and
Rauzy, 2011)
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Before calculating how to adapt to the users’ way of speaking, the
algorithm must keep track of the changes in the user’s acoustic-prosodic
features. To do so, and assuming g is the game being played at the

moment, it keeps track of ¢’§71: the average value of acoustic-prosodic
feature k in game g — 1. It does so according to the following formula:

J— k
DY %

1)
Lle— 1

where t stands for a given turn, |g — 1| for the number of turns in game
g—1, and ¢ for the value of acoustic-prosodic feature k in turn t.

Knowing the value of ¢'§71 and having processed ¢* for an ongoing
turn (of game g), the desired variation in turn t of acoustic-prosodic
feature k in the helper’s response (y¥) is calculated as follows:

k_ gk
WE = policy,- <M %
¢

k
g—1

@

where policyy equals 1, 0 or —1 if the helper follows an entrainment,
static or disentrainment policy, respectively. In other words, a helper
entraining on acoustic-prosodic feature k adapts the value of k in syn-
chrony with the subject; a static helper does not adapt in any way; and a
disentraining helper adapts in the opposite direction. For example, as-
sume that k corresponds to speech rate, g = 3 (the second non-practice

game) and ¢% , = 4 syl/sec. If ¥ = 4.8 syl/sec (i.e. the speech rate
measured on the current request for advice), then the desired variation
in speech rate will be +20% for an entraining helper, 0% for a static
helper, and —20% for a disentraining one. Note that a similar calculation
is repeated for the remaining acoustic-prosodic features.

During the practice game the helper’s voice is always synthesized
using the TTS system’s default pitch, intensity, and speech rate levels (i.
e. policy = 0). Additionally, in the three non-practice games, we
differentiate the voices of the two helpers by means of distinct base pitch
levels. One of the helpers uses the TTS system’s default pitch level; the
other, a 10% lower pitch level. Speech rate and intensity had the same
base levels across helpers. Importantly, to separate the effect of (dis)
entrainment policies from the different base pitch levels, helper names
and faces, these characteristics were counterbalanced for the three
policies across participants.

Lastly, to preserve the naturalness of the synthesized voices and
avoid the occurrence of glitches and artifacts, we clipped maximum/
minimum values of y* (4 25%/—25% for speech rate, + 5%/—5% for
intensity, and + 10%/—10% for pitch). These upper and lower bounds
were chosen perceptually by the authors. Post-hoc analyses indicate that
these ranges were wide enough as to include subjects’ variation in nearly
91.4%, 92.3%, 83.6% of all turns for speech rate, intensity and pitch,
respectively.

2.4. Data analysis

This section details the statistical techniques used to study the data
collected. Note that, instead of following a single approach for analyzing
the data, we follow complementary strategies in order to verify results
robustness. In addition, note that we focus on the way participants
effectively chose between helpers (i.e. their actual behavior) and not on
variables derived from subjective perceptions (such as answers to
follow-up questionnaires).

2.4.1. Binomial tests

We first analyze associations between entraining policies and trust
by running two-sided exact binomial tests. These tests take as input the
number of successes c (the times the helper following the entrainment
policy being studied is chosen for advise), the total number of turns
(15*n, 15 being the number of turns in a game and n the number of


http://fon.hum.uva.nl/praat/manual/Sound__To_Pitch___.html
http://fon.hum.uva.nl/praat/manual/Sound__To_Intensity___.html
http://mary.dfki.de
http://sox.sourceforge.net
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games under analysis), and the null-hypothesis probability of success.
We set this probability to 0.5 — the probability of choosing the helper of
interest in a given turn if participants choose completely at random.

For example, if 36 games are being analyzed (n = 36) and the helpers
following the entrainment policy being studied were chosen 305 (¢
305) out of 540 times (15*36) — that is, in 56% of all turns, a two-sided
exact binomial test would reject the null-hypothesis that the probability
of choosing the helper is equal to 0.5 (random) with a significance
inferior to 1%. This would suggest that a user is more likely to choose a
helper carrying out a certain entrainment policy. On the other hand, if
entraining helpers were chosen 280 times, the null-hypothesis would not
be rejected at standard levels of significance and no claim regarding any
effect could be made.'®

2.4.2. Regression analysis

It is important to note that simply hearing advice coming from an
adapting helper does not necessarily translate into listening to synthe-
sized speech differing from its base acoustic-prosodic feature values.
Take for example an extreme case, a participant who speaks in all games
using a monotone speech with no alteration of her acoustic-prosodic
feature values. In this case, whether the helper follows an entraining,
static or disentraining policy, the participant will hear the same
acoustic-prosodic dynamics during all turns.

To better capture these subtleties, during the analysis we not only
check for associations between trusting a helper and that helper’s
entrainment policy, but also relate trust to a measure of exposure to
entrainment and disentrainment in a given turn. Concretely, given a
participant request for advice in turn t, we define exposure to entrainment
on acoustic-prosodic feature k in that turn as:

|w*| if advice is given by a helper entraining on k

0  otherwise

exp-entt = {
(3

In parallel, we also define exposure to disentrainment on feature k as:

lw*| if advice is given by a helper disentraining on k

0  otherwise

exp_disent’ = {

4

Note that if the advice is given by a helper which entrains on feature
k, the value of exp_ent® will differ from O (as long as w* # 0) but
exp_disent® will be equal to 0, whereas if the advice is given by a helper
which disentrains on feature k the opposite will occur. Also note that, if
the advice is given by a helper which follows a static policy on feature k,
both exp_ent* and exp_disent* will be equal to 0 in every turn.

Three potential drawbacks of the binomial test analysis are that (1) it
treats games coming from a given player as independent when they may
not be so, (2) it completely ignores exposure to entrainment, and (3) it
ignores other variables which may affect participant choices. An alter-
native and more versatile strategy for analyzing the data consists of
using regression analysis to model whether participants continue asking
the same helper for advice after following its advice in a given turn. In
doing this, we associate keeping a helper in the next turn to considering
its advice trustworthy.

We report results on regression models considering (dis)entrainment
policies on the one hand, and exposure to (dis)entrainment on the other.
When focusing simply on entrainment policies we estimate models ac-
cording to the following specification:

keeps_helper, = a + p-policy_of _interest, + y-X, + €, 5)

where:

16 Note that small values of ¢ would also result in the rejection of the null-
hypothesis, but would indicate a negative association.
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o keeps_helper; is an indicator variable which takes value 1 if a
participant chooses the same helper after receiving and seeing the
effects of its advice in turn t, and O otherwise.

e policy_of _interest, takes a value of 1 if a particular entrainment policy
being studied is selected in turn t, and O if another policy is selected.

e X, is a vector which contains a series of control variables (which may
or not depend on the turn t). More on this below.

e ¢ is an error term.

The parameter of interest is . Note that keeps_helper; is undefined for
the last turn in each game, and consequently these turns are not
included.

When exposure to (dis)entrainment is analyzed, the model specifi-
cation varies slightly. Instead of introducing an indicator variable
related to an entrainment policy, a series of variables reflecting exposure
to (dis)entrainment on each acoustic-prosodic feature are introduced.
Concretely, the estimated models have the following specification:

keeps_helper; = a + Zﬂf‘"’-exp,entf + Zﬂﬁ""””’~exp,disenzj‘ +7X, + e,

keAP keAP

(6)

where exp_entt and exp_disent’ indicate exposure to entrainment and
disentrainment on feature k in turn t respectively, and the set AP con-
tains all features being analyzed. The parameters of interest are i and
plisent for each feature k. Note that, for the case in which neither helper
adapts to a given feature k (i.e. policy; = 0) both exp_ent* and exp_disent*
will be equal to O for all turns. This translates into a problem of perfect
multicollinearity, which makes it impossible to estimate g™ and /ifm"t
for advice given by a helper static on feature k. For this reason, co-
efficients associated to static acoustic-prosodic features are not reported.

Before running all of the main body regressions analyzing exposure
to (dis)entrainment, we standardize exposure to (dis)entrainment using
z-scores. We do this to facilitate the interpretation of effect sizes. In this
way, coefficients should be interpreted as the estimated variation
observed in the outcome when exposure to acoustic-prosodic (dis)
entrainment in a given feature k increases in one standard deviation.
Appendix tables report the estimated coefficients without standardizing
exposure metrics.

