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Abstract 

Tensor singular value decomposition (SVD) is a method to find a low-dimensional 

representation of data with meaningful structure in three or more dimensions. Tensor SVD has 

been applied to denoise atomic-resolution 4D scanning transmission electron microscopy (4D 

STEM) data. On data simulated from a SrTiO3 [100] perfect crystal and a Si [110] edge 

dislocation, tensor SVD achieved an average peak signal-to-noise ratio (PSNR) of ~40 dB, 

which matches or exceeds the performance of other denoising methods, with processing times at 

least 100 times shorter. On experimental data from SrTiO3 [100] and LiZnSb [112�0]/GaSb [110] 

samples, tensor SVD denoises multiple GB 4D STEM data sets in ten minutes on a typical 

personal computer. Denoising with tensor SVD improves both convergent beam electron 

diffraction patterns and virtual-aperture annular dark field images. 

Keywords: scanning transmission electron microscopy, convergent beam electron diffraction, 

image denoising, low-rank tensor 

1. Introduction 

Denoising 4D STEM1 data is challenging because of its large size2 and complex noise 

distribution. A 16-bit depth 4D STEM dataset with a 100-by-100 beam raster scan and 512-by-



512 px on each convergent beam electron diffraction (CBED) pattern is 5 GB. With recent 

developments in ultrafast detectors3-4, the data will be generated faster with a smaller signal and 

more noise in each CBED pattern and even larger data sets. To be applied to multi-GB 4D 

STEM data using moderate computing resources, a denoising algorithm has to be both time- and 

memory-efficient. Another challenge for denoising 4D STEM data is the potential for complex 

noise distributions. A perfect counting mode detector would acquire data with only Poisson 

noise5,6, but errors from a real counting-mode detector may introduce more complex statistics. 

An active pixel sensor type detector operating in linear mode generates signal in response to 

single electrons that obey a Landau distribution7,8. As a result, each electron generates a different 

intensity and the noise is again not pure Poisson noise. 

A common approach to denoising complex data, including data from electron 

microscopy, is to find a low-rank representation of the noisy data. The data are viewed as vectors 

in a high-dimensional space. The true, noiseless data occupy only a restricted subspace with 

lower dimensionality. Noise shifts the points out of the subspace. If we can find appropriate basis 

vectors that span the noiseless subspace, then use them to project the data into the subspace, the 

noise is removed. Those basis vectors can also be used to gain understanding of the data by, for 

example, spectral unmixing (see 9 for additional discussion and e.g. 10 for rigorous mathematics). 

The most widely-applied rank reduction tool for electron microscopy data is principal component 

analysis (PCA)10,11. PCA looks for a set of orthogonal basis vectors that can describe the original 

data without losing significant information. PCA has been modified to account for Poisson noise 

statistics specifically to create Poisson PCA or exponential PCA12. PCA is a powerful tool for 

denoising electron energy loss spectroscopy (EELS)13,14,15 and energy-dispersive X-ray 

spectroscopy (EDS)16,17 data collected in STEM, and it has been implemented in a variety of 



software packages including a DigitalMicrograph plugin18, temDM19, and Hyperspy20. Various 

other component analysis methods exist which differ in how they define the optimal basis 

vectors. For example, independent component analysis (ICA)21 seeks to split the data into a set 

of components, but unlike PCA, ICA does not require components to be orthogonal to each 

other. ICA has also been used for denoising22, which requires signal and noise to be independent 

and noise variance cannot be dependent on the signal. Another example is non-negative matrix 

factorization (NMF)23, which can only be applied to non-negative matrices and imposes a non-

negativity constraint on both the basis vectors and the corresponding coefficients, with 

orthogonality as an option for the basis vectors24. NMF has been applied to both hyperspectral 

data denoising25,26,27 and unmixing28. The non-negative constraint can be desirable when 

searching for hidden basis vectors with physical meanings that require them to be non-negative. 

PCA and its cousins work only on 2D matrices, so 3D data like spectrum images must be 

unwrapped into 2D before processing, losing some of their structure, usually in one of the two 

spatial dimensions. 

Outside electron microscopy, the many current state-of-the-art denoising methods are 

non-local29. These approaches find self-similarity within the data, even if the similar regions are 

separated in one or more dimensions, and combine information from similar regions to remove 

random noise. As a first step, the image is divided into small regions called patches, which often 

overlap with one another. Common non-local methods for general images include non-local 

means30 and the block-matching and 3D filtering31. In electron microscopy, Mevenkamp et al. 

applied non-local means32 and adapted block-matching and 3D-filtering (BM3D)33 to denoise 

single frame atomic-resolution STEM image. Both methods assumed a 2D periodic structure in 

the image to help locate similar patches, then noiseless ground truth for each group of patches 



are determined by maximizing the Poisson maximum-likelihood34 of finding the noisy patches 

with given truth, or applying a Wiener filter respectively. Yankovich et al. applied non-local 

principle component analysis (NLPCA) to denoise STEM EDS spectrum image data35,36, 

NLPCA utilizes k-means clustering37 to group similar 3D (x, y, and energy) patches, then 

Poisson PCA to denoise each group. Maggioni et al. proposed the block-matching and 4D-

filtering (BM4D) method38 as an extension of BM3D to denoising 3D data in the form of movies 

(x, y, and time). BM4D searches for similar 3D patches within a local search window which is 

usually smaller than the total data size using the photometric distance, then sets a distance 

threshold to group the 3D patches. A Wiener filter was applied within groups of similar 3D 

patches to remove image noise. For all of these methods, the initial patchifying of the data 

requires substantial memory. The set of all possible overlapping 10x10 pixel patches in a 

100x100 pixel image occupies 81 times the memory of the original image. The periodic and local 

window search methods are, in part, ways to avoid this maximum patch-ifying while still finding 

similar patches. For larger data sets like 4D STEM, the memory and / or processing time can 

easily exceed typical computing resources. Besides memory consumption, the non-local method 

could possibly result in a loss of detail or introduce artifacts when denoising the group of similar 

patches. 

