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Abstract

Tensor singular value decomposition (SVD) is a method to find a low-dimensional
representation of data with meaningful structure in three or more dimensions. Tensor SVD has
been applied to denoise atomic-resolution 4D scanning transmission electron microscopy (4D
STEM) data. On data simulated from a SrTiO3 [100] perfect crystal and a Si [110] edge
dislocation, tensor SVD achieved an average peak signal-to-noise ratio (PSNR) of ~40 dB,
which matches or exceeds the performance of other denoising methods, with processing times at
least 100 times shorter. On experimental data from SrTiO; [100] and LiZnSb [1120]/GaSb [110]
samples, tensor SVD denoises multiple GB 4D STEM data sets in ten minutes on a typical
personal computer. Denoising with tensor SVD improves both convergent beam electron

diffraction patterns and virtual-aperture annular dark field images.
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image denoising, low-rank tensor

1. Introduction

Denoising 4D STEM' data is challenging because of its large size” and complex noise

distribution. A 16-bit depth 4D STEM dataset with a 100-by-100 beam raster scan and 512-by-



512 px on each convergent beam electron diffraction (CBED) pattern is 5 GB. With recent
developments in ultrafast detectors®*, the data will be generated faster with a smaller signal and
more noise in each CBED pattern and even larger data sets. To be applied to multi-GB 4D
STEM data using moderate computing resources, a denoising algorithm has to be both time- and
memory-efficient. Another challenge for denoising 4D STEM data is the potential for complex
noise distributions. A perfect counting mode detector would acquire data with only Poisson
noise™’, but errors from a real counting-mode detector may introduce more complex statistics.
An active pixel sensor type detector operating in linear mode generates signal in response to
single electrons that obey a Landau distribution’®. As a result, each electron generates a different

intensity and the noise is again not pure Poisson noise.

A common approach to denoising complex data, including data from electron
microscopy, is to find a low-rank representation of the noisy data. The data are viewed as vectors
in a high-dimensional space. The true, noiseless data occupy only a restricted subspace with
lower dimensionality. Noise shifts the points out of the subspace. If we can find appropriate basis
vectors that span the noiseless subspace, then use them to project the data into the subspace, the
noise is removed. Those basis vectors can also be used to gain understanding of the data by, for
example, spectral unmixing (see ? for additional discussion and e.g. '° for rigorous mathematics).
The most widely-applied rank reduction tool for electron microscopy data is principal component
analysis (PCA)'%!!, PCA looks for a set of orthogonal basis vectors that can describe the original
data without losing significant information. PCA has been modified to account for Poisson noise
statistics specifically to create Poisson PCA or exponential PCA'?. PCA is a powerful tool for
denoising electron energy loss spectroscopy (EELS)!*!*!5 and energy-dispersive X-ray

spectroscopy (EDS)!®!7 data collected in STEM, and it has been implemented in a variety of



software packages including a DigitalMicrograph plugin'®, temDM'?, and Hyperspy®’. Various
other component analysis methods exist which differ in how they define the optimal basis
vectors. For example, independent component analysis (ICA)?! seeks to split the data into a set
of components, but unlike PCA, ICA does not require components to be orthogonal to each
other. ICA has also been used for denoising®?, which requires signal and noise to be independent
and noise variance cannot be dependent on the signal. Another example is non-negative matrix
factorization (NMF)?, which can only be applied to non-negative matrices and imposes a non-
negativity constraint on both the basis vectors and the corresponding coefficients, with
orthogonality as an option for the basis vectors**. NMF has been applied to both hyperspectral

23.2627 and unmixing®®. The non-negative constraint can be desirable when

data denoising
searching for hidden basis vectors with physical meanings that require them to be non-negative.
PCA and its cousins work only on 2D matrices, so 3D data like spectrum images must be

unwrapped into 2D before processing, losing some of their structure, usually in one of the two

spatial dimensions.

Outside electron microscopy, the many current state-of-the-art denoising methods are
non-local®. These approaches find self-similarity within the data, even if the similar regions are
separated in one or more dimensions, and combine information from similar regions to remove
random noise. As a first step, the image is divided into small regions called patches, which often
overlap with one another. Common non-local methods for general images include non-local
means®” and the block-matching and 3D filtering®'. In electron microscopy, Mevenkamp et al.
applied non-local means®? and adapted block-matching and 3D-filtering (BM3D)?* to denoise
single frame atomic-resolution STEM image. Both methods assumed a 2D periodic structure in

the image to help locate similar patches, then noiseless ground truth for each group of patches



are determined by maximizing the Poisson maximum-likelihood** of finding the noisy patches
with given truth, or applying a Wiener filter respectively. Yankovich et al. applied non-local
principle component analysis (NLPCA) to denoise STEM EDS spectrum image data®>-,
NLPCA utilizes k-means clustering®’ to group similar 3D (x, y, and energy) patches, then
Poisson PCA to denoise each group. Maggioni et al. proposed the block-matching and 4D-
filtering (BM4D) method*® as an extension of BM3D to denoising 3D data in the form of movies
(x, v, and time). BM4D searches for similar 3D patches within a local search window which is
usually smaller than the total data size using the photometric distance, then sets a distance
threshold to group the 3D patches. A Wiener filter was applied within groups of similar 3D
patches to remove image noise. For all of these methods, the initial patchifying of the data
requires substantial memory. The set of all possible overlapping 10x10 pixel patches in a
100x100 pixel image occupies 81 times the memory of the original image. The periodic and local
window search methods are, in part, ways to avoid this maximum patch-ifying while still finding
similar patches. For larger data sets like 4D STEM, the memory and / or processing time can
easily exceed typical computing resources. Besides memory consumption, the non-local method
could possibly result in a loss of detail or introduce artifacts when denoising the group of similar

patches.