To increase the precision of our estimates of interest, we include as
control variables (X;) a series of variables which may affect the proba-
bility of keeping a helper in the next round but are not related to
acoustic-prosodic (dis)entrainment policies. These are:

e An indicator variable equal to 1 if the advice given in turn t resulted

in Go Fish, and 0 otherwise.

An indicator variable equal to 1 if the advice given in turn t resulted

in a completed deck, and 0 otherwise.

An indicator variable equal to 1 if the advice was requested by a

female participant, and 0 otherwise.

A helper fixed effect variable equal to 1 if Eugenia (one of the two

non-practice helpers) is selected (no matter its entrainment policy),

and O otherwise. Given that the helpers’ look and base pitch level
differ, and that entrainment policies are counterbalanced across
helpers, this aims at controlling for helper fixed effects.

A continuous variable indicating the turn number in a game (i.e. t)

which ranges from 1 to 14. This variable aims at capturing the ex-

pected positive association between exploitation strategies and being

close to a game ending. More on this in Section 3.1.

e Two game number indicator variables, one for the second non-
practice game (g = 3) and one for the last non-practice game (g =
4). Concretely, these variables equals 1 if the turn t belongs to game
g = 3 or g = 4 respectively, and 0 otherwise. Note that practice game
turns (g = 1) are not considered in the analysis and the first non-
practice game (g = 2) is left as the base category.
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Fig. 4. Empirical cumulative frequency of helper switches for the 294 non-practice games, by game number. Note: Detailed information available in Table Al.

We estimate Egs. 5 and 6 through both ordinary least squares (OLS)
— known as the linear probability model — and generalized linear mixed-
effects (GLME) models. Linear mixed-effects models are commonly used
when independence in the data cannot be guaranteed, as they allow one
to introduce random-effects which provide a robust analytic approach
for addressing problems associated with hierarchical data (West et al.,
2014). GLME models are an extension of the linear mixed-effects ones
which allow to consider response variables coming from different dis-
tributions. When estimating GLME models, we model the response
variable as a dichotomous one using the “logit” link function and
incorporate a participant random intercept.

One disadvantage of GLME models not using the identity link func-
tion is that effect sizes become hard to interpret. For this reason, in the
main draft, instead of reporting estimated GLME coefficients, we report
estimated average marginal effects (AMEs) (see Leeper, 2017). AMEs
should be interpreted as the average change in probability when the
independent variable being considered increases one unit. Estimated
GLME coefficients are reported in the Appendix tables.'”

3. Results

This section is structured as follows. We first provide an aggregated
analysis of the participants behavior during the task. Then we present
the patterns observed in each session of games. Finally, we present a
meta-analysis considering all the against-static sessions as a whole.

17 We use R for all of the statistical analysis (R Core Team, 2019). For esti-
mating GLME models, we use the Ime4-package (Bates et al., 2015). GLMEs’
p-values are calculated using the Satterthwaite approximation as implemented
in the ImerTest-package (Kuznetsova et al., 2017). GLMEs’ AMEs are calculated
using the margins-package (Leeper, 2017).
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3.1. Participants high-level behavior during the task

A total of four sessions of games testing several acoustic-prosodic
entrainment policies were carried out from December 2015 to
November 2017. In each session of games, emphasis was placed on
testing different hypotheses regarding the relationship between
acoustic-prosodic entrainment and trust. Before focusing on acoustic-
prosodic entrainment, in this section we analyze how participants
behaved in aggregate terms.

Fig. 4 plots the empirical cumulative distributions of the times par-
ticipants switched the helper they requested advice from.'® Cumulative
frequencies are disaggregated by game number. As an example, this
figure indicates that around 19.4% of all participants switched helpers
three or less times in the first game, 45.9% in the second one, and 54.1%
in the third one.

Fig. 4 shows some interesting patterns. First, participants tended to
switch helpers more in the first game relative to the second and third
ones. In particular, nearly 49% of all participants switched helpers more
than five times in the first game, while only 34.7% and 29.6% did so in
the second and third games respectively. Second, many more partici-
pants kept choosing the same helper for all turns in games 2 and 3 (this is
reflected in the curves intercepts). Both of these patterns suggest that
some participants may have perceived each successive game as a
continuation of the preceding one.'® Finally, the most frequent behavior
consisted in switching helpers an intermediate number of times
(Table A1l shows this more clearly).

These behaviors can be framed by means of an analogy between
GoFishWithHelpers and the well-known formal mathematical optimi-
zation problem known as the multi-armed bandit problem (Robbins et al.,

18 Recall that each participant plays three non-practice games and each game
has 15 turns, so participants may switch helpers at most 14 times per game.
19 participants were neither informed that the assignment of Al algorithms
varied across games, nor that it did not.
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Table 1
Distribution of the observed variation of speech rate in session of games #1.
Mirrored
Feature Min. Q1 Median Q3 Max. Mean SD
sp.rate -0.76 -0.11 -0.02 0.06 0.43 -0.01 0.15
Against-static

Feature Min. Q1 Median Q3 Max. Mean SD
sp.rate -0.54 -0.11 -0.02 0.06 0.53 -0.02 0.14

1952; Sutton et al., 1998; Steyvers et al., 2009). In a general N-armed
bandit problem, there is a set of N bandits, each having some fixed but
unknown rate of reward. On each trial, a decision-maker selects a bandit
and receives as feedback whether or not one unit of probabilistically
determined reward was attained. The decision-maker’s task is to make a
sequence of bandit choices that maximizes their reward using such
feedback. The bandit problem faces participants with a trade-off be-
tween exploring (i.e. acquiring new knowledge regarding bandit payoffs)
and exploiting (i.e. optimizing the expected total payoff based on their
current knowledge). The way people behave in the multi-armed bandit
problem scenario has been extensively studied in lab settings (see, for
example, Anderson, 2012; Racey et al., 2011; Schulz et al., 2018), and
several heuristics — as well as an optimum strategy — have been pro-
posed for solving this problem and have been empirically checked for
compliance (see, for example, Lee et al., 2011; Steyvers et al., 2009).

Similar to the multi-armed bandit problem, in GoFishWithHelpers
participants receive rewards as a function of choosing among helpers.
Moreover, as they are explicitly informed that the helpers’ advice is
generated by different Al systems, participants are primed to discover
which helper provides advice leading to higher rewards and to eventu-
ally choose the one believed to be superior. In this way the multi-armed
bandit problem analogy provides insights regarding participant atypical
behavior, such as having a pre-defined strategy not related to the game
development, or not understanding the task instructions. For example,
participants who do not explore helpers, especially in the first turns of a
game, might be following a strategy not in compliance with the
description given of the game. On the other end of the spectrum, a
participant who constantly switches between helpers is also contrary to
the expected behavior given the game description, as this behavior does
not suggest that the participant is exploring to eventually try to earn as
many points as possible by exploiting the advice of the helper perceived
as less risky.

Taking these facts into account, and with the aim of filtering out
anomalous behaviors during our analysis, for the rest of our analysis we
discard all games in which participants switched helpers fewer than
three times (93 games) or in which they switched 12 or more times (5
games). Thus, we focus on the games showing behavior in accordance to
the given the instructions and previous literature.’

3.2. Session of games #1: Entrainment on speech rate

Motivation and setup With the aim of validating the proposed para-
digm without testing the effects of entrainment on multiple acoustic-
prosodic features at a time, in the first session of games we opted to
analyze the effects of (dis)entrainment only on speech rate. In the
mirrored format participants had to choose between two helpers, one
following an entrainment on speech rate policy (policy_of _interest; = 1)
and the other following a disentrainment on speech rate policy

20 Qur results are robust to other less strict limits, such as only excluding
games in which the participant did not switch helpers at all (49 games) and
games in which they switched 13 or more times (1 game).

54

Speech Communication 124 (2020) 46-67

Table 2

Estimated marginal effects for session of games #1. Notes: Exposure to
entrainment metrics were standardized using z-scores before being introduced
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.

