10

11

12

13

14

This submission is intended as a Letter

New methods to calculate concordance factors for phylogenomic datasets

Bui Quang Minh'?, Matthew W. Hahn*#, and Robert Lanfear>"

! Research School of Computer Science, Australian National University, Canberra, ACT,

Australia

2 Department of Ecology and Evolution, Research School of Biology, Australian National

University, Canberra, ACT, Australia
3 Department of Biology, Indiana University, Bloomington, Indiana, USA
4 Department of Computer Science, Indiana University, Bloomington, Indiana, USA

* To whom correspondence should be addressed (rob.lanfear@anu.edu.au)



mailto:m.bui@anu.edu.au

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Abstract

We implement two measures for quantifying genealogical concordance in phylogenomic
datasets: the gene concordance factor (gCF) and the novel site concordance factor (sCF). For
every branch of a reference tree, gCF is defined as the percentage of “decisive” gene trees
containing that branch. This measure is already in wide usage, but here we introduce a
package that calculates it while accounting for variable taxon coverage among gene trees.
sCF is a new measure defined as the percentage of decisive sites supporting a branch in the
reference tree. gCF and sCF complement classical measures of branch support in
phylogenetics by providing a full description of underlying disagreement among loci and
sites. An easy to use implementation and tutorial is freely available in the [Q-TREE software

package (http://www.igtree.org).
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Measures of branch support such as the bootstrap (Felsenstein 1985; Minh et al. 2013)
and Bayesian posterior probability (Ronquist and Huelsenbeck 2003) are important for
making robust inferences from phylogenetic trees. However, while these measures provide
useful information about the statistical support for a given branch, neither captures the

topological variation present in the underlying data (Kumar et al. 2012).

A complementary approach involves calculating the fraction of loci consistent with a
particular branch, thus capturing underlying agreement and disagreement in the data. Various
approaches have been suggested, including the gene concordance factor (gCF) (Baum 2007)
— sometimes also referred to as the ‘gene support frequency’ (Gadagkar et al. 2005; Salichos
and Rokas 2013) — and internode certainty (Salichos and Rokas 2013), with the former
being the most widely used. The gCF describes for each branch in a reference tree the
proportion of inferred single-locus trees that contain that branch. While intuitive, the gCF
suffers from three limitations: first, there are few software implementations (Ané et al. 2007);
second, while issues with incomplete taxon sampling of gene trees have been addressed by
some authors (Smith et al. 2015; Kobert et al. 2016), these fixes are not available in
implementations that allow for the calculation of gCF values; and third, low gCF values are
hard to interpret because they may result from strongly supported discordance among

individual gene trees or weak phylogenetic signal in individual loci.

Here, we resolve these issues by implementing the calculation of gCF while
accounting for unequal taxon sampling in the popular IQ-TREE package (Nguyen et al. 2015;
Minh et al. 2020), and by introducing the site concordance factor (sCF), a measure that
estimates concordance at the level of individual sites. We argue, and show by detailed
analyses of 10 empirical datasets, that concordance factors complement commonly used
metrics like the bootstrap by providing additional information and insights about topological

variation.
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Gene Concordance Factor (gCF)

For a given unrooted bifurcating reference tree, T (e.g. an estimate of the species
tree), and a set of unrooted bifurcating input trees, S = {T;, ..., T,,} (e.g. individual gene trees),
we can calculate the gCF for every internal branch x in T. Each gene tree, T;, must contain a

subset of the taxa in T, but need not include all of the same taxa.

Each internal branch x of T is associated with four clades of T representing four taxon
subsets, 4, B, C, and D, such that the bipartition A U B|C U D corresponds to the branch x
(Fig. 1). The reference tree T contains branch x by definition, but branch x may or may not
be present in a gene tree of the same taxa (or a subset of them). Let 4;, B;, C;,and D; be the
set of taxa in 4, B, C, and D that are also present in T;. We say T; is decisive for x if
A;, B;, C;, D; are non-empty (we use ‘decisive’ in the sense of (Sanderson et al. 2011), but
note for clarity that Dell'Ampio et al. (2014) use this term in a different way): i.e. a gene tree
is decisive as long as it contains at least one of the taxa in each of the taxon subsets
A,B,C,and D. A decisive gene tree can potentially contain the branch x. We say T; is
concordant with x if T; is decisive for x and the bipartition A; U B;|C; U D; corresponds to a
branch in T;. In other words, a gene tree is concordant with the reference tree if it could have
contained branch x (i.e. it is decisive) and it does contain branch x. The gene concordance

factor for branch x is now defined as:

|{i: T; is concordant with x}|

gCF(x) = |{i: T; is decisive for x}|

In other words, the gCF is the proportion of input trees decisive for x that are concordant

with x; i.e. the proportion of all input trees that could have contained x that do contain x. We
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note that gCF is also used to calculate internode certainty and related measures (Salichos et

al. 2014; Kobert et al. 2016).