Tensor singular value decomposition (SVD) is a low-rank denoising method for high-

order data in three or more dimensions.39–43 Here we apply the tensor SVD method of Zhang and 

Xia41 to denoise atomic-resolution STEM data, focusing on 4D STEM but also testing EDS 

spectrum images.  Unlike matrix rank-reduction methods like PCA, tensor SVD can maintain the 

full structure of data, giving it the potential to exploit, for example, structure in both spatial 

dimensions. We compare tensor SVD to matrix PCA and to the state-of-the-art non-local 



methods NLPCA and BM4D. Overall, the denoising performance is as good or better than all the 

other methods, and the computation time and memory requirements are much more similar to 

PCA than to NLPCA or BM4D. Single-digit  GB 4D STEM data sets can be denoised in a few 

minutes on a typical desktop computer. 

2. Methods 

2.1 4D STEM Experiment 

A SrTiO3 (STO) [100] single crystal sample was prepared by wedge polishing at a 1.6° 

angle using an Allied MultiPrep polishing system with diamond lapping films, followed by final 

thinning in a Fishione 1050 ion-mill using Ar ion beam. A LiZnSb [112�0] thin film sample was 

grown on a GaSb [110] substrate as described in Ref. 44, then prepared for TEM using a Zeiss 

Auriga focused ion beam (FIB) with a final FIB polishing step with a 5 kV 100 pA Ga-ion beam. 

The sample surface was polished in a Fishione 1040 Nanomill with a 900 eV Ar ion beam. Both 

samples were stored under vacuum and cleaned in an Ibss GV10x DS Asher plasma cleaner 

operated under 20 W for 10 minutes to remove contaminations before being inserted into the 

TEM column.  

A Thermo-Fisher Scientific Titan STEM equipped with a CEOS probe corrector operated 

at 200 kV was used to collect 4D STEM data. A 24.5 mrad semi convergence angle and an 18.9 

pA current probe was used, which was optimized for the highest spatial resolution. A Direct 

Electron DE-16 camera operating in linear mode (as opposed to counting mode) was used to 

collect CBED patterns with camera acquisition synchronized to the electron beam scan using a 

customized scan controller. 60 mm camera length was used for CBED pattern acquisition to 

achieve about 37 mrad maximum collection angle in CBED patterns, collecting the whole bright 



field disk and low angle dark-field signal. Details of parameter selection and scan controller to 

synchronize camera acquisition and beam scan can be found in Ref 45. For each 4D STEM 

acquisition, 150×150 probe positions were used with 512×512 pixel CBED patterns acquired 

under 0.9 ms exposure time at each probe position. The scan step sizes were 0.04 nm on the 

LiZnSb sample and 0.02 nm on the STO sample, small enough to resolve the lattice structures on 

both samples.  

2.2 Multislice Simulation 

Two structures were used to simulate 4D STEM data: a STO single crystal along the 

[100] zone axis, and a Si [110] edge dislocation core generated by molecular dynamic 

simulations with distorted structure around the dislocation core46. CBED patterns from both 

structures were simulated using a frozen-phonon multislice algorithm in the graphic processing 

units (GPU)-accelerated Prismatic simulation package47. Probe convergence angle was selected 

to match the experimental conditions. A 2D symmetric Gaussian function with 110 pm full width 

half maximum was convolved into the simulated data to account for the incoherent source 

size48,49. All computations were performed on a computing cluster equipped with quadcore 

Nvidia Tesla M10 GPUs. A full list of simulation parameters for the two models can be found in 

table 1.  

Parameter name SrTiO3 [100] single crystal Si [110] edge dislocation 

Model size 49 Å × 49 Å × 250 Å 100 Å × 100 Å × 250 Å 

Probe step size  0.175 Å 

Potential space sampling  0.06 Å 

Slice thickness 1.9525 Å 1.90 Å 



Frozen phonon 

configurations 

20 

Root mean square thermal 

displacements50,46 

Sr: 0.0887 Å 

Ti: 0.0746 Å   

O: 0.0947 Å 

 

Si: 0.076Å 

Table 1 Multislice simulation parameters 

Simulated CBEDs were cropped and resampled to mimic the reciprocal space pixel size 

and detection limit in the experiments and converted from intensity units of the fraction of the 

incident beam to the number of detected electrons using the frame rate and measured beam 

current from our Titan STEM. Different frame rates were used to generate simulated data with 

different noise levels. Random, Poisson-distributed noise was introduced into simulated CBED 

patterns using the number of electrons in each pixel as the mean value for Poisson distributed 

random numbers. Simulated scan distortion or other artifacts were not added to the data. 

2.3 Tensor Singular Value Decomposition 

The concept of the tensor SVD approach41,42 is illustrated in Figure 1 using simulated 4D 

STEM data on the STO structure. Figure 1 (a) shows the noisy observation tensor Y with the size 

𝑝𝑝1 × 𝑝𝑝2 × 𝑝𝑝3. The observation tensor is the sum of a ground truth tensor X (Figure 1(b)) and an 

additive noise tensor Z (Figure 1(c)), such that 

𝒀𝒀 = 𝑿𝑿 + 𝒁𝒁;  𝑿𝑿,𝒀𝒀,𝒁𝒁 ∈ ℝ𝑝𝑝1×𝑝𝑝2×𝑝𝑝3.                                               [1] 



 

Figure 1 Illustration of the tensor SVD problem. (a) noisy observation tensor Y constructed from 

CBED patterns by unfolding the reciprocal space into one single dimension, (b) noiseless ground 

truth tensor X with low rank, (c) additive noise tensor Z, (d) Tucker decomposition of the low-

rank tensor into a core tensor and three unitary matrices.  

