

Reactive sputtered ZnO thin films: Influence of the O₂/Ar flow ratio on the oxygen vacancies and paramagnetic active sites Adrián

3 A. Camacho-Berrios^a, *, Víctor M. Pantojas^b, Wilfredo Otaño^b

4 ^a*Physics, University of Puerto Rico, San Juan, Puerto Rico, 00925, USA*

⁵^b*Mathematics-Physics, University of Puerto Rico, Cayey, Puerto Rico, 00736, USA*

6 Abstract

7 Zinc oxide thin films were prepared under oxygen-deficient and oxygen-rich conditions by
8 changing the oxygen to argon ratio (O_2/Ar) during the reactive sputtering deposition at room
9 temperature. The effects of increasing the partial pressure of oxygen in the sputtering gas from
10 20 to 70 % O_2/Ar on the thin film composition, crystallinity and defects that can act as active
11 sites for gas reactions were studied using X-rays diffraction, X-rays photoelectron spectroscopy
12 (XPS), Raman scattering and electron paramagnetic resonance (EPR). All the films exhibited a
13 textured (0002) wurtzite phase and a crystallite size that increases as the partial pressure of
14 oxygen in the sputtering gas increases. The XPS analysis showed that the number of oxygen
15 vacancies decreases as the oxygen percent in the sputtering gas increases. The Raman spectra of
16 the samples contained a band related to a hydroxide, OH, bond in addition to the vibrational
17 modes associated with the wurtzite structure. A strong EPR signal, consistent with the OH
18 acting as a paramagnetic center, was detected in all the films. An additional, but very weak EPR
19 peak, was observed in the film grown at 20 % O_2/Ar , which was assigned to singly ionized
20 oxygen vacancies located in the crystallite lattice. These paramagnetic centers are highly
21 reactive because of their unpaired electrons and their formation will have important effects on the
22 physical and chemical properties of the thin films.

23 **Keywords:** Active site, Paramagnetic defect, Zinc oxide, thin film, Reactive sputtering, Oxygen
24 vacancy

25

26 * Corresponding author.

27 E-mail address: adrian.camacho@upr.edu

28 Present address: Department of Mathematics-Physics, 205 Antonio R. Barceló, Room 124 New Building of Science,
29 Cayey, Puerto Rico 00736

30 **1. Introduction**
31

32 Zinc oxide (ZnO) nanomaterials are of great interest in the fields of photocatalysis and gas
33 sensors due to its physical and chemical properties [1–3]. For example, the surface has good
34 adsorption properties and is highly reactive due to presence oxygen vacancies (V_O) [4].
35 However, it has been pointed out that even though ZnO is sensitive to the presence of impurity
36 gases in air, its performance is limited due to its low selectivity [5].

37 The nature and concentration of active sites can determine the type of interaction between the
38 material and the gas molecules, thus modifying the selectivity of the sensor. Active sites can be
39 a single atom, groups of atoms, molecules, or structural defects such as interstitials and
40 vacancies. Depending on their chemical nature, active sites can be classified as acid-base,
41 oxidation-reduction or paramagnetic centers. For example, chemisorbed oxygen such as O^- act
42 as an oxidative site [6]. Paramagnetic centers are of special interest because they are highly
43 reactive due to their unpaired electrons [5,7]. Examples of paramagnetic centers that fall into the
44 active site category are some OH groups and paramagnetic defects, such as singly ionized
45 oxygen vacancies (V_O^+) [8].

46 Electron paramagnetic resonance (EPR) is an excellent technique to investigate defects with
47 unpaired electrons in semiconductors. It has been used to identify defects centers such as V_O^+ in
48 ZnO nanostructures: nanowires [9], nanoparticles [10–12] nanoflowers [13], quantum dots [14],
49 tetrapod [15], and single crystal [16]. However, EPR have not been used in any study to
50 characterize paramagnetic defects in ZnO thin films prepared by magnetron sputtering [17],
51 where the presence and relative abundance of V_O^+ will be of great interest.

52 In this work, ZnO thin films were deposited by the DC pulsed magnetron sputtering
53 technique. Several advantages of this technique include working with high-purity metal targets
54 to reduce the amount of impurities in the films and the growth of homogenous films over large
55 areas. Also, sputtered films can be prepared in a variety of substrates such as sapphire, glass and
56 silicon or be deposited on top of interdigital transducers to make sensor devices.

57 For sputtering deposition, several plasma-process parameters are controlled including
58 sputtering power, substrate temperature, deposition pressure, target-to-substrate distance, and
59 sputtering gas composition. The sputtering gas composition, in particular, can be used to change
60 the stoichiometry of the films and their structural, optical, and electrical properties [18–22].
61 Therefore, the influence of different O₂/Ar ratios on the V_O formation, and consequent
62 characteristics of the films such as crystal structure, morphology and composition, is studied. By
63 using a combination of XPS and EPR, changes in the number of V_O and the possible formation
64 of V_O⁺ species are observed. Additionally, the presence of OH groups is confirmed by Raman
65 spectroscopy and EPR.

66 **2. Experimental details**

67 ZnO thin films were grown by reactive magnetron sputtering. One advantage of reactive
68 sputtering is the use of high-purity zinc metal as a target (99.999 %) to grow a compound
69 material such as ZnO. Undoped silicon (100) substrates were heated at T = 1000 °C for 24 hours
70 in air to grow an oxide layer. The substrates were ultrasonically cleaned in deionized water
71 followed by ethanol and acetone for five minutes each and dried using nitrogen gas. The
72 sputtering chamber was evacuated to a base pressure on the order of 10⁻⁵ Pa prior to deposition.
73 The target-to-substrate distance was kept at 4 cm. The deposition pressure was set to 1.33 Pa,
74 and the sputtering power was set to 40 W using a pulsed DC power supply. The one-inch zinc

75 target was cleaned by pre-sputtering the chamber with argon gas for 5 minutes. The initial
76 substrate temperature was $T_{\text{sub}} = 25^{\circ}\text{C}$, which was monitored using a thermocouple placed near
77 the substrate. The thickness of the film was measured with an Alpha Step IQ surface profiler
78 (KLA Tencor) at several places and then averaged. The deposition rate was calculated by
79 dividing the film thickness by the sputtering time. The deposition time was adjusted to obtain a
80 film thickness of 502 ± 26 nm. The oxygen and argon flows were controlled using two mass flow
81 controllers. Table I summarizes the growth conditions of the films.