A. Dis/Entrainment policy

Mirrored Against-static
OLS GLME OLS GLME
@® (2) ©)] ()]
entrainment policy, = 1 0.0015 0.0014 — 0.0969 —0.0985"
gofish=1 0.0000 0.0015 —0.0912 — 0.0900
Num. obs. 322 322 308 308
Num. groups: player 13 10
B. Dis/Entrainment exposure
%) 6) @) ®)
exp_entﬁpe“h rate —0.0341 —0.0327 — 0.0068 — 0.0096
exp_disentPeeh e 0.0196 0.0203
gofish=1 0.0062 0.0088 —0.0919 — 0.0908
Num. obs. 322 322 308 308
Num. groups: player 13 10

(policy_of _interest; = 0) — pitch and intensity did not adapt in any way.
In the against-static format, one helper followed an entrainment on
speech rate policy (policy_of_interest = 1) while the other did not
entrain in any way (policy_of _interest; = 0). Participants were assigned
randomly to each version. Within versions, the helper which followed
the entrainment/disentrainment or entrainment/static policies
(Amanda or Eugenia) was counterbalanced across participants. Assign-
ment of policies to helpers remained static across games played by a
given participant.

Subjects Data from 26 participants was gathered (6 female, 20 male;
average age = 28, sd = 8.72), 14 participants were assigned to the
mirrored format and 12 to the against-static format. For the reasons
described in Section 3.1, 33 games were left out of the analysis as they
did not meet our inclusion criteria (19 in the mirrored format, 14 in the
against-static format). The sessions were carried out during December
2015.

Distribution of the observed acoustic-prosodic feature variations To
check that participants effectively varied the way they asked for advice
across turns, Table 1 presents the distribution of measured variation of
speech rate in both game formats. It can be seen that, although the
median variation of speech rate in both game formats is close to zero
(—2% in both cases), there was indeed variation across turns.

Two-sided exact binomial tests When analyzing the data using two-
sided exact binomial tests, we observe that in the mirrored format 173
out of 345 times (50.14%) the entraining helper was selected. A two-
sided exact binomial test fails to reject the null-hypothesis at standard
significance levels (p = 1). In the against-static format, the entraining
helper was selected 142 out of 330 times (43.03%). In this case, a two-
sided exact binomial test rejects at standard significance levels the null
hypothesis that the helpers were chosen randomly (p < .01).

Regression analysis Table 2 summarizes results from session of games
#1 regression analysis. It reports estimates from multiple regressions, in
all of which keeps_helper; is the dependent variable. Regressions vary in
their input data (mirrored or against-static formats), their estimation
strategy (OLS or GLME), and the way entrainment is measured (at the
policy level or at the exposure level). More precisely, coefficients below
the OLS label (regressions 1, 3, 5, 7) come from ordinary least squares
estimates, and estimates below the GLME label (regressions 2, 4, 6, 8)
report estimated AMEs coming from generalized linear mixed effects
model. In the top panels (regressions 1, 2, 3, 4) entrainment is intro-
duced in the analysis as in Eq. 5 (at the policy level) while in the bottom
panels (regressions 5, 6, 7, 8) as in Eq. 6 (at the exposure level). It should
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Table 3
Distribution of the observed variation of all three acoustic-prosodic features in
session of games #2.

Mirrored
Feature Min Q1 Median Q3 Max. Mean SD
sp.rate -0.66 -0.12 -0.04 0.06 0.38 -0.04 0.15
pitch -0.23 -0.02 0.02 0.08 0.38 0.03 0.09
intensity -0.13 -0.01 0.00 0.02 0.09 0.01 0.03
Against-static
Feature Min Q1 Median Q3 Max. Mean SD
sp.rate -0.45 -0.11 -0.01 0.08 0.49 -0.01 0.14
pitch -0.34 -0.05 0.00 0.05 0.35 0.01 0.09
intensity -0.09 -0.01 0.01 0.02 0.10 0.01 0.03

be remembered that for all of the main body tables reporting regression
estimates analyzing exposure to (dis)entrainment, before running them,
exposure to (dis)entrainment metrics were standardized using z-scores.
Finally, regressions in the left panels (1, 2, 5, 6) take as input data
collected from participants playing under the mirrored format, and
those in the right panels (3, 4, 7, 8), under the against-static format. To
place our focus on the parameters of interest, this table reports estimates
associated to the entrainment related variables and the one associated to
“gofish=1". Estimated coefficients for the remaining X; covariates are
presented in Table A2 and Table A3. Coefficients associated to
“gofish=1" are reported to interpret the relative magnitude of effect
sizes.

In line with the binomial test, at the policy level, we do not find any
significant effects of entrainment policies for games under the mirrored
format. In against-static games, the GLME coefficient is statistically
significant at 10%. Notably, the estimated coefficient almost equals the
estimated one for an advice resulting in Go Fish. When focusing on es-
timates considering the exposure level we find negative coefficients for
entrainment on speech rate under both formats, but in neither case can
these estimates be considered statistically significant at standard levels.

Discussion This session allowed us to check the effectiveness of the
proposed paradigm. For the mirrored format, neither the two-sided
exact binomial tests nor the regression analysis results suggest that
entrainment on speech rate is preferred over disentrainment on speech
rate. For the against-static format, both analysis suggest a negative as-
sociation between entrainment on speech rate and maintaining a helper.
In other words, when participants were forced to choose advice from
these helpers, estimates point toward a negative effect of entrainment on
speech rate. This last results is reassuring, as it suggest that the experi-
mental setup allows to affect users trust by modifying the way helpers
adapt their speech to the users speech.

3.3. Session of games #2: Entrainment on speech rate, pitch, and intensity

Motivation and setup The first session of games allowed us to first test
the viability of the proposed paradigm as well as its implementation.
Second, it also suggested that associations with trust (as measured by
choosing or maintaining a helper) may be induced. Building on these
findings, in a second session of games we tested whether, in addition to
speech rate, adapting on pitch and intensity levels is associated with
trust. The rationale behind this setup lies in the fact that entraining only
on a single acoustic-prosodic feature may be perceived as unnatural by
participants, while adapting across different acoustic-prosodic features
may be more realistic and natural. In this way, in the mirrored format,
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Table 4

Estimated marginal effects for session of games #2. Notes: Exposure to
entrainment metrics were standardized using z-scores before being introduced
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.

A. Dis/Entrainment policy

Mirrored Against-static
OLS GLME OLS GLME
@ 2 3 @
entrainment policy, = 1 0.1358** 0.1384** —0.0174 —0.0154
gofish=1 0.0229 0.0193 — 0.1890™"" —0.1887"
Num. obs. 294 294 378 378
Num. groups: player 12 12
B. Dis/Entrainment exposure
(5) (6) @ ®)
exp_entipm}l rate —0.0122 — 0.0082 — 0.0308 — 0.0280
exp_disenteect Tt 0.0362 0.0380
exp_ent’™" 0.0439 0.0409 — 0.0565" — 0.0556"
exp._disent? 00267  —0.0242
exp_ent™ensy 0.0415 0.0498 0.0701** 0.0670*
exp._disent™ems ~00042  —0.0020
gofish=1 0.0226 0.0169 —0.1885™" —0.1882"
Num. obs. 294 294 378 378
Num. groups: player 12 12
one helper entrained on speech rate, pitch and intensity

(policy_of _interest; = 1) while the other disentrained on these features
(policy_of _interest; = 0). In the against-static format one helper
entrained on the three acoustic-prosodic features (policy_of _interest; =
1) while the other did not entrain in any way (policy_of _interest; = 0).
Within formats, the helper that followed each acoustic-prosodic feature
behavior was counterbalanced across participants. Assignment of pol-
icies to helpers remained static across games played by a given
participant.

Subjects Data from 24 participants was gathered (12 female, 12 male;
average age = 22.71, sd = 3.25), 12 participants played in the mirrored
format, while 12 played in the against-static format. Again, for the
reasons described in Section 3.1, 24 games were left out of the analysis
as they did not meet our inclusion criteria (15 in the mirrored format, 9
in the against-static format). The sessions were carried out during
September 2016.