Additive noise is not a good model for Poisson noise at low mean counts, but the data could be 

transformed using the Anscombe variance-stabilizing transform to create pure additive noise,51 

then un-transformed after denoising. The transform was not applied here. X is assumed to have 

Tucker low-rank (r1, r2, r3). In other words, it can be decomposed into a product of core tensor S 

with size 𝑟𝑟1 × 𝑟𝑟2 × 𝑟𝑟3, and three unitary matrices U(1), U(2), and U(3), following Tucker 

decomposition52, 

𝑿𝑿 = 𝑺𝑺 ×1 𝑈𝑈(1) ×2 𝑈𝑈(2) ×3 𝑈𝑈(3), 𝑺𝑺 ∈ ℝ𝑟𝑟1×𝑟𝑟2×𝑟𝑟3 ,𝑈𝑈(𝑘𝑘) ∈ 𝕆𝕆𝑝𝑝𝑘𝑘×𝑟𝑟𝑘𝑘 ,                 [2] 



as shown in Figure 1(d). Here, the tensor-matrix product is defined as: 

𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑺𝑺𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑖𝑖𝑖𝑖
(1)𝑈𝑈𝑖𝑖𝑖𝑖

(2)𝑈𝑈𝑖𝑖𝑖𝑖
(3)

𝑎𝑎,𝑏𝑏,𝑐𝑐                                          [3]. 

The problem of finding the lower-rank decomposition shown on the right side of eq [2] from the 

noisy observation Y is what we call a tensor SVD problem. 

For three-dimensional spectrum image data with dimensions x, y, and energy, there is an 

analogy between tensor SVD and the output of PCA. The U(3) matrix in eq [2] can be interpreted 

as the PCA loading matrix, which contains a total of p3 spectra each with r3 elements, and 

𝑺𝑺 ×1 𝑈𝑈(1) ×2 𝑈𝑈(2) gives the 3D tensor equivalent of the score matrix. In this “score tensor”, a 

total of p3 spatial maps of size 𝑝𝑝1 × 𝑝𝑝2 are created, showing the amplitude of the corresponding 

loading spectrum along the first two dimensions. Thus, in addition to denoising, tensor SVD can 

also be applied to decompose high dimensional data and find characteristic signals, such as 

different sets of diffraction patterns from different structures or with different rotational 

symmetry53,54. This is not possible for non-local-method-based tools such as BM4D38 and 

NLPCA36. 

For tensor SVD problems, unlike their counterparts in matrices, the best rank-(r1, r2, r3) 

approximation cannot be obtained from truncations of a full decomposition55, and ranks need to 

be determined first before solving the tensor SVD problem. We have set the rank along each 

dimension to the number of principal components determined by scree tests on 2D matrices 

formed by unfolding 3D tensor along that dimension42. For example, when unfolding the 3D 

tensor along the first dimension, the elements in the resulting 2D matrix with size 𝑝𝑝1 × (𝑝𝑝2𝑝𝑝3) 

are arranged as 

[ℳ1(𝒀𝒀)]𝑖𝑖,(𝑗𝑗−1)𝑝𝑝3+𝑘𝑘 = 𝒀𝒀𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝒀𝒀 ∈ ℝ𝑝𝑝1×𝑝𝑝2×𝑝𝑝3 ,ℳ1(𝒀𝒀) ∈ ℝ𝑝𝑝1×𝑝𝑝2𝑝𝑝3.                      [4] 



Eigenvalues are then calculated on the product of this 2D matrix with its transpose to generate a 

scree plot. Following previous work applying PCA on hyperspectral data15,56,57,17, the number of 

principal components is determined by finding the point where the curve becomes linear on a 

log-linear plot. This method for rank determination is justified below in section 2.4 using 

simulated data. The computation time to generate the scree plots is about 1 minute for 4D STEM 

data with 150×150×16384 data size. 

To solve the tensor SVD problem given a rank (r1, r2, r3), we applied the higher-order 

orthogonal iteration (HOOI) method, first proposed to find low-rank tensor in ref 55. The HOOI 

method iteratively refines the unitary matrix U along each dimension by performing SVD on a 

related 2D matrix, then calculating the core tensor S and noiseless tensor X in the end with 

refined U matrices. The HOOI method requires that the product of any two ranks must be larger 

than the third rank.  

In our implementation,41,42 the HOOI method seeks the best rank-(r1, r2, r3) 

approximation 𝑿𝑿�  for noisy input Y by minimizing the difference between the tensors X and Y 

𝑿𝑿� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑿𝑿)=𝑟𝑟1 ,𝑟𝑟2,𝑟𝑟3‖𝒀𝒀 − 𝑿𝑿‖F,                                           [5] 

where the difference between the two tensors is measured by the Frobenius norm, || ||F. 𝑿𝑿�  is then 

the estimate of the denoised data. Additional details of the mathematical approach may be found 

in Ref41. The Frobenius norm as a similarity measure for Y and 𝑿𝑿�  is not tuned for any particular 

noise distribution, since the noise in our 4D STEM data acquired in the linear mode has a 

complicated distribution. As a (probably superior) alternative to the Anscombe transform, a 

Poisson negative log-likelihood could be used as a similarity measurement for counting mode 

data3,58, which contains closer to pure Poisson noise. A previous report36 also suggests that the 



application of Poisson negative log-likelihood performs better under cases with extremely 

limited counts than the Anscombe transform. 