82 The structural properties of the thin films were examined by X-ray diffraction (XRD) using a
83 Rigaku SmartLab X-ray diffractometer (Rigaku, USA) with $\text{Cu K}\alpha$ radiation in parallel beam
84 configuration. Room-temperature Raman measurements were performed using a DXR Raman
85 microscope (ThermoFisher Scientific, USA) at an excitation wavelength of 532 nm. The surface
86 morphology and grain size were studied by scanning electron microscopy (SEM) with a JEOL
87 JSM-6360 (JEOL, Japan). The SEM acceleration voltage and working distance were set to 20kV,
88 and 9 mm respectively. Surface composition and chemical information was obtained by X-ray
89 photoelectron spectroscopy (XPS) using a PHI 5600 (Physical Electronics Inc., USA) with an $\text{Al K}\alpha$
90 ($h\nu = 1486.6$ eV) monochromatic X-ray source with a power of 350 W and pass energy of
91 58.70 eV. The XPS measurements were recorded at room temperature and a base pressure of
92 around 6.6×10^{-7} Pa. No ion sputtering was performed prior the XPS measurements. The
93 binding energies were calibrated using the carbon C1s peak (284.e eV) as reference. The EPR
94 absorption spectra were measured at room temperature using a Bruker EMX (Bruker, USA)
95 spectrometer at a frequency of 9.45 GHz, a magnetic field modulation of 100 kHz and a
96 modulation amplitude of 1×10^{-4} T.

97 **3. Results and discussion**

98 Figure 1 shows the deposition rate of the ZnO thin films as a function of the O₂/Ar ratio. The
99 deposition rates ranged between 4 ± 0.17 and 5.56 ± 0.12 nm/min depending on the deposition
100 conditions. Literature reports of deposition rates under similar conditions of reactive sputtering
101 are between 2.5 nm/min [23] and 16.66 nm/min [24]. The decrease in deposition rate with
102 oxygen flow rate is typical for reactive sputtering and is related to target poisoning [25]. As
103 discussed by Westwood [26], target poisoning occurs when the oxygen flow rate is increased to a
104 certain value where the target surface oxidizes. The formation of the oxide layer has two major
105 effects, (1) limits the arrival rate of Zn atoms and (2) decreases the acceleration of Ar⁺ ions
106 towards the target, hence, decreasing the sputtering yield. The sputtering time was increased for
107 the samples prepared at lower deposition rates to keep the thickness of the film close to 500 nm.

108 Performing sputtering deposition under conditions where the amount of available oxygen is
109 limited, e.g., using a metallic target and low partial pressures of oxygen in the sputtering gas, is
110 known to result in the formation of more “metallic” films, i.e., with a deficiency of oxygen in
111 their stoichiometry, resulting in V_O and zinc interstitials (Zn_i) [27]. Meanwhile, deposition at
112 higher partial pressures of oxygen will improve the film stoichiometry, reducing the number of
113 defects.

114 The surface chemical composition of the ZnO thin films was studied using XPS to track the
115 formation of point defects. Figure 2 shows the high-resolution spectra of the O 1s region. As
116 seen, the O 1s peak is asymmetric for all the films. This asymmetry indicates the presence of
117 different oxygen species on the surface of the films. The peaks were fitted using the Multi-Peak
118 Fitting package from Igor Pro (WaveMetrics, Lake Oswego, OR, USA), with Gaussian shape
119 peaks and a cubic polynomial function as baseline. No constraints to the fit parameters were

120 applied and the fit interval was between 520 and 539 eV. The peak at low binding energies, 529
121 eV (O_0), is attributed to oxygen ions (O^{2-}) that are surrounded by zinc atoms with a full
122 supplement of nearest neighbors in the wurtzite structure [28]. The O 1s peak at approximately
123 531 eV (O_1) is ascribed to O^{2-} ions in the vicinity of VO [11,29,30], and its relative area can
124 provide a measure of the VO concentration. The peak at 532 eV (O_2) is related to oxygen species
125 adsorbed on the surface of the films [31].

126 It is known that the areas under the O 1s peaks provide additional information about the
127 surface composition [13,32]. Figure 3 shows the area of O_0 and O_1 relative to the total area O_{Tot}
128 ($O_{Tot} = O_0 + O_1$) of the oxygen signals, i.e., O_0/O_{Tot} and O_1/O_{Tot} , as a function of the O_2/Ar ratio.
129 The plot shows an increase in the relative areas O_0/O_{Tot} for all O_2/Ar sputtering gas ratios. The
130 increase in the fully supplemented oxygen, O_0 , was expected, as the availability of oxygen in the
131 gas resulted in its incorporation in the growing film when the oxygen partial pressure of the
132 sputtering gas was increased. Meanwhile, the relative area O_1/O_{Tot} decreases, which results from
133 a reduction in VO , as there is more oxygen available for film growth. At 70 % O_2/Ar , the O_0/O_{Tot}
134 ratio shows the largest increase due to the largest reduction in O_1/O_{Tot} , which is the signal related
135 to VO . Thus, all films contain VO with a related signal that decreases as the amount of ambient
136 oxygen increases.

137 Figure 4 a-d shows the SEM micrograph of the ZnO thin films grown at different O_2/Ar
138 ratios. The films have a grain morphology with different shapes and sizes. The averaged grain
139 size, as estimated using ImageJ software tools, was 117.81 nm, 118.15 nm, 127.18 nm and
140 146.37 nm for the films grow at 20 %, 30 %, 50 % and 70 % respectively. The increase in grain
141 size with increasing O_2/Ar ratio can be attributed to the amount of oxygen available to react with
142 the zinc atoms.

143 The X-ray diffractograms of the ZnO films are shown in Figure 5. All the films exhibit only
144 one diffraction peak for the (0002) plane, characteristic of a wurtzite structure. This result
145 indicate that oriented ZnO films can be grown in the wurtzite phase and without secondary
146 phases by reactive sputtering with an O₂/Ar ratio as low as 20 % within the instrumental
147 resolution. The (0002) preferred orientation of the ZnO thin films grown on the SiO₂ substrate is
148 due to the self-texturing phenomenon [33].

