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Abstract 
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1 Introduction  
Whole genome data hold promise for refining species tree estimates be-
cause, at a fundamental level, such large datasets offer unprecedented op-
portunity to dramatically increase the sample size and resolution of phy-
logenetic analyses (White et al., 2009; Jennings, 2016; Hobolth et al., 
2007). However, enthusiasm for conducting phylogenomic analyses 
across whole genome alignments (WGAs) is often curbed by the inherent 
challenges that arise when extracting and translating the deluge of infor-
mation encoded within WGAs into meaningful estimates of evolutionary 
relationships. 

An immediate challenge is to address the pervasive phylogenetic con-
flict observed in whole genome data. Both biology and methodology can 
generate discord among phylogenetic estimates across loci (Som, 2014), 
and understanding the causes and consequences of such conflict is para-
mount to mitigating its impacts (e.g., Reddy et al., 2017). Many evolu-
tionary processes are known to generate phylogenetic conflict (e.g., 
Adams et al., 2018; Kutschera et al., 2014), yet incomplete lineage sorting 
(ILS) is perhaps the most well-studied and biologically relevant (Degnan 
and Rosenberg, 2009; Edwards, 2009). Recombination decouples the phy-
logenetic histories of genomic regions, yielding unlinked genealogies that 
may (or may not) agree with the overall species tree due to ILS. Conse-
quently, an entire chromosome cannot be reasonably modeled as a single 
non-recombining locus with only a single tree (Kubatko and Degnan, 
2007), as it constitutes a mosaic of genealogies sequentially distributed 
along its length according to crossover events.  

Even with whole genomes, tracts of contiguous well-aligned sequences 
are often confined to a few kb, which may be insufficient for accurate gene 
tree estimation. Thus, while it is possible to accommodate ILS by simply 

inferring separate gene trees across loci, these trees may be unreliable due 
to gene tree estimation error (Roch and Warnow, 2015). An ideal phylo-
genomic dataset would effectively accommodate both ILS and gene tree 
error by using sufficiently-long yet recombination-free loci. However, 
constructing such a dataset is difficult, and constructing “supergenes” (i.e., 
concatenated loci consistent with a single gene tree) can be challenging 
(White et al., 2009; Jennings, 2016; Adams and Castoe, 2019).  

Consideration of ILS, recombination, and other factors contributing to 
gene tree variation is therefore important for any attempt to accurately re-
construct evolutionary relationships from multilocus data for which the 
degree and distribution of phylogenetic conflict is unknown (Springer and 
Gatesy, 2016). While many methods exist for estimating individual gene 
trees (e.g., Stamatakis, 2014), sampling and extracting phylogenetic loci 
(e.g., Bravo et al., 2019; Costa et al., 2016), or inferring species trees (e.g., 
Boussau et al., 2013), few bioinformatics platforms are specifically de-
signed for conducting detailed and efficient phylogenomic interrogation 
of WGAs. To address this, we introduce PhyloWGA, an open-source R 
package developed as a user-friendly suite for conducting streamlined 
phylogenetic analysis and investigation of WGAs. At its core are two bi-
oinformatics pipelines, Chromo.Phylome and Chromo.Crawl, designed to 
reconstruct a chromosome-specific set of gene trees and to apply a series 
of model-based phylogenetic congruency tests along the length of a WGA, 
respectively. PhyloWGA is flexible and extensible for the easy incorpora-
tion of future phylogenetic investigations of genome-scale datasets. Im-
portantly, while other approaches have attempted to cluster loci into su-
pergenes (e.g., Mirarab et al. 2014; Bayzid et al. 2015), recent studies have 
shown that such approaches may be plagued with high rates of error (Liu 
and Edwards 2015; Roch et al., 2019; Adams and Castoe, 2019). Unlike 
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previous ‘statistical binning’ methods (Mirarab et al. 2014; Bayzid et al. 
2015), which ignore linkage information (i.e., proximity of adjacent loci 
in assembled genomes), here we develop an approach that inherently in-
corporates the spatial organization of loci and uses a model-based frame-
work to explicitly test whether such loci share a common tree (see Supple-
mentary Note for further discussion). 
 