 This implementation finds a low-rank representation 𝑿𝑿�  that represents a large fraction of 

the total variance of the noisy data 𝒀𝒀, under the assumption that the signal should be more 

significant and contribute more to the total variance of the data than noise. This method could be 

less effective if the noise contributes significantly to the total variance, for example, if the data 

contains some very high-intensity noise points. 

2.4 Data Unfolding and Parameter Selection 

To generate a 3D tensor for tensor SVD from 4D STEM data, the reciprocal (kx, ky) 

dimensions were unfolded into a single dimension. Other ways to rearrange the data are 

discussed in section 3.2. For experimental data, each CBED pattern was downsampled by a 

factor of 4 to 128×128 pixels, then unfolded into a one-dimensional array to generate a noisy 

signal tensor with 150×150×16384 points. For simulated data, the unfolded noisy signal tensor 

contained 114×114×16384 points. 

For d-dimensional signals, the tensor SVD method has d+1 tunable parameters: the d  

ranks of the low-rank approximation and a parameter controlling the number of iterations in 

HOOI. The tensor ranks are determined with scree tests on 2D matrices, which is justified by 

tests on simulated data in Section 3.1. The number of HOOI iterations was fixed at ten for all the 

calculations presented here. Tests on the simulated Si dislocation data show no improvement in 

peak signal to noise ratio (PSNR)59 after denoising after 4-5 iterations, even on input data with a 

high noise level and an input PSNR ~ 2 dB. On simulated STO data with high periodicity and 

low noise level, the HOOI method converged after only one iteration. Compute time increases 

linearly with the number of iterations, so the reported times could be shortened by using fewer 



iterations, especially when the input data has a low noise level or high periodicity. Another way 

to control the iteration is to calculate the difference between the low-rank tensor X from two 

consecutive iterations and stop iterating when the difference is below a threshold. This scheme 

has the disadvantage of either doubling the memory consumption if two copies of X are saved in 

order to calculate the difference or doubling the compute time if the tensor X is recalculated after 

each iteration. 

 

2.5 Other Denoising Methods and Implementations 

To benchmark the denoising performance of tensor SVD, we compare the denoising 

results from tensor SVD against the denoising results from state-of-the-art methods NLPCA, 

BM4D, and the more widely used matrix PCA. NLPCA and BM4D were applied to the 

unwrapped 3D tensor generated from 4D data. Application of NLPCA on 3D atomic resolution 

STEM EDS spectrum image data has been reported before35, and the parameters optimized for 

STEM EDS data were used to denoise 4D STEM data. BM4D was proposed and widely applied 

to MRI data in Ref. 38, and adapted V-BM4D which was designed to handle time sequences60 has 

been applied to denoise both for real-life photos61 and microscopy images62. Considered that our 

data has different feature sizes and periodicity than MRI data, we have optimized the denoising 

parameters of BM4D on our own data. The parameters of the BM4D denoising method were 

optimized one at a time, starting from the Ref. 38 values using simulated STO and Si dislocation 

data to achieve the highest PSNR after denoising for an input PSNR of 20 dB for STO and 22 dB 

for Si dislocation. Table 2 presents the parameters for both approaches. Matrix PCA was applied 

to 4D STEM data using the decomposition method implemented in Hyperspy20. The four-

dimensional data was unfolded into a 2D matrix with the real space dimension used as the 



navigation dimension, and the reciprocal space was used as the signal dimension in the Hyperspy 

signal. A scree plot63 was used to determine the number of principal components to use in the 

denoised data.  

NLPCA, BM4D, and tensor SVD were implemented as single thread programs in Matlab. 

All three Matlab scripts and the Hyperspy Python software package run on a typical Windows 

desktop with dual Intel Xeon 1.6 GHz processors and 32 GB accessible memory. Matrix SVD 

has also been implemented in Hyperspy with similar performance to the MATLAB results 

reported here. 

NLPCA BM4D 

Number of components 10 Method Wiener filtering 

Number of clusters 10 Cube size 4 

Patch size along rx and ry (px) 12 Group size 32 

Patch size along k (px) Same as 

the k 

dimension 

size 

Step 2 

 Search-cube size 23 (STO)/31 (Si 

dislocation) 

 Search Similarity threshold 4 

Table 2. Denoising parameters for NLPCA and BM4D 

3. Results 

3.1 Tensor SVD Denoising of Simulated 4D STEM Data 

Tensor SVD has been applied to simulated data from the STO structure and Si dislocation 

structure to test its performance and compare denoised results to the ground truth. Figure 2 

shows the denoising performance on simulated STO data with noise appropriate for acquisition 



at 1,000 frames per second (FPS) on our Titan with18.9 pA current and 3.85×106 e-/Å2·ms dose 

rate. The same beam current and dose rate have been used for all simulations under different 

frame rate. Denoising performance is quantified in terms of PSNR, an appropriate measure for 

Poisson-noise corrupted data,59 and defined as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 × log10(𝑀𝑀𝑀𝑀𝑀𝑀
2

𝑀𝑀𝑀𝑀𝑀𝑀
),                                                  [6] 

where MSE in eq [6] is the mean squared error between the ground truth and noisy image that 

measures the averaged squared intensity difference, and MAX is the maximum intensity in the 

ground truth. The ranks of the low-rank tensor representation determined from scree plots were 7 

for the real-space dimensions rx and ry and 30 for the unwrapped k dimension. The tensor SVD 

denoised CBED pattern shown in Figure 2 (d) is indistinguishable from the ground truth shown 

in Figure 2 (f) by eye, as well as the virtual ADF images reconstructed from CBED patterns 

using denoised result and ground truth, as shown in Figure 2 (c) and (e). The average PSNR for 

the data set shown in Figure 2 (g) suggests that tensor SVD improves PSNR by about 20 dB 

under various noise levels. The same tensor ranks were used for all the different noise levels, so 

the denoising performance might be improved if the parameters were optimized at each specific 

noise level. All the CBED patterns from different positions on the sample are denoised with 

higher than 44 dB PSNR, as shown in the spatial map of PSNR in Figure 3 (h), with a variation 

of less than 5 dB. The spatial variation in PSNR occurs because some CBED patterns show more 

significant features and are better represented in the low-rank tensor. 