149 The (0002) diffraction angle deviates from the ZnO bulk value of 34.44° [33]. This shift
150 towards higher angles indicates a reduction in the interplanar distance d as well as a reduction in
151 the lattice parameter c as the O₂/Ar ratio increases. Figure 6 shows the variation in the lattice
152 parameter c with the O₂/Ar ratio. For the films grown under 20 %, 30 % and 50 % ratios, the
153 lattice parameter c shows values above bulk (5.206 Å), while c is slightly smaller for the film
154 grown under a ratio of 70 %.

155 The smaller lattice parameter c in the films grown at 70 % O₂/Ar can be explained by an
156 increase in ion bombardment of the growing film as the amount of oxygen increases. Ion
157 bombardment by energetic oxygen species provides forward momentum to the atoms in the
158 growing film [34]. This process produces densification and, if tuned correctly, will shift the
159 lattice parameter by diffusing atoms from a non-equilibrium position to an equilibrium one.
160 Meanwhile, excessive ion bombardment will produce the contrary effect, causing damage and
161 even erosion from the substrate. For the deposition conditions used in our experiments, the
162 plasma gas pressure and target-to-substrate distance, were sufficiently high to prevent excessive
163 damage while shifting the c lattice parameter toward the equilibrium value. Figure 6 also shows
164 the crystallite size, as calculated with Scherrer's equation. The crystallite size increases from
165 7.383 nm for 20 % to approximately 12.041 nm for samples deposited at larger O₂/Ar ratios.

166 The smaller crystallite size produced at 20 % O₂/Ar confirms that the amount of oxygen
167 available to the growing film was limited, resulting in a growth process that was controlled by
168 the kinetics of the concentration deficiency of the oxygen reactant. At higher ratios, crystallite
169 growth was controlled by the limited mobility characteristic of the sputtering process at room
170 temperature.

171 Additional information about the phase structure of the film can be obtained from Raman
172 scattering due to its sensitivity to changes in the microstructure of the material, facilitating the
173 analysis of the crystal quality. Figure 7a shows the Raman spectra with the E₂(low) and E₂(high)
174 phonon modes, which are characteristic of the wurtzite structure. The low-frequency E₂ mode is
175 associated with the vibrations of the zinc sublattice, while the high-frequency E₂ mode is
176 associated with the oxygen sublattice [25]. The intensity of the Raman peaks can be affected by
177 the presence of structural defects, disorder in the films and/or misorientation of the (0002) planes
178 [24]. Thus, a broad and weak E₂(low) peak is due disorder and structural defects that makes the
179 films discontinuous and to point defects present in the films. In addition, the Raman spectra
180 show a band in the range 2800-3000 cm⁻¹ in all the films (Figure 7b). This band has previously
181 been assigned to the presence of hydroxyl groups (OH) [36].

182 Defects with unpaired electrons were studied by EPR at room temperature. Figure 8 shows
183 the EPR spectra for the ZnO thin films grown at various O₂/Ar ratios. All the samples show a
184 low-field EPR signal at a resonance field of approximately 336.4 mT, corresponding to a g-factor
185 of 2.00, while the film grown at 20 % O₂/Ar shows an additional signal at approximately 343.2
186 mT with a g-factor of 1.96, indicating that there are two types of paramagnetic centers.

187 A recent study of paramagnetic centers in thin dioxide nanocrystals [37] has shown that
188 exposing the nanocrystals to water vapor increases the intensity of the EPR signal with g-factor

189 of 2.00, and assigned the signal to OH radicals on their surface. It was proposed that the OH
190 groups arise from the dissociation of water molecules on VO sites at the surface of the films [38].

191 Based on our results from Raman spectroscopy and the cited reports, the EPR signal with
192 gfactor of 2.00 is attributed to OH groups on the surface of the films.

193 The signal with a g-factor around 1.96 has been assigned in the literature to VZn [13], Zni
194 [39] and VO [11]. This signal is only observed in the film grown at 20 % O₂/Ar and is very
195 weak. At 20 % O₂/Ar ratio, a low concentration of VZn is expected due to its high formation
196 energy relative to Vo in an oxygen-deficient environment [40,41], thus, it is unlikely that the
197 signal at 1.96 arises from this defect. For Zni in ZnO, its presence is revealed by high-resolution
198 XPS spectra in the Zn 2p region where it exhibits shoulder-like features at 1024.9 and 1047.11
199 [42]. In this work, the high-resolution spectrum of the Zn 2p (not shown) reveals that the peaks
200 are symmetric. Also, interstitial zinc is a high mobility species that is favorable to move to a
201 lattice position and it is found to occur exclusively in the 2+ charge state in n-type ZnO [40].
202 Therefore, the possibility that Zni is the origin of the EPR signal at 1.96 is discarded.

203 Given that the 20 % O₂/Ar film has the largest amount of oxygen vacancies, the observed
204 signal may correspond to a singly ionized charged state of the oxygen vacancy. Oxygen
205 vacancies can exist in three charge states; the neutral VO, the singly ionized VO⁺ and the doubly
206 ionized state VO²⁺, where the singly ionized VO⁺ is the state that produces a paramagnetic
207 signal in EPR [40]. If the EPR signal is associated with VO⁺, then the fact that is weak and
208 completely disappears for samples with higher O₂/Ar ratios can be explained by its low thermal
209 stability.

210 From first principle calculations performed by Janotti et. al. [40], it was shown that the VO
211 and VO₂₊ charge states are thermodynamically more stable than VO⁺. The energy of the singly
212 charged oxygen vacancy is always higher than either VO or VO₂₊. This explains why we
213 observe a very weak EPR signal, and only in the sample with the largest amount of oxygen
214 vacancies and smallest crystallite size. In the samples with higher O₂/Ar ratios, the crystallite
215 size increases, the number of oxygen vacancies decreases, therefore, there is a lower probability
216 of forming VO⁺. For these samples, the 1.96 EPR signal either disappears or falls below the
217 detection limits of the instrument.