Distribution of the observed acoustic-prosodic feature variations Table 3
presents the distribution of the variation of all three acoustic-prosodic
features across both game formats. Again, although the median of
most acoustic-prosodic features is close to zero, they still varied across
turns.

Two-sided exact binomial tests In the mirrored games the entraining
helper was selected 180 out of 315 times (57.14%). A two-sided exact
binomial test rejects the null hypothesis that helpers were chosen
randomly (p = .01). In the against-static games the entraining helper
was chosen 193 out of 405 times (47.65%); in this case a two-sided exact
binomial test fails to reject the null hypothesis (p = .37).

Regression analysis Table 4 summarizes results from session of games
#2 regression analysis. Tables A4 and A5 present detailed information
on each regression. When entrainment on all three acoustic-prosodic
features is introduced in the regressions at the policy level (top
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Table 5
Distribution of the observed variation of pitch and intensity in session of games
#3.

Mirrored
Feature Min Q1 Median Q3 Max. Mean SD
pitch -0.17 -0.03 0.01 0.05 0.35 0.01 0.07
intensity -0.08 -0.02 0.00 0.01 0.08 0.00 0.02
Against-static
Feature Min. Q1 Median Q3 Max. Mean SD
pitch -0.21 -0.04 0.00 0.05 0.65 0.01 0.09
intensity -0.13 -0.02 0.00 0.01 0.09 0.00 0.03

panels) we find a positive effect of entrainment in the mirrored format —
i.e. players tended to maintain the helper when it followed an entrain-
ment policy relative to a disentrainment one. But we do not find sta-
tistically significant effects in the against-static format.

When the focus is placed on analyzing exposure to entrainment
(bottom panels) we do not see any significant positive effect of exposure
to entrainment or disentrainment in the mirrored format. However, it
should be noted that exposure to entrainment on both pitch and in-
tensity have positive coefficients, while exposure to disentrainment on
pitch and intensity have negative ones. We do find statistically signifi-
cant effects in the against-static format when analyzing exposure to
entrainment. Interestingly, these tend to go in opposite directions: the
coefficient for pitch entrainment exposure is negative, while the one for
intensity is positive.?! Notably, comparing these estimates to the Go Fish
one, suggests that a one standard deviation rise in exposure to entrain-
ment on pitch lowers the probability of keeping the avatar 29.5% as
much as an advice leading to Go Fish reduces it, while a one standard
deviation rise in exposure to entrainment on intensity rises this proba-
bility 35.6% as much as an advice leading to a Go Fish reduces it.

Discussion Taken as a whole, and, in particular, when compared to
the results from the first session, this second session of games illustrates
the challenges behind setting up entrainment policies which may in-
fluence the player’s predisposition to choose a helper. Results from our
first session of games suggested a negative effect of entrainment on
speech rate in the against-static format, but results from this session of
games suggest that, when entrainment on pitch and intensity is added to
the entrainment policy, no effect is observed at the policy level. Notably,
when analyzing exposure to entrainment, we find that this might be
driven by the fact that effects of entrainment on different acoustic-
prosodic features do not necessarily occur in the same direction.
Moreover, estimated effect sizes are non-negligible when compared to
the one of an advice leading to Go Fish.

Results of the mirrored format also illustrate the complexity of
identifying acoustic-prosodic entrainment effects. Even when a positive
effect of entrainment is observed at the policy level, the fact that no
single coefficient is statistically significant when analyzing exposure to
entrainment makes it hard to pinpoint this effect to a particular behavior
of an acoustic-prosodic feature.

21 1t should be noted that, for this session of games, in nearly half of the non-
practice turns analyzed (48.3%) participants’ intensity and pitch variation
relative to their base values went in the same direction (i.e. both varied
simultaneously above or below their respective means), and in the other half it
did not. This suggests that this result is not driven entirely by the fact that the
these effects are constantly cancelling each other.
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Table 6

Estimated marginal effects for session of games #3. Notes: Exposure to
entrainment metrics were standardized using z-scores before being introduced
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.

A. Dis/Entrainment policy

Mirrored Against-static

OLS GLME OLS GLME

@ (2 [©)] @
entrainment policy, =1 0.0616 0.0628 0.0153 0.0160
gofish=1 —-0.2692""  —02753""  —0.1308" —0.1309"
Num. obs. 364 364 392 392
Num. groups: player 11 12

B. Dis/Entrainment exposure
) (6) @ (8

exp_eml;ifﬁh 0.0204 0.0210 —0.0348 — 0.0346
exp_disent’™" 0.0144 0.0110
exp,enti”te"‘i‘y 0.0198 0.0167 0.0531* 0.0536*
exp,disenti"[”“i”' 0.0108 0.0099
gofish=1 - 026007 —-026667°  —0.1271°  —0.1269
Num. obs. 364 364 392 392
Num. groups: player 11 12

3.4. Session of games #3: Entrainment on pitch and intensity

Motivation and setup With the aim of better isolating the effects found
in the previous sessions, in a third session of games we experimented
with a setup in which only pitch and intensity were adapted to the user’s
way of speaking. Concretely, in the mirrored format one helper
entrained on pitch and intensity (policy_of _interest, = 1) while the other
one disentrained on pitch and intensity (policy_of _interest; = 0). In the
against-static format, a helper entrained on these features
(policy_of _interest; = 1) and the other one followed a static policy
(policy_of _interest; = 0). Helpers and entrainment behaviors were
counterbalanced as usual. Assignment of policies to helpers remained
static across games played by a given participant.

Subjects Data from 24 participants was gathered (6 female, 18 male;
average age = 22.38, sd = 2.39), 12 participants played in the mirrored
format, while 12 player in the against-static one. Again, for the reasons
described in Section 3.1, 18 games were left out of the analysis as they
did not meet our inclusion criteria (10 in the mirrored format, 8 in the
against-static format). The sessions were carried out during December
2016.

Distribution of the observed acoustic-prosodic feature variations Table 5
presents the distribution of the variation of pitch and intensity across
both game formats. The patterns are almost identical to those reported
in the session of games #2.

Two-sided exact binomial tests When analyzing the data, we observed
that, in the mirrored format, 204 out of 390 times the entraining helper
was selected (52.31%). A two-sided exact binomial fails to reject the
null-hypothesis at standard significance levels (p = .39). In the against-
static format, the entraining helper was selected 214 out of 420 times
(50.95%). An equivalent two-sided exact binomial test also fails to reject
at standard significance levels the null hypothesis that the helpers were
chosen randomly (p = .73).

Regression analysis Table 6 summarizes results from session of games
#3 regression analysis. Tables A6 and A7 present detailed information
on each regression. In contrast with session of games #2, when only (dis)
entrainment policies on pitch and intensity are effective, regressions at
the policy level (top panels) fail to find statistically significant co-
efficients under any format. Results go in the same direction for the case
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Table 7

Distribution of the observed variation of all acoustic-prosodic features in session
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Table 9
Estimated average marginal effects for all against-static sessions taken as a

of games #4. whole. Notes: Exposure to entrainment metrics were standardized using z-scores
Mirrored before being introduced to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.
Feature Min Q1 Median Q3 Max. Mean SD ?i‘)s GE\;IE
sp.rate -0.50 -0.13 0.00 0.10 0.63 0.00 0.17 cech rate 0.0152 0.01
pitch 019 004  0.00 005 023 001 0.07 exp_ent}? - 0.015 — 0.0157
intensity -0.10 -0.02 0.00 0.02 0.09 0.00 0.03 exp_disenteech et — 0.0084 — 0.0079
Against-static exp_ent?" " - 0.0282" - 0.0281"
Feature Min Q1 Median Q3 Max Mean SD exp_ent™™1Y 0.0355** 0.0348**
sp.rate 075 010  0.00 0.09 077  0.00 0.16 gofish=1 ~0.1566"" ~0.1580""
pitch -0.19 -0.03 0.01 0.05 0.20 0.01 0.06 Num. obs. 1456 1456
intensity -0.15 -0.02 0.00 0.02 0.10 0.00 0.03 Num. groups: player 45
format: Once again the effects of entrainment on pitch and intensity
went in opposite directions. In the mirrored format, where we previ-
Table 8 ously found evidence of positive effects at the policy level of entrain-

Estimated marginal effects for session of games #4. Notes: Exposure to
entrainment metrics were standardized using z-scores before being introduced
to the regressions. *p < 0.1; **p < 0.05; ***p < 0.01.

