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The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat
transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a
theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of
nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this
process. Using this formalism, we identify the fundamental principles that determine the thermalization of
collections of nanostructures, revealing general but often unintuitive dynamics. Our results provide an
elegant and precise approach to efficiently analyze the temporal dynamics of the near-field radiative heat
transfer in systems containing a large number of nanoparticles.
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The thermal radiation exchanged between macroscopic
bodies separated by macroscopic distances is accurately
described by Planck’s law [1]. However, this description
breaks down when the distance between objects or
their size becomes significantly smaller than the so-called
thermal wavelength, which, for a temperature 7, is
A = 2mhe/(kgT). In this limit, the contribution of near-
field components of the electromagnetic field [2-10],
together with the strong responses provided by the electro-
magnetic resonances of nanostructures [11-18], results in
enhanced radiative heat transfer (RHT), which can surpass
the blackbody limit by several orders of magnitude [19-23].

Near-field RHT is usually described within the frame-
work of fluctuational electrodynamics [23,24]. In particular,
when considering collections of nanostructures, a dipole
approximation, where each nanoparticle is modeled as a
fluctuating dipole, can be exploited [16,23,25-27]. By
doing so, it is possible to calculate the power transferred
between the different constituents for a particular fixed
distribution of temperatures [16,28—-30]. However, if one is
interested in understanding the temporal evolution of the
particle temperatures, this approach presents several dis-
advantages. Specifically, since the power transferred
between the particles depends on their temperatures, which
change over time, it is necessary to perform a new calcu-
lation at each step in the temporal evolution [31-34]. As a
result, this approach provides little insight into the funda-
mental principles that determine the thermalization dynam-
ics, requires separate calculations for each initial condition,
and, in addition, can be computationally unfeasible when the
number of particles is sufficiently large.

In this Letter, we present a different approach to describe
the thermalization dynamics of ensembles of nanoparticles.
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Our approach is based on linearizing the equations that
govern the power transferred between the nanoparticles,
which allows us to convert them into an eigenvalue
problem. By doing so, we find a set of RHT eigenmodes
for the ensemble, which completely describe the evolution
of the system under any possible initial temperature
distribution. Eigenmode expansions have been applied to
a vast range of topics as a way to reveal physical insight
[35-39]. Here, using this approach, we identify the general
principles that control the thermalization process mediated
by near-field RHT, which often give rise to unintuitive
behaviors. This insight leads us to explore exotic scenarios,
including dynamics in which the temperature of a particle
oscillates around the equilibrium temperature as it thermal-
izes. The simplicity of this formalism makes it an elegant
and efficient method to describe the dynamics of the near-
field RHT in ensembles with many nanoparticles.

We consider an ensemble of N nanospheres with radii R;
and temperatures T, placed at positions r; and surrounded
by vacuum at 7'y, which we fix to 300K for the remainder of
this Letter. We assume that, for all particles, R; << A7 and
all interparticle distances d;; = [r; —r;| > 4max(R;, R;),
but significantly smaller than Ay. Therefore, we model the
nanoparticles as fluctuating dipoles with electric polar-
izabilities @;. Following previous works [25-27,31], the
power absorbed by particle i is (see Ref. [40] for details)

P=) / " dof y(@)n(@. ;) - n(@. To)], (1)

where n(w,T) = [exp(hw/kzT)—1]7" is the Bose-Einstein
distribution and f;;(®) = (2h@/x)Tr[Im{A; Im{x;}C;;}].

© 2021 American Physical Society


https://orcid.org/0000-0001-6001-9828
https://orcid.org/0000-0003-1850-5210
https://orcid.org/0000-0002-2379-1242
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.193601&domain=pdf&date_stamp=2021-05-12
https://doi.org/10.1103/PhysRevLett.126.193601
https://doi.org/10.1103/PhysRevLett.126.193601
https://doi.org/10.1103/PhysRevLett.126.193601
https://doi.org/10.1103/PhysRevLett.126.193601

PHYSICAL REVIEW LETTERS 126, 193601 (2021)

In this expression, “+” represents the conjugate transpose,
the trace is taken over Cartesian components, and the
different matrices, with dimensions 3N x 3N, are defined as
A=[T-aG]™", C=(G+GYA, and y = a -G’ "a,
with Z being the identity matrix, & a matrix with the
polarizabilities, G the dipole-dipole interaction tensor, and
G" = (2iw*/3c*)Z. This model can be generalized to
particles with magnetic response by including a magnetic
polarizability [16,30].