To further understand concordant and discordant gene trees, we categorise the
discordant input trees (i.e. those that do not contain branch x) into three groups, and calculate

three discordance factors: gDF1, gDF2, and gDFp. The first two groups are obtained

by applying a nearest neighbour interchange (NNI) around branch x to result in two
alternative topologies (Fig. 1) with two branches not appearinginT: y = AU C|B U D and
z=AUD|B U C. Accordingly, we then calculate discordance factors as gCF(y) = gDF;(x)
and gCF(z) = gDF,(x). Some input trees may not contain any of the branches x, y, or z. This
will occur for input trees in which one or more of clades 4, B, C, or D are not monophyletic.
We define the proportion of decisive input trees that fall into this category as gDFp(x), where
the ‘P’ stands for ‘paraphyly’. The four proportions gCF(x), gDF, (x), gDF,(x), and
gDFp(x) will sum to 1, as every decisive input tree must be included in one of the four

categories.

Site Concordance Factor (sCF)

To calculate the sCF for branch x, we randomly sample m quartets of taxa q =
{a,b,c,d}, where a, b, c,and d are in 4, B, C, and D, respectively. For each quartet q, we
examine the sub-alignment of taxa a, b, ¢, d. For every site j in this alignment, we call j
decisive for x if the characters a;, b, ¢;, and d; are all present and j is parsimony informative
when restricted to this quartet of taxa. Decisive sites can be concordant or discordant with x.

We say that site j is concordant with x if a; = b; # ¢; = d; (i.e., j supports the bipartition

{a, b}|{c, d}). The concordance factor for q is defined as:



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

ji: j is concordant with x
e, o = 10 }

|{j: j is decisive for x}|

Since many such quartets exist around branch x (when sampling individual tips from

within 4, B, C, and D), we define sCF(x) as the mean CF, (x) over m random quartets:

Thus, the sCF is the average proportion of sites decisive for x that are concordant with x. In
effect, the sCF is a measure of concordance for sites that is directly comparable to the
measure of concordance for single-locus trees provided by the gCF. Unlike related quartet
approaches that are based on maximum likelihood tree inference and that calculate
discordance at the level of the whole alignment (Strimmer and von Haeseler 1997; Pease et
al. 2018), the sCF uses parsimony criteria to calculate discordance at the level of individual
sites. We note that the sCF is closely related to the values derived from spectral analysis
(Hendy and Penny 1993; Charleston 1998). Spectral analysis is a tree-independent method of
investigating phylogenetic signal. In the simple case of binary data, such that each site
corresponds to a bipartition of taxa, the spectral support for a single branch counts the
number of sites that correspond to the bipartition defined by that branch. In the case of binary

data, this is the same as the value CF, (x) that we define above. The sCF in this case differs
from the spectral support insofar as it is calculated by averaging over a large set of CF, (x)

values calculated by repeatedly subsampling quartets of taxa from an alignment.

Similarly to gene discordance factors, we also define the site discordance factors
sCF(y) = sDF;(x) and sCF(z) = sDF,(x). There is no sDFp category, because unlike the

gDF values, every decisive site must contribute to one of the three proportions sCF(x),
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sDF; (x), or sDF,(x); any quartet of taxa resolves into exactly three tree topologies shown in

Figure 1. In other words, the sum of sCF(x), sDF; (x), and sDF,(x) will always be 1.

gCF and sCF for rooted trees

The above definitions of gCF and sCF apply only to unrooted trees. However, in the
case that users have a rooted reference tree as well as rooted gene trees, we can extend the
calculation of the gCF to allow us to calculate different gCF values on either side of the root.
To do this we first add a virtual root node into the rooted reference tree T, resulting in an
unrooted tree T'. Similarly, we convert the rooted gene trees T; into unrooted trees T; by
adding the same virtual root. This allows us to then follow the same procedure as above for
calculating gCF values on unrooted trees, with the sole difference that the output is a rooted
instead of an unrooted reference tree. In this case, it is possible to calculate gCF values on a
rooted reference tree where the gCF values on either side of the root may differ. In all other
cases (i.e. for sCF values, and if either the reference tree or the gene trees are unrooted), it is

not possible to calculate different concordance factors on either side of the root.