Tensor singular value decomposition (SVD) is a low-rank denoising method for high-
order data in three or more dimensions.*** Here we apply the tensor SVD method of Zhang and
Xia*!' to denoise atomic-resolution STEM data, focusing on 4D STEM but also testing EDS
spectrum images. Unlike matrix rank-reduction methods like PCA, tensor SVD can maintain the
full structure of data, giving it the potential to exploit, for example, structure in both spatial

dimensions. We compare tensor SVD to matrix PCA and to the state-of-the-art non-local



methods NLPCA and BM4D. Overall, the denoising performance is as good or better than all the
other methods, and the computation time and memory requirements are much more similar to
PCA than to NLPCA or BM4D. Single-digit GB 4D STEM data sets can be denoised in a few

minutes on a typical desktop computer.

2. Methods

2.1 4D STEM Experiment

A SrTiO3 (STO) [100] single crystal sample was prepared by wedge polishing at a 1.6°
angle using an Allied MultiPrep polishing system with diamond lapping films, followed by final
thinning in a Fishione 1050 ion-mill using Ar ion beam. A LiZnSb [1120] thin film sample was
grown on a GaSb [110] substrate as described in Ref. **, then prepared for TEM using a Zeiss
Auriga focused ion beam (FIB) with a final FIB polishing step with a 5 kV 100 pA Ga-ion beam.
The sample surface was polished in a Fishione 1040 Nanomill with a 900 eV Ar ion beam. Both
samples were stored under vacuum and cleaned in an Ibss GV10x DS Asher plasma cleaner
operated under 20 W for 10 minutes to remove contaminations before being inserted into the

TEM column.

A Thermo-Fisher Scientific Titan STEM equipped with a CEOS probe corrector operated
at 200 kV was used to collect 4D STEM data. A 24.5 mrad semi convergence angle and an 18.9
pA current probe was used, which was optimized for the highest spatial resolution. A Direct
Electron DE-16 camera operating in linear mode (as opposed to counting mode) was used to
collect CBED patterns with camera acquisition synchronized to the electron beam scan using a
customized scan controller. 60 mm camera length was used for CBED pattern acquisition to

achieve about 37 mrad maximum collection angle in CBED patterns, collecting the whole bright



field disk and low angle dark-field signal. Details of parameter selection and scan controller to
synchronize camera acquisition and beam scan can be found in Ref **. For each 4D STEM
acquisition, 150x150 probe positions were used with 512x512 pixel CBED patterns acquired
under 0.9 ms exposure time at each probe position. The scan step sizes were 0.04 nm on the
LiZnSb sample and 0.02 nm on the STO sample, small enough to resolve the lattice structures on

both samples.

2.2 Multislice Simulation

Two structures were used to simulate 4D STEM data: a STO single crystal along the
[100] zone axis, and a Si [110] edge dislocation core generated by molecular dynamic
simulations with distorted structure around the dislocation core*®. CBED patterns from both
structures were simulated using a frozen-phonon multislice algorithm in the graphic processing
units (GPU)-accelerated Prismatic simulation package*’. Probe convergence angle was selected
to match the experimental conditions. A 2D symmetric Gaussian function with 110 pm full width
half maximum was convolved into the simulated data to account for the incoherent source
size*®*°. All computations were performed on a computing cluster equipped with quadcore

Nvidia Tesla M10 GPUs. A full list of simulation parameters for the two models can be found in

table 1.
Parameter name SrTiOs [100] single crystal Si [110] edge dislocation
Model size 49 A x 49 A x 250 A 100 A x 100 A x 250 A
Probe step size 0.175 A
Potential space sampling 0.06 A
Slice thickness 1.9525 A 1.90 A




Frozen phonon 20

configurations
Root mean square thermal Sr: 0.0887 A
displacements’*46 Ti: 0.0746 A Si: 0.076A

0:0.0947 A

Table 1 Multislice simulation parameters

Simulated CBEDs were cropped and resampled to mimic the reciprocal space pixel size
and detection limit in the experiments and converted from intensity units of the fraction of the
incident beam to the number of detected electrons using the frame rate and measured beam
current from our Titan STEM. Different frame rates were used to generate simulated data with
different noise levels. Random, Poisson-distributed noise was introduced into simulated CBED
patterns using the number of electrons in each pixel as the mean value for Poisson distributed

random numbers. Simulated scan distortion or other artifacts were not added to the data.