The temporal evolution of the temperatures of the nano-
particles is determined by the ratio between the power they
absorb P; and their heat capacities y;. By expanding n(w, T)
around T, as n(w,T;)~n(w,Ty) + AT ;0n(0,T) /0T |r_7,
with AT; = T; — T, we can linearize Eq. (1) to obtain the
differential equation governing the evolution of the nano-
particle temperatures:

d
TAT(r) = —HAT(1). 2)

Here, H = I'"'F is the product of the inverse of a diagonal
matrix I' containing the heat capacities of the nanoparticles y;
and a symmetric matrix F with components

o on(w, T
Fij= —/ dwfij(w)%

0

T=T,

As shown in Ref. [40], the structure of H ensures its
diagonalizability. This allows us to write the solution of
Eq. (2) using its eigenvalues 4, and eigenvectors AT W) as

N
AT(1) =) a,e™ s ATW, (3)
u=1

where the coefficients a, are obtained from the weighted
inner product between A7 *) and the vector containing the
initial temperatures AT(0) as a, = Y N, yiATi(O)ATl(.”),
with the eigenvectors satisfying Y ¥ y,-A’TS” )AT§”> =68,
Therefore, we conclude from Eq. (3) that the dynamics of the
near-field RHT of an ensemble of nanoparticles can be
completely understood by analyzing its RHT eigenmodes
and decay rates given, respectively, by the eigenvectors and
eigenvalues of H. Importantly, H is positive definite (i.e.,
Ay > 0), which ensures that the ensemble thermalizes as
t — oo.

This approach assumes that the temperature dependence
of the material properties of the nanoparticles can be
neglected. Furthermore, as discussed in Ref. [40], its
accuracy improves as max(|AT;|/Ty) and hwy/(kgTy)
decrease. Here, m, represents the characteristic frequency
of the electromagnetic response of the nanoparticles.
For the systems under consideration, the results of the
eigenmode approach have very good agreement with the

() - .d, D Olar
2RIQO O O O I

(b) 16—

QU

T T T T T
max A=A, =8470.8 s A, =12596.6s"

Oe @0
@0 OCe@

A L/ e A, =11163.1 5"
@

w
S
T

A (103sT)
o0
._>,I
S g
L
“e
]
|
]
|
I
I
L
e
\\\\
E\\\\
AR
A
AYEAN
L Il L

o A, =7833.65" ]

I @x;us* R=25nm,d=4R.
T Il L Il L Il

1 2 3 4
Eigenmode
(C) rorrrrey rorrrT rorrrr oy
L[] L[] LN J
Chain R=25nm
L[] L[] LN )
___________________ d=4R oo
[ ] LN J
Square | d=12R
... sl .. ?lnnnl sl Lol L
10° 10! 102 ' 10° 104
A, (5)
FIG. 1. (a) Schematics of the systems under study. (b) Decay

rates of the RHT eigenmodes of the two systems assuming
R =25 nm and d = 4R. The insets display the components of
the RHT eigenmodes and the value of the associated decay rate.
(c) Decay rates for different values of d.

nonlinearized full calculation up to max(|AT;|/T,) =~ 1/3,
as shown in Ref. [40].

To illustrate the developed framework, we consider a
simple example, although the conclusions we draw are
general to any ensemble of nanoparticles. In particular,
we analyze the two systems depicted in Fig. 1(a),
consisting of N = 4 identical SiC spherical nanoparticles
arranged in either a chain or a square (see Ref. [40] for a
similar analysis of a system with N = 2197). We obtain
the polarizability of the particles from the dipolar Mie
coefficient [44] using the dielectric function &(w) =
exll + (@7 —@7)/ (0% — @* —iwt™")], with ey, = 6.7,
hwyr=98.3meV, hw, =120meV, and Ar~! = 0.59 meV
[45]. Figure 1(b) analyzes the RHT eigenmodes of the
chain (black) and the square (gray) assuming that the
particles have a radius R = 25 nm and are separated by
d = 4R. The chain has four distinct eigenmodes, while the
larger symmetry of the square results in two of its modes
being degenerate. Since particles with the same temperature
do not exchange heat with one another, every ensemble,
including the two analyzed here, must always have an
eigenmode with equal amplitude in all particles. This
eigenmode, which we label as y = 1, represents a net
transfer of heat between the ensemble and the environment
and, as explained below, always has the slowest decay rate.
The orthogonality of the eigenmodes forces the rest of them

