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ABSTRACT

Stochastic models of character trait evolution have become a cornerstone of evolutionary biology in an 

array of contexts. While probabilistic models have been used extensively for statistical inference, they 

have largely been ignored for the purpose of measuring distances between phylogeny-aware models. 

Recent contributions to the problem of phylogenetic distance computation have highlighted the 

importance of explicitly considering evolutionary model parameters and their impacts on molecular 

sequence data when quantifying dissimilarity between trees. By comparing two phylogenies in terms 

of their induced probability distributions that are functions of many model parameters, these distances 

can be more informative than traditional approaches that rely strictly on differences in topology or 

branch lengths alone. Currently, however, these approaches are designed for comparing models of 

nucleotide substitution and gene tree distributions, and thus, are unable to address other classes of traits 

and associated models that may be of interest to evolutionary biologists. Here we expand the principles 

of probabilistic phylogenetic distances to compute tree distances under models of continuous trait 

evolution along a phylogeny. By explicitly considering both the degree of relatedness among species 

and the evolutionary processes that collectively give rise to character traits, these distances provide a 

foundation for comparing models and their predictions, and for quantifying the impacts of assuming 

one phylogenetic background over another while studying the evolution of a particular trait. We 

demonstrate the properties of these approaches using theory, simulations, and several empirical datasets 

that highlight potential uses of probabilistic distances in many scenarios. We also introduce an open-

source R package named PRDATR for easy application by the scientific community for computing 

phylogenetic distances under models of character trait evolution.

Keywords: comparative methods, quantitative traits, Brownian motion, phylogeny
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INTRODUCTION

Probabilistic models of character trait evolution have become invaluable tools across many fields of 

evolutionary biology. Indeed, stochastic evolutionary models are the heart of comparative methods 

(e.g., Felsenstein 1985), and an incredibly diverse body of literature now exists that includes numerous 

applications of such models for phylogenetic reconstruction (e.g, Liò and Goldman 1998), ancestral 

state reconstruction (e.g., Schluter et al. 1997), and evolutionary rate estimation (e.g., Martins 1994), 

as well as for studies of coevolution (e.g., Ronquist 1997), adaptation (e.g., Revell et al. 2010), lineage 

diversification (e.g., O’Meara and Beaulieu 2016), and correlated trait evolution (e.g., Bawa et al. 

2018). At a fundamental level, these models are designed to parameterize the probability distributions 

of character traits conditioned upon a particular phylogenetic tree and set of evolutionary parameters, 

which themselves are designed to capture pertinent processes that influence traits over time. Thus, 

probabilistic models of trait evolution provide a vehicle for interpreting biodiversity in light of both the 

processes and the phylogenetic history of organisms that collectively shape biological variation 

observed in nature.

Given such widespread adoption of probabilistic models for studying evolution, it is somewhat 

surprising that these same models have been relatively ignored for the purpose of measuring distances 

between trees conditioning on such phylogeny-aware models. Tree comparisons are a routine yet 

essential part of phylogenetic analysis that can be useful for elucidating methodological shortcomings 

and statistical biases in tree reconstruction methods (e.g., Reddy et al. 2017), as well as for more general 

study of macroevolutionary (e.g., Watanabe and Slice 2014) and microevolutionary processes (e.g., 

Yahara et al. 2014). There is now a wealth of frameworks for computing tree distances, including the 

Robinson-Foulds metric (Robinson and Foulds 1979), the Billera-Holmes-Vogtmann (BHV) or 

geodesic metric (Billera et al. 2001), and the path-length-difference metric (Penny et al. 1993), among 

others (Estabrook et al. 1985; Lin et al. 2012; Kuhner and Yamato 2015; Colijn and Plazzotta 2018). 
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Though widely employed throughout the literature, these more traditional approaches are primarily 

concerned with measuring differences in the branching structure (i.e., topology) and/or branch lengths 

of trees, and they do not explicitly consider any particular evolutionary process that may act on 

genotypic or phenotypic variation. 

From a modeling perspective, however, phylogenies are more than just a topology and set of 

branch lengths: they define the degree of covariation in character traits expected among lineages, and 

thus, provide a fundamental framework for studying trait evolutionary processes, which has broad 

relevance for many fields and applications (e.g., O’Meara 2012; Nunn 2013; Pennell and Harmon 

2013). Coupled with a model of evolution, trees can therefore be identified as points on a space of 

distributions over characters traits, which have been referred to as “phylogenetic oranges” (Kim 2020; 

Moulton and Steel 2004). While likelihood-based model selection is often conducted before or 

alongside parameter estimation for both continuous (e.g., Eastman et al. 2011; Uyeda and Harmon, 

2014) and discrete traits (e.g., Huelsenbeck et al. 2004; Drummond and Suchard 2010), post-inference 

comparison of fitted trees is typically conducted without reference to the models themselves using the 

Robinson-Foulds or BHV metric, for example. Importantly, most of these classical measures of 

phylogenetic distance ignore this information, such that new approaches that more effectively 

incorporate aspects of the evolutionary process alongside knowledge of organismal relationships hold 

promise for conducting comparisons of trees at finer resolutions.

Recently, two probabilistic frameworks have been proposed for computing phylogenetic 

distances—one for comparing trees in terms of their underlying probability distributions over 

nucleotide site patterns for genetic sequence data (Garba et al. 2018), and another for quantifying 

distances between gene tree distributions under the multispecies coalescent model (Adams and Castoe 

2019b). From this model-based perspective, the distance between two trees is measured as the distance 

between their induced probability distributions, which are functions of all relevant parameters specified 
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in the evolutionary models (e.g., substitution rates, base equilibrium frequencies, and random mating) 

in addition to properties of the gene tree or species tree (i.e., topology and branch lengths). For example, 

the distances of Garba et al. (2018) assume generalized time-reversible (GTR; Tavaré 1986) 

substitution models to compare two trees in terms of their underlying probability distributions, and 

thus, these distances can detect underlying differences in substitution parameters, topology, and/or 

branch lengths that influence nucleotide site pattern probabilities. Similarly, the species tree distances 

proposed by Adams and Castoe (2019b) employ coalescent theory to measure the distance between 

two multispecies coalescent models (i.e., two species trees) in terms of their gene tree probability 

distributions, which are influenced by demographic parameters such as effective population sizes, 

divergence times, and species topologies. A key advantage of using a probabilistic approach to tree 

distance is that it provides a natural means for assessing model identifiability, which is required for 

inference to be possible. Two models that induce identical probability distributions will yield a 

corresponding distance of zero, such that even an infinite amount of data will be unable to distinguish 

between the two (Zhu and Degnan 2017). Recently, probabilistic distances have also been leveraged to 

define new spaces to model phylogenies (Garba et al. 2020). Collectively, these new approaches 

represent a targeted effort to more effectively leverage a longstanding model-based perspective that 

has been used extensively for decades to both study evolutionary process and estimate trees, but not 

necessarily to compare them with one another in terms of their probability distributions over traits.  

A critical limitation of these newly-proposed, probabilistic-based distance approaches is that, 

in their current form, they are not readily applicable to the many other types of traits and models that 

may be important in evolutionary studies. In particular, these probabilistic-based distances of 

phylogenetic trees do not currently consider continuous traits and associated models. However, these 

previous approaches do suggest a promising opportunity for comparing phylogeny-aware models of 

continuous trait evolution in a similar manner. In this study, we expand the framework of probabilistic 
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phylogenetic distances to incorporate these traits and associated models in an effort to provide more 

meaningful measures of tree distance. These distances seek to compare two phylogeny-aware 

evolutionary models in terms of their underlying probability distributions over continuous character 

traits, rather than on their topology and/or branch lengths alone. We demonstrate these probabilistic 

phylogenetic distances using theory, simulations, and empirical analyses, which collectively highlight 

the value of this approach for investigating continuous trait models and their predictions under an array 

of conditions. We examine the application of these measures across a range of diverse phylogenetic 

frameworks with different tree topologies and sizes (i.e., numbers of taxa), which provide insight into 

both their theoretical properties and empirical applications.

METHODS

Background: Probabilistic Phylogenetic Distances and Continuous Trait Models of Evolution

Though originally described in the context of nucleotide sequence data and models, it is relatively 

straightforward to extend the framework of Garba et al. (2018) for the purpose of measuring distances 

between other types of traits and models. We first note that the distance equations of Garba et al. (2018) 

can be used with only minimal modification for the purpose of comparing discrete trait models because 

they are based on standard four-state models of nucleotide substitution. These principles can therefore 

be adopted for computing distances under similar k-state ( ) discrete trait models by 𝑘 ∈ {2,3,…}

incorporating an appropriate k-state Markov model, such as the Cavender-Farris-Neyman (Neyman 

1971; Farris 1973; Cavender 1978) for binary traits, the Mk model (Pagel 1994; Lewis 2001) for k = 2 

or more models, or even 20-state models of amino acid substitution (e.g., Dayhoff et al. 1978). 