2.3 Tensor Singular Value Decomposition

The concept of the tensor SVD approach*!#?

is illustrated in Figure 1 using simulated 4D
STEM data on the STO structure. Figure 1 (a) shows the noisy observation tensor ¥ with the size

p1 X P2 X p3. The observation tensor is the sum of a ground truth tensor X (Figure 1(b)) and an

additive noise tensor Z (Figure 1(c)), such that

Y=X+Z; X,Y,Z € RPrXP2XP3, [1]
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Figure 1 Illustration of the tensor SVD problem. (a) noisy observation tensor ¥ constructed from

CBED patterns by unfolding the reciprocal space into one single dimension, (b) noiseless ground
truth tensor X with low rank, (c) additive noise tensor Z, (d) Tucker decomposition of the low-

rank tensor into a core tensor and three unitary matrices.

Additive noise is not a good model for Poisson noise at low mean counts, but the data could be
transformed using the Anscombe variance-stabilizing transform to create pure additive noise,!
then un-transformed after denoising. The transform was not applied here. X is assumed to have
Tucker low-rank (7, 72, r3). In other words, it can be decomposed into a product of core tensor §
with size 7, X 1, X 13, and three unitary matrices U, U?, and U®, following Tucker

decomposition®?,

X=S5Sx, UM x,UP x, UB), § € R*m2x13 k) ¢ QPk*Tk | [2]



as shown in Figure 1(d). Here, the tensor-matrix product is defined as:
1),,2),,3
Xijk = Za,b,c Sachi(a)Ui(b)Ui(C) [3].

The problem of finding the lower-rank decomposition shown on the right side of eq [2] from the

noisy observation Y is what we call a tensor SVD problem.

For three-dimensional spectrum image data with dimensions x, y, and energy, there is an
analogy between tensor SVD and the output of PCA. The U® matrix in eq [2] can be interpreted
as the PCA loading matrix, which contains a total of p3 spectra each with 3 elements, and
S x, UM x, UP gives the 3D tensor equivalent of the score matrix. In this “score tensor”, a
total of p3 spatial maps of size p; X p, are created, showing the amplitude of the corresponding
loading spectrum along the first two dimensions. Thus, in addition to denoising, tensor SVD can
also be applied to decompose high dimensional data and find characteristic signals, such as
different sets of diffraction patterns from different structures or with different rotational
symmetry>>>*, This is not possible for non-local-method-based tools such as BM4D*® and

NLPCA?,

For tensor SVD problems, unlike their counterparts in matrices, the best rank-(7;, 72, 73)
approximation cannot be obtained from truncations of a full decomposition®, and ranks need to
be determined first before solving the tensor SVD problem. We have set the rank along each
dimension to the number of principal components determined by scree tests on 2D matrices
formed by unfolding 3D tensor along that dimension*?. For example, when unfolding the 3D
tensor along the first dimension, the elements in the resulting 2D matrix with size p; X (p,p3)

are arranged as

[Ml(y)]i,(j—1)p3+k =Y, Y € RP1*P2*P3 M (Y) € RP1*P2P3, [4]



Eigenvalues are then calculated on the product of this 2D matrix with its transpose to generate a
scree plot. Following previous work applying PCA on hyperspectral data'>%>"17_ the number of
principal components is determined by finding the point where the curve becomes linear on a
log-linear plot. This method for rank determination is justified below in section 2.4 using
simulated data. The computation time to generate the scree plots is about 1 minute for 4D STEM

data with 150x150x16384 data size.

To solve the tensor SVD problem given a rank (r;, 2, r3), we applied the higher-order
orthogonal iteration (HOOI) method, first proposed to find low-rank tensor in ref **. The HOOI
method iteratively refines the unitary matrix U along each dimension by performing SVD on a
related 2D matrix, then calculating the core tensor S and noiseless tensor X in the end with
refined U matrices. The HOOI method requires that the product of any two ranks must be larger

than the third rank.

In our implementation,*!*> the HOOI method seeks the best rank-(r;, 2, 73)

approximation X for noisy input ¥ by minimizing the difference between the tensors X and ¥
X = argminrank(x)=r1,r2,r3 ”Y - X”Fa [5]

where the difference between the two tensors is measured by the Frobenius norm, || ||r. X is then
the estimate of the denoised data. Additional details of the mathematical approach may be found
in Ref*!. The Frobenius norm as a similarity measure for ¥ and X is not tuned for any particular
noise distribution, since the noise in our 4D STEM data acquired in the linear mode has a
complicated distribution. As a (probably superior) alternative to the Anscombe transform, a
Poisson negative log-likelihood could be used as a similarity measurement for counting mode

data®°8, which contains closer to pure Poisson noise. A previous report*® also suggests that the



application of Poisson negative log-likelihood performs better under cases with extremely

limited counts than the Anscombe transform.

This implementation finds a low-rank representation X that represents a large fraction of
the total variance of the noisy data Y, under the assumption that the signal should be more
significant and contribute more to the total variance of the data than noise. This method could be
less effective if the noise contributes significantly to the total variance, for example, if the data

contains some very high-intensity noise points.