to satisfy > N, y,AT ,(.” *1 = 0, which physically means
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that they represent processes in which the heat stored in
the ensemble remains constant. Therefore, every eigen-
mode with g > 1 describes a near-field RHT process
among the nanoparticles of the ensemble. Examining the
components of these eigenmodes, we observe that, as u
increases, the length scale over which the sign of the
components alternates, and hence the near-field RHT
occurs, decreases. This is consistent with the increase of
the associated decay rate, whose value is dominated by
terms proportional to (R;R;)*/dY;. In contrast, 2, describes
the net radiation exchange between the ensemble and the
environment, which scales as (R;/Ar)>. Therefore, for near-
field RHT (i.e., d;; < A7), 4; always has the smallest value
among all of the decay rates, although, as shown in Fig. 1(c),
the difference between A; and the rest of the decay rates is
reduced by increasing the distance between the particles.

We know from Eq. (3) that the thermalization of
an ensemble of particles is initially dominated by the
eigenmodes with largest decay rates. However, for suffi-
ciently long time, this process is controlled by the first
eigenmode, which, as discussed above, has equal amplitude
in all particles and, consequently, its decay rate is the
smallest. Therefore, in the limit + — oo, the thermalization
dynamics of a given ensemble depends exclusively on
a; < > N y;AT;(0), or, in other words, the total heat
initially stored in it. This gives rise to interesting behaviors,
as illustrated in Fig. 2(a). There, we analyze the thermal-
ization dynamics of a square array of N = 49 identical SiC
particles with R = 25 nm and d = 4R (solid curves). We
consider different initial temperature distributions, all of
them corresponding to the same value of a;. Specifically,
the gray curve displays the evolution of the temperature of
the nanoparticles when all of them begin at AT = 1 K. On
the other hand, the colored curves represent different
scenarios where only one particle, indicated in the sche-
matics using the same color, is initially hot at AT = 49 K.
One might anticipate that when all of the particles begin at
AT =1 K, the system would thermalize most quickly to
the environment. However, as seen in Fig. 2(a), this is not
the case. Instead, in all of the scenarios under consideration,
all of the particles approach the equilibrium identically
as e~M',

Interestingly, for the scenarios in which only one particle
is initially hot, the thermalization process happens over two
steps: first, all of the particles converge to AT = 1 K, and,
second, the whole array thermalizes to the environment.
This behavior is the result of the large difference between 4,
and the rest of the decay rates, as shown in Ref. [40].
Therefore, if such difference is decreased by, for instance,
increasing the interparticle distance to d = 12R, the two-
step behavior fades away, as shown by the dashed curves.

Although, so far, we have only considered ordered
distributions of particles, our conclusions apply to any
arbitrary ensemble of particles. For example, in Fig. 2(b),
we consider an ensemble of N =490 identical SiC
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FIG. 2. (a) Thermalization dynamics for an array of N = 49
SiC nanoparticles with R = 25 nm under different initial con-
ditions. The colored curves display the evolution of the temper-
ature of the particle of that color in the inset schematics,
when such particle is initially at AT =49 K and the rest at
AT = 0 K. The gray curves represent the case where all of the
particles are initially at AT =49/N K. In all cases, solid and
dashed curves correspond to d = 4R and d = 12R. (b) Same as
(a), but for an ensemble of N =490 SiC nanoparticles with
R =25 nm, randomly distributed inside a spherical volume of
radius 600 nm with a minimum interparticle distance d,,;, = 4R
(see schematics).

nanoparticles with R = 25 nm randomly arranged within
a spherical volume of radius 600 nm, as shown in the inset.
As in Fig. 2(a), we compare the thermalization process for
four different initial conditions; in three of them, one
particle, marked in the schematics with the same color
as its corresponding curve, begins at AT = 49 K, while, in
the fourth (gray curve), all of the particles begin at
AT = 0.1 K. As expected, since a; takes the same value
for all of the cases, they all approach the thermalization to
the environment identically, despite their very different
initial temperature distributions.

Another interesting scenario to consider is when the
initial distribution of temperatures is orthogonal to the first
RHT eigenmode and, hence, a; = 0. Physically, this means
that, although the system is not thermalized, the total
amount of heat initially stored in it is zero. In this case,
the thermalization process is governed entirely by the
eigenmodes describing the near-field RHT between the
particles, since a net transfer of heat to the environment
(described by the first RHT eigenmode) is forbidden. To
illustrate this, in Fig. 3(a), we study the thermalization
dynamics of the array of Fig. 2(a) with d = 4R, for the
initial temperature distributions depicted in the insets of
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FIG. 3. (a) Thermalization dynamics for a hot (red curves) and a
cold (blue curves) particle in an array of N =49 SiC nano-
particles with R = 25 nm and d = 4R. The red and blue particles
are initially at AT =49 K and AT = —49 K, respectively, while
the rest are at AT = 0 K. We consider the two cases depicted in
the schematics, which are displayed with solid and dashed curves,
respectively. For comparison, the gray curve represents the
thermalization dynamics when all of the particles are initially
at AT =49/N K. (b) Enlargement of (a) around AT =0 K.