However, these distances are based on assumptions underlying discrete trait evolution, and therefore 

cannot be applied for continuous traits in their current form. 
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We therefore primarily focus on deriving and applying probabilistic phylogenetic distances 

under models of continuous trait evolution that are not currently considered by these approaches. A 

multitude of different models have been proposed for studying the evolution of continuous traits along 

a phylogeny, with many of them developed as extensions to the familiar Brownian motion (BM) model 

(Cavalli-Sforza and Edwards 1967; Felsenstein 1973), which includes an evolutionary rate parameter 

 measuring the rate of character trait change through time and the mean character trait value  that 𝜎2 𝜃

typically represents the ancestral state of the root node (in Felsenstein 1973, the likelihood is computed 

using contrasts, such that the root state is not used). BM describes the process of continuous trait change 

occurring along branches of a phylogeny, with differences in trait values being drawn from a normal 

distribution with a mean equal to the ancestral state and variance proportional to  and time.  𝜎2

To demonstrate the properties of probabilistic distances under continuous trait models, we 

primarily focus on six models that are commonly used in evolutionary studies—though we note that 

many related models and combinations or variations of models can likely be used to compute distances 

in a similar manner. The six focal models considered in this study include the standard constant-rate 

BM model, the stationary-peak, or single optimum, Ornstein-Uhlenbeck model (OU; Lande 1976; 

Hansen 1997), and the early-burst model (EB; Harmon et al. 2010; Blomberg et al. 2003), as well as 

Pagel’s lambda (L), delta (D), and kappa (K) models (Pagel 1999a,b). These models differ in their 

numbers and types of parameters, which are designed to capture the effects of particular evolutionary 

processes (Table 1). For example, the EB model incorporates a parameter  that determines whether 𝑎

the evolutionary rate  increases ( ) or decreases ( ) exponentially through time  𝜎2 = 𝜎2
0𝑒𝑎𝑡 𝑎 > 0 𝑎 < 0 𝑡

from an initial value , whereas the OU model includes a parameter  that is proportional to the 𝜎2
0 𝛼

strength of attraction toward an optimum trait value . The OU model can also be described in terms 𝜃

of the “phylogenetic half-life” , which measures the mean length of time required for 𝑡1/2 = ln (2/𝛼)

the trait value to move halfway toward the optimum (Hansen 1997). Therefore, the trait value moves 
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toward its optimum faster for larger values of α. It is also worth noting that, unlike the BM model, the 

OU model has a stationary mean. For the L model, the  parameter transforms the tree to 𝜆 ∈ [0,1]

become more star-like when  is close to zero (i.e., species are statistically independent) and branch 𝜆

lengths are unaltered when . The K model represents a punctuated model of trait change that 𝜆 = 1

raises all branch lengths in the phylogeny to the power of . Evolution is directly proportional to 𝜅 ≥ 0

branch lengths when , while evolution is independent of branch lengths when  (i.e., branches 𝜅 = 1 𝜅 = 0

have the same length of 1.0). When , traits evolve proportionally faster on longer branches 𝜅 > 1

compared to shorter branches, and conversely, evolution occurs proportionally slower for longer 

branches when . The parameter  of the D model is designed to capture rate variation 𝜅 ∈ (0,1) 𝛿 ≥ 0

through time by raising all node heights in a tree to the power of . When , evolution has been 𝛿 𝛿 > 1

fast in the recent past, and conversely, recent evolution has slowed down when . Finally, all 𝛿 ∈ (0,1)

branch lengths collapse to zero when .𝛿 = 0

Deriving Probabilistic Phylogenetic Distances Under Macroevolutionary Models of Continuous Trait 

Evolution

Parameters in these models (i.e., BM, OU, EB, L, K, and D) directly influence the probability 

distribution of traits, and therefore, we wish to incorporate this information when quantifying distances 

between models. For example, consider a phylogenetic model of continuous character evolution 𝜑BM =

, which implements a BM model according to an  species tree with topology  and set of {𝑇, 𝜐, 𝜎2,𝜇} 𝑛 𝑇

branch lengths , an evolutionary rate parameter , and a -length vector containing the mean trait 𝜐 𝜎2 𝑛

value for each tip  (i.e., the expected trait value is the same as the ancestral state for each  𝜇 = (𝜃, 𝜃,…, 𝜃)

tip). A continuous trait  that evolves according to this model will yield a vector  of length  𝜒 𝜒 𝑛

containing the trait values observed for each of the  species, and we state that the distribution of  𝑛 𝜒

http://mc.manuscriptcentral.com/systbiol

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syab009/6136195 by Florida Atlantic U

niversity user on 17 February 2021



9

follows model  (i.e., ), such that the probability density function of  given  is 𝜑BM 𝜒 ~ 𝜑BM 𝜒  𝜑BM 𝑃

. (𝜒│ 𝜑BM)

Due to the hierarchically structured nature of phylogenetic trees,  is distributed as multivariate 𝜒

normal (MVN) specified according to the parameters of  (e.g., Rohlf 2001; Revell and Harmon 𝜑BM

2008). The topology  and branch lengths  define the variance-covariance matrix, which is scaled by 𝑇 𝜐

the rate parameter , and the ancestral state  provides the expected trait value for each tip. We can 𝜎2 𝜃

therefore denote the probability distribution of as , where  is an -dimensional vector 𝜒 𝜒 ~ 𝑁(𝜇,Σ) 𝜇 𝑛

containing the mean trait value (i.e., ancestral state) at each tip, and  is the -dimensional Σ 𝑛 × 𝑛

phylogenetic variance-covariance matrix, which is a function of , , and , and defines the covariance 𝑇 𝜐 𝜎2

of trait values within and between species. Thus, it is straightforward to translate the probability 

distribution of  under any of the six focal models examined in this study (𝜒 𝜑BM, 𝜑OU, 𝜑EB, 𝜑L, 𝜑K,  and 

) by rescaling  according to the model parameters. For example, we could derive the probability 𝜑D Σ

distribution of  under a single optimum OU-based phylogenetic model  by 𝜒 𝜑OU = {𝑇,𝜐, 𝜎2, 𝜃, 𝛼}

transforming the variance-covariance matrix  according to both  and . Σ 𝜎2 𝛼

In practice, we would like to be able to compare two evolutionary models, such as 𝜑BM
1 = {𝑇1,𝜈1, 𝜎2

1,  𝜇1

 and , or alternatively, a BM-based model  and an EB-based model , } 𝜑OU
2 = {𝑇2,𝜐2, 𝜎2

2, 𝜃2, 𝛼2} 𝜑BM
1 𝜑EB

2

or another pair of models. Thus, we are interested in measuring distances between two models  and 𝜑1

 in terms of their probability distributions over , rather than between only their topologies (i.e.,  𝜑2 𝜒 𝑇1

versus ) and/or branch lengths (i.e.,  versus ). The probabilistic distance between two 𝑇2 𝜈1 𝜈2

phylogenetic models of continuous trait evolution can be denoted as:

 (1) 𝑑(𝜑1,𝜑2) = 𝑑(𝑁(𝜇1, Σ1), 𝑁(𝜇2,  Σ2))

where  are the mean trait vectors and  are the transformed variance-covariance matrices that have 𝜇𝑖 Σ𝑖

been rescaled according to the evolutionary parameters of the two models , . For example, 𝜑𝑖 𝑖 ∈ {1,2}

the  for a given model  can be obtained using the vcv function provided in the R package GEIGER Σ𝑖 𝜑𝑖
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(Pennell et al. 2014) or the PCMVar function from the R package PCMBASE (Mitov et al. 2019). A 

conceptual framework for computing these model distances is provided in Figure 1. In this study, we 

propose three probability distances that are based on the same distances that have previously been used 

for phylogenetic model distances (i.e., Garba et al. 2018): the Hellinger distance ( ), the Kullback–𝑑H

Leibler divergence ( ), and the Jensen-Shannon distance ( ): 𝑑KL 𝑑2
JS

𝑑H(𝜑1,𝜑2) = 𝑑H(𝑁(𝜇1, Σ1), 𝑁(𝜇2, Σ2)) 

    (2) (Pardo 2005)= 1 ― 2𝑛/2|Σ1|1/4|Σ2|1/4

|Σ1 + Σ2|1/2 exp { ―
1
4(𝜇1 ― 𝜇2)T(Σ1 + Σ2) ―1(𝜇1 ― 𝜇2)} 

𝑑KL(𝜑1,𝜑2) = 𝑑KL(𝑁(𝜇1, Σ1), 𝑁(𝜇2, Σ2)) 

                  (3) (Duchi 2007)=
1
2(tr(Σ ―1

2 Σ1) + (𝜇2 ― 𝜇1)TΣ ―1
2 (𝜇2 ― 𝜇1) ― 𝑛 + ln (|Σ2|

|Σ1|))
𝑑JS(𝜑1,𝜑2) = 𝑑JS(𝑁(𝜇1, Σ1), 𝑁(𝜇2, Σ2)) 

                                                    (4) (Lin 1991)=
1
2𝑑KL(𝜑1,

𝜑1 + 𝜑2

2 ) +
1
2𝑑KL(𝜑2,

𝜑1 + 𝜑2

2 ) 

where  and  are respectively the determinant and trace of matrix ,  is the transpose of vector |A| tr(A) A 𝑥T

,  is the number of tips on the tree, and  denotes a mixture of the two models  and . The 𝑥 𝑛
𝜑1 + 𝜑2

2 𝜑1 𝜑2

Jensen-Shannon divergence is a metric with an upper bound of  (Garba et al. 2018), and we log(2)

also note that no closed form solution exists for the Jensen-Shannon divergence between two MVN 

distributions because the mixture of two Gaussian distributions with distinct components is not 

Gaussian itself (i.e., the distributions will not be of the same Gaussian family; Nielsen 2019), but the 

Jensen-Shannon distance may be approximated using simulations (e.g., Abou-Moustafa and Ferrie 

2012; Garba et al. 2018). The Kullback–Leibler divergence is notable for its role in model selection, 

as it forms the theoretical basis for the Akaike information criterion (AIC), which is designed to 

approximate the Kullback–Leibler distance between the true generating model and a fitted model 

(Akaike 1973). In our example demonstrations, we primarily focus on computing the Hellinger distance 
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(Eq. 2), which is a bounded metric with a maximum value of one (two models are completely divergent) 

and a minimum of zero (two models induce identical probability distributions and are mathematically 

indistinguishable). The Hellinger distance is a metric that satisfies the triangle inequality and has 

symmetry, with a distance of zero between two models indicating identical distributions. In contrast, 

the Kullback–Leibler divergence is not a metric because it is asymmetric (Johnson and Sinanović 

2001). 