218 The interaction between the ZnO crystal lattice and the paramagnetic vacancies is another
219 factor that affects the strength of the EPR signal. For example, recent work on the thermal
220 stability of the spin centers in SnO₂ [8] has shown that for a constant concentration of spin
221 centers, as the temperature increases the amplitude of the signal decreases while its width
222 increases. The signal width is inversely proportional to the lifetime of the spin-excited state,
223 according to the uncertainty principle. Thus, the lifetime of the spin excited states is highly
224 susceptible to the temperature-induced phonon vibrations. Since the measurements in this work
225 were recorded at room temperature, the shortening of the spin excited state lifetime due to the
226 spin-lattice relaxation will reduce the EPR signal amplitude. Thus, our results are consistent with
227 the VO⁺ located at the crystallite lattice rather than the surface of the films.

228 **4. Conclusions**

229 In order to investigate the effect of the O₂/Ar ratio in the sputtering gas on the composition,
230 crystallinity, and the formation of surface active sites on ZnO thin films grown by reactive
231 magnetron sputtering, the O₂/Ar ratio was changed from 20 % to 70 %. In terms of structure, the
232 films exhibit a wurtzite phase, as shown by XRD and Raman spectra, with increasing crystallite

233 size as the oxygen partial pressure increases. XPS results show that the film grown at 20 %
234 O₂/Ar ratio has the largest number of oxygen vacancies, V_O, and that the number of vacancies
235 decreases as the O₂/Ar ratio increases.

236 Vibrational modes associated to hydroxide, OH, bonds are observed in the Raman spectra of
237 all samples. The presence of strong EPR signal, with a g-factor of 2.00, in all the samples is
238 consistent with the formation of hydroxyl groups on the surface of the films, which act as
239 paramagnetic centers. A weak EPR signal, with a g-factor of 1.96, only appears in the film
240 grown at 20 % O₂/Ar ratio and, after eliminating other possible sources, assigned to VO⁺. This
241 assignment is justified because the signal only appears in the sample with the largest amount of
242 oxygen vacancies, VO, and thus, the highest probability of containing singly ionized point
243 defects. These results are consistent with the VO⁺ located at the crystallite lattice rather than the
244 surface of the films. For the films deposited with higher O₂/Ar ratios, the 1.96 EPR signal either
245 disappears or falls below the detection limits of the instrument.

246 Since the paramagnetic centers are reactive as result of their unpaired electrons, they are of
247 great interest as active sites for gas sensing applications. Therefore, it is expected that the
248 transduction properties of ZnO films grown under different oxygen deficient conditions, and
249 consequently different number of paramagnetic centers acting as active sites, can be tuned for
250 their use as gas sensors.

251 **Acknowledgements**

252 The authors would like to thank Dr. M.B. Jungfleisch and Dr. A. Hoffman of the
253 Magnetic Films group, Argonne National Laboratory for help with EPR measurements, Dr. S.
254 Kumari and Dr. R. Katiyar of the Institute for Functional Nanomaterials, University of Puerto

255 Rico, for the magnetic measurements and the Molecular Science Research Building for the XRD,
256 Raman and XPS measurements. W.O. like to acknowledge the help of the Instituto de
257 Investigaciones Interdisciplinarias in the University of Puerto Rico at Cayey for their support to
258 his research activities related to this work. This work was supported by the NSF [grant number
259 EPS-01002410]; NSF-CREST [grant numbers 1736093]; and NASA [grant number
260 NNX15AI11H].

261 **Declarations of interest:**

262 None.

263 **REFERENCES**

264 [1] B. Xue, Y. Zou, Uniform distribution of ZnO nanoparticles on the surface of grpahene and
265 its enhanced photocatalytic performance, *Appl. Surf. Sci.* 440 (2018) 1123–1129.
266 doi:10.1016/j.apsusc.2018.01.299.

267 [2] M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, S.H. Hong,
268 Gas sensing properties of defect-controlled ZnO-nanowire gas sensor, *Appl. Phys. Lett.* 93
269 (2008) 8–11. doi:10.1063/1.3046726.

270 [3] J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO
271 nanomaterials with oxygen vacancies: A review, *Ceram. Int.* 44 (2018) 7357–7377.
272 doi:10.1016/j.ceramint.2018.02.013.

273 [4] P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, A highly sensitive humidity sensor based
274 on DC reactive magnetron sputtered zinc oxide thin film, *Sensors Actuators A Phys.* 164
275 (2010) 8–14. doi:10.1016/j.sna.2010.09.006.

276 [5] A. V. Marikutsa, N.A. Vorob'eva, M.N. Rumyantseva, A.M. Gas'kov, Active sites on the
277 surface of nanocrystalline semiconductor oxides ZnO and SnO₂ and gas sensitivity, Russ.
278 Chem. Bull. 66 (2017) 1728–1764. doi:10.1007/s11172-017-1949-7.

279 [6] K. Tabata, T. Kawabe, Y. Yamaguchi, Y. Nagasawa, Chemisorbed oxygen species over
280 the (110) face of SnO₂, Catal. Surv. from Asia. 7 (2003) 251–259.

281 [7] N. Vorobyeva, M. Rumyantseva, E. Konstantinova, D. Grishina, A. Gaskov, Inversion of
282 NH₃ sensor signal and paramagnetic centers of nanocrystalline ZnO(Ga), Procedia Eng.
283 25 (2011) 296–299. doi:10.1016/j.proeng.2011.12.073.

284 [8] A. V. Marikutsa, M.N. Rumyantseva, E.A. Konstantinova, T.B. Shatalova, A.M. Gaskov,
285 Active sites on nanocrystalline tin dioxide surface: Effect of palladium and ruthenium
286 oxides clusters, J. Phys. Chem. C. 118 (2014) 21541–21549. doi:10.1021/jp5071902.

287 [9] A.K. Das, A. Srinivasan, Evidence of oxygen defect induced ferromagnetism in heat
288 treated electrospun ZnO nanowires, J. Magn. Magn. Mater. 404 (2016) 190–196.
289 doi:10.1016/j.jmmm.2015.12.032.

290 [10] D.E. Motaung, P.R. Makgwane, S.S. Ray, Induced ferromagnetic and gas sensing
291 properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc
292 vacancies, Mater. Lett. 139 (2015) 475–479. doi:10.1016/j.matlet.2014.10.073.

293 [11] X. Xu, C. Xu, J. Dai, J. Hu, F. Li, S. Zhang, Size dependence of defect-induced room
294 temperature ferromagnetism in undoped ZnO nanoparticles, J. Phys. Chem. C. 116 (2012)
295 8813–8818. doi:10.1021/jp3014749.