2.4 Data Unfolding and Parameter Selection
To generate a 3D tensor for tensor SVD from 4D STEM data, the reciprocal (kx, &)
dimensions were unfolded into a single dimension. Other ways to rearrange the data are
discussed in section 3.2. For experimental data, each CBED pattern was downsampled by a
factor of 4 to 128x128 pixels, then unfolded into a one-dimensional array to generate a noisy
signal tensor with 150x150x16384 points. For simulated data, the unfolded noisy signal tensor

contained 114x114x16384 points.

For d-dimensional signals, the tensor SVD method has d+1 tunable parameters: the d
ranks of the low-rank approximation and a parameter controlling the number of iterations in
HOOIL. The tensor ranks are determined with scree tests on 2D matrices, which is justified by
tests on simulated data in Section 3.1. The number of HOOI iterations was fixed at ten for all the
calculations presented here. Tests on the simulated Si dislocation data show no improvement in
peak signal to noise ratio (PSNR)* after denoising after 4-5 iterations, even on input data with a
high noise level and an input PSNR ~ 2 dB. On simulated STO data with high periodicity and
low noise level, the HOOI method converged after only one iteration. Compute time increases

linearly with the number of iterations, so the reported times could be shortened by using fewer



iterations, especially when the input data has a low noise level or high periodicity. Another way
to control the iteration is to calculate the difference between the low-rank tensor X from two
consecutive iterations and stop iterating when the difference is below a threshold. This scheme
has the disadvantage of either doubling the memory consumption if two copies of X are saved in
order to calculate the difference or doubling the compute time if the tensor X is recalculated after

each iteration.

2.5 Other Denoising Methods and Implementations
To benchmark the denoising performance of tensor SVD, we compare the denoising

results from tensor SVD against the denoising results from state-of-the-art methods NLPCA,
BM4D, and the more widely used matrix PCA. NLPCA and BM4D were applied to the
unwrapped 3D tensor generated from 4D data. Application of NLPCA on 3D atomic resolution
STEM EDS spectrum image data has been reported before®, and the parameters optimized for
STEM EDS data were used to denoise 4D STEM data. BM4D was proposed and widely applied
to MRI data in Ref. 3% and adapted V-BM4D which was designed to handle time sequences®® has
been applied to denoise both for real-life photos®! and microscopy images®?. Considered that our
data has different feature sizes and periodicity than MRI data, we have optimized the denoising
parameters of BM4D on our own data. The parameters of the BM4D denoising method were
optimized one at a time, starting from the Ref. * values using simulated STO and Si dislocation
data to achieve the highest PSNR after denoising for an input PSNR of 20 dB for STO and 22 dB
for Si dislocation. Table 2 presents the parameters for both approaches. Matrix PCA was applied
to 4D STEM data using the decomposition method implemented in Hyperspy?°. The four-

dimensional data was unfolded into a 2D matrix with the real space dimension used as the



navigation dimension, and the reciprocal space was used as the signal dimension in the Hyperspy

t63

signal. A scree plot™ was used to determine the number of principal components to use in the

denoised data.

NLPCA, BM4D, and tensor SVD were implemented as single thread programs in Matlab.
All three Matlab scripts and the Hyperspy Python software package run on a typical Windows
desktop with dual Intel Xeon 1.6 GHz processors and 32 GB accessible memory. Matrix SVD
has also been implemented in Hyperspy with similar performance to the MATLAB results

reported here.

NLPCA BM4D

Number of components 10 Method Wiener filtering
Number of clusters 10 Cube size 4
Patch size along rx and 7, (px) 12 Group size 32
Patch size along k (px) Same as Step 2

the k Search-cube size 23 (STO)/31 (Si

dimension dislocation)

size Search Similarity threshold 4

Table 2. Denoising parameters for NLPCA and BM4D

3. Results

3.1 Tensor SVD Denoising of Simulated 4D STEM Data
Tensor SVD has been applied to simulated data from the STO structure and Si dislocation
structure to test its performance and compare denoised results to the ground truth. Figure 2

shows the denoising performance on simulated STO data with noise appropriate for acquisition



at 1,000 frames per second (FPS) on our Titan with18.9 pA current and 3.85%10° /A% ms dose
rate. The same beam current and dose rate have been used for all simulations under different
frame rate. Denoising performance is quantified in terms of PSNR, an appropriate measure for

Poisson-noise corrupted data,” and defined as

MAX?

PSNR = 10 X logso(*o), [6]

where MSE in eq [6] is the mean squared error between the ground truth and noisy image that
measures the averaged squared intensity difference, and MAX is the maximum intensity in the
ground truth. The ranks of the low-rank tensor representation determined from scree plots were 7
for the real-space dimensions 7 and 7, and 30 for the unwrapped k& dimension. The tensor SVD
denoised CBED pattern shown in Figure 2 (d) is indistinguishable from the ground truth shown
in Figure 2 (f) by eye, as well as the virtual ADF images reconstructed from CBED patterns
using denoised result and ground truth, as shown in Figure 2 (c) and (e). The average PSNR for
the data set shown in Figure 2 (g) suggests that tensor SVD improves PSNR by about 20 dB
under various noise levels. The same tensor ranks were used for all the different noise levels, so
the denoising performance might be improved if the parameters were optimized at each specific
noise level. All the CBED patterns from different positions on the sample are denoised with
higher than 44 dB PSNR, as shown in the spatial map of PSNR in Figure 3 (h), with a variation
of less than 5 dB. The spatial variation in PSNR occurs because some CBED patterns show more

significant features and are better represented in the low-rank tensor.
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Figure 2. Denoising 4D STEM simulated from a perfect STO. crystal: virtual ADF image and a single
CBED pattern pairs from (a)-(b) simulated 1000 FPS noisy data, (c)-(d) tensor SVD denoised data, (e)-(f)
ground truth, and (g)-(h) difference between denoised data and ground truth. (i) Output PSNR from SVD
denoised data vs. input PSNR from noisy data calculated under different noise levels. (j) Spatial distribution

of denoising PSNR for 1000 FPS data.