A. Dis/Entrainment policy

Mirrored Against-static
OLS GLME OLS GLME
@™ (2) 3) @
tailored policy, =1 — 0.0522 — 0.0302 — 0.0595 — 0.0608
gofish=1 —0.3064"" —0.3212"" —0.1950"" —0.1981"
Num. obs. 308 308 378 378
Num. groups: player 11 11
B. Dis/Entrainment exposure
5) 6) @) (€]
exp,entﬁp““h rate — 0.0236 — 0.0107
em,disent?““h rate 0.1064*** 0.1256*** 0.0006 0.0017
exp_ent? ™" —0.0639" —0.0713" — 0.0065 ~0.0120
exp,disemf"“h 0.0410 0.0145
exp_ent™ ™Y — 0.0464 — 0.0364 — 0.0089 — 0.0039
exp_disentf“e"‘iq’ 0.0004 0.0140
gofish=1 —0.2968"" —-0.3189"" - 0. - 0.
1965 1988™
Num. obs. 308 308 378 378
Num. groups: player 11 11

of exposure to entrainment under the mirrored format. However, for the
case of the against-static format, we still find statistically significant
coefficients for exposure to intensity entrainment. The ones associated
to entrainment on pitch under this format were not found to be statis-
tically significant but, as in session of games #2, remain negative. Once
again, the estimated effect size is considerable, a one standard deviation
rise in exposure to entrainment on intensity rises the probability of
keeping the avatar 42.3% as much as an advice leading to Go Fish re-
duces it.

Discussion Overall, this session showed less association between the
experimental setup and helpers’ trustworthiness. Still, these are quite
consistent with results from the second session for the against-static

57

ment on the three acoustic-prosodic features taken altogether, we do not
observe evidence suggesting significant effects of entraining only on
pitch and intensity.

3.5. Session of games #4: Disentrainment on speech rate and entrainment
on pitch and intensity

Motivation and setup For our last session of games we opted to
experiment with a procedure incorporating as many insights gathered in
previous games as possible. In particular, results from the first session of
games suggested that entrainment on speech rate might have a negative
effect on the players’ choice to maintain a helper, while the second
suggested that entrainment on pitch and intensity, in addition to
entrainment on speech rate, might have a positive effect. Results from
the third session pointed toward a similar direction, although effects
were much smaller. Taking all this into account, we opted to test the
effects of a helper which disentrains on speech rate and entrains on pitch
and intensity.

It should be mentioned that, even when our results pointed to
opposing effects of entrainment on intensity and pitch (the effect of
entrainment on intensity being positive in general and the effect of
entrainment on pitch negative or null), we decided to keep varying both
acoustic-prosodic features in synchrony as empirical evidence points
toward a tendency for these two features to be positively correlated (see
Gramming et al., 1988).

During this session of games we continued to use the mirrored and
the against-static formats. In the mirrored format one helper, which we
refer to as the tailored helper, disentrained on speech rate and entrained
on pitch and intensity (policy_of_interest; = 1), while the other one
entrained on speech rate and disentrained on pitch and intensity
(policy_of _interest; = 0). In the against-static format a helper (the
tailored one) disentrained on speech rate and entrained on pitch and
intensity (policy_of _interest; = 1) while the other followed a static
behavior (policy_of _interest; = 0). Once again, helper assignment was
counterbalanced across participants. Assignment of policies to helpers
remained static across games played by a given participant.

Subjects Data from 24 participants was gathered (9 female, 15 male.
Average age = 21.13, sd = 2.01), 12 participants played in the mirrored
approach, while 12 player in the against-static approach. 23 games were
excluded as they did not meet the inclusion criteria described in Section
3.1 (14 in the mirrored approach, 9 in the against-static approach). The
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sessions were carried out during November 2017.

Distribution of the observed acoustic-prosodic feature variations Table 7
presents the distribution of the variation of all three acoustic-prosodic
features across both game formats. This table report statistics similar
to the previous ones. However, when compared to the previous session
of games, speech rate shows a much more symmetrical behavior.

Two-sided exact binomial tests In the mirrored games the tailored
helper was selected 156 out of 330 times (47.27%). A two-sided exact
binomial test fails to reject the null hypothesis that the helpers were
chosen randomly (p = .35). In the against-static games the tailored
helper was chosen 186 out of 405 times (45.93%). A two-sided exact
binomial fails again to reject at standard significance levels the null
hypothesis that the helpers were chosen randomly (p = .11).

Regression analysis Table 8 summarizes results from session of games
#4 regression analysis. Tables A8 and A9 present detailed information
on each regression. At the policy level, the estimated coefficients do not
pass statistical significance tests at standard levels in both the mirrored
and against-static formats. At the exposure level, the estimated coeffi-
cient of disentrainment on speech rate under the mirrored format shows
a significant positive effect (equal to 35.8% the estimated fall associated
to an advice leading to Go Fish), while the one for pitch suggests a
significant negative effect (equal to 21.5% the estimated fall associated
to an advice leading to Go Fish). All estimated coefficients under the
against-static format do not pass statistical significance tests at standard
levels.

Discussion Notably, results from this session of games are not entirely
consistent with the ones found in session of games #2 and session of
games #3 (although the effects of speech rate go in hand with the ones
found in session of games #1). In this sense, these results reinforce the
insight gathered in the second session of games, where we noted that it
may be the case that the effects of a (dis)entrainment policy on a given
acoustic-prosodic feature may be influenced to some extent by the
behavior of the remaining acoustic-prosodic features. In particular, the
case of entrainment on intensity in the against-static games is illustra-
tive: In both the second and third sets, we found positive effects of
entrainment on intensity under the against-static approach, however
when disentrainment on speech rate is added to the mix (as it happened
in these last games), we do not find any statistically significant effect
associated to entrainment on intensity.

3.6. Meta analysis

An advantage of the against-static format relative to the mirrored
one is that no matter which session subjects participated in, they always
had to choose between an adapting helper versus a static one, which
remained the same across all sessions of games. Note however that this is
not true for the mirrored format, where no helper exhibited the same
behavior across sessions of games. This property of the against-static
format allowed us to run a meta analysis of the data collected across
different sessions, as if it had been collected in a single one. Doing this
allows us to gain statistical power and to capture more subtle
phenomena.

In this section we analyze the data obtained from all sessions played
under the against-static format as a whole. Concretely, we estimated Eq.
6 as in previous sections with the sole difference that we added session
number indicator variables as covariates to capture any fixed effects
which might be attributed to a particular session of games.

Table 9 contains the obtained estimates when running the regression
analysis on all against-static games taken as a whole. Table A10 presents
detailed results. For the case of pitch and intensity we do find
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associations between exposure to entrainment and maintaining a helper.
Nonetheless, we find effects in opposite directions. For the case of
entrainment on pitch, our results suggest that higher exposure to
entrainment impacts negatively in keeping a helper, but for the case of
entrainment on intensity we find a positive effect. We do not find any
association between entrainment or disentrainment on speech rate and
participants keeping a helper. Regarding effect sizes, results suggest that
a one standard deviation rise in exposure to entrainment on pitch lowers
the probability of keeping the avatar 17.8% as much as an advice
leading to Go Fish reduces it, while a one standard deviation rise in
exposure to entrainment on intensity rises this probability 22% as much
as an advice leading to a Go Fish reduces it.

4. Discussion
4.1. Summary of findings

Across different experimental setups we found associations between
acoustic-prosodic entrainment policies and trust (as measured by relying
on a particular virtual helper for guidance and assistance). In this way,
our results suggest and provide further evidence pointing toward an
association between acoustic-prosodic (dis)entrainment in spoken dia-
logue systems and the way users perceive the capabilities of such
systems.