2 Implementation 
PhyloWGA is written in R 3.6.1 (R Core Team, 2018) and includes a suite 
of functions for WGA-scale phylogenomic analyses. It is built upon sev-
eral maximum likelihood (ML) phylogenetic frameworks, including IQ-
TREE (Nguyen et al., 2014) and CONCATEPILLAR (Leigh et al., 2008). 
The primary input for PhyloWGA is a WGA in fasta format partitioned by 
chromosome, and PhyloWGA includes a number of functions for pro-
cessing WGAs for this purpose. PhyloWGA allows users to specify an ar-
ray of experimental parameters that define the scope of a PhyloWGA anal-
ysis, including the size and distribution of chromosomal windows, as well 
as the particular type of analysis.  

The function Chromo.Phylome uses IQ-TREE to estimate a “chromo-
some-specific phylome”—a set of locus-specific phylogenetic trees for a 
given chromosomal alignment. On completion, Chromo.Phylome outputs 
a set of phylogenetic tree models fitted to each respective genomic win-
dow. The IQ-TREE commands are customizable, such that Chromo.Phy-
lome can accommodate diverse analyses, including tree inference, model 
selection, and model adequacy tests across a WGA. Finally, replicate anal-
yses can be run to explore different experimental settings.  

The module Chromo.Crawl “crawls” across a WGA, testing for con-
gruence among contiguous windows, and concatenates them when there 
is insufficient evidence of gene tree disagreement. It employs the program 
CONCATEPILLAR, which implements a likelihood-based model test to 
assess whether a set of loci likely share the same phylogeny. 
Chromo.Crawl sequentially applies this model test to contiguous win-
dows, and then concatenates these windows into a single supergene if 
there is evidence of congruency (see Supplementary Note for details). 
Chromo.Crawl will then move to the next adjacent window to assess 
whether it can be combined with the previous windows. This merging of 
contiguous windows into a supergene continues until the model test re-
veals discordance, with the process restarting at the current window.  

3 Biological Application 
We applied PhyloWGA on a WGA of 12 primates (Moorjani et al., 2016), 
to characterize the phylogenetic landscape of human chromosome 1. We 
coarsely (100 kb windows) estimated locus phylogenetic trees by setting 
Chromo.Phylome to conduct ML-based phylogenetic analysis at each win-
dow with a GTR+Γ substitution model, and to then compute tree distances 

between windows. We next investigated phylogenomic conflict at a fine 
scale (10 kb windows) by applying Chromo.Crawl to track concatenated 
window sizes (i.e., supergene lengths) across the chromosome.  

We used PhyloWGA to ‘paint a picture’ of the chromosome-wide land-
scape of phylogenomic conflict for this WGA. Visualizing pairwise dis-
tances among genomic regions provides a detailed depiction of conflict 
(Fig. 1a), indicating higher levels of conflict (darker shades) nearby telo-
meres and the centromere, as well as intermittent bands of high and low 
discordance throughout. We recovered 38 supergenes for the first six Mb 
of the chromosome, with a mean of ~116 kb per supergene (Fig. 1b).  
Though the underlying reasons for such widespread discordance in these 
data remain unknown, both biology and methodology likely play a role. 
For example, high levels of discordance observed in particular regions 
(i.e., darker bands of Fig. 1a and shorter supergenes in Fig. 1b) may rep-
resent poor alignment quality, regions of high recombination, or other pro-
cesses unique to such regions. Both the accuracy and computational effi-
ciency of PhyloWGA are influenced by the experimental design (e.g., win-
dow size and distribution) and evolutionary conditions (e.g., recombina-
tion rate and nucleotide model complexity) of the particular WGA analysis 
(see Supplementary Note for details).  
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