Models of multiple trait coevolution can also be incorporated into these distances by including 

an evolutionary rate matrix that specifies the rate for each trait and the covariance between each pair 

of traits. For example, bivariate BM models can be implemented by including the evolutionary rate 

matrix , where represents the evolutionary covariance between the two traits and , R =  (𝜎2
1

𝜌
𝜌
𝜎2

2
) 𝜌 𝜎2

𝑖

, specifies a rate for each trait, and by setting  as a -dimensional vector containing the 𝑖 ∈ {1,2} 𝜇 2𝑛

expected tip value (i.e., ancestral states) for both traits at each tip in the tree. With  representing an Σ

unscaled phylogenetic variance-covariance matrix (i.e., branch lengths are not already scaled by ), we R

can use the Kronecker product  of the evolutionary rate matrix  and  to compute ,  V = R ⊗  Σ R Σ 𝑑H 𝑑KL

and  with the following equations:𝑑2
JS

𝑑H(𝜑1,𝜑2) = 𝑑H(𝑁(𝜇1, V1 = R1 ⊗  Σ1), 𝑁(𝜇2, V2 = R2 ⊗  Σ2)) 

   (5) = 1 ― 2𝑛/2|V1|1/4|V2|1/4

|V1 + V2|1/2 exp { ―
1
4(𝜇1 ― 𝜇2)T(V1 + V2) ―1(𝜇1 ― 𝜇2)} 

𝑑KL(𝜑1,𝜑2) = 𝑑KL(𝑁(𝜇1, V1 = R1 ⊗  Σ1), 𝑁(𝜇2, V2 = R2 ⊗  Σ2)) 

   (6) =
1
2(tr(V ―1

2 V1) + (𝜇2 ― 𝜇1)TV ―1
2 (𝜇2 ― 𝜇1) ― 2𝑛 + ln (|V2|

|V1|))
𝑑JS(𝜑1,𝜑2) = 𝑑JS(𝑁(𝜇1, V1 = R1 ⊗  Σ1), 𝑁(𝜇2, V2 = R2 ⊗  Σ2)) 

               (7)=
1
2𝑑KL(𝜑1,

𝜑1 + 𝜑2

2 ) +
1
2𝑑KL(𝜑2,

𝜑1 + 𝜑2

2 )
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All features of both the tree and evolutionary model are likely to influence trait distributions, 

and therefore probabilistic distances. That is, perturbations to any model components are likely to be 

captured by probabilistic distances, including differences in evolutionary parameters (i.e., Table 1) and 

ancestral states, as well as the tree topology and branch lengths, which collectively determine the 

phylogenetic covariance structure. The effect of differences in mean trait values can be illustrated in 

an example of two univariate normal models and , which 𝜑1:𝑁(𝜇 = 0, σ2 = 1) 𝜑2: 𝑁(𝜇 = 2, σ2 = 1)

can also be viewed as BM processes acting on a single species that diverged from an ancestor one unit 

length of time in the past (i.e., branch length ) with mean trait values of either  or , 𝑣 = 1 𝜇 = 0 𝜇 = 2

respectively (Fig. S1a). Using Equation (2), the Hellinger distance between these two distributions is 

. If we increase the expectation to , then we obtain a third model  that is 0.39 𝜇 = 5 𝜑3:𝑁(𝜇 = 5, σ2 = 1)

a Hellinger distance of 0.95 from model . 𝜑1

The particular timing and structure of phylogenetic relationships also influences trait 

distributions and therefore probabilistic distances by determining elements of the covariance matrices Σ

, which can be demonstrated in another example with two multivariate normal models 𝜑1: 𝑀𝑉𝑁

 and (𝜇 = 0,  Σ1 = vcv["(A:1,(B:2/3,(C:1/3,D:1/3):1/3):1/3)"]) 𝜑2: 𝑀𝑉𝑁

. Here  is a vector of length four (𝜇 = 0,  Σ2 = vcv["((A:1/2,B:1/2):1/2,(C:1/2,D:1/2):1/2)"]) 0

containing only zeros (i.e., mean trait values assumed to be zero, and under BM indicates ancestral 

state of zero), and  indicates a function used to extract the phylogenetic covariance matrix vcv[ ∙ ]

according to the two different trees specified in quoted newick format. In this case, the covariance 

matrix  reflects a “balanced” tree shape for model , while an “unbalanced” tree is used for . Σ1 𝜑1 𝜑2

Given clear differences in both tree shape and branch lengths, we expect different trait distributions, 

and these differences are reflected by measuring a Hellinger distance of 0.65 between these two models 

(Fig. S1b). 
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Probabilistic distances are also influenced by tree size (i.e., number of taxa), which can be 

illustrated by computing distances between small versus large star phylogenies (Fig. S1c). In this case, 

the Hellinger distance between a pair of three-tip star phylogenies is smaller ( ; left example 𝑑H = 0.08

in Fig. S1c) than when computed between two larger four-tip star phylogenies ( ; right 𝑑H = 0.11

example in Fig. S1c), which each include an additional element of the variance-covariance matrix that 

must be considered. By adding this fourth species we have expanded the dimension of the probability 

distribution, requiring that the density be more spread out than in the setting with fewer species.

Computing Probabilistic Distances Under Evolutionary Models for Both Bifurcating Trees and 

Phylogenetic Networks

We demonstrated the properties of these distances under a range of evolutionary scenarios that 

modulate the magnitude of important model parameters defined by each of the six models (BM, OU, 

EB, L, K, and D; Table 1). We first used an example phylogeny and a randomly generated set of branch 

lengths (  are sampled according to an exponential distribution with a rate of one) for eight taxa (Fig. 𝜐

2a) that was first employed by Felsenstein (1985) to illustrate the variance-covariance structure of 

phylogenetic trees and the comparative method (i.e., Fig. 8 in Felsenstein 1985). In this demonstration, 

we sought to leverage probabilistic distances to capture and quantify differences in evolutionary model 

parameters that influence the probability distribution over , and thus the tree topologies and branch 𝜒

lengths were identical for both  and  (i.e.,  and ) in our bifurcating tree examples 𝜑1 𝜑2 𝑇1 = 𝑇2 𝜈1 = 𝜈2

depicted in Figure 2. For legibility, we drop the  and  notation from  except where noted. 𝑇 𝜐 𝜑

For each phylogenetic model comparison, we computed  between pairs of models 𝑑H(𝜑1,𝜑2)

for which  represented a BM-based model ( ), and the second model 𝜑1 𝜑1 = 𝜑BM
1 𝜑2 ∈ {𝜑BM

2 , 𝜑OU
2 , 𝜑EB

2 , 

 was varied according to one of the six models. To explore the properties of the distances 𝜑L
2, 𝜑K

2,𝜑D
2}

under different baseline evolutionary rate scenarios, we varied the rate parameter between either  𝜎2
1 = 1
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or  for , while fixing  for the second model , and we set the ancestral root state as 𝜎2
1 = 2 𝜑1 𝜎2

2 = 1 𝜑2 𝜃1

 in these example demonstrations. For each variant of , we selected a single parameter to = 𝜃2 = 0 𝜑2

be scaled by a factor  (scaled parameters shown in Table 1). 𝛾 ∈ [0,5]

Phylogenetic networks pose a number of unique challenges to evolutionary inference, including 

identifiability issues for certain types of models (Zhu and Degnan 2017). For phenotypic data, many 

network-based models treat the trait value of a reticulation point as a weighted mean of its respective 

parental lineages (Bastide et al. 2018). To understand the dynamics of evolutionary model distances 

under more complex tree structures, we also computed probabilistic distances for a pair of hybridization 

networks (Fig. 3a) and additionally, between a network and a strictly bifurcating tree (Fig. 3c). The 

network topology was simulated using the SimulateNetwork function provided in the R package 

BMHYD (Jhwueng and O’Meara 2015) using a birth-death model (Nee et al. 1994) and a single 

unidirectional pulse migration of proportion , with birth rate of  and death rate of ; this 𝑚 = 1/2 1 1/2

network was also pruned to generate a second bifurcating topology by removing the migration edge 

(Fig. 3c). For the first model , we applied a standard BM model with , and for the second 𝜑1 𝜎2
1 = 1

model , we then scaled either the rate  or the migration proportion  by a factor of 𝜑2 𝜎2
2 = 𝛾𝜎2

1 𝑚2 = 𝛾𝑚

, which allowed us to investigate the impacts of scaling these two parameters when comparing 𝛾 ∈ [0,2]

model distances.