296 [12] P. Jakes, E. Erdem, Finite size effects in ZnO nanoparticles: An electron paramagnetic
297 resonance (EPR) analysis, *Phys. Status Solidi. **5*** (2011) 56–58.
298 doi:10.1002/pssr.201004450.

299 [13] G.H. Mhlongo, D.E. Motaung, S.S. Nkosi, H.C. Swart, G.F. Malgas, K.T. Hillie, B.W.
300 Mwakikunga, Temperature-dependence on the structural, optical, and paramagnetic
301 properties of ZnO nanostructures, *Appl. Surf. Sci. **293*** (2014) 62–70.
302 doi:10.1016/j.apsusc.2013.12.076.

303 [14] L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, D. Xiang, Origin of visible photoluminescence
304 of ZnO quantum dots: Defect-dependent and size-dependent, *J. Phys. Chem. C. **114***
305 (2010) 9651–9658. doi:10.1021/jp101324a.

306 [15] A.B. Djurišić, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K.G.
307 Rao, W.K. Chan, H.F. Lui, C. Surya, Photoluminescence and electron paramagnetic
308 resonance of ZnO tetrapod structures, *Adv. Funct. Mater. **14*** (2004) 856–864.
309 doi:10.1002/adfm.200305082.

310 [16] A. Hausmann, B. Schallenberger, Interstitial oxygen in zinc oxide single crystals,
311 *Zeitschrift Für Phys. B Condens. Matter Quanta. **31*** (1978) 269–273.
312 doi:10.1007/BF01352351.

313 [17] S. Ning, P. Zhan, W.-P. Wang, Z.-C. Li, Z.-J. Zhang, Defect characterization and
314 magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field,
315 *Chinese Phys. B. **23*** (2014) 127503. doi:10.1088/1674-1056/23/12/127503.

316 [18] S. Youssef, P. Combette, J. Podlecki, R. Al Asmar, A. Foucaran, Structural and Optical
317 Characterization of ZnO Thin Films Deposited by Reactive rf Magnetron Sputtering,
318 Cryst. Growth Des. 9 (2008) 1088–1094. doi:10.1021/cg800905e.

319 [19] U.C. Singh, P.K. Basu, C.N.R. Rao, Oxygen Effecton Structural and Optical Properties of
320 ZnO Thin Films Deposited by RF Magnetron Sputtering, J. Mol. Struct. THEOCHEM. 87
321 (1982) 125–132. doi:10.1016/0166-1280(82)80046-8.

322 [20] E. Muchuwemi, T.S. Sathiaraj, H. Nyakotyo, Effect of O₂/Ar flow ratio on Ga and Al
323 codoped ZnO thin films by rf sputtering for optoelectronic device fabrication, Mater. Res.
324 Bull. 95 (2017) 123–128. doi:10.1016/j.materresbull.2017.07.029.

325 [21] V.V. Sasi, A. Iqbal, K. Chaik, P. Tanner, A. Iacopi, F. Mohd-Yasin, RF Sputtering of ZnO
326 (002) Thin Films on Top of 3C-SiC-on-Si (100) Substrates for Low Cost Piezoelectric
327 Devices, Procedia Eng. 168 (2016) 1086–1089. doi:10.1016/j.proeng.2016.11.346.

328 [22] M.H. Mamat, M.F. Malek, N.N. Hafizah, M.N. Asiah, A.B. Suriani, A. Mohamed, N.
329 Nafarizal, M.K. Ahmad, M. Rusop, Effect of oxygen flow rate on the ultraviolet sensing
330 properties of zinc oxide nanocolumn arrays grown by radio frequency magnetron
331 sputtering, Ceram. Int. 42 (2016) 4107–4119. doi:10.1016/j.ceramint.2015.11.083.

332 [23] Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, Influence of post-annealing
333 treatment on the structure properties of ZnO films, Appl. Surf. Sci. 241 (2005) 303–308.
334 doi:10.1016/j.apsusc.2004.07.056.

335 [24] S. Singh, R.S. Srinivasa, S.S. Major, Effect of substrate temperature on the structure and
336 optical properties of ZnO thin films deposited by reactive rf magnetron sputtering, Thin
337 Solid Films. 515 (2007) 8718–8722. doi:10.1016/j.tsf.2007.03.168.

338 [25] B. Amrani, S. Hamzaoui, Characterization of ZnO films prepared by reactive sputtering at
339 different oxygen pressures, *Catal. Today.* 89 (2004) 331–335.
340 doi:10.1016/j.cattod.2003.12.014.

341 [26] W.D. Westwood, Basics of Reactive Sputtering, in: *Sputter Depos.*, AVS, New York,
342 2003: pp. 213–217.

343 [27] R. Hong, H. Qi, J. Huang, H. He, Z. Fan, J. Shao, Influence of oxygen partial pressure on
344 the structure and photoluminescence of direct current reactive magnetron sputtering ZnO
345 thin films, *Thin Solid Films.* 473 (2005) 58–62. doi:10.1016/j.tsf.2004.06.159.

346 [28] Z.-B. Gu, M.-H. Lu, J. Wang, D. Wu, S.-T. Zhang, X.-K. Meng, Y.-Y. Zhu, S.-N. Zhu,
347 Y.-F. Chen, X.-Q. Pan, Structure, optical, and magnetic properties of sputtered manganese
348 and nitrogen-codoped ZnO films, *Appl. Phys. Lett.* 88 (2006) 082111.
349 doi:10.1063/1.2178466.

350 [29] J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped
351 indium-oxide films, *J. Appl. Phys.* 48 (1977) 3524–3531. doi:10.1063/1.324149.

352 [30] E. Fazio, S. Patanè, S. Scibilia, A.M. Mezzasalma, G. Mondio, F. Neri, S. Trusso,
353 Structural and optical properties of pulsed laser deposited ZnO thin films, *Curr. Appl.*
354 *Phys.* 13 (2013) 710–716. doi:10.1016/j.cap.2012.11.010.

355 [31] L. Jing, Z. Xu, J. Shang, X. Sun, W. Cai, H. Guo, The preparation and characterization of
356 ZnO ultrafine particles, *Mater. Sci. Eng. A.* 332 (2002) 356–361.
357 doi:10.1016/S09215093(01)01801-9.