Based on a meta-analysis considering data from all sessions of games,
we observe, as overall patterns, associations between maintaining a
helper and exposure to entrainment on pitch and intensity. But these
effects go in opposite directions. For entrainment on pitch a negative
association with maintaining a helper is observed, while for entrainment
on intensity a positive one is observed. Interestingly, the estimated effect
sizes of statistically significant coefficients are non-negligible when
compared to the effect size of an advice leading to Go Fish. A one
standard deviation rise in exposure to entrainment in pitch/intensity
conveys a decrease/increase in the probability of keeping an avatar
equivalent to 17.8%/22% the estimated fall of an advice leading to Go
Fish.

However, a detailed characterization of these associations stands as a
challenging task. Our findings explicitly forefront reasons which make
this difficult. In particular:

e Our data show that the way entrainment on a given acoustic-
prosodic feature affects users is not completely independent of the
way other acoustic-prosodic features behave. For example, this was
the case of entrainment on intensity. In sessions of games #2 and #3
the effects found were positive, but when disentrainment on speech
rate was added to the mix in session of games #4, we did not find
statistically significant effects.

Finding a particular effect of a given entrainment policy for a
particular acoustic-prosodic feature does not necessarily lead to
observing the opposite effect if the system adapts in the opposite way
(for example, seeing a negative effect of entrainment on speech rate
does not imply that disentrainment on speech rate has a positive
effect). In general, when significant effects of a given entrainment
policy were found (e.g. a negative effect of pitch entrainment) the
opposite effect of adapting in the opposite way was not found (i.e. a
positive effect of pitch disentrainment).

Third, and somewhat connected to the first point, at the policy level
one may not be seeing an effect of a given entrainment strategy, but
this may be due to the effects of exposure to entrainment across
acoustic-prosodic features cancelling each other. In particular,
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results from the against-static format games played in session of
games #2 and #3 suggest this may be the case. For these games, we
did not find effects at the policy level, but we did find effects in
opposite directions at the exposure level (negative for pitch
entrainment and positive for intensity entrainment).

4.2. Limitations and future research

Making a system adapt to the users’ way of speaking involves the
interaction of different sub-systems, each of them having subtleties. At
the moment of implementation most commercial ASR systems did not
return word time-stamps, something which is currently done by some at
different levels of detail. This led us to use the PocketSphinx toolkit with
a restricted grammar. Clearly, a restricted grammar limits the natural-
ness of speech interaction, and this should be addressed in future work.

TTS system limitations also impacted the task design. TTS systems
are quite limited regarding their prosodic modification capabilities,
especially when trained in languages other than English. As there is
evidence showing that humans entrain on more acoustic-prosodic fea-
tures than the three we studied (e.g. pause length, voice quality), and
given that our results suggest that adapting one acoustic-prosodic
feature may impact on the effects of another one, future research
could also add into the analysis omitted acoustic-prosodic features and
study their relation with conversation social outcomes. Recent de-
velopments in expressive speech synthesis (e.g. Wang et al., 2018;
Skerry-Ryan et al., 2018) make this line of research particularly
promising.

There are also aspects regarding the entrainment algorithm which
should be considered. First, as previously reported, humans may entrain
in multiple ways (proximity, convergence, synchrony), and it may be the
case that not all acoustic-prosodic features entrain in the same manner
(for example, pitch entraining according to synchrony and intensity
according to proximity). This work placed its focus on the effects of
synchrony and anti-synchrony, but future research should also focus on
other forms of entrainment (see, for example, Weise and Levitan, 2018).

Second, in our experimental task, a helper entrains as it gives its
advice to the way users request it. Given that this is a very common
dialogue structure in current virtual assistants, understanding the effects
of acoustic-prosodic entrainment under this type of dialogues is clearly
important. However, recent research provides preliminary evidence
suggesting that entrainment may emerge differently for different dialog
acts (Reichel et al., 2018b; Gauder et al., 2018). Future research should
also focus on the effects of incorporating dialog acts into the entrain-
ment algorithms.

In this article we followed a purely experimental approach, and, in
this way, studied a reduced number of hypotheses which were of interest
to us. Nevertheless, we recognize that the collected data is rich and may
be hiding patterns that, although not explicitly tested, may guide the
design of future acoustic-prosodic entrainment algorithms. In this way,
future research should study this data following a corpus study
approach.

Regarding the complexity of characterizing this kind of effects, we
believe this study, by making explicit how complex the problem is,
provides an important indirect methodological result. Well-designed
experimental paradigms are regarded as a “gold standard” for charac-
terizing the impact of speech related behavior on social outcomes;
however, speech behavior is a very complex phenomenon, and charac-
terizing complex phenomena requires large amounts of data in order to
gain statistical power. This poses a dilemma, as collecting in-lab speech
data under experimental paradigms is quite costly. Future research
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should focus on assessing and validating online formats for running
these experiments. One first step in this direction could be to replicate
well-known and established in-lab speech related experiments and test if
their results are robust to an online setup.
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Appendix

Table Al

Frequency of helper switches in a game for the 294 non-practice games. Note:
Frequencies are disaggregated by game number. For example, the third row
indicates that three participants switched helpers twice in the first game, 13
switched twice in the second one, and 11 switched twice in the third one.

Game number

# switches 1 2 3
0 4 19 26
1 5 5 7
2 3 13 11
3 7 8 9
4 16 9 8
5 15 10 8
6 12 7 12
7 12 8 5
8 9 7 7
9 6 6 2
10 4 4 2
11 2 1 0
12 2 1 1
13 1 0 0
14 0 0 0
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Table A2
Detailed regression analysis of dis/entrainment setup for session of games #1.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.6419%** 0.5861* 0.5524%** 0.2324
(0.0742) (0.3246) (0.0817) (0.3484)

entrainmentpolicy, =1 0.0015 0.0060 0.0014 — 0.0969 — 0.4084" — 0.0985
(0.0563) (0.2448) (0.0600) (0.2475)

deck=1 — 0.0693 —0.2915 — 0.0679 — 0.0163 — 0.0697 — 0.0166
(0.0722) (0.3086) (0.0814) (0.3386)

gofish=1 0.0000 0.0065 0.0015 — 0.0912 —0.3736 — 0.0900
(0.0794) (0.3450) (0.0863) (0.3562)

Eugenia=1 — 0.0492 —0.2119 — 0.0484 0.0676 0.2764 0.0664
(0.0548) (0.2380) (0.0595) (0.2456)

female=1 0.1197* 0.5410* 0.1192 — 0.0732 — 0.3583 — 0.0863
(0.0628) (0.2935) (0.0657) (0.3372)

turn number — 0.0046 — 0.0203 — 0.0046 0.0077 0.0321 0.0077
(0.0071) (0.0309) (0.0079) (0.0327)

game number=3 0.0750 0.3433 0.0772 —0.0243 — 0.0838 — 0.0200
(0.0668) (0.3005) (0.0641) (0.2690)

game number=4 0.0363 0.1648 0.0379 0.0009 0.1048 0.0247
(0.0711) (0.3127) (0.0816) (0.3633)

R? 0.0225 0.0278

Adj. R? -0.0025 0.0018

Num. obs. 322 322 308 308

RMSE 0.4840 0.4965

AIC 436.8280 433.0272

BIC 474.5735 470.3282

Log Likelihood -208.4140 -206.5136

Num. groups: player 13 10

Var: player constant 0.0149 0.0557

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table A3
Detailed regression analysis of dis/entrainment exposure for session of games #1.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.6429%** 0.5899 0.5055%** 0.0420
(0.0870) (0.3831) (0.0784) (0.3327)

exp,entipmh rate — 0.0045 — 0.0192 — 0.0043 — 0.0010 — 0.0057 — 0.0014
(0.0041) (0.0179) (0.0042) (0.0173)

exp_disentPeech e 0.0026 0.0119 0.0027
(0.0043) (0.0192)

deck=1 — 0.0652 — 0.2716 — 0.0626 —0.0183 — 0.0781 —0.0188
(0.0720) (0.3105) (0.0818) (0.3375)

gofish=1 0.0062 0.0391 0.0088 — 0.0919 —0.3735 — 0.0908
(0.0794) (0.3484) (0.0866) (0.3548)