 



 

Figure 2. Denoising 4D STEM simulated from a perfect STO. crystal: virtual ADF image and a single 

CBED pattern pairs from (a)-(b) simulated 1000 FPS noisy data, (c)-(d) tensor SVD denoised data, (e)-(f) 

ground truth, and (g)-(h) difference between denoised data and ground truth. (i) Output PSNR from SVD 

denoised data vs. input PSNR from noisy data calculated under different noise levels. (j) Spatial distribution 

of denoising PSNR for 1000 FPS data. 

Figure 3 shows tensor SVD’s denoising performance on simulated data from the 

aperiodic Si dislocation structure. The ranks of the low-rank tensor were 32 in rx and ry and 180 

for the unwrapped k dimension, significantly higher than the ranks used on STO data because the 

aperiodic structure data contains more unique features that require higher rank to represent. 

Average PSNR values are improved by about 15 dB under different noise levels, as shown in 

Figure 3 (i). The spatial distribution of PSNR in Figure 3 (k) shows about 7 dB lower PSNR 

around the dislocation core compared to the periodic lattice structure. The lower PSNR in the 

aperiodic region can also be observed in the denoised CBED pattern from the dislocation core 

shown in Figure 3 (f), which is noisier than the pattern from the periodic region in Figure 3 (h). 

Both the PSNR and CBED patterns suggest that the non-regular structures around the dislocation 

core are not well represented by the low-rank tensor. It also suggests that more cautions should 

be used when extracting information from non-regular structures in the denoised data. 



 

Figure 3. Denoising simulated 4D STEM data from a Si dislocation core: The virtual ADF image, 

a single CBED pattern from the periodic region of the Si structure at the position of the green dot 

in (g), and a single CBED pattern from the dislocation core region at the position marked by the 

red dot in (g) extracted from: (a)-(c) simulated 1000 FPS noisy data, (d)-(f) tensor SVD denoised 

data, (g)-(i) ground truth, and (j)-(l) the difference between the ground truth and denoised image. 

(m) Output PSNR from SVD denoised data vs. input PSNR from noisy data at different noise 

levels. (n) Spatial distribution of denoising PSNR for 1000 FPS data. 

Tensor SVD denoising also improves more complicated signals calculated from the 4D 

STEM data. For example, symmetry STEM is a recently proposed method in which an image is 

created from the normalized cross correlation of between each CBED pattern and the same 

pattern after application of a symmetry transformation like a rotation of mirror.54 It is intended as 

an atomically-resolved measure of crystallographic symmetries in the sample. Figure 4 shows 



the symmetry STEM image calculated using the method described in ref54 from the simulated 

SrTiO3 4D STEM data 180° and 90° rotation transformations. The noiseless ground truth shows 

the expected symmetries with a high degree of correlation from every atomic site in the [001] 

unit cell. However, with noise added to mimic 10000 FPS acquisition, the high symmetry peak 

on Sr sites are missing, creating clear artificats in the image, and the normalized symmetry signal 

is overall significantly lower for the entire image. The symmetry STEM images calculated from 

tensor SVD denoised 4D STEM data both recover all the peaks, removing the the noise-induced 

artifacts, and show a similar symmetry signal level as the ground truth. 

 

 

Figure 4 (a) Reconstructed ADF image from 4D STEM data, (b) schematic of SrTiO3 unit cell in 

[001] orientation, (c) – (e) symmetry STEM images for a 180° rotation, and (f) – (h) symmetry 

STEM images for a 90° rotation from noisy data, tensor SVD denoised data, and the ground 

truth. 

  



 Figure 5 shows the accuracy of Si atom positions in ADF images reconstructed from 

noisy and denoised 4D STEM data (as shown in Figure 3 (a) and (b)). Each Si dumbbell is fitted 

to the sum of two 2D Gaussian functions, and the accuracy is calculated as the displacement of 

the atom image position with respect to the true atom position derived from the ground truth. The 

displacement scatters plot shown in Figure 5 (a) shows a clear improvement after tensor SVD 

denoising, as all the points gather more closely to the zero displacement point at the center. In 

Figure 5 (b), accuracy is calculated as the mean displacement of all the Si atoms in the noisy or 

denoised data, and tensor SVD denoised data shows a clear improvement in accuracy when the 

frame rate is 2000 FPS or higher. At 1000 FPS, tensor SVD shows little improvement in peak 

fitting results. A similar scheme has been used to fit the Sr and Ti positions in reconstructed ADF 

images from simulated 4D STEM data on the SrTiO3 model, followed by precision calculated as 

the standard deviation of Sr-Sr bond length and Sr-Ti bond length. The results show about 80% 

improvement after denoising in the precision calculated from Sr-Ti bond length, and over 90% 

improvement in the precision calculated from Sr-Sr bond length over various simulation frame 

rate between 1000 and 10000 FPS.  