We evaluated the effects of particular fixed trees shape while increasing the number of sampled 

species when computing probabilistic distances. For each number of sampled species 𝑛 𝑛 ∈

, we simulated three different trees using a fixed shape {4, 8, 16, 32, 64, 128, 512, 1024, 2048}

(“balanced”, “left unbalanced”, or “star”; example topologies shown in Fig. 4) and we computed 

pairwise Hellinger distances (dH) between a BM model  and either the OU model with 𝜑BM
1

, the EB model with 𝛼 ∈ {0.01, 0.02,…, 0.10, 0.20, …, 1, 2,…,10} 𝑎 ∈

, or the D model with {0.01, 0.02,…, 0.10, 0.20, …, 1, 2,…,10} 𝛿 ∈
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; we applied a rate  for all four models (BM, OU, EB, {0.01, 0.02,…, 0.10, 0.20, …, 1, 2,…, 10} 𝜎2 = 1.0

and D). We repeated this analysis twice using two different models of branch lengths on trees where 

lineage splits are evenly distributed from the time of sampling to the root: (1) all internal branches and 

the shortest external branches are of equal length and scaled to give a total tree height of 1.0, and (2) 

all internal branches and the shorted external branches are of equal length and scaled to give a total tree 

length of 3.0. Additionally, we evaluated the effects of increasing the number of sampled species  𝑛

when computing probabilistic distances under three different models (BM, OU, and EB) by simulating 

phylogenetic trees using a pure-birth model (Yule 1925) for 𝑛 ∈

taxa. For each value of , we simulated 100 random {4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048} 𝑛

Yule trees with a birth rate of 10 using the pbtree function from the R package PHYTOOLS (Revell 

2012), and we computed all  pairwise distances between these sets of 100 trees using (100
2 ) = 4950

either a BM model with varying , an OU model with varying , or an 𝜎2 ∈ {1,10,100} 𝛼 ∈ {1,10,100}

EB model with varying  to all simulated trees. We repeated this analysis for the same 𝑎 ∈ {1,10,100}

model parameters (i.e., 1, 10, and 100 for the , , and  parameters) and tree sizes (i.e., 𝜎2 𝛼 𝑎

 tips) for trees simulated under the Aldous’ Branching model, which is defined by a 𝑛 ∈ {4,8,…,1024}

symmetric split distribution: , where  is the nth harmonic number 𝑞(𝑛, 𝑖) =
𝑛

2ℎ(𝑛 ― 1) ×
1

𝑖(𝑛 ― 1) ℎ(𝑛)

(Aldous 1996). Trees simulated under this model were generated using the rtreeshape function 

provided in the R package APTREESHAPE (Bortolussi et al. 2006).

Investigating the Interplay Between Probabilistic Distances and Likelihood Ratio Test Significance

We conducted an array of simulations to investigate the interplay between probabilistic model distances 

and the significance of the likelihood ratio test used for model selection. First, we simulated a random 

 = 100 tip phylogeny based on a pure-birth Yule process (Yule 1925) with a birth rate of 10 (Fig. 𝑛

S6a). Next, we simulated datasets under an OU model with  and . For each value of  𝜎2 = 1 𝛼 ∈ [0,1] 𝛼
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in this range, we simulated 100 replicate datasets with this model , and for each 𝜑OU(𝜎2 = 1, 𝛼)

replicate, we fit two alternative models to the simulated data: (i) a BM model and (ii) an OU model. 

Model parameters were estimated using maximum likelihood with the fitContinuous function provided 

in GEIGER (Harmon et al. 2007). We used the results of these two fitted models to compute a 

likelihood ratio test with significance assessed assuming a chi-squared distribution with one degree of 

freedom. Because all observations were simulated under an OU model, fitting a BM model in this case 

represents a scenario of model-misspecification, and we used these simulations to characterize the 

relationship between the significance of the likelihood ratio test between two models and the 

probabilistic distance between them. We repeated this same analysis for a larger tree with  𝑛 = 1000

tips (Fig. S7a).

We also expanded these simulations to investigate the impacts of tree shape, tree size, and 

evolutionary parameters on the significance of the likelihood ratio test alongside probabilistic 

distances. We simulated datasets under an OU model using three different tree sizes (n = 128, 512, and 

1024 tips) and three different tree shapes (“balanced”, “left unbalanced”, and randomly-generated Yule 

tree with birth rate ; example tree shapes shown at the top of Fig. 5) using branch lengths scaled 𝜆 = 1

to give a total tree height of 1.0. For the “balanced” and “left unbalanced” shapes, lineage splits are 

evenly distributed from the time of sampling to the root of the tree, and all internal branches or shortest 

external branches are of equal length. For each tree size and shape, we simulated character trait datasets 

using an OU model that varied in the parameter , and computed both the likelihood ratio test 𝛼 ∈ [0,1]

and Hellinger distance between an OU and BM model that have each been fit to the simulated dataset 

using the fitContinuous function of GEIGER. 
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Leveraging Probabilistic Distances to Compute Distances Between Fitted Evolutionary Models

For our first empirical demonstration, we applied probabilistic distances to compare the fit of each of 

the six evolutionary models investigated in this study (BM, OU, EB, L, K, and D) for a dataset 

consisting of mean genome size estimates (mean c-value) for  amphibian species obtained 𝑛 = 465

from previous studies (Pyron 2014; Liedtke et al. 2018). Amphibian genomes are known to exhibit 

extreme variation in size among all vertebrates, and a recent study highlighted the extraordinary 

complex evolutionary dynamics of this trait within this clade (i.e., Liedtke et al. 2018). Though these 

six models are likely highly oversimplified for this particular trait and clade, we can nonetheless use 

this system as an example for computing probabilistic distances to dissect relative evolutionary model 

fit and its impacts on continuous trait distributions (i.e., as measured via model distances; Fig. 1). We 

employed a phylogenetic tree estimate alongside genome size data obtained from Pyron (2014) and 

Liedtke et al. (2018), respectively, and fit each of the six models to the dataset. We then computed 

probabilistic distances (  here) between each pair of fitted models to demonstrate the utility of  for 𝑑H 𝑑H

comparing fitted models to one another.

Computing Pairwise Distributions of Probabilistic Distances to Investigate Phylogenetic Uncertainty

We demonstrated the application of our probabilistic distance approach for probing the impacts of 

phylogenetic uncertainty when studying the evolution of the total genomic transposable element (TE) 

content for a dataset of bird genomes (Jarvis et al. 2014). In the context of this study, we refer 𝑛 = 48 

to “phylogenetic uncertainty” as a lack of knowledge pertaining to which particular phylogenetic 

background is more or less appropriate for modeling the evolution of a given trait (i.e., Maddison 1997), 

rather than uncertainty in the resolution of species relationships for any one tree (i.e., Huelsenbeck et 

al. 2000). Because the phylogeny defines the degree of relatedness among species and in turn, 

covariation in their biological characteristics (i.e., Figs. 1 and S1), understanding the specific 
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phylogenetic framework that a trait evolved under may be essential for accurate inferences—yet, there 

are many reasons why one tree estimate differs from another (Degnan and Rosenberg 2009; Liu et al. 

2015). Thus, it can be difficult to decide which tree is “best” when confronted with a set of plausible 

phylogenetic hypotheses, particularly when studying complex traits. Importantly, choosing any one 

tree, such as an overall species tree estimate, may not be the best choice (i.e., Hahn and Nakhleh 2016). 

Indeed, Hahn and Nakhleh (2016) noted that every accompanying analysis of avian trait evolution 

based on this dataset of 48 bird genomes assumed a single species tree, despite notoriously high levels 

of gene tree conflict within this dataset (e.g., none of the individual gene trees matched the species 

topology).

We chose a particularly complex trait (percent genomic TE content) to demonstrate properties 

of probabilistic distances in this context. In this case, it is not immediately clear how the evolution 

genomic TE content should be most appropriately modeled (i.e., species trees versus gene trees), and 

we seek to apply probabilistic distances to investigate such uncertainty. To account for uncertainty in 

phylogenetic framework, we computed pairwise model distances under BM and OU models for two 

independent sets of trees that have been estimated for these 48 bird genomes: (i) 6144 individual gene 

trees (2136 exons, 329 introns, and 3679 UCEs) and (ii) 31 species trees (Reddy et al. 2017). We 

downloaded these sets of trees (Mirarab et al. 2014), we fit both a BM or an OU model independently 

to each tree (i.e., each gene and species trees), and trait value (i.e., point estimate of percent genomic 

TE content for each species) using the function fitContinuous function in GEIGER. We computed 

pairwise distributions among all fitted model distances for both tree sets, and conducted MDS using 

cmdscale to visualize these pairwise distances projected into multidimensional space and among trees 

and between BM and OU models. 
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Applying Probabilistic Distances to Multi-trait Models of Continuous Trait Evolution

We demonstrated the application of probabilistic distances in two different scenarios of multiple trait 

evolution. In the first scenario, we simulated a 25-tip phylogeny with a birth rate of one using the 

function pbtree provided in PHYTOOLS (tree shown in Fig. 8a); this tree was used to simulate bivariate 

datasets with differing degrees of covariation between the two traits using a BM model with an 

evolutionary rate matrix R = , where represents the evolutionary covariance between the (𝜎2
1 =  1

𝜌
𝜌

𝜎2
2 =  1) 𝜌 

two traits and  for both traits. For each simulated dataset, we fit two BM models:  and 𝜎2 =  1 𝜑BM
1 (𝜎2

1

𝜌
𝜌
𝜎2

2
)

, where  and  indicates that the rates for both traits are estimated from the data, 𝜑BM
2 ( 𝜎2