Figure 3 shows tensor SVD’s denoising performance on simulated data from the
aperiodic Si dislocation structure. The ranks of the low-rank tensor were 32 in 7, and 7, and 180
for the unwrapped £ dimension, significantly higher than the ranks used on STO data because the
aperiodic structure data contains more unique features that require higher rank to represent.
Average PSNR values are improved by about 15 dB under different noise levels, as shown in
Figure 3 (i). The spatial distribution of PSNR in Figure 3 (k) shows about 7 dB lower PSNR
around the dislocation core compared to the periodic lattice structure. The lower PSNR in the
aperiodic region can also be observed in the denoised CBED pattern from the dislocation core
shown in Figure 3 (f), which is noisier than the pattern from the periodic region in Figure 3 (h).
Both the PSNR and CBED patterns suggest that the non-regular structures around the dislocation
core are not well represented by the low-rank tensor. It also suggests that more cautions should

be used when extracting information from non-regular structures in the denoised data.
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Figure 3. Denoising simulated 4D STEM data from a Si dislocation core: The virtual ADF image,
a single CBED pattern from the periodic region of the Si structure at the position of the green dot
in (g), and a single CBED pattern from the dislocation core region at the position marked by the
red dot in (g) extracted from: (a)-(c) simulated 1000 FPS noisy data, (d)-(f) tensor SVD denoised
data, (g)-(i) ground truth, and (j)-(1) the difference between the ground truth and denoised image.
(m) Output PSNR from SVD denoised data vs. input PSNR from noisy data at different noise

levels. (n) Spatial distribution of denoising PSNR for 1000 FPS data.

Tensor SVD denoising also improves more complicated signals calculated from the 4D
STEM data. For example, symmetry STEM is a recently proposed method in which an image is
created from the normalized cross correlation of between each CBED pattern and the same
pattern after application of a symmetry transformation like a rotation of mirror.>* It is intended as

an atomically-resolved measure of crystallographic symmetries in the sample. Figure 4 shows



the symmetry STEM image calculated using the method described in ref>* from the simulated
SrTiO3 4D STEM data 180° and 90° rotation transformations. The noiseless ground truth shows
the expected symmetries with a high degree of correlation from every atomic site in the [001]
unit cell. However, with noise added to mimic 10000 FPS acquisition, the high symmetry peak
on Sr sites are missing, creating clear artificats in the image, and the normalized symmetry signal
is overall significantly lower for the entire image. The symmetry STEM images calculated from
tensor SVD denoised 4D STEM data both recover all the peaks, removing the the noise-induced

artifacts, and show a similar symmetry signal level as the ground truth.
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Figure 4 (a) Reconstructed ADF image from 4D STEM data, (b) schematic of SrTiOs unit cell in
[001] orientation, (c) — (e) symmetry STEM images for a 180° rotation, and (f) — (h) symmetry
STEM images for a 90° rotation from noisy data, tensor SVD denoised data, and the ground

truth.



Figure 5 shows the accuracy of Si atom positions in ADF images reconstructed from
noisy and denoised 4D STEM data (as shown in Figure 3 (a) and (b)). Each Si dumbbell is fitted
to the sum of two 2D Gaussian functions, and the accuracy is calculated as the displacement of
the atom image position with respect to the true atom position derived from the ground truth. The
displacement scatters plot shown in Figure 5 (a) shows a clear improvement after tensor SVD
denoising, as all the points gather more closely to the zero displacement point at the center. In
Figure 5 (b), accuracy is calculated as the mean displacement of all the Si atoms in the noisy or
denoised data, and tensor SVD denoised data shows a clear improvement in accuracy when the
frame rate is 2000 FPS or higher. At 1000 FPS, tensor SVD shows little improvement in peak
fitting results. A similar scheme has been used to fit the Sr and Ti positions in reconstructed ADF
images from simulated 4D STEM data on the SrTiO3 model, followed by precision calculated as
the standard deviation of Sr-Sr bond length and Sr-Ti bond length. The results show about 80%
improvement after denoising in the precision calculated from Sr-Ti bond length, and over 90%
improvement in the precision calculated from Sr-Sr bond length over various simulation frame

rate between 1000 and 10000 FPS.
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Figure 5 (a) Displacement of every Si site between the reconstructed ADF image using 2000 FPS
noisy or denoised data and the ground truth and the histogram along the x and y direction, (b)

accuracy calculated from all Si atom positions vs. frame rate used in the simulations

In general, we expect tensor SVD denoising to be helpful for 4D STEM applications that
are depend on limited angular range integration or fine features in the CBED patterns, such as
the lattice symmetry detection. Tensor SVD will be less helpful for the applications such as

electric field** and magnetic field® detection from the center of mass of the CBED patterns,



since these applications involve integrating over a large group of pixels. Moreover, the
dimensionality reduction step in tensor SVD does not conserve the total intensity in the CBED
pattern, so tensor SVD will create errors for applications that rely on the absolute diffraction

intensity..