 

 



 

Figure 5 (a) Displacement of every Si site between the reconstructed ADF image using 2000 FPS 

noisy or denoised data and the ground truth and the histogram along the x and y direction, (b) 

accuracy calculated from all Si atom positions vs. frame rate used in the simulations 

 

 In general, we expect tensor SVD denoising to be helpful for 4D STEM applications that 

are depend on limited angular range integration or fine features in the CBED patterns, such as 

the lattice symmetry detection. Tensor SVD will be less helpful for the applications such as 

electric field64 and magnetic field65 detection from the center of mass of the CBED patterns, 



since these applications involve integrating over a large group of pixels. Moreover, the 

dimensionality reduction step in tensor SVD does not conserve the total intensity in the CBED 

pattern, so tensor SVD will create errors for applications that rely on the absolute diffraction 

intensity.. 

Figure 6 shows that ranks determined with scree tests from 2D matrices are close to the 

optimal denoising ranks for 3D tensor. Denoised PSNR at an input PSNR of 20 dB for STO and 

22 dB for Si dislocation was computed as a function of the ranks over a wide range (0-100 for rx 

and ry, 0-250 for k dimension) with coarse step size (5 for rx and ry, 10 for k dimension), then 

optimized with a narrow search of increment of 1 along all three dimensions. Figure 4 compares 

the ranks determined by scree plots (blue dots) and the ranks with the highest PSNR (red lines) 

for the simulated STO data and Si dislocation data. For all three dimensions of both structures, 

optimal ranks marked by the red lines are very close to the number of principal components 

determined by the scree plot. This procedure does not, however, consider all possible 

combinations of ranks along all dimensions. 

  



 

Figure 6. Scree plots of rx, ry, and k dimension for (a) - (c) simulated STO data and (d) - (f) 

simulated Si edge dislocation data. Ranks for each dimension that generate optimal denoising 

results are reported above each graph and marked with the red dashed lines. Optimal rank from 

the scree plot is the dividing point between blue data and orange data. 

Computing the optimal rank for output PSNR as a function of input PNSR shows that as 

the noise level increases, the optimal number of principal components decreases. The number of 

principal components on the Si dislocation data along the k dimension decreases to 50 from 180 

with simulated noise corresponding to 10,000 FPS and an input PSNR of 13 dB , and further 



decreases to 20 at 40,000 FPS and an input PSNR of 6 dB . A scree test on noiseless data 

suggests that there are actually 10,500 k dimension components that contribute to the Si 

dislocation data, corresponding to the complexity and variability of the CBED data, but most of 

them are overwhelmed once noise is introduced and cannot be identified nor recovered by 

denoising. 

 

3.2 Alternate Data Shapes 

We have explored other ways to generate a 3D input tensor from the 4D STEM data 

using the simulated 4D STEM data from Si dislocation core. One alternate rearrangement is to 

unfold the real space dimensions rx, ry into one single dimension r to create a 3D tensor that is a 

stack of CBED patterns. The denoising ranks determined from scree tests are 24, 24, and 170 

along the kx, ky, and r dimensions, respectively. The denoised ADF image and CBED patterns 

using this alternate input tensor show improved PSNR, as shown in Figure 5 (c) and (d), but both 

are blurry compared to the ground truth and to the denoising result by unfolding reciprocal space 

dimensions (Figure 3 (d), (e), and (f)). The average PSNR from the denoised data is 34.11 dB, 

about 4 dB lower than the denoised result after unfolding reciprocal space. Unfolding in real  



 

Figure 7. Virtual ADF image and CBED pattern from the periodic region of the Si structure (the 

position of the green dot in Figure 4 (g)) from (a), (b) noisy data, (c), (d) tensor SVD denoised data 

with real space dimensions unfolded into one dimension, (e), (f) tensor SVD denoised data without 

unfolding, (g), (h) ground truth. 

space reduces information about the atomic lattice periodicity in the data, making the low-rank 

representation less effective. The data in reciprocal space are less periodic, so unfolding the 

reciprocal space is more effective. 

Tensor SVD can also treat the four-dimensional data directly, without unfolding, to find 

the best rank-(r1, r2, r3, r4) approximation. For Si dislocation data, denoising ranks determined 

from the scree test are 32, 32, 24, and 24 for two real space dimensions and two reciprocal space 

dimensions, respectively. Tensor SVD denoised 4D data, as shown in Figure 7 (e) and (f), shows 

a blurry virtual ADF image and CBED pattern, and the average PSNR is 35.75 dB. Meanwhile, 

the processing time for 4D input data was 30 times longer than the processing time on 3D input 

data (see section 4.3). As a result, we do not recommend using the original 4D data as the input 



for tensor SVD. From the denoised results using data with unfolded real space dimensions and 

with no unfolding, we suspect that some blurring may occur when trying to reduce the rank for 

dimensions without an effective low-rank representation. 

 

3.3 Tensor SVD Denoising of Experimental 4D STEM Data 

Tensor SVD has been used to denoise experimental 4D STEM data collected on an STO 

[100] single crystal sample and at the interface of a LiZnSb [112�0] hexagonal Heusler alloy thin 

film grown on GaSb [110] substrate. Experimentally collected data has a more complex noise 

distribution that does not obey Poisson statistics, and it suffers from scan distortion during data 

acquisition, both of which introduce added complexity compared to simulated data. 

Figure 8 (a) - (d) show tensor SVD’s denoising performance on the experimental STO 

data. The denoised ADF image is significantly improved, with clear atomic sites and higher 

SNR, and the denoised CBED pattern shows clear arc-shaped features from the Bragg diffraction 

disks. Scan distortions and other imperfections also are preserved in the denoised image. The top 

part of the denoised ADF image shows sheared atoms as a result of sample drift. The tensor 

ranks for STO data are determined to be 30, 32, and 180 for rx, ry, and k, respectively, from the 

scree plots shown in Figure 8 (i) - (k). The ranks are significantly higher than the ranks used for 

simulated STO data, probably as a result of non-ideal data collection conditions like drift and 

probe jitter. Tensor SVD denoising took 538.9 sec to compute on this 1.6 GB data set, once the 

ranks were determined. This includes computing the low-rank tensor representation and the 

reconstructed data set. 