1

𝜌 = 0
𝜌 = 0

𝜎2
2

) 𝜎2
1 𝜎2

2

whereas  denotes that the covariance between the traits is also estimated for the first model. That is, 𝜌

 represents an unconstrained model for which both the covariance  and the rates  and are 𝜑BM
1 𝜌 𝜎2

1 𝜎2
2 

estimated, whereas  represents a constrained model that assumes  (i.e.,  assumes traits 𝜑BM
2 𝜌 = 0 𝜑BM

2

evolve independently). We used the function mvBM provided in the R package mvMORPH (Clavel et 

al. 2015) to fit both models and compute the likelihood ratio, and we measured the Hellinger distance 

(dH) between the two models across a non-negative range of covariance . 𝜌 ∈ [0,1] 

In the second scenario, we applied probabilistic distances to characterize model divergence 

when studying traits that have experienced singular evolutionary events, which have recently been 

shown to mislead phylogenetic comparative methods when neglected (Uyeda et al. 2018). Indeed, 

Uyeda et al. (2018) used such a scenario to demonstrate how instantaneous character trait shifts can 

yield misleading evidence of apparent correlations between two traits that, in fact, evolved 

independently of one another. Following the approach of Uyeda et al. (2018), we recreated a version 

of “Felsenstein’s worse-case scenario” by simulating bivariate datasets of independent traits (i.e.,  𝜌 = 0

for all simulations) along a 40-tip phylogeny (i.e., Fig. 5 in Felsenstein 1985, Fig. 2a in Uyeda et al. 
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2018, and Fig. 8c in this study). On one of the two stem branches subtending the root, we simulate an 

instantaneous shift in the character trait value that is drawn from a MVN distribution with zero 

covariance and equal variances that are a scalar value . That is, a large variance of this MVN 𝜎2 = 1

distribution used to randomly draw a shift value is likely to produce larger magnitude shifts or jumps 

in trait value, and for smaller variances is likely to yield smaller magnitude shifts or jumps in trait 

value. For each simulated dataset, we fit two BM models:  and , and we 𝜑BM
1 (𝜎1

2

𝜌
𝜌

𝜎2
2) 𝜑BM

2 ( 𝜎1
2

𝜌 = 0
𝜌 = 0

𝜎2
2 )

computed both the likelihood ratio test as well as Hellinger distance (dH) between them. 

To further investigate distances between models that differ in their underlying assumptions of 

complex traits coevolution, we also applied probabilistic distances to an alignment of 29 morphometric 

characters taken from a dataset of 87 cranium landmarks (each trait spans three landmarks) measured 

for 10 extant and nine extinct carnivoran mammals from a recent study (Álvarez-Carretero et al. 2019). 

We obtained a dated phylogeny hypothesis from Álvarez-Carretero et al. (2019) referred to as 

“morph+molec B” that was inferred using both a set of morphological and molecular characters (see 

Fig. 8 in Álvarez-Carretero et al. 2019 for details). Each of the 29 morphometric characters consists of 

a triplet set of landmark measurements, and thus, we fit two different BM models to each of the 29 

triplet traits: a constrained model (i.e., landmarks assumed to evolve idependently) and an 

unconstrained model for which between-landmark covariances are estimated for each of the three 

landmarks associated with a given trait. We computed pairwise Kullback–Leibler divergences ( ) 𝑑KL

between all 29 fitted models for each set (i.e., constrained vs. unconstrained model sets) independently. 

Next, we conducted MDS of each set of 29 traits independently to project and visualize these pairwise 

model distances to the first two principle coordinates of variation. 
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Investigating Identifiability of Mixed Gaussian Models

Recently, a number of models have been proposed that relax the assumption of model homogeneity 

across a phylogeny (Mitov et al. 2019, 2020), and studies have highlighted intrinsic difficulties of 

inferring multiple rate optima of the OU model (Ho and Ané 2014). We applied the Hellinger distance 

to investigate the identifiability for three scenarios of mixed OU models on an example phylogeny of 

flowering plants (Davis et al. 2007). For the first scenario, we computed distances using two examples 

of a single shift model discussed in Ho and Ané (2014) and depicted in the left and right trees shown 

in Figure 9a that varied in the parameters of the shift. For the left tree model, we applied a background 

OU model with parameters  and  using an ancestral state  and selection optimum  of 𝜎2 = 1 𝛼 = 1 𝜃 𝜃opt

one (i.e., , and we then shifted the optimum  at the branch marked by an asterisk 𝜃 = 𝜃opt = 1) 𝜃shift = 2

(Fig. 9a, left tree). Alternatively, we varied the ancestral state  and set the shift optimum 𝜃 ∈ [ ― 2, 3]

 , while varying the background optimum , to compute distances for the right 𝜃shift = 𝜃 𝜃opt ∈ [ ― 2, 3]

tree in Figure 9a to compute the Hellinger distance across a range of values for these parameters, which 

have been shown to be unidentifiable (Ho and Ané 2014). 

For the second scenario, we computed distances between mixed models with two shifts in  𝛼

and depicted in the left and right trees shown in Figure 9c that both applied a background OU model 

with parameters  and , while varying the location of one of the two OU shifts (location of 𝜎2 = 1 𝛼 = 1

asterisks in left vs. right trees of Fig. 9c). For the left tree model, we used  and  for the first 𝜎2 = 1 𝛼 = 2

shift of the OU and  and  for the second shift. We computed distances between this shift 𝜎2 = 1 𝛼 = 3

model and a separate shift model with a different location for the second shift (gray asterisk shown in 

the right tree of Fig. 9c) for which we varied the  and  parameters. Similarly, for a 𝜎2 ∈ [0,5] 𝛼 ∈ [0,5]

third scenario, we computed probabilistic distances between two different shift models depicted in the 

left and right trees of Figure 9e, with the same values for all shift models described in the second 

scenario, but different locations in the trees (Fig. 9c vs. Fig. 9e). 
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Alongside our mixed OU scenarios, we also investigated model divergences between two 

different applications of mixed BM models (left trees with asterisks shown in Figs. S9a and c) and the 

K model (right trees without asterisks in Figs. S9a and c), which varied both the parameter values (  𝜎2
1

for the BM marked by gray asterisk, and the  parameter of the K model) and the tree topology for five 𝜅

taxa (Fig. S9a vs. Fig. S9c). For the first mixed BM model (Fig. S9a), we applied a background BM 

with , and used  (gray asterisk), , and , for the three shifts marked in 𝜎2 = 1 𝜎2
1 ∈ [0,5] 𝜎2

2 = 3 𝜎2
3 = 2

Figure S9a, respectively. For the second mixed BM model, we also applied a background BM with 𝜎2

 while varying the rate parameter  for the BM shift marked by a gray asterisk in Figure = 1 𝜎2
1 ∈ [0,5]

S9c. In both cases, we varied the  parameter of the K model. We repeated this analysis for 𝜅 ∈ [0,5]

larger trees with  tips (Fig. S10) that were generated by appending a “balanced” subtree with 𝑛 = 1027

1024 tips (Fig. S10a) or an “unbalanced” subtree with 1024 tips (Fig. S10c) each with equal branch 

lengths of one (i.e., different tree heights and a length of one for each branch of the subtree).

In addition to scenarios of mixed models, we applied the Hellinger distance (dH) to investigate 

identifiability (or lack thereof) between the OU model and the generalized EB model for which the rate 

parameter is positive (sometimes referred to as the Acceleration-Deceleration model; Blomberg et al. 

2003). We downloaded a phylogeny of  Anolis lizards (Mahler et al. 2010) that was also 𝑛 = 100

analyzed in a recent study that highlighted unidentifiability of the OU and EB models (Uyeda et al. 

2015), which can occur when the initial rate parameter of the EB model is parameterized as , 𝜎2
0 = 𝑒 ―2𝛼

where  corresponds to the OU model parameter  (Uyeda et al. 2015). We computed the Hellinger 𝛼 𝛼

distance across a range of values for a using an EB model with  and 𝜎2
0 = 𝑒 ―2𝛼 = 𝑒 ―2(0.25) = 0.607 𝑎 ∈

, and an OU model with parameters  and . Using these results, we also computed [0,2] 𝜎2 = 1 𝛼 = 0.25

the absolute difference in Hellinger distances measured across the range of a to characterize the rate of 

change in model divergence. 
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RESULTS

Probabilistic Distances Between Capture Impacts of Model Parameter Scaling

Computing probabilistic distances across models highlights the impacts of scaling particular model 

parameters designed to capture different evolutionary processes acting on trait distributions for both 

bifurcating trees (Fig. 2) and phylogenetic networks (Fig. 3). By scaling these model parameters by a 

factor , probabilistic distances provide a clear means for assessing model identifiability (or 𝛾 ∈ [0,5]

lack thereof) and for dissecting the relative impacts of different parameters on phenotypic trait 

distributions. In all cases, we find substantial differences in slopes of the curves generated by 

computing Hellinger distances between a standard BM model ( ) with  (Fig. 2b) or 𝜑1 = 𝜑BM
1 𝜎2

1 = 1

when  (Fig. 2c) against the six alternative models with scaled parameters 𝜎2
1 = 2 𝜑2 ∈ {𝜑BM

2 , 𝜑OU
2 , 𝜑EB

2 , 

. Computing a maximum approximate derivative (maximum rate of change in these slopes) 𝜑L
2, 𝜑K

2,𝜑D
2}

highlights particular model parameters with especially strong influence on model distances, and 

therefore the underlying continuous trait probability distributions when scaled by a factor  (i.e., 𝛾

comparing the maximum approximate derivatives shown in Figs. 2b and c). We also find that as we 

scale each parameter by larger  values (as  in Figs. 2b and c), several distances exhibit increasing 𝛾 𝛾→5

trends and/or asymptotic behaviors toward the maximum  of 1, suggesting that the underlying 𝑑H

probability distributions of continuous traits become increasingly divergent when parameters are scaled 

in such a fashion.