Eugenia=1 — 0.0449 — 0.1905 — 0.0431 0.0896 0.3637 0.0881
(0.0542) (0.2372) (0.0581) (0.2392)

female=1 0.1175* 0.5361* 0.1171 — 0.0790 — 0.3773 — 0.0917
(0.0626) (0.2975) (0.0659) (0.3347)

turn number — 0.0049 — 0.0222 — 0.0050 0.0074 0.0310 0.0074
(0.0071) (0.0311) (0.0079) (0.0327)

game number=3 0.0893 0.4088 0.0910 — 0.0158 — 0.0519 —0.0125
(0.0679) (0.3074) (0.0651) (0.2703)

game number=4 0.0564 0.2580 0.0586 — 0.0040 0.0793 0.0189
(0.0710) (0.3168) (0.0824) (0.3622)

R? 0.0315 0.0195

Adj. R? 0.0035 -0.0067

Num. obs. 322 322 308 308

RMSE 0.4826 0.4987

AIC 435.8939 435.6518

BIC 477.4140 472.9528

Log Likelihood -206.9470 -207.8259

Num. groups: player 13 10

Var: player constant 0.0183 0.0542

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01
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Table A4
Detailed regression analysis of dis/entrainment setup for session of games #2.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.5116%** 0.0103 0.5574*** 0.2276
(0.0891) (0.3872) (0.0752) (0.3337)

entrainment policy, = 1 0.1358** 0.5743** 0.1384 —0.0174 — 0.0666 — 0.0154
(0.0599) (0.2506) (0.0513) (0.2211)

deck=1 0.1585* 0.6531* 0.1501 0.0991 0.4739 0.1074
(0.0836) (0.3687) (0.0697) (0.3131)

gofish=1 0.0229 0.0817 0.0193 —0.1890"" —0.7925™" —0.1887
(0.0836) (0.3463) (0.0716) (0.3035)

Eugenia=1 — 0.0068 — 0.0304 — 0.0072 — 0.0418 — 0.1930 — 0.0447
(0.0582) (0.2434) (0.0514) (0.2219)

female=1 — 0.0355 —0.1202 — 0.0285 — 0.0466 - 0.1776 — 0.0412
(0.0660) (0.3048) (0.0525) (0.2727)

turn number — 0.0045 —0.0183 — 0.0043 0.0123* 0.0533* 0.0123
(0.0078) (0.0325) (0.0069) (0.0294)

game number=3 0.0341 0.1660 0.0389 — 0.0102 — 0.0237 — 0.0055
(0.0679) (0.2930) (0.0589) (0.2578)

game number=4 — 0.0683 — 0.2479 — 0.0593 — 0.0165 — 0.0063 — 0.0014
(0.0894) (0.3812) (0.0648) (0.2911)

R? 0.0359 0.0426

Adj. R? 0.0088 0.0219

Num. obs. 294 294 378 378

RMSE 0.4949 0.4880

AIC 412.1100 515.7234

BIC 448.9458 555.0723

Log Likelihood -196.0550 -247.8617

Num. groups: player 12 12

Var: player constant 0.0402 0.0606

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

61



R.H. Galvez et al. Speech Communication 124 (2020) 46-67

Table A5
Detailed regression analysis of dis/entrainment exposure for session of games #2.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.5123*** — 0.0589 0.5403%*** 0.1722
(0.1118) (0.5001) (0.0746) (0.3264)

exp_entPeh e —0.0015 —0.0042 ~0.0010 —0.0043 - 0.0171 —0.0039
(0.0047) (0.0200) (0.0047) (0.0205)

exp. disentPeech rae 0.0052 0.0230 0.0054
(0.0056) (0.0236)

exp_ent™" 0.0114 0.0452 0.0106 —0.0156" ~0.0672" —0.0154
(0.0108) (0.0458) (0.0093) (0.0408)

exp_disendh —0.0077 - 0.0298 —0.0070
(0.0116) (0.0484)

exp,ent{mmy 0.0246 0.1253 0.0295 0.0477** 0.1997* 0.0456
(0.0229) (0.1013) (0.0233) (0.1082)

exp_disent™es —0.0029 — 0.0059 —0.0014
(0.0289) (0.1192)

deck=1 0.1590* 0.6437* 0.1473 0.0926 0.4409 0.0990
(0.0849) (0.3717) (0.0695) (0.3146)

gofish=1 0.0226 0.0719 0.0169 —0.1885"" — 0.8000"" — 0.1882
(0.0848) (0.3515) (0.0713) (0.3057)

Eugenia=1 — 0.0106 — 0.0368 — 0.0087 — 0.0159 — 0.0825 — 0.0189
(0.0619) (0.2579) (0.0518) (0.2243)

female=1 — 0.0247 — 0.0600 —0.0141 — 0.0309 —0.1323 — 0.0303
(0.0674) (0.3236) (0.0527) (0.2504)

turn number — 0.0038 —0.0151 — 0.0036 0.0124* 0.0543* 0.0124
(0.0079) (0.0327) (0.0068) (0.0296)

game number=3 0.0459 0.2401 0.0560 — 0.0010 — 0.0094 — 0.0022
(0.0700) (0.3077) (0.0590) (0.2575)

game number=4 — 0.0487 —0.1303 — 0.0310 — 0.0068 — 0.0104 — 0.0024
(0.0924) (0.3998) (0.0651) (0.2890)

R? 0.0394 0.0575

Adj. R? -0.0052 0.0318

Num. obs. 294 294 378 378

RMSE 0.4984 0.4855

AIC 420.7816 514.5521

BIC 476.0353 561.7708

Log Likelihood -195.3908 -245.2760

Num. groups: player 12 12

Var: player constant 0.0630 0.0285

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01
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Table A6
Detailed regression analysis of dis/entrainment setup for session of games #3.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.4454%*** — 0.2588 0.4318%** —0.2923
(0.0737) (0.3277) (0.0713) (0.2971)

entrainment policy, = 1 0.0616 0.2714 0.0628 0.0153 0.0679 0.0160
(0.0514) (0.2213) (0.0499) (0.2095)

deck=1 — 0.0432 — 0.1963 — 0.0455 0.1306* 0.5743** 0.1339
(0.0689) (0.2977) (0.0666) (0.2900)

gofish=1 02692  —1.1731"" - 0.2753 - 01308 - 0.5541" - 0.1309
(0.0750) (0.3283) (0.0723) (0.3053)

Eugenia=1 —0.0158 — 0.0669 — 0.0154 0.0279 0.1202 0.0283
(0.0514) (0.2209) (0.0502) (0.2110)

female=1 0.0691 0.3040 0.0689 — 0.0378 — 0.1598 — 0.0376
(0.0727) (0.3999) (0.0539) (0.2262)

turn number 0.0149** 0.0659** 0.0152 0.0159** 0.0673** 0.0158
(0.0070) (0.0305) (0.0066) (0.0279)

game number=3 0.0313 0.1668 0.0390 - 0.1119" — 0.4750" —0.1129
(0.0625) (0.2699) (0.0612) (0.2576)

game number=4 0.0838 0.3188 0.0737 0.0098 0.0399 0.0094
(0.0631) (0.2801) (0.0602) (0.2536)

R? 0.0474 0.0546

Adj. R? 0.0259 0.0349

Num. obs. 364 364 392 392

RMSE 0.4883 0.4904

AIC 497.3185 539.0358

BIC 536.2900 578.7484

Log Likelihood -238.6592 -259.5179

Num. groups: player 11 12

Var: player constant 0.0809 0.0000

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01

Table A7
Detailed regression analysis of dis/entrainment exposure for session of games #3.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.4314*** — 0.2994 0.4266*** - 0.3137
(0.0855) (0.3756) (0.0694) (0.2903)

exp,entfi“h 0.0064 0.0285 0.0066 — 0.0106 — 0.0454 — 0.0106
(0.0104) (0.0449) (0.0088) (0.0372)

exp_diseni?™ 0.0044 0.0147 0.0034
(0.0111) (0.0478)

exp_ent™enY 0.0165 0.0601 0.0139 0.0343* 0.1487* 0.0346
(0.0261) (0.1165) (0.0182) (0.0792)

exp_disent™e 0.0091 0.0365 0.0084
(0.0284) (0.1215)

deck=1 — 0.0383 — 0.1820 — 0.0423 0.1273* 0.5657* 0.1308
(0.0697) (0.2997) (0.0664) (0.2909)

gofish=1 — 0.2600™" —1.1306™" — 0.2666 —0.1271" - 0.5421" —0.1269
(0.0755) (0.3279) (0.0721) (0.3058)