358 [32] M.M. Can, S. Ismat Shah, M.F. Doty, C.R. Haughn, T. Firat, Electrical and optical
359 properties of point defects in ZnO thin films, *J. Phys. D. Appl. Phys.* 45 (2012) 195104.
360 doi:10.1088/0022-3727/45/19/195104.

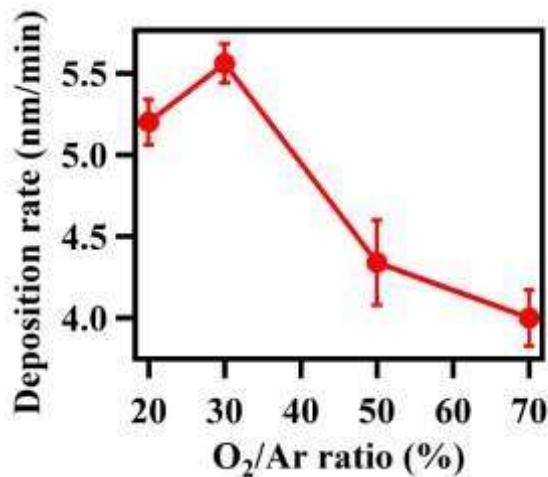
361 [33] D.-S. Kim, J.-H. Park, S.-J. Lee, K.-J. Ahn, M.-S. Lee, M.-H. Ham, W. Lee, J.-M.
362 Myoung, Effects of oxygen concentration on the properties of Al-doped ZnO transparent
363 conductive films deposited by pulsed DC magnetron sputtering, *Mater. Sci. Semicond.
364 Process.* 16 (2013) 997–1001. doi:10.1016/j.mssp.2013.02.012.

365 [34] G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G.B. Thompson, E. Barthel, G.L. Doll,
366 C.E. Murray, C.H. Stoessel, L. Martinu, Review Article: Stress in thin films and coatings:
367 Current status, challenges, and prospects, *J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.*
368 36 (2018) 020801. doi:10.1116/1.5011790.

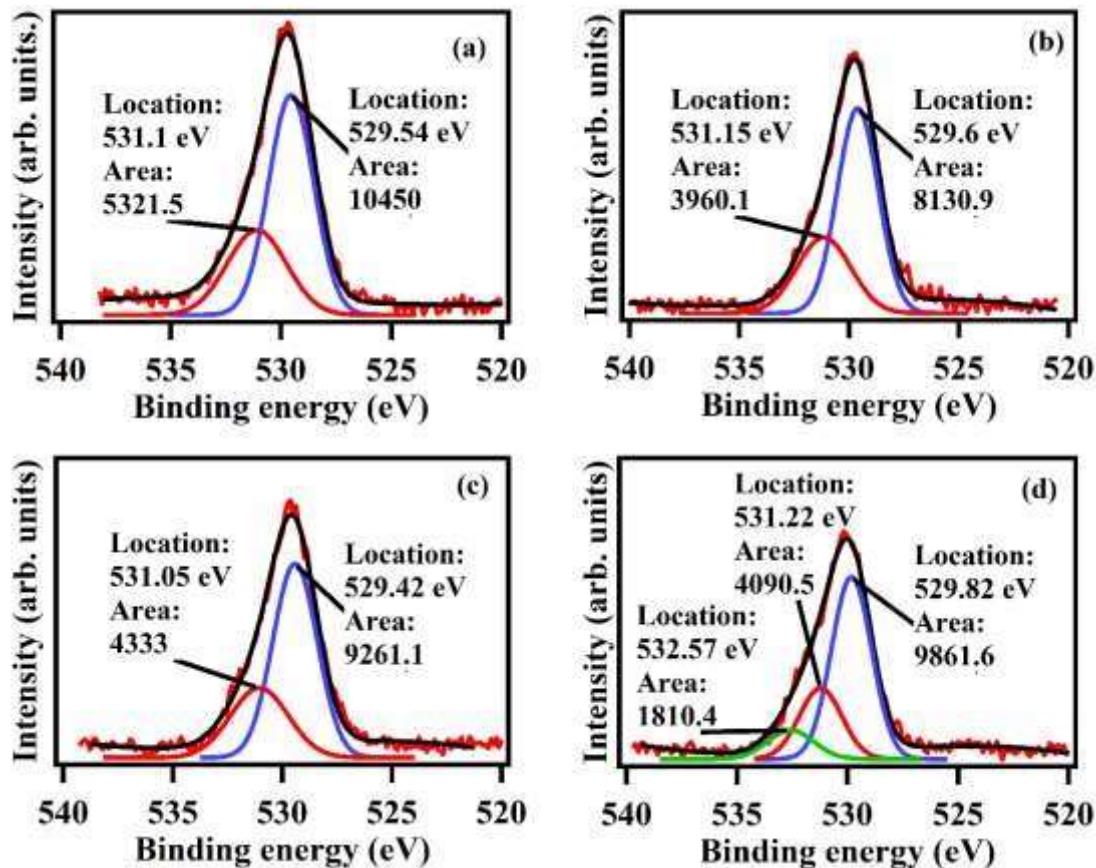
369 [35] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho,
370 H. Morkoç, U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V.
371 Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, *J.
372 Appl. Phys.* 98 (2005) 1–103. doi:10.1063/1.1992666.

373 [36] S. Paul, P.G. Harris, C. Pal, A.K. Sharma, A.K. Ray, Low cost zinc oxide for memristors
374 with high On-Off ratios, *Mater. Lett.* 130 (2014) 40–42. doi:10.1016/j.matlet.2014.05.071.

375 [37] E.A. Konstantinova, I.S. Pentegov, A. V. Marikutsa, M.N. Rumyantseva, A.M. Gaskov,
376 P.K. Kashkarov, EPR study of nanocrystalline tin dioxide, *Phys. Status Solidi Curr. Top.
377 Solid State Phys.* 8 (2011) 1957–1960. doi:10.1002/pssc.201000140.