Implementation in IQ-TREE 2

We provide two new options, --gcf and --scf, in IQ-TREE version 2 {Minh 2020} to
compute gCF and sCF respectively. A tutorial for how to use these options is provided at

http://www.igtree.org/doc/Concordance-Factor. Both options can be combined in a single

run, which will calculate the gCF and sCF for every branch in the input reference tree. While
sCFs can be calculated on any alignment, the calculation of gCFs requires individual gene

trees. We have therefore implemented a convenient option, -S, to specify a partition file or a
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directory of single-locus alignments in which IQ-TREE will infer separate trees for each

partition or alignment (Minh et al. 2020).

IQ-TREE provides a suite of output files to assist users in understanding and
investigating gCF and sCF values. It provides tree files that can be viewed in most tree
viewers, which contain information on both the proportional data (gCF, gDFi, gDF», gDFp;
sCF, sDF1, sDF») and their corresponding absolute count data (gCF_N, gDF; N, gDF; N,
gDFpr N; sCF N, sDF; N, sDF> N), as well as the number of decisive genes and sites for
each branch (gN and sN, respectively). It also provides a tree file that combines information
on the gCF, sCF, and any bootstrap values that have been calculated (e.g. Figure 2). In
addition to this, IQ-TREE provides a ‘.cf.stat’ file that contains all 16 concordance and
discordance values listed above for every branch in the reference tree in a machine-readable
tabulated format, and through the --cf-verbose option it provides tabulated files that detail for
every branch in the reference tree whether each gene tree was concordant with that branch
(the “.cf.stat_tree’ file produced from a --gcf analysis), and the average number of sites in
each locus that were concordant with that branch (the ‘.cf.stat_loci’ file produced from a --scf
analysis). Together these output files provide both a convenient overview of the data, and the
opportunity to understand in much more detail the extent to which each locus is concordant

or discordant with the reference tree.

Application to empirical datasets

To demonstrate the use of gCF and sCF values, we first analysed a dataset containing
3,220 ultra-conserved elements (UCEs) from lizards, totalling 1,301,107 bp for 43 species
(Rodriguez et al. 2018). To do this, we estimated a concatenated maximum likelihood (ML)

tree, 3,220 UCE trees, and the gCF, sCF, and bootstrap values with IQ-TREE (Figure 2).
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To investigate the relationships between dataset size, concordance factors, and
bootstrap values, we also analysed a collection of nine additional empirical phylogenomic
datasets that represent a range of clades and data types (Table 1). For each dataset, we
performed 20 analyses across a 20-fold range of dataset sizes: the first analysis included 10
randomly selected loci from the complete dataset, and each subsequent analysis added 10
more randomly selected loci up to a maximum of 200 loci. For each such analysis, we
calculated the gCF, sCF, and bootstrap values for every branch of the concatenated ML tree
estimated from the 200-locus dataset, with the same approach as above. For the lizard dataset,
we calculated both standard bootstrap (StdBoot) values (Felsenstein 1985) and ultrafast
bootstrap (UFBoot) values (Hoang et al. 2018). As expected (Minh et al. 2013), we observed
that StdBoot and UFBoot values were very similar (Figure 3B, supplementary figure 8§D);
therefore, because of the high computational cost of calculating StdBoot values, we
calculated only UFBoot values for the remaining nine datasets. Since the results of all 10
analyses are very similar, we focus here on the lizard dataset, and present the results for the

other 9 datasets in the supplementary figures.

Reproducible analyses are provided in the supplementary material available at

https://doi.org/10.5281/zenodo.1949287.