In our bifurcating tree scenarios (Fig. 2), probabilistic distances measured between  and each 𝜑1

of the respective scaled BM , kappa , delta , and lambda 𝜑BM
2 (𝜎2 = 1𝛾) 𝜑K

2(𝜅 = 1𝛾) 𝜑D
2(𝛿 = 1𝛾) 𝜑L

2

 models approach zero when their respective parameters are essentially unscaled (i.e., these (𝜆 = 1𝛾)

distance curves approach zero when  in Fig. 2a), indicating that these models become 𝛾 = 1

unidentifiable under these conditions because they induce identical distributions over . In other words, 𝜒

the K, D, and L models collapse to a simple BM model as  approaches  for each model. Conversely, 𝛾 1
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scaling the  and  parameters for the EB and OU models, respectively, did not result in model 𝑎 𝛼

unidentifiability when computed against a standard BM model  when  (Fig. 2b) or when 𝜑BM
1 𝜎2 = 1 𝜎2

 (Fig. 2c). Indeed, only the scaled BM and delta models approach unidentifiability when  = 2 𝛾

approaches  for scenarios with  and an evolutionary rate of two (i.e., ), while the other four 2 𝜑BM
1 𝜎2 = 2

models (OU, EB, K, and L) remain identifiable for all values of  (Fig. 2c). 𝛾

Similarly, computing both the Hellinger ( ) distance and the Kullback–Leibler ( ) 𝑑H 𝑑KL

divergence between BM models evolving according to a pair of hybridization networks (Fig. 3a) or a 

hybridization network and a strictly bifurcating tree (Fig. 3c) highlighted the utility of such approaches 

for probing the effects of scaling evolutionary rate or the migration proportion m on trait distributions 

underlying model distances and complex phylogenetic structures (Figs. 3b and d). We observed 

fundamentally different curves for  and  across a range of scaling for either m or , as well as 𝑑H 𝑑KL 𝜎2

apparent shifts in model identifiability under these conditions. For example, when  yielding 𝛾 = 0

, both the  and  distance curves approach zero when comparing the network and 𝑚 = 0.5𝛾 = 0 𝑑H 𝑑KL

tree shown in Figure 3c, such that the hybridization network essentially collapses to the tree as the 

migration proportion goes to zero. In many cases, scaling the evolutionary rate parameter  has a 𝜎2

particularly strong impact on model distances under both networks and trees. 

Tree shape, number of taxa, branch length model, and the particular parameter values had 

substantial influence over probabilistic distances (Figs. 4 and S1). In particular, the specific model used 

to generate branch lengths had a strong and synergistic role in shaping probabilistic distances between 

different models and tip numbers (Fig. 4 vs. Fig. S1). When using branch lengths are scaled to a tree 

height of one, we found that increasing the number of sampled species  on a fixed topology shape 𝑛

yields trends of increasingly larger pairwise distances between a BM model and either the OU (Figs. 

4a-c), EB (Figs. 4g-i), or D (Figs. 4m-o) models. However, we observed an opposite trend towards 

smaller Hellinger distances for the largest trees when branches are equal in length and scaled such that 
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the total tree length is three for the OU and EB model comparisons (Figs. S1a-f). We also found that 

distances computed under the D model were less sensitive (compared to the OU and EB comparisons) 

to the branch length model (Fig. 4g-i vs. Fig. S1g-i). One reason that may explain these differences for 

the D model is that the tree becomes more star-like as the  parameter increases, which in turn, increases 𝛿

the total length of the tree as well as the total amount of evolution occurring along branches. For a 

given number of taxa  and height , the total tree length approaches  as the  parameter increases, 𝑛 ℎ 𝑛ℎ 𝛿

thereby resulting in greater evolution along the tree with a larger number of taxa. Specifically, with 

large , for our balanced tree scenario (Fig. S1g with original fixed length of three) the total tree length 𝛿

increase logarithmically as a function of the number of tips, and for our left unbalanced scenario (Fig. 

S1h with original fixed length of three) the total tree length approaches six with increasing tip number. 

On our examples simulated under the Yule (Fig. S3) or Aldous’ branching (Fig. S4) models, we 

observed similar trends toward increasingly larger pairwise distances under the BM (Figs. S3a and 

S4a), OU (Figs. S3b and S4b), and EB (Figs. S3c and S4c) models for larger trees, respectively (see 

Methods for details). However, the influence of increasing the number of sampled species  depended 𝑛

on the relative scaling of each parameter (dark to light distributions indicated in Figs. S3 and S4). In 

all examples, modulating specific evolutionary parameters tended to have a strong and synergistic 

influence with tree shape and taxa number on probabilistic distances (Figs. 4 and S2-S4). We also 

found that probabilistic distances measured between even the largest trees in our simulations (2048 

species) required less than a minute of computation using a single thread of a 2.6 GHz Intel Core i7 

CPU (Fig. S5). 

Probabilistic Distances and Likelihood Ratio Test Significance

The fit of nested evolutionary models (i.e., BM and OU) to a dataset of continuous characters is often 

compared using the likelihood ratio tests (i.e., O’Meara et al. 2006). In this context, our simulation 
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analyses identified a positive relationship between increasing model distances and significance (i.e., 

smaller p-values) for the likelihood ratio test between fitted OU and BM models, which varied 

according to the size and shape of the tree, as well as model parameters (Figs. 5 and S6-S7; see Methods 

for details). That is, the ability to identify statistically significant differences between the fitted models 

increased as the models became more divergent, because the data were generated under increasingly 

larger  values for the OU model. Conversely, smaller  models tended to decrease the ability to detect 𝛼 𝛼

statistically significant differences between the models because the parameter estimates of the BM and 

OU models were more similar, and thus, they induce similar underlying distributions over character 

traits  that were quantified via the Hellinger distance (Figs. 5, S6, and S7). 𝜒

Comparing Fitted Models with Probabilistic Distances

Size is a fundamental characteristic of genomes, and yet, accurately modeling the evolution of genome 

size can be challenging (e.g., Liedtke et al. 2018). Comparing the fit of the six evolutionary models to 

the amphibian genome size dataset consisting of 465 species provided a detailed depiction of the 

relative distance between each estimated model (Fig. 6; see Methods for details). For example, the 

distance between the fitted BM and OU models ( ) was substantially smaller than any other 5.7 × 10 ―6

pairwise model distance (see the BM-OU edge in Fig. 6). This small distance between the BM and OU 

models suggests that the estimated  parameter for the OU model does not strongly influence the 𝛼

underlying distribution of trait values, and thus the estimate  is close to zero, indicating a lack of 𝛼

stabilizing selection for genome size. Conversely, the largest pairwise distance of any two models was 

observed between the EB and K models for this dataset (i.e., the large EB-K edge in Fig. 6).
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Investigating the Impacts of Phylogenetic Uncertainty with Probabilistic Distances

Rigorous modeling of trait evolution often requires accounting for uncertainty in the phylogenetic 

relationships assumed to underlie a given trait (Huelsenbeck et al. 2000). Our applications of 

probabilistic distances to the 6144 gene trees (2136 exons, 329 introns, and 3679 UCEs) and the 31 

species trees estimated for a 48 bird genome dataset highlights the utility of this approach for probing 

the impact of such uncertainty on evolutionary model comparisons (Fig. 7; see Methods for details). 

For example, our analyses of the avian dataset revealed substantial differences among distances 

computed using the individual gene trees or the reconstructed species-level trees (i.e., Figs. 7a vs. b). 

Similarly, we found major differences in the MDS projections for both the gene and species tree 

analyses depending on whether a simple BM or OU model was used. In particular, we see substantial 

divergence in pairwise model distances between the 6144 gene trees that were based on the BM or OU 

models, respectively (i.e., Figs. 7a vs. c). 

Applying Probabilistic Distances to Models of Multi-trait Evolution

Determining the degree of covariation (or lack thereof) between two traits is a major goal of 

phylogenetic comparative methods (Uyeda et al. 2018), and probabilistic distances can be useful in this 

context for quantifying model divergence and its relation to model testing (Fig. 8). We found that 

increasing the degree of evolutionary covariation between two traits yields corresponding increases in 

probabilistic distances between models that differ on whether traits are or are not assumed to be 

independent (Fig. 8b). In particular, our application of the Hellinger distance ( ) highlights the 𝑑H

divergence between such models when analyzing independent traits that have evolved under scenarios 

of instantaneous character trait change (i.e., Figs. 8c and d). Though the two traits were simulated 

independently from one another, we found that as the magnitude of the instantaneous shift increases, 

so does the Hellinger distance, as well as statistical support (i.e., lower p-values) for an incorrect model 
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of trait coevolution (Fig. 8d). Applying MDS of pairwise probabilistic distances computed between 

multi-trait models fit to morphometric landmark characters yielded differences in model-space 

depending on whether landmarks of each trait are assumed to evolve independently or in a correlated 

fashion (Fig. S8). Most multi-trait models are more tightly clustered together (i.e., pairwise model 

distances tend to be smaller) when fitting models that assume independence in comparison to models 

that estimate between-landmark evolutionary covariance (Fig. S8a vs. S8b), and we also see that the 

particular traits driving most of the variance in the coordinates differ between these analyses (i.e., the 

placement of models fitted to trait 27 vs. trait 25 in Fig. S8a vs. S8b driving variation in the first 

coordinate). 