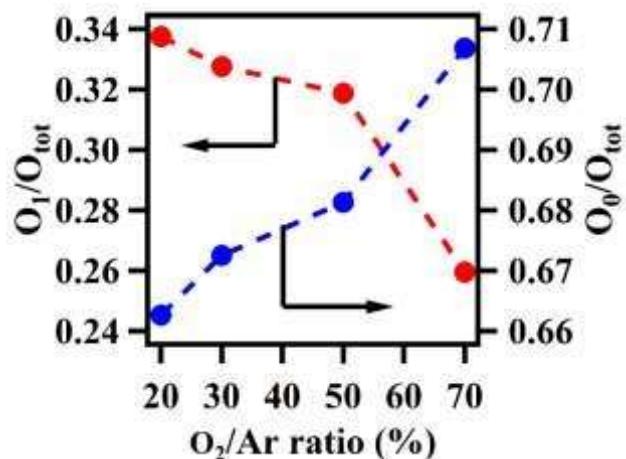

378 [38] H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, M. Muhler, The identification of hydroxyl
379 groups on ZnO nanoparticles by infrared spectroscopy, *Phys. Chem. Chem. Phys.* 10
380 (2008) 7092–7097. doi:10.1039/b811029h.

381 [39] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO
382 nanoparticles based on non-equilibrium processes: Defect origins and emission controls,
383 *Adv. Funct. Mater.* 20 (2010) 561–572. doi:10.1002/adfm.200901884.


384 [40] A. Janotti, C.G. Van De Walle, Native point defects in ZnO, *Phys. Rev. B - Condens.*
385 *Matter Mater. Phys.* 76 (2007) 1–22. doi:10.1103/PhysRevB.76.165202.

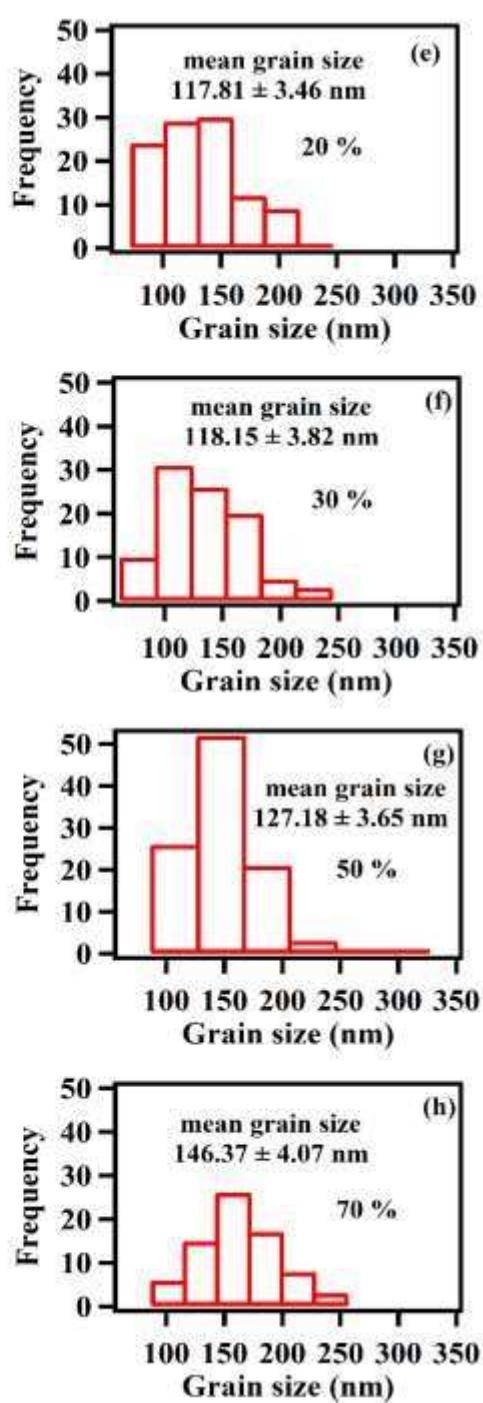
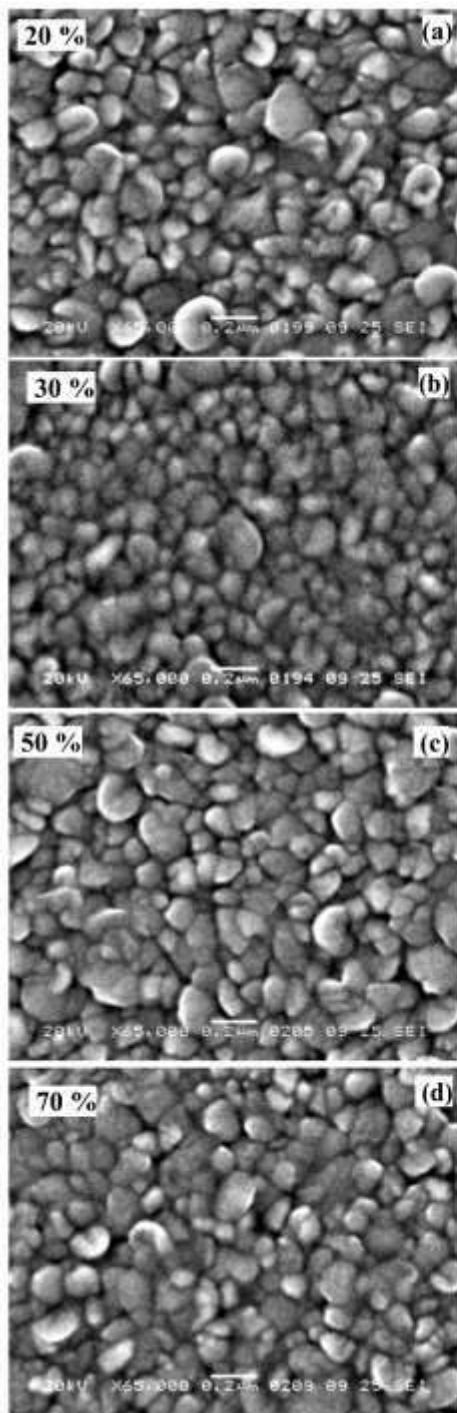
386 [41] A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, *Reports*
387 *Prog. Phys.* 72 (2009) 126501. doi:10.1088/0034-4885/72/12/126501.

388 [42] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and
389 oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect
390 density, *Nanoscale*. 6 (2014) 10224–10234. doi:10.1039/c4nr01887g.