Figure 6 shows that ranks determined with scree tests from 2D matrices are close to the
optimal denoising ranks for 3D tensor. Denoised PSNR at an input PSNR of 20 dB for STO and
22 dB for Si dislocation was computed as a function of the ranks over a wide range (0-100 for 7
and ry, 0-250 for k£ dimension) with coarse step size (5 for r, and 7, 10 for k£ dimension), then
optimized with a narrow search of increment of 1 along all three dimensions. Figure 4 compares
the ranks determined by scree plots (blue dots) and the ranks with the highest PSNR (red lines)
for the simulated STO data and Si dislocation data. For all three dimensions of both structures,
optimal ranks marked by the red lines are very close to the number of principal components
determined by the scree plot. This procedure does not, however, consider all possible

combinations of ranks along all dimensions.
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Figure 6. Scree plots of 7y, r,, and k& dimension for (a) - (c) simulated STO data and (d) - (f)

simulated Si edge dislocation data. Ranks for each dimension that generate optimal denoising

results are reported above each graph and marked with the red dashed lines. Optimal rank from

the scree plot is the dividing point between blue data and orange data.

Computing the optimal rank for output PSNR as a function of input PNSR shows that as

the noise level increases, the optimal number of principal components decreases. The number of

principal components on the Si dislocation data along the & dimension decreases to 50 from 180

with simulated noise corresponding to 10,000 FPS and an input PSNR of 13 dB, and further



decreases to 20 at 40,000 FPS and an input PSNR of 6 dB . A scree test on noiseless data
suggests that there are actually 10,500 £ dimension components that contribute to the Si
dislocation data, corresponding to the complexity and variability of the CBED data, but most of
them are overwhelmed once noise is introduced and cannot be identified nor recovered by

denoising.

3.2 Alternate Data Shapes
We have explored other ways to generate a 3D input tensor from the 4D STEM data

using the simulated 4D STEM data from Si dislocation core. One alternate rearrangement is to
unfold the real space dimensions 7, 7, into one single dimension 7 to create a 3D tensor that is a
stack of CBED patterns. The denoising ranks determined from scree tests are 24, 24, and 170
along the k;, k,, and » dimensions, respectively. The denoised ADF image and CBED patterns
using this alternate input tensor show improved PSNR, as shown in Figure 5 (c) and (d), but both
are blurry compared to the ground truth and to the denoising result by unfolding reciprocal space
dimensions (Figure 3 (d), (e), and (f)). The average PSNR from the denoised data is 34.11 dB,

about 4 dB lower than the denoised result after unfolding reciprocal space. Unfolding in real
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Figure 7. Virtual ADF image and CBED pattern from the periodic region of the Si structure (the
position of the green dot in Figure 4 (g)) from (a), (b) noisy data, (c), (d) tensor SVD denoised data
with real space dimensions unfolded into one dimension, (e), (f) tensor SVD denoised data without

unfolding, (g), (h) ground truth.

space reduces information about the atomic lattice periodicity in the data, making the low-rank
representation less effective. The data in reciprocal space are less periodic, so unfolding the

reciprocal space is more effective.

Tensor SVD can also treat the four-dimensional data directly, without unfolding, to find
the best rank-(7;, r2, 73, r4) approximation. For Si dislocation data, denoising ranks determined
from the scree test are 32, 32, 24, and 24 for two real space dimensions and two reciprocal space
dimensions, respectively. Tensor SVD denoised 4D data, as shown in Figure 7 (e) and (f), shows
a blurry virtual ADF image and CBED pattern, and the average PSNR is 35.75 dB. Meanwhile,
the processing time for 4D input data was 30 times longer than the processing time on 3D input

data (see section 4.3). As a result, we do not recommend using the original 4D data as the input



for tensor SVD. From the denoised results using data with unfolded real space dimensions and
with no unfolding, we suspect that some blurring may occur when trying to reduce the rank for

dimensions without an effective low-rank representation.

3.3 Tensor SVD Denoising of Experimental 4D STEM Data
Tensor SVD has been used to denoise experimental 4D STEM data collected on an STO
[100] single crystal sample and at the interface of a LiZnSb [1120] hexagonal Heusler alloy thin
film grown on GaSb [110] substrate. Experimentally collected data has a more complex noise
distribution that does not obey Poisson statistics, and it suffers from scan distortion during data

acquisition, both of which introduce added complexity compared to simulated data.