Figure 8 (e) - (h) show tensor SVD’s denoising performance on the LiZnSb/GaSb 

interface data. The bottom left part of the sample has been damaged in the FIB, and the sample is 

significantly thicker than the STO sample. The virtual ADF image shown in Figure 8 (g) from 

denoised data shows higher SNR with clear atomic sites compare to the noisy ADF image shown 

in Figure 8 (e). The denoised CBED pattern shows smooth intensity variation with fewer high-

intensity pixels generated by random noise, especially in the dark field region. There are no arc  

 

Figure 8 Denoising experimental 4D STEM data: (a) – (h) Virtual ADF images and single CBED 

patterns pairs. The right half of each CBED is shown as the square root of intensity to emphasize 

weak features. The color scales are for the linear left half of each image. (a) – (d) Data from STO 

[100]: (a), (b) as acquired, (c), (d) after tensor SVD denoising. (e) – (f) Data from a LiZnSb [112�0] 

/ GaSb [110] interface: (e), (f) as acquired, (g), (h) after tensor SVD denoising. (i) – (n) Scree plots 

used to determine the tensor rank for denoising. Components in blue are retained and components 



in orange are discarded in the denoised reconstruction of the data. The 0 component which 

represents the mean of the data is omitted from the graphs. (i) – (k) STO. scree plots. (l) – (n) 

LiZnSb / GaSb scree plots. 

features from Bragg disks because of the sample thickness. The tensor ranks are 35, 38, and 180 

for rx, ry, and k, determined using the scree plots shown in Figure 6 (l) - (n). The denoising ranks 

are very close to the ranks used for STO data, even though the LiZnSb/GaSb sample consists of 

two different lattice structures, confirming that the rank is heavily influenced by non-sample 

factors like scan distortion. It took 575.0 sec for tensor SVD to denoise the 2.7 GB LiZnSb/GaSb 

experimental data. The processing time was mostly determined by the tensor ranks, so the 

processing times for LiZnSb data and STO data were similar even though the LiZnSb data is 

about 60% larger than the STO data (see section 4.1 for a detailed discussion). 

 

3.4 Applications to 3D Spectrum Image Data Sets 

We have applied tensor SVD to denoise EDS spectrum images acquired from [001] zone 

axis of a Ca-stabilized Nd2/3TiO3 sample (previously published in Ref. 35,66). This data set has a 

much lower signal than the 4D STEM data, with a mean value of 0.015 counts across the entire 

data set. The EDS spectrum images from 1000 energy channels were integrated into seven 

elemental maps corresponding to seven elemental x-ray bands (O Kα, Ca Kα, Ti Kα, Ti Kβ, Nd 

Lα, Nd Lβ, and Nd Lβ4), which increases the mean signal to 1.8 counts. Scree tests show that 

tensor SVD ranks should be 10, 10, and 7 along x, y, and the energy dimensions, respectively. 

For comparison, NLPCA and matrix PCA denoised results were replotted from ref 35. 



Figure 9 shows the tensor SVD results compared to NLPCA and matrix PCA results 

replotted from Ref 35. The tensor SVD performance is better than matrix PCA but not as good as 

NLPCA. Tensor SVD shows improved SNR for both the Nd and Ti maps and is able to 

distinguish the difference in the atomic sites occupied by Ti and Nd. The denoised Ca map from 

tensor SVD is smoother than the raw data with reduced noise. However, the lattice structures 

shown in the Ca map does not agree with the NLPCA denoised result and does not show separate 

atomic sites. We suspect the features in the denoised Ca map could be mostly denoising artifacts. 

Overall, NLPCA denoising results in clearer atomic features, especially on the low signal Ca 

map. This is perhaps unsurprising, given that NLPCA was developed for extreme noisy data36, 

including features like the non-local approach and Poisson maximum-likelihood similarity 

measurement. Tensor SVD computing time for this small data set are very short (0.1 sec in this 

case).  



 

 

Figure 9, EDS elemental maps from (a) noisy data, (b) tensor SVD denoised data, (c) NLPCA 

denoised data, and (d) matrix PCA denoised data displayed in the order of Ca, Ti, Nd, from left to 

right. (a), (c) and (d) are replotted from the data in ref 35. 

 



3.5 Comparison to Other Methods for 4D STEM Denoising 

Subsets of the simulated 4D STEM data with reduced size in reciprocal space were 

constructed from both STO and Si dislocation simulations to compare the performance of tensor 

SVD, NLPCA, BM4D, and matrix PCA. Reduced data size was required in order to 

accommodate the massive memory requirements of NLPCA. The subset was selected by keeping 

all the pixels in real space but using a 10-by-10 pixel patch covering a square area with 5 mrad 

side length around the optical axis in reciprocal space. The final 3D tensor input with reciprocal 

space unfolded into one dimension has 114×114×100 data size. 

Figure 10 shows the comparison between tensor SVD, NLPCA, BM4D, and matrix PCA 

using the reduced data. Due to a small region of reciprocal space involved, the contrast on the 

virtual real space image is different from what we would typically expect from a round-shaped 

bright-field detector covering a range of collection angles. For example, the virtual image does 

not show structural details such as the dumbbell shape Si atom pairs. All four methods 

effectively remove image noise and improve SNR. For example, the virtual image and CBED 

pattern subset from tensor SVD and NLPCA are visually indistinguishable from the ground truth. 