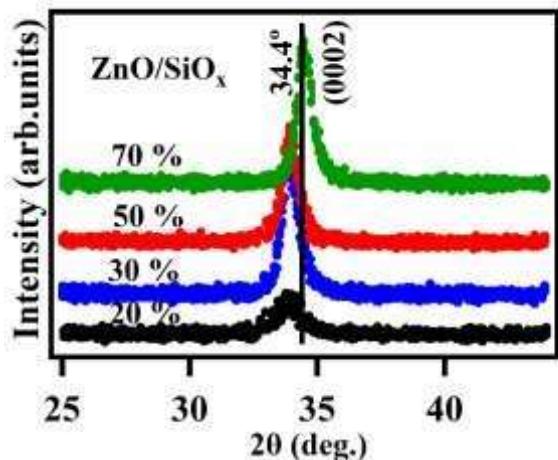
391

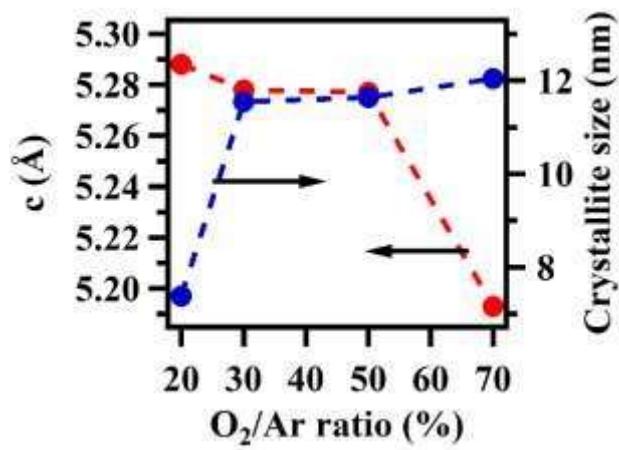
392 **Fig. 1.** Deposition rate of ZnO thin films as a function of the oxygen to argon ratio.



393

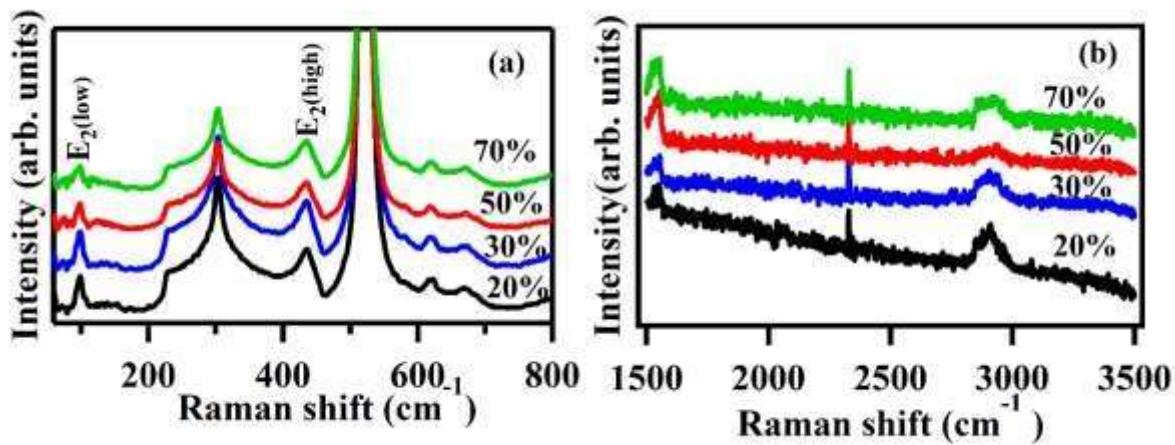
394 **Fig. 2.** High-resolution scan of the O 1s peak for ZnO thin films grown under O₂/Ar ratios of (a) 395 20 %, (b) 30 %, (c) 50 % and (d) 70 %.

397

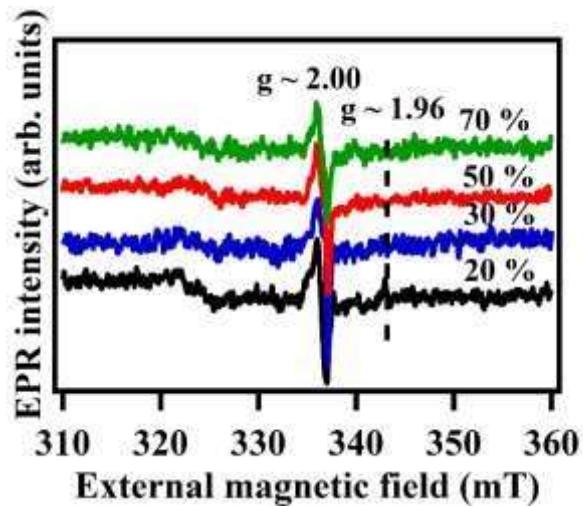

398 **Fig. 3.** Comparison between the O₀/O_{Tot} area ratio and O₁/O_{Tot} ratios. The dashed lines are
399 provided as visual aids.


399

400 **Fig. 4.** (a-d) SEM micrographs for ZnO/SiO_x thin films grown under 20 %, 30 %, 50 % and 70
 401 % O₂/Ar ratios at T_{sub} = 25 °C, (e-f) grain size distribution.


402

404 **Fig. 5.** X-ray diffraction patterns for ZnO/SiO_x thin films grown under 20 %, 30 %, 50 % and 70
 405 % O_2/Ar ratios at $T_{\text{sub}} = 25^\circ\text{C}$.



407 **Fig. 6.** Lattice parameter c and crystallite size as a function of the O_2/Ar ratio.

408

409 **Fig. 7.** (a) Raman spectra of ZnO thin films grown under O₂/Ar ratios of 20 %, 30 %, 50 % and
410 70 %.

411

412 **Fig. 8.** Room-temperature EPR spectra for ZnO thin films grown at O₂/Ar ratios of 20 %, 30 %,
413 50 % and 70 % in the sputtering gas.

414

416 **Table 1.**

417 Deposition parameters for undoped ZnO thin films grown by reactive magnetron sputtering.

O ₂ /Ar ratio (%)	Oxygen flow (SCCM)	Argon flow (SCCM)	Power (W)	Dep. Pressure (Pa)	T _{sub} °C	Deposition rate (nm/min)
20	8	32	40	1.33	25	5.20 ± 0.14
30	12	28	40	1.33	25	5.56 ± 0.12
50	20	20	40	1.33	25	4.34 ± 0.26
70	20	8.5	40	1.33	25	4.00 ± 0.17

418