Figure 8 (a) - (d) show tensor SVD’s denoising performance on the experimental STO
data. The denoised ADF image is significantly improved, with clear atomic sites and higher
SNR, and the denoised CBED pattern shows clear arc-shaped features from the Bragg diffraction
disks. Scan distortions and other imperfections also are preserved in the denoised image. The top
part of the denoised ADF image shows sheared atoms as a result of sample drift. The tensor
ranks for STO data are determined to be 30, 32, and 180 for ry, r,, and £, respectively, from the
scree plots shown in Figure 8 (i) - (k). The ranks are significantly higher than the ranks used for
simulated STO data, probably as a result of non-ideal data collection conditions like drift and
probe jitter. Tensor SVD denoising took 538.9 sec to compute on this 1.6 GB data set, once the
ranks were determined. This includes computing the low-rank tensor representation and the

reconstructed data set.



Figure 8 (e) - (h) show tensor SVD’s denoising performance on the LiZnSb/GaSb
interface data. The bottom left part of the sample has been damaged in the FIB, and the sample is
significantly thicker than the STO sample. The virtual ADF image shown in Figure 8 (g) from
denoised data shows higher SNR with clear atomic sites compare to the noisy ADF image shown
in Figure 8 (e). The denoised CBED pattern shows smooth intensity variation with fewer high-

intensity pixels generated by random noise, especially in the dark field region. There are no arc
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patterns pairs. The right half of each CBED is shown as the square root of intensity to emphasize
weak features. The color scales are for the linear left half of each image. (a) — (d) Data from STO
[100]: (a), (b) as acquired, (c), (d) after tensor SVD denoising. (¢) — (f) Data from a LiZnSb [1120]
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in orange are discarded in the denoised reconstruction of the data. The 0 component which
represents the mean of the data is omitted from the graphs. (i) — (k) STO. scree plots. (1) — (n)

LiZnSb / GaSb scree plots.

features from Bragg disks because of the sample thickness. The tensor ranks are 35, 38, and 180
for ry, r, and k, determined using the scree plots shown in Figure 6 (1) - (n). The denoising ranks
are very close to the ranks used for STO data, even though the LiZnSb/GaSb sample consists of
two different lattice structures, confirming that the rank is heavily influenced by non-sample
factors like scan distortion. It took 575.0 sec for tensor SVD to denoise the 2.7 GB LiZnSb/GaSb
experimental data. The processing time was mostly determined by the tensor ranks, so the
processing times for LiZnSb data and STO data were similar even though the LiZnSb data is

about 60% larger than the STO data (see section 4.1 for a detailed discussion).

3.4 Applications to 3D Spectrum Image Data Sets

We have applied tensor SVD to denoise EDS spectrum images acquired from [001] zone
axis of a Ca-stabilized Nd»;3TiO3 sample (previously published in Ref. 3%). This data set has a
much lower signal than the 4D STEM data, with a mean value of 0.015 counts across the entire
data set. The EDS spectrum images from 1000 energy channels were integrated into seven
elemental maps corresponding to seven elemental x-ray bands (O Ka, Ca Ka, Ti Ka, Ti K3, Nd
La, Nd LB, and Nd LB4), which increases the mean signal to 1.8 counts. Scree tests show that
tensor SVD ranks should be 10, 10, and 7 along x, y, and the energy dimensions, respectively.

For comparison, NLPCA and matrix PCA denoised results were replotted from ref *°.



Figure 9 shows the tensor SVD results compared to NLPCA and matrix PCA results
replotted from Ref *>. The tensor SVD performance is better than matrix PCA but not as good as
NLPCA. Tensor SVD shows improved SNR for both the Nd and Ti maps and is able to
distinguish the difference in the atomic sites occupied by Ti and Nd. The denoised Ca map from
tensor SVD is smoother than the raw data with reduced noise. However, the lattice structures
shown in the Ca map does not agree with the NLPCA denoised result and does not show separate
atomic sites. We suspect the features in the denoised Ca map could be mostly denoising artifacts.
Overall, NLPCA denoising results in clearer atomic features, especially on the low signal Ca
map. This is perhaps unsurprising, given that NLPCA was developed for extreme noisy data®®,
including features like the non-local approach and Poisson maximum-likelihood similarity
measurement. Tensor SVD computing time for this small data set are very short (0.1 sec in this

case).
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3.5 Comparison to Other Methods for 4D STEM Denoising
Subsets of the simulated 4D STEM data with reduced size in reciprocal space were
constructed from both STO and Si dislocation simulations to compare the performance of tensor
SVD, NLPCA, BM4D, and matrix PCA. Reduced data size was required in order to
accommodate the massive memory requirements of NLPCA. The subset was selected by keeping
all the pixels in real space but using a 10-by-10 pixel patch covering a square area with 5 mrad
side length around the optical axis in reciprocal space. The final 3D tensor input with reciprocal

space unfolded into one dimension has 114x114x100 data size.