The BM4D denoised CBED patterns show some visible mismatch to the ground truth and some 

pixels with visible noise. Matrix PCA denoised CBED pattern looks smooth without significant 

noisy pixels, but the intensity is not a good match to the ground truth. The PSNR results in 

Figure 10 (e) and (f) show that across a wide range of input PSNRs, tensor SVD and NLPCA 

improve PSNR by 20 - 25 dB, and BM4D and matrix PCA improve PSNR by 10 - 15 dB. Tensor 

SVD has either the best performance or close to the best performance among the four methods in 

terms of PSNR. A similar conclusion can be drawn using other metrics to measure the denoising 

performance, including SSIM59 and MSE without the normalization step used in PSNR. Figure 8 



also shows the elapsed computing required for the various algorithms for this 10 MB data set. 

Matrix PCA is the fastest, followed by tensor SVD, and both of those approaches are at least 100 

times faster than BM4D or NLPCA. Optimizing the denoising rank for each noise level improves 

the PSNR on the Si dislocation data, but has little improvement on STO data.  

NLPCA is much slower than the rank-reduction methods but has the best denoising 

performance at high input noise level, as the method was designed and optimized to handle 

extremely low signal cases with a sophisticated clustering method for similarity detection and a 

Poisson noise specific similarity measure. The BM4D and matrix PCA methods do not denoise 

well on either the STO or Si dislocation structure compared to NLPCA and tensor SVD, but 

matrix PCA is the fastest one among the four different methods. We suspect one of the reasons 

behind BM4D’s poor performance is that similar cubes are searched only within the search-cube 

size, which does not capture the overall periodicity from the lattice structure.  



 

Figure 10. Comparison of tensor SVD to other denoising methods: (a) virtual images from 

simulated STO data, (b) CBED pattern patches from STO. data, (c) virtual images from simulated 

Si dislocation data, (d) CBED pattern subset from Si dislocation data extracted. (a) – (d) use the 

signal level of 1000 fps experimental data, and the numbers in (b) and (d) are the computing time 

required for denoising. (e)-(f) PSNR of the denoised data as a function of input noise level for (e) 

STO data and (f) Si dislocation data. 



4. Discussion 

Tensor SVD provides similar or better performance than the other state-of-the-art 

methods we have tested, NLPCA and BM4D, at a fraction of the computing time. The majority 

of computing time in tensor SVD problem is spent on matrix SVD calculations as the HOOI 

algorithm goes through each dimension to update the corresponding unitary matrix U(k). For each 

dimension, an eigenvalue problem is solved on a square matrix with the size equal to the product 

of ranks for all the rest of the dimensions. When using 4D data instead of 3D data, the algorithm 

loops over one more dimension within each iteration of HOOI, and the eigenvalue problem for 

each dimension must be solved on a much larger matrix. As a result, the processing time on 4D 

data is tens of times longer than the processing time on a rearranged 3D data for the data sets 

tested here and will scale non-linearly with the data dimensions. 

The computing time for tensor SVD does not vary for different data sets when the denoising 

ranks are fixed, which makes it easy to predict the computation time. In contrast, both NLPCA 

and BM4D can have varying computing time for different data sets even of the same size 

because different data can result in different clustering of the non-local patches. For NLPCA, if 

the majority of the patches are grouped inside one cluster, then the PCA step on this cluster will 

be slow, and the denoising process will be slower compared to the cases when the cubes are 

uniformly distributed over multiple clusters. 

Another advantage of tensor SVD is that it occupies a comparatively small amount of 

memory while denoising, especially compared to the non-local methods. Our implementation of 

tensor SVD has a peak memory consumption that is two times the original data size, which 

makes it possible to handle larger data sets. The computing time and memory use for matrix 

PCA are both smaller than for tensor SVD, but the performance is worse. 



We realize that computing time and memory requirements are implementation-dependent. 

All the results from tensor SVD, NLPCA, and BM4D presented here are based on a single-

threaded implementation in Matlab using a personal computer to allow an “apples to apples” 

comparison. A single-threaded implementation of tensor SVD in python made available as part 

of the Hyperspy package has similar performance. Processing time for tensor SVD probably 

could be shortened using GPU computing with careful consideration of the use of memory. 

Although we have not tested it, tensor SVD denoising of low-resolution 4D STEM data 

using a small convergence angle and large electron probe for strain mapping67,68 or to measure 

the structure of an amorphous material1,69 should be possible. Tensor SVD may be less effective 

than for atomic resolution 4D STEM data, however, as the lower periodicity in the data may 

mean that the intrinsic tensor rank is higher. For orientation mapping, for example, unwrapping 

in real space to preserve the small number of distinct patterns in reciprocal space may generate 

better results. Tensor SVD should also be capable of identifying prototype diffraction patterns 

from large data sets for phase and orientation mapping. 

 

5. Conclusions 

Tensor SVD is a method to find a low-rank representation of tensor data. It is analogous to 

component analysis of matrix data using PCA, but it preserves the full three or four (or more) 

dimensional structure of the data set. We have used tensor SVD to denoise atomic-resolution 4D 

STEM data. The method can be directly applied to multiple GB 4D STEM data sets with the 

adjustable parameters determined by scree tests. Computing times on a typical desktop computer 

is a few minutes, and the required memory is twice the size of the data. Tests on simulated data 



show that tensor SVD can benefit applications include symmetry STEM and atom position 

fitting, especially under a limited electron dose. Measured by PSNR of the denoised data, tensor 

SVD has the best or close to the best performance compared to other state-of-the-art methods 

which require substantially more computation time and memory. Tests on experimental data 

show that tensor SVD significantly improves the signal to noise ratio, and the denoised data 

shows clearer structures in both real space images and CBED patterns. Tensor SVD can also be 

applied to other high dimensional data sets, such as EDS spectrum images. 
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