Interpretation of gCF and sCF values

Our analyses highlight a number of important differences between concordance
factors and bootstrap values. First, concordance factors of any type tend to be much lower
than bootstrap values or other measures of statistical support for branches in the species tree
(e.g. Fig 3, supplementary figures 1 to 10). This is because bootstrap values measure the

sampling variance in support of a focal branch, while gCF and sCF values measure the
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underlying variance in support of that branch at the gene- and site-level respectively. In other
words, resampled datasets may always return the same tree (i.e. 100% bootstrap support),
even though incomplete lineage sorting or other processes that lead to genealogical
discordance are at work (e.g. gCF and sCF values <<100%). Of particular note is that a very
high bootstrap value (e.g. of 100%) does not predict or require a similarly high concordance
factor. For example, although all but one bootstrap value on the tree in Figure 1 is 100%, the
smallest gCF and sCF values are 4.5% and 33.2% respectively. This pattern is repeated
across all 200 analyses we performed on all 10 empirical datasets (Figure 3, supplementary

figures 1 to 10).

Because they measure different things, concordance factors and bootstrap values are
affected very differently by the addition of loci to a dataset (Figure 3, supplementary figures
1 to 10). In all of the 10 empirical datasets that we analysed, adding loci to the dataset tended
to increase the bootstrap values of individual branches (e.g. Figure 3A, see also
supplementary figures) and concomitantly the proportion of branches with a bootstrap value
of 100% (Figure 3B, see also supplementary information). This is expected: the bootstrap is
effectively measuring the standard error of the mean in a dataset (where the mean represents
the tree inferred from the full dataset), and this standard error will go down with more
samples. The same is not true of concordance factors, which display some estimation error
when datasets are small (e.g. 30 or fewer loci in Figure 3), but subsequently remain almost
completely insensitive to the addition of loci to the dataset (Figure 3, supplementary figures
1-10). This is also expected: any measure of the underlying variance (or standard deviation)
in a distribution will have some estimation error when the sample size is small, but should not
change monotonically as the sample size increases. These differences highlight the
complementary information that can be gained from calculating both bootstrap values and

concordance factors for individual branches. One measure is not better or worse than the
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other, rather, concordance factors provide useful information that bootstraps do not, and vice
versa. Note that bootstrap values or posterior probabilities calculated by resampling gene
trees (e.g., Sayyari and Mirarab 2016) have the same behaviour as the site-wise bootstrap

carried out here, and are also not equivalent to concordance factors.

In principle, both gCF and sCF values can range from 0% (no genes / sites are
concordant with the focal branch) to 100% (all genes / sites are concordant with the focal
branch). In practice however, as exemplified in Figure 3 and supplementary figures 1 to 10,
empirical gCF values tend to range from 0% to 100%, while empirical sCF values are rarely
lower than 33% (represented by the dashed line in the sCF panel of Figure 3A). This is due to
an important underlying difference in the way that the two values are calculated. The sCF is
calculated from quartets, so a single site can only support one of three topologies (Figure 1).
Because of this, if there is no consistent information in an alignment (e.g. if a long alignment
were generated at random) we expect a roughly equal proportion of sites supporting each of
the three trees, leading to an sCF value of approximately 33% (for the same reason, sCF
values for very long branches will approach 33% due to saturation). The same is not true for
gCF values, because a gene tree can support not only the three possible relationships shown
in Figure 1, but any other relationship in which one or more of clades 4, B, C, or D is not
monophyletic. The higher the number of gene trees in this latter group, the closer the gCF
value will be to 0%. Because of this, we should expect gCF values to be particularly low
when gene trees are estimated from alignments with limited information or where branch x is
extremely short; in such cases either technical or biological processes may increase the
proportion of gene trees that fail to recover the monophyly of clades 4, B, C, or D found in
the reference tree. Missing data may also impact gCF and sCF values, however, the
relationship here is less clear. The requirement that a gene tree or a site is decisive (i.e. could

in principle contain branch x, see above) should limit the impact of missing data on gCF and
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sCF estimates. Nevertheless, since phylogenetic estimates are known to worsen as the
proportion of missing data increases (e.g., Roure et al. 2013; Xi et al. 2016), it is plausible
that concordance factors may systematically decrease as the proportion of missing data

increases.

