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Abstract 15 

We implement two measures for quantifying genealogical concordance in phylogenomic 16 

datasets: the gene concordance factor (gCF) and the novel site concordance factor (sCF). For 17 

every branch of a reference tree, gCF is defined as the percentage of “decisive” gene trees 18 

containing that branch. This measure is already in wide usage, but here we introduce a 19 

package that calculates it while accounting for variable taxon coverage among gene trees. 20 

sCF is a new measure defined as the percentage of decisive sites supporting a branch in the 21 

reference tree. gCF and sCF complement classical measures of branch support in 22 

phylogenetics by providing a full description of underlying disagreement among loci and 23 

sites. An easy to use implementation and tutorial is freely available in the IQ-TREE software 24 

package (http://www.iqtree.org). 25 
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Measures of branch support such as the bootstrap (Felsenstein 1985; Minh et al. 2013) 29 

and Bayesian posterior probability (Ronquist and Huelsenbeck 2003) are important for 30 

making robust inferences from phylogenetic trees. However, while these measures provide 31 

useful information about the statistical support for a given branch, neither captures the 32 

topological variation present in the underlying data (Kumar et al. 2012).  33 

A complementary approach involves calculating the fraction of loci consistent with a 34 

particular branch, thus capturing underlying agreement and disagreement in the data. Various 35 

approaches have been suggested, including the gene concordance factor (gCF) (Baum 2007) 36 

— sometimes also referred to as the ‘gene support frequency’ (Gadagkar et al. 2005; Salichos 37 

and Rokas 2013) — and internode certainty (Salichos and Rokas 2013), with the former 38 

being the most widely used. The gCF describes for each branch in a reference tree the 39 

proportion of inferred single-locus trees that contain that branch. While intuitive, the gCF 40 

suffers from three limitations: first, there are few software implementations (Ané et al. 2007); 41 

second, while issues with incomplete taxon sampling of gene trees have been addressed by 42 

some authors (Smith et al. 2015; Kobert et al. 2016), these fixes are not available in 43 

implementations that allow for the calculation of gCF values; and third, low gCF values are 44 

hard to interpret because they may result from strongly supported discordance among 45 

individual gene trees or weak phylogenetic signal in individual loci.  46 

Here, we resolve these issues by implementing the calculation of gCF while 47 

accounting for unequal taxon sampling in the popular IQ-TREE package (Nguyen et al. 2015; 48 

Minh et al. 2020), and by introducing the site concordance factor (sCF), a measure that 49 

estimates concordance at the level of individual sites. We argue, and show by detailed 50 

analyses of 10 empirical datasets, that concordance factors complement commonly used 51 

metrics like the bootstrap by providing additional information and insights about topological 52 

variation. 53 



 54 

Gene Concordance Factor (gCF) 55 

For a given unrooted bifurcating reference tree, 𝑇 (e.g. an estimate of the species 56 

tree), and a set of unrooted bifurcating input trees, S = {𝑇!, … , 𝑇"} (e.g. individual gene trees), 57 

we can calculate the gCF for every internal branch 𝑥 in 𝑇. Each gene tree, 𝑇#, must contain a 58 

subset of the taxa in 𝑇, but need not include all of the same taxa.  59 

 Each internal branch 𝑥 of 𝑇 is associated with four clades of 𝑇 representing four taxon 60 

subsets, 𝐴, 𝐵, 𝐶,	and	𝐷, such that the bipartition 𝐴 ∪ 𝐵|𝐶 ∪ 𝐷 corresponds to the branch 𝑥 61 

(Fig. 1). The reference tree 𝑇 contains branch 𝑥 by definition, but branch 𝑥 may or may not 62 

be present in a gene tree of the same taxa (or a subset of them). Let 𝐴# , 𝐵# , 𝐶# , and	𝐷# be the 63 

set of taxa in 𝐴, 𝐵, 𝐶,	and	𝐷 that are also present in 𝑇#. We say 𝑇# is decisive for 𝑥 if 64 

𝐴# , 𝐵# , 𝐶# , 𝐷# are non-empty (we use ‘decisive’ in the sense of (Sanderson et al. 2011), but 65 

note for clarity that Dell'Ampio et al. (2014) use this term in a different way): i.e. a gene tree 66 

is decisive as long as it contains at least one of the taxa in each of the taxon subsets 67 

𝐴, 𝐵, 𝐶,	and	𝐷. A decisive gene tree can potentially contain the branch 𝑥. We say 𝑇# is 68 

concordant with 𝑥 if 𝑇# is decisive for 𝑥 and the bipartition 𝐴# ∪ 𝐵#|𝐶# ∪ 𝐷# corresponds to a 69 

branch in 𝑇#. In other words, a gene tree is concordant with the reference tree if it could have 70 

contained branch 𝑥 (i.e. it is decisive) and it does contain branch 𝑥. The gene concordance 71 

factor for branch 𝑥 is now defined as: 72 

gCF(𝑥) =
|{𝑖: 𝑇# 	is	concordant	with	𝑥}|
|{𝑖: 𝑇# 	is	decisive	for	𝑥}|

 73 

In other words, the gCF is the proportion of input trees decisive for 𝑥 that are concordant 74 

with 𝑥; i.e. the proportion of all input trees that could have contained 𝑥 that do contain 𝑥. We 75 



note that gCF is also used to calculate internode certainty and related measures (Salichos et 76 

al. 2014; Kobert et al. 2016). 77 

 To further understand concordant and discordant gene trees, we categorise the 78 

discordant input trees (i.e. those that do not contain branch x) into three groups, and calculate 79 

three discordance factors: gDF1, gDF2, and gDFP. The first two groups are obtained 80 

by applying a nearest neighbour interchange (NNI) around branch 𝑥 to result in two 81 

alternative topologies (Fig. 1) with two branches not appearing in 𝑇: 𝑦 = 𝐴 ∪ 𝐶|𝐵 ∪ 𝐷 and 82 

𝑧 = 𝐴 ∪ 𝐷|𝐵 ∪ 𝐶. Accordingly, we then calculate discordance factors as  gCF(𝑦) = gDF!(𝑥) 83 

and gCF(𝑧) = gDF$(𝑥). Some input trees may not contain any of the branches x, y, or z. This 84 

will occur for input trees in which one or more of clades A, B, C, or D are not monophyletic. 85 

We define the proportion of decisive input trees that fall into this category as gDF%(𝑥), where 86 

the ‘P’ stands for ‘paraphyly’. The four proportions gCF(𝑥), gDF!(𝑥), gDF$(𝑥), and 87 

gDF%(𝑥) will sum to 1, as every decisive input tree must be included in one of the four 88 

categories. 89 

 90 

Site Concordance Factor (sCF) 91 

To calculate the sCF for branch 𝑥, we randomly sample 𝑚 quartets of taxa 𝑞 =92 

{𝑎, 𝑏, 𝑐, 𝑑}, where 𝑎, 𝑏, 𝑐,	and	𝑑 are in 𝐴, 𝐵, 𝐶,	and	𝐷, respectively. For each quartet 𝑞, we 93 

examine the sub-alignment of taxa 𝑎, 𝑏, 𝑐, 𝑑. For every site 𝑗 in this alignment, we call 𝑗 94 

decisive for 𝑥 if the characters 𝑎& , 𝑏& , 𝑐& ,	and	𝑑& 	are all present and 𝑗 is parsimony informative 95 

when restricted to this quartet of taxa. Decisive sites can be concordant or discordant with 𝑥. 96 

We say that site 𝑗 is concordant with 𝑥 if 𝑎& = 𝑏& ≠ 𝑐& = 