Figure 10 shows the comparison between tensor SVD, NLPCA, BM4D, and matrix PCA
using the reduced data. Due to a small region of reciprocal space involved, the contrast on the
virtual real space image is different from what we would typically expect from a round-shaped
bright-field detector covering a range of collection angles. For example, the virtual image does
not show structural details such as the dumbbell shape Si atom pairs. All four methods
effectively remove image noise and improve SNR. For example, the virtual image and CBED
pattern subset from tensor SVD and NLPCA are visually indistinguishable from the ground truth.
The BM4D denoised CBED patterns show some visible mismatch to the ground truth and some
pixels with visible noise. Matrix PCA denoised CBED pattern looks smooth without significant
noisy pixels, but the intensity is not a good match to the ground truth. The PSNR results in
Figure 10 (e) and (f) show that across a wide range of input PSNRs, tensor SVD and NLPCA
improve PSNR by 20 - 25 dB, and BM4D and matrix PCA improve PSNR by 10 - 15 dB. Tensor
SVD has either the best performance or close to the best performance among the four methods in
terms of PSNR. A similar conclusion can be drawn using other metrics to measure the denoising

performance, including SSIM*? and MSE without the normalization step used in PSNR. Figure 8



also shows the elapsed computing required for the various algorithms for this 10 MB data set.
Matrix PCA is the fastest, followed by tensor SVD, and both of those approaches are at least 100
times faster than BM4D or NLPCA. Optimizing the denoising rank for each noise level improves

the PSNR on the Si dislocation data, but has little improvement on STO data.

NLPCA is much slower than the rank-reduction methods but has the best denoising
performance at high input noise level, as the method was designed and optimized to handle
extremely low signal cases with a sophisticated clustering method for similarity detection and a
Poisson noise specific similarity measure. The BM4D and matrix PCA methods do not denoise
well on either the STO or Si dislocation structure compared to NLPCA and tensor SVD, but
matrix PCA is the fastest one among the four different methods. We suspect one of the reasons
behind BM4D’s poor performance is that similar cubes are searched only within the search-cube

size, which does not capture the overall periodicity from the lattice structure.
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4. Discussion

Tensor SVD provides similar or better performance than the other state-of-the-art
methods we have tested, NLPCA and BM4D, at a fraction of the computing time. The majority
of computing time in tensor SVD problem is spent on matrix SVD calculations as the HOOI
algorithm goes through each dimension to update the corresponding unitary matrix U®. For each
dimension, an eigenvalue problem is solved on a square matrix with the size equal to the product
of ranks for all the rest of the dimensions. When using 4D data instead of 3D data, the algorithm
loops over one more dimension within each iteration of HOOI, and the eigenvalue problem for
each dimension must be solved on a much larger matrix. As a result, the processing time on 4D
data is tens of times longer than the processing time on a rearranged 3D data for the data sets

tested here and will scale non-linearly with the data dimensions.

The computing time for tensor SVD does not vary for different data sets when the denoising
ranks are fixed, which makes it easy to predict the computation time. In contrast, both NLPCA
and BM4D can have varying computing time for different data sets even of the same size
because different data can result in different clustering of the non-local patches. For NLPCA, if
the majority of the patches are grouped inside one cluster, then the PCA step on this cluster will
be slow, and the denoising process will be slower compared to the cases when the cubes are

uniformly distributed over multiple clusters.

Another advantage of tensor SVD is that it occupies a comparatively small amount of
memory while denoising, especially compared to the non-local methods. Our implementation of
tensor SVD has a peak memory consumption that is two times the original data size, which
makes it possible to handle larger data sets. The computing time and memory use for matrix

PCA are both smaller than for tensor SVD, but the performance is worse.



We realize that computing time and memory requirements are implementation-dependent.
All the results from tensor SVD, NLPCA, and BM4D presented here are based on a single-
threaded implementation in Matlab using a personal computer to allow an “apples to apples”
comparison. A single-threaded implementation of tensor SVD in python made available as part
of the Hyperspy package has similar performance. Processing time for tensor SVD probably

could be shortened using GPU computing with careful consideration of the use of memory.

Although we have not tested it, tensor SVD denoising of low-resolution 4D STEM data

67,68

using a small convergence angle and large electron probe for strain mapping””®® or to measure

the structure of an amorphous material'-®

should be possible. Tensor SVD may be less effective
than for atomic resolution 4D STEM data, however, as the lower periodicity in the data may
mean that the intrinsic tensor rank is higher. For orientation mapping, for example, unwrapping
in real space to preserve the small number of distinct patterns in reciprocal space may generate

better results. Tensor SVD should also be capable of identifying prototype diffraction patterns

from large data sets for phase and orientation mapping.

5. Conclusions

Tensor SVD is a method to find a low-rank representation of tensor data. It is analogous to
component analysis of matrix data using PCA, but it preserves the full three or four (or more)
dimensional structure of the data set. We have used tensor SVD to denoise atomic-resolution 4D
STEM data. The method can be directly applied to multiple GB 4D STEM data sets with the
adjustable parameters determined by scree tests. Computing times on a typical desktop computer

is a few minutes, and the required memory is twice the size of the data. Tests on simulated data



show that tensor SVD can benefit applications include symmetry STEM and atom position
fitting, especially under a limited electron dose. Measured by PSNR of the denoised data, tensor
SVD has the best or close to the best performance compared to other state-of-the-art methods
which require substantially more computation time and memory. Tests on experimental data
show that tensor SVD significantly improves the signal to noise ratio, and the denoised data
shows clearer structures in both real space images and CBED patterns. Tensor SVD can also be

applied to other high dimensional data sets, such as EDS spectrum images.
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