Finally, cases where the sCF value is lower than 33% may be of particular interest.
These cases are, by definition, those in which maximum parsimony (MP) would favour a
different resolution of a split found in the reference tree. If the reference tree was calculated
from any method other than MP, there are at least two explanations for an sCF value lower
than 33%. First, the branch of interest may be in an area of parameter space in which high
levels of incomplete lineage sorting are known to mislead concatenated ML analyses
(Kubatko and Degnan 2007) but not MP analyses (Mendes and Hahn 2018). Misleading
reference trees may therefore be produced by either concatenated ML of the entire dataset, or
by gene tree methods that use shorter sets of concatenated loci as their input (because most
protein-coding genes are themselves made up of multiple topologies). Second, and more
generally, there are multiple reasons why likelihood, Bayesian, or gene tree methods for
producing a species tree will differ from MP resolutions. For instance, the branch of interest
may be unduly affected by a small number of highly influential sites in a concatenated ML
analysis (Shen et al. 2017). In this case, the influential sites can have an outsized influence on
the ML resolution of a split because they have extreme differences in likelihood between
different resolutions of that split. Because MP does not account for likelihood differences—it
instead weights all sites equally—MP analyses remain unaffected by such outliers. Thus,

cases in which the sCF is much lower than 33% may merit further investigation.

We hope that the user-friendly implementation of gene- and site-concordance factors
in IQ-TREE will assist researchers in gaining additional insights into their phylogenetic

reconstructions. In particular, we encourage phylogeneticists to calculate both bootstrap
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values and concordance factors for the branches on their trees, as the two measures provide
complementary information that may help to improve the accuracy of our interpretations of
phylogenetic reconstructions. Indeed, the use of concordance factors may help to alleviate the
commonly cited problem in phylogenomics that bootstrap values provide relatively little

information when they are all 100% (Kumar et al. 2012).
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Table 1. The five DNA and five amino acid (AA) datasets analysed in this study.

No Reference Type Clade Taxa Loci Sites
1 (Ballesteros and Sharma  AA Chelicerata 53 3,534 1,484,206
2019)
2 (Branstetter et al. 2017)  DNA  Aculeata 187 807 183,747
3 (Cannon et al. 2016) DNA  Metazoa 78 424 89,792
4 (Jarvis et al. 2015) AA Aves 52 8,295 4,519,041
5 (Misof et al. 2014) AA Insecta 144 2,868 595,033
6 (Ran et al. 2018) AA Spermatophyta 38 1,308 432,014
7 (Ran et al. 2018) DNA  Spermatophyta 38 3,924 1,296,042
8 (Rodriguez et al. 2018) DNA  Prasinohaema 43 3,220 1,301,107
9 (Wu et al. 2018) AA Mammalia 90 5,162 3,050,199
10 (Wuetal. 2018) DNA  Mammalia 90 15,486 9,150,597
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Figure legends

Figure 1. Schematic view of a bifurcating tree at an internal branch x with four surrounding
sub-trees containing the taxon sets 4, B, C, and D. Branch x corresponds to the bipartition
AU B|C U D. In our definition, branch x is always present in the reference tree, but it may or
may not be present in each of the input trees. By applying the two nearest neighbour
interchanges (denoted as arrows) one can produce the two other trees that contain taxon sets

A, B, C, and D, but with internal branches y and z.

Figure 2. An example of concordance factors on a dataset of lizards (Rodriguez et al. 2018).
A cladogram is shown to facilitate the plotting of concordance factors on branches. Numbers
on each branch show the site concordance factor (sCF) above the branch (e.g. s73) and the
gene concordance factor (gCF) below the branch (e.g. g37). Bootstrap values are 100% on
every branch, except for the branch leading to Lipinia rouxi and L. pulchella, which has a
bootstrap value of 62%. The inset shows a scatter plot of gCF values against sCF values for
all branches, revealing the large range of gCF and sCF values as well as the fact that for this
dataset sCF values are always at least as large as gCF values. This is likely because of the

short length of the UCE loci used to infer gene trees (Rodriguez et al. 2018).

Figure 3. Concordance factors remain relatively stable as loci are added to an analysis, while
bootstrap values continue to increase towards 100%. A) The results of 20 reanalyses of the
lizard dataset, each of which adds a further ten loci to the analysis, up to a maximum of 200
loci (x-axis). Each coloured line represents a different branch in the tree. The dashed line on
the sCF panel shows a value of 33%. B) For each of the four metrics considered here
(represented by different coloured lines), the number of loci included in the analysis affects

the proportion of the branches that have a value of 100%.
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