Investigating Probabilistic Distances Between Complex Gaussian Models

Our applications of the Hellinger distance to multiple OU models with shifted parameters underscored 

the utility of this approach for investigating the degree of identifiability between complex models (Fig. 

9). For example, distances measured between two models depicted in Figure 9a that varied in the 

locations and parameter values of OU shifts highlighted regions of parameter space for which the 

models were mathematically unidentifiable, as well as nearby regions with particularly small distances 

that may be unidentifiable in practice. We also find that overall levels of identifiability were lower 

between the two shift models shown in Figure 9c (left vs. right tree), with the Hellinger distance ranging 

from zero to a maximum of 0.92 for these parameter values (Fig. 9d), when contrasted to the third 

example scenario depicted in Figure 9f. Indeed, when comparing the two scenarios (i.e., middle vs. 

bottom rows of Fig. 9), we observed a more diffuse range of Hellinger distances (i.e., larger band of 

gray shading in Fig. 9d vs. Fig. 9f) in the first scenario, indicating that these models may be more 

difficult to distinguish from one another as measured by the lower Hellinger distances, at least for many 

of the parameter values explored here. 
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Measuring model divergences between our two applications of mixed BM models and the K 

model highlights regions of parameter space for which these two models become unidentifiable (Figs. 

S9 and S10). The identifiability (or lack thereof) of mixed BM and K models depends on the particular 

shape of the tree (Fig. S9a vs. Fig. S9c and Fig. S10a vs. Fig. S10c), with a larger region of 

unidentifiability (or nearly so) depicted in our second example (Fig. 9b vs. Fig. 9d and Fig. S10b vs. 

Fig. S10d). Additionally, our applications of probabilistic distances to the generalized EB model 

highlighted regions of parameter space that may lead to identifiability issues with an OU model (Fig. 

S11a), as well as the rate of change in model distances as a function of the parameter a (Fig. S11b). 

We find that the rate of model convergence increases as the parameter  approaches 0.5, while 𝑎

eventually trending toward an asymptote of zero as  increases and the models diverge from one 𝑎

another (right-hand side of the curves shown in Fig. S11b). 

DISCUSSION 

Statistical models of evolutionary change convey information encoded within their parameters to define 

probability distributions over character traits given a phylogeny. We have found that computing 

distances under such models can be useful for elucidating the impacts of excluding, including, and/or 

modulating various parameters (i.e., Figs. 2-4) for both strictly bifurcating trees (i.e., Fig. 2), as well 

as more complex phylogenetic structures and models, such as hybridization networks (Fig. 3), scenarios 

of trait coevolution (Figs. 8 and S8), and mixed Gaussian models that allow shifts in the models and 

parameters along different lineages (Figs. 9, S9, and S10). Throughout our demonstrations, we explored 

diverse phylogenetic backgrounds across a range of tree sizes and shapes to gain insight into the 

properties of these measures in both data-limited (e.g., small trees) and data-rich (e.g., large trees) 

scenarios that are both of relevance to empirical studies. Collectively, we also find that probabilistic 
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distances measures provide a toolset for investigating model divergences in a way that is 

complementary with both likelihood-based model selection criterion (e.g., Figs. 5, S6, and S7) and 

mathematical proofs of model identifiability (or lack thereof; e.g., Fig. S11). 

Phylogenetic trees and networks represent powerful and complementary frameworks for 

modeling the evolution of molecular sequence data (Blair and Ané 2019), and our results suggest the 

same when considering continuous traits. Probabilistic distances offer a means for quantifying the 

impacts of assuming one phylogenetic background or another on inferences of character evolution (i.e., 

Figs. 3 and 7), and for investigating regions of parameter space that yield identical trait distributions 

for models (e.g., Figs. 2, 3, 9, and S9-S11). Fundamentally, these distances can be interpreted as 

capturing underlying differences in character trait distributions between two models. For example, 

scaling the overall BM rate parameter  resulted in particularly strong impacts on model distances in 𝜎2

many cases, and therefore, these distances were able to quantify impacts of this parameter on predicted 

trait distributions under models with faster or slower rates (i.e., Figs. 2-4). Scaling the migration 

proportion  of a hybridization network model permitted investigation of the effects of including or 𝑚

excluding a migration edge in the tree for continuous trait distributions (Fig. 3). Likewise, increasing 

the number of sampled taxa  in the model yields increasing trends in pairwise model distances, but 𝑛

these trends are modulated by the particular parameters included in the models, as well as the particular 

shape of the tree (i.e., Figs. 4 and S2-S4). Projections of multi-model space based on these distances 

depend on whether models incorporate trait coevolution, or alternatively, models that assume 

independence have been fit to morphometric landmark data (Fig. S8a vs. Fig. S8b). Taken together, 

these results underscore the complexities of comparing phylogeny-aware models, such that scaling and 

including or excluding parameters can have complex implications for character trait evolution and tree 

distances. 
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A growing concern in comparative trait studies is the identifiability (or lack thereof) of many 

commonly-used models of evolutionary inference (e.g., Ho and Ané 2014; Zhu and Degnan 2017), 

with recent evidence implicating the non-identifiability of entire classes of popular birth-death models 

that are often used for studying trait evolution (Louca and Pennell 2020). Relevant to these concerns is 

the distinction between mathematical and practical identifiability: two models are mathematically 

indistinguishable when they induce identical probability distributions, whereas two models that are 

mathematically distinguishable can still be “practically indistinguishable” when model inference is 

unreliable for finite datasets of reasonable size (Zhu and Degnan 2017). Thus, the recent emergence of 

probabilistic distances that can be used to directly measure model identifiability, such as those proposed 

in this study and others (i.e., Garba et al. 2018; Adams and Castoe 2019b), provide a timely and relevant 

framework for assessing these important properties of phylogenetic models. As two models converge 

toward the same probability distribution and therefore mathematical unidentifiability, the probabilistic 

distance between them will correspondingly decrease toward zero. Thus, our applications have shown 

that probabilistic distances can shed light on particular regions of parameter space that yield 

indistinguishable models, including more complex scenarios and mixed models that incorporate shifts 

in parameters along particular branches or clades of a tree (i.e., Figs. 9, S9, and S10). Finally, we have 

found that probabilistic distances provide a clear connection with likelihood-based tests of model fit 

(i.e., Figs. 5, S6, and S7). Significance of statistical tests of evolutionary model fit are likely a complex 

function of many parameters, such as the number of tips, the divergence times, the tree shape, number 

of traits, and the particular model analyzed (Ho and Ané 2014), and these features may be reflected in 

our analysis (e.g., Fig. S6 vs. Fig. S7).

Studying the evolution of complex traits often requires the use of parameter-rich models that 

more adequately accommodate these complexities. In our avian empirical example, we deliberately 

chose such a trait (percent genomic TE content) to demonstrate the utility of pairwise probabilistic 
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distances when considering uncertainty in the phylogenetic background assumed for a given trait. As 

in this case, it is not always straightforward to decide how the phylogenetic framework for a particular 

trait should best be modeled (i.e., a single gene tree, multiple gene trees, or a single species tree). For 

example, if a particular trait is known to be encoded by a single locus, then it may be preferable to 

assume the specific gene tree of that locus, rather than an overall species tree. Conversely, some traits 

may be better modeled as a function of the overall species tree, or perhaps multiple gene trees for 

polygenic traits. In practice, however, it is seldom known which or even how many gene trees underlie 

a particular trait, and recent studies have demonstrated that focusing only on one particular tree (usually 

the species tree) can be problematic when modeling trait evolution (i.e., Hahn and Nakhleh 2016). 

Traits that evolved along discordant gene trees may yield patterns of “hemiplasy” when forced to a 

species tree, leading to incorrect inferences (i.e., Avise and Robinson 2008; Mendes and Hahn 2016; 

Guerrero and Hahn 2018). In our case, modeling total genomic TE content is particularly challenging: 

should we only use gene trees located in or nearby TE-rich regions in the genome? Should we use 

multiple gene trees? The overall species tree? For example, many studies of TE evolution typically 

assume a single species-level phylogeny (e.g., Malmstrøm et al. 2018), and most analyses of avian trait 

evolution based on these 48 genomes have assumed only a single tree, despite widespread phylogenetic 

discordance within this dataset (i.e., Zhang et al. 2014; Hahn and Nakhleh 2016). Importantly, the 

distances applied here can be used to investigate the effects of such uncertainty on character trait 

distributions and models (i.e., Fig. 7). 

There are a number of limitations to our applications of probabilistic distances explored in this 

study. We primarily focused on the Hellinger distance, because closed-form solutions exist for this 

distance that is also a true metric bounded by zero (identical models) and one (maximum divergence 

between models), which proved useful throughout our demonstrations. We also applied the Kullback–

Leibler divergence in two scenarios (Figs. 3 and S8), which is also of interest given its connections 
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with model selection, as several information-theoretic approaches, such as AIC, are designed to 

approximate this divergence between a fitted model and a true underlying probability generating model 

(Akaike 1973). It is likely that other distances may prove useful in this context, such as the Fréchet 

(Dowson and Landau 1982) and Bhattacharyya (Bhattacharyya 1943) distances. We also examined 

only a handful of different models, and there is now a wealth of models that may prove useful for future 

distance computations (e.g., Slater 2013; Puttick 2018; Guerrero and Hahn 2018; Mendes et al. 2018). 