Eugenia=1 — 0.0197 — 0.0823 — 0.0190 0.0342 0.1508 0.0351
(0.0519) (0.2218) (0.0503) (0.2135)

female=1 0.0689 0.3060 0.0695 — 0.0494 — 0.2148 — 0.0501
(0.0749) (0.3972) (0.0542) (0.2299)

turn number 0.0145** 0.0644** 0.0149 0.0161** 0.0686** 0.0160
(0.0071) (0.0307) (0.0066) (0.0280)

game number=3 0.0331 0.1721 0.0404 —0.1111° — 0.4759" —0.1121
(0.0629) (0.2702) (0.0611) (0.2594)

game number=4 0.0942 0.3626 0.0839 0.0167 0.0657 0.0152
(0.0646) (0.2848) (0.0600) (0.2546)

R? 0.0465 0.0634

Adj. R? 0.0167 0.0413

Num. obs. 364 364 392 392

RMSE 0.4906 0.4887

AIC 503.8718 537.3820

BIC 554.5348 581.0659

Log Likelihood -238.9359 -257.6910

Num. groups: player 11 12

Var: player constant 0.0717 0.0000

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01
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Table A8
Detailed regression analysis of dis/entrainment setup for session of games #4.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.4649*** — 0.3236 0.5069*** — 0.0040
(0.0795) (0.4060) (0.0746) (0.3438)

tailored policy; =1 — 0.0522 — 0.1407 — 0.0302 — 0.0595 — 0.2676 — 0.0608
(0.0547) (0.2580) (0.0501) (0.2209)

deck=1 0.0428 0.1179 0.0253 0.0784 0.3606 0.0803
(0.0713) (0.3268) (0.0651) (0.2966)

gofish=1 —0.3064™" —1.5281™ —0.3212 —0.1950™" —0.8387" —0.1981
(0.0783) (0.3936) (0.0710) (0.3075)

Eugenia=1 — 0.0666 —0.2383 — 0.0512 — 0.0221 — 0.0796 — 0.0180
(0.0554) (0.2586) (0.0503) (0.2218)

female=1 0.0052 0.0526 0.0113 0.0744 0.3450 0.0776
(0.0562) (0.3790) (0.0510) (0.2843)

turn number 0.0214*** 0.1019%** 0.0218 0.0115* 0.0512* 0.0116
(0.0071) (0.0332) (0.0065) (0.0287)

game number=3 —0.1434™ — 0.5939" — 0.1309 0.0605 0.3398 0.0768
(0.0692) (0.3326) (0.0606) (0.2765)

game number=4 0.0799 0.4476 0.0970 0.0419 0.2164 0.0495
(0.0647) (0.3223) (0.0604) (0.2683)

R? 0.1180 0.0511

Adj. R? 0.0944 0.0305

Num. obs. 308 308 378 378

RMSE 0.4761 0.4829

AIC 403.5155 507.8694

BIC 440.8165 547.2184

Log Likelihood -191.7578 -243.9347

Num. groups: player 11 11

Var: player constant 0.1810 0.0772

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01
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Table A9
Detailed regression analysis of dis/entrainment exposure for session of games #4.
Mirrored Against-static

OLS Generalized linear mixed-effects Average marginal effects OLS Generalized linear mixed-effects Average marginal effects

constant 0.4430%** — 0.4836 0.4890%** — 0.0863
(0.1038) (0.5396) (0.0749) (0.3433)

exp_entPeh e —0.0029 — 0.0066 —0.0013
(0.0047) (0.0226)

exp_disengPeech Tate 0.0129%** 0.0747%%* 0.0152 0.0001 0.0010 0.0002
(0.0048) (0.0251) (0.0043) (0.0189)

exp_ent?™" —0.0212° - 0.1158" - 0.0236 — 0.0020 - 0.0167 — 0.0038
(0.0118) (0.0595) (0.0104) (0.0458)

exp_disent?™ 0.0113 0.0196 0.0040
(0.0103) (0.0505)

exp,enttm‘e"“ig' — 0.0275 — 0.1057 — 0.0216 — 0.0055 — 0.0108 — 0.0024
(0.0236) (0.1170) (0.0198) (0.0871)

exp_disent™s 0.0002 0.0446 0.0091
(0.0241) (0.1167)

deck=1 0.0345 0.0593 0.0121 0.0803 0.3674 0.0821
(0.0714) (0.3391) (0.0658) (0.2983)

gofish=1 —0.2968"" — 1.5809™" - 0.3189 —0.1965" - 0.8393" —0.1988
(0.0781) (0.4065) (0.0716) (0.3080)

Eugenia=1 — 0.0567 —0.1778 — 0.0364 — 0.0235 — 0.0875 — 0.0198
(0.0553) (0.2692) (0.0505) (0.2216)

female=1 —0.0019 0.0483 0.0099 0.0765 0.3526 0.0795
(0.0564) (0.4232) (0.0520) (0.2864)

turn number 0.0196*** 0.0985%*** 0.0201 0.0117* 0.0522* 0.0118
(0.0070) (0.0343) (0.0066) (0.0288)

game number=3 —0.1468™ — 0.6430" — 0.1352 0.0587 0.3338 0.0757
(0.0689) (0.3461) (0.0618) (0.2806)

game number=4 0.0767 0.4210 0.0870 0.0374 0.1929 0.0443
(0.0649) (0.3332) (0.0609) (0.2684)

R? 0.1481 0.0481

Adj. R? 0.1105 0.0222

Num. obs. 308 308 378 378

RMSE 0.4719 0.4850

AIC 400.9959 513.0576

BIC 456.9474 560.2763

Log Likelihood -185.4980 -244.5288

Num. groups: player 11 11

Var: player constant 0.2497 0.0761

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01
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Table A10
Detailed regression analysis results for all against-static sessions taken as a
whole.

OLS Generalized linear Average marginal
mixed-effects effects

constant 0.4893*** — 0.0383
(0.0446) (0.2025)

exp_engPech rate —0.0028 —0.0123 —0.0029
(0.0028) (0.0118)

exp. disentPeech T —0.0019 —0.0076 —0.0018
(0.0036) (0.0155)

exp_ent? ™" — 0.0090" ~0.0382" — 0.0090
(0.0053) (0.0226)

exp_ent™ensy 0.0248%* 0.1033%* 0.0243
(0.0113) (0.0495)

deck=1 0.0736** 0.3317** 0.0773
(0.0348) (0.1525)

gofish=1 - 0. — 0.6580""" —0.1580
1566
(0.0372) (0.1569)

Eugenia=1 0.0184 0.0680 0.0160
(0.0258) (0.1102)

female=1 — 0.0239 —0.1011 — 0.0238
(0.0271) (0.1365)

turn number 0.0124%** 0.0529%** 0.0124
(0.0034) (0.0146)

game number=3 — 0.0140 — 0.0347 — 0.0082
(0.0305) (0.1315)

game number=4 0.0075 0.0727 0.0170
(0.0322) (0.1413)

session=2 0.0299 0.1226 0.0287
(0.0399) (0.1972)

session=3 — 0.0388 —0.1724 — 0.0411
(0.0424) (0.2058)

session=4 0.0328 0.1334 0.0312
(0.0439) (0.2138)

R? 0.0357

Adj. R? 0.0264

Num. obs. 1456 1456

RMSE 0.4885

AIC 1965.2753

BIC 2049.8105

Log Likelihood -966.6377

Num. groups: 45

player
Var: player 0.0496
constant

Notes: Standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01
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