Fig. 3(a). In both of them, one particle begins at AT =
49 K and another at AT = —49 K, while the rest of the
array is at AT = 0 K, so a; = 0. The corresponding results
are displayed using solid and dashed curves, as indicated by
the legend, with red and blue colors describing, respec-
tively, the temperature of the hot and cold particles. As
expected, in both cases, the thermalization of the array
occurs on a timescale ~4;! =~ 107 s. This is much faster
than the thermalization when all of the nanoparticles begin
at AT =1 K (gray curve), even though, in that case, the
particles have to undergo a temperature change of only 1K
[see Fig. 3(b) for an enlargement around AT = 0 K]. The
reason is, again, the large difference between 4., and 4;.

Interestingly, the closer look provided in Fig. 3(b)
reveals an unituitive behavior: when the hot and cold
particles are next to each other (dashed curves), the
temperature of the initially cold particle rises beyond AT =
0 K and subsequently approaches it from above. We
attribute this behavior to the difference in the local
environment of the two nanoparticles; while the hot one
lies on the corner of the array, the cold one is situated in the
interior and is therefore surrounded by more particles. This
creates an imbalance in the cooling and heating rates of the
two particles.

We can use the RHT eigenmode framework to gain more
insight into this oscillatory behavior. To that end, we
analyze a simpler system that exhibits similar oscillatory
dynamics but in a more pronounced way. In particular,
we consider the chain of N =35 SiC nanoparticles with
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FIG. 4. (a) Thermalization dynamics for a chain with N =5
SiC nanoparticles arranged as shown in the schematics. We
assume that R = 10 nm, d = 4R, and the nanoparticles are
initially at AT = 50, 50, 25, —50, and —50 K. (b) RHT eigenm-
odes of the chain and their associated decay rates.

R =10 nm and d = 4R, shown in the schematics of Fig. 4.
The particles are initially at AT = 50, 50, 25, —50, and
—50 K. The different curves in Fig. 4(a) show the evolution
of the temperature of the particle with matching color. As
the particles thermalize, their temperatures oscillate around
AT = 0 K, with the center one (yellow) crossing this value
4 times throughout the process. The origin of this exotic
behavior becomes clear by considering the RHT eigen-
modes of the system, which are shown, with their corre-
sponding decay rates, in Fig. 4(b). Specifically, the initial
stage of the thermalization is dominated by the eigenmode
with the largest decay rate, which corresponds to a near-
field RHT process happening almost exclusively between
the center nanoparticle and its nearest neighbor. After that,
the contribution of the next fastest eigenmode drives the
thermalization of both of those particles with their next-
nearest neighbor. This pattern repeats with each successive
eigenmode, resulting in the observed oscillatory behavior
of AT.

In conclusion, we have presented a theoretical frame-
work to characterize the temporal dynamics of the near-
field RHT in arbitrary ensembles of nanoparticles. Our
approach is based on an eigenmode expansion of the
equations that govern the RHT, obtained upon their
linearization. The resulting set of eigenmodes completely
characterize the RHT between the constituents of the
ensemble and their environment and therefore allow us
to express, in a closed form, the evolution of the tempera-
tures of the particles for any initial condition. Exploiting
this formalism, we have identified general characteristics of
the dynamics of RHT, which often present themselves in
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unintuitive ways. Specifically, we have shown that an
ensemble of nanoparticles beginning with a fixed amount
of stored heat always approaches thermalization identically,
regardless of how that heat is initially distributed. Similarly,
when the total initial heat stored in an ensemble is zero, the
system reaches thermal equilibrium faster than the case
where there is any initially stored heat. We have also
predicted and explained an exotic behavior in which the
temperature of nanoparticles oscillates around the equilib-
rium value as they thermalize. Our results provide an
insightful and computationally efficient approach to study
the thermalization dynamics mediated by the near-field
RHT, which will facilitate the systematic investigation of
the impact that novel phenomena, such as topology [46]
and nonreciprocity [47,48], have on this process.
Furthermore, this framework can be exploited to analyze
the combined transfer of energy and momentum mediated
by the fluctuations of the electromagnetic field [39].
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