From this perspective, the distances discussed in this study provide a flexible foundation for 

incorporating new models and novel phylogenetic distances. As a practical consideration, we also note 

that the computational complexity of computing probabilistic distances may be higher than more 

traditional approaches that only consider topologies and/or branch lengths alone (Fig. S5). Collectively, 

we have shown a number of insightful uses of this approach for contrasting phylogeny-aware models 

with one another and believe that our distance framework advances the toolkit for future studies seeking 

to understand the evolutionary history of organisms and their traits.

SOFTWARE AVAILABILITY

The R package PRDATR (PRobabilistic Distances under models of Adaptive Trait evolution in R) 

was written in R v3.6.1 and is available on Github at: github.com/radamsRHA/PRDATR. PRDATR 

includes a number of functions for computing probabilistic model distances for bifurcating trees, 

hybridization networks, and an array of continuous trait models, and it also provides scripts for 

replicating experiments demonstrated in this study. 
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TABLE LEGENDS

TABLE 1. Summary of the six models used to demonstrate the properties of probabilistic phylogenetic 

distances under models of continuous trait evolution. Asterisk (*) denotes the particular scaled 

parameters used in simulation analyses. 

FIGURE CAPTIONS

FIGURE 1. Conceptual schematic depicting an example set of distance computations for a simple 

phylogenetic model with n = 2 taxa (top left). Coupled with a particular model (i.e., Brownian motion 

[BM], Ornstein-Uhlenbeck [OU], or early-burst [EB]), this phylogenetic tree model provides a 

variance-covariance matrix that is scaled by model parameters. In this example, the first model  𝜑1

(lower left) represents a standard BM model with , and there are three alternative models 𝜎2 = 1

possible for : , , or ). For each model under this 𝜑2 BM(𝜎2 = 1) OU(𝜎2 = 1, 𝛼 = 1) EB(𝜎2 = 1, 𝑎 = 1

phylogenetic scenario, the probability distribution of trait values  sampled at the tips can be formulated 𝜒

as a bivariate (i.e., n = 2) normal distribution, which is depicted by each respective model as a heatmap 

overlaid by a contour plot, with darker colors representing higher probabilities. Distances are computed 

by comparing these bivariate normal distributions with one another (arrows from  to each  indicate 𝜑1 𝜑2

pairs of model distances to be computed). 

FIGURE 2. Probabilistic phylogenetic distances under models of discrete trait evolution computed 

across a range of scaling values. (a) Symmetric topology phylogenetic tree with  taxa that 𝑛 = 8

continuous trait evolutionary models are condition on. (b) Hellinger distances ( ) computed using the 𝑑H

tree in panel (a) for Brownian motion (BM), Ornstein-Uhlenbeck (OU), early-burst (EB), Pagel’s 

lambda (L), Pagel’s kappa (K), and Pagel’s delta (D) continuous trait models, with the first model 

representing a standard BM model with , and the respective parameters of the second model 𝜎2 = 1
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scaled by . See Table 1 for description of each model and scaled parameters. (c) Hellinger distances 𝛾

computed using the tree in panel (a) for BM, OU, EB, L, K, and D models, with the first model 

representing a standard BM model with , and the respective parameters of the second model 𝜎2 = 2

scaled by . 𝛾

FIGURE 3. Hellinger distance ( ) and Kullback–Leibler divergence ( ) between a pair of 𝑑H 𝑑KL

hybridization networks (a) shown in (b), or between a bifurcating tree and a hybridization network (c) 

shown in (d), which were computed across a range of values for either the evolutionary rate parameter 

 (i.e., )) or the migration proportion  (i.e., )) for two BM models. 𝜎2 𝑑H(𝜎2𝛾 𝑚 𝑑H(𝑚𝛾

FIGURE 4. The synergistic influence of tree shape, taxa number, and evolutionary model parameter 

on probabilistic distances. Results shown for the Hellinger distance ( ) computed between a Brownian 𝑑H

motion (BM) model and either the Ornstein-Uhlenebck (OU; panels a-c), early-burst (EB; panels d-f), 

or Pagel’s delta (D; panels g-i) model for simulations using different numbers of taxa on three different 

tree shapes: “balanced” (left column), “left unbalanced” (center column), and “star” (right column). 

Branch lengths are chosen such that the total tree height is scaled to 1.0. For each plot, the particular 

parameter values are indicated with arrows pointing to the specific lines, such that each line represents 

a different parameter value on a log-scale from 0.01 to 10.0.

FIGURE 5. Investigating the relationship between model distances and the significance of likelihood 

ratio tests between fitted Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models (traits 

simulated under an OU model). Results shown for three different tree shapes: “balanced” (left panels), 

“left unbalanced” (center), and trees simulated under a Yule model with birth rate  (right) with 𝜆 = 1

equal branch lengths that are scaled to give a total tree height of 1.0. P-values for a likelihood ratio test 
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comparing the OU and BM models as a function of their Hellinger distance ( ) are shown for three 𝑑H

different tree sizes: 128 (panels a-c), 512 (panels d-f), and 1024 (panels g-i) tips. The mean (circle) and 

standard deviations (bars) of the distribution of 10 replicate p-values (subtracted from one). Each 

simulation replicate was computed by incrementally increasing the  parameter of the OU model from 𝛼

 to  (from left to right in each panel colored in the blue scale shown), at increments of 0.01.0 5

FIGURE 6. Computing probabilistic Hellinger distances ( ) between the Brownian motion (BM), 𝑑H

Ornstein-Uhlenbeck (OU), early-burst (EB), Pagel’s lambda (L), Pagel’s kappa (K), and Pagel’s delta 

(D) continuous trait models that were fit to the amphibian genome size dataset of  taxa. 𝑛 = 465

Graphical network showing the six models (BM, OU, EB, L, K, and D) as nodes connected by edges, 

with the widths of edges scaled by their respective probabilistic distances (shown beside each edge).

FIGURE 7. Multidimensional scaling (MDS) based on pairwise Hellinger distances ( ) estimated 𝑑H

assuming a Brownian motion (BM) model (a) or an Ornstein-Uhlenbeck (OU) model (c) for a set of 

6144 avian gene trees that comprise 2136 exons (dark gray), 329 introns (black), and 3679 UCEs (light 

gray). Analogous, plots (b) and (d) depict pairwise distances projected using MDS for the 31 avian 

species trees assuming BM (b) or OU (d) models, respectively. 

FIGURE 8. Applying the Hellinger distance (dH) to multivariate models of continuous trait evolution. 

Results for simulation analyses using the phylogeny depicted in panel (a) are shown in panel (b), where 

 is the covariance between the two traits. Phylogeny depicting “Felsenstein’s worst case” scenario is 𝜌

shown in panel (c), which was used to simulate datasets in which an instantaneous shift occurs on one 

of the ancestral branches (location of shift depicted as a tick mark on the tree in panel (c)), and results 

shown in panel (d) with log10 ratio of the shift to Brownian motion (BM) variance (x-axis) and the 
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Hellinger distance (y-axis) computed between the unconstrained and constrained models that have been 

fit to the simulated data. Color of points in panels (b) and (c) indicate 1–p-value of the likelihood ratio 

test between an unconstrained model (i.e.,  is estimated) and a constrained model (i.e.,  = 0 such that 𝜌 𝜌

traits are assumed to be independent) that have been fit to the data. 

FIGURE 9. Investigating identifiability of mixed Ornstein-Uhlenbeck (OU) models using the Hellinger 

distance (dH). Asterisks (*) indicate the location of shift points for OU model parameters in the tree 

pairs shown in panels (a), (c) and (e). Heatmap shown in panel (b) represents the Hellinger distance 

computed between the left and right tree models displayed in panel (a) across a range of values for the 

ancestral state  and the background optimum  using a shift optimum  of the right tree, 𝜃 𝜃opt 𝜃shift =  𝜃

while using ,  = 2, and  for the left tree in panel (a). Panel (d) depicts the distance 𝜃 = 1 𝜃shift 𝜃opt = 1

between the two tree models shown in panel (c) across a range of  and  parameter values of the OU 𝜎2 𝛼

model marked with a gray asterisk in the left tree of panel (c). Similarly, results for the Hellinger 

distance between the two tree models displayed in panel (e) are shown in panel (f), with a range of  𝜎2

and  parameter values for the OU model represented by a gray asterisk in the right tree of panel (e). 𝛼
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Model Abbreviation Model 
parameters Interpretation

Brownian motion BM Evolutionary rate

Ornstein-Uhlenbeck OU Pull toward optimum

Early burst EB
Rate acceleration (positive) or
deceleration (negative)

Pagel's lambda L Tree is star-like when λ=0

Pagel's kappa K Raise branches to the power 𝜅

Pagel's delta D  Raise node depths to the power 𝛿

TABLE 1. Summary of the six models used to demonstrate the properties of probabilistic phylogenetic 

distances under models of continuous trait evolution. Asterisk (*) denotes the particular scaled 

parameters used in simulation analyses. 

𝜎2,𝛼 ∗

𝜎2 ∗

𝜎2,𝜅 ∗

𝜎2,𝛿 ∗

𝜎2, 𝑎 ∗

𝜎2, 𝜆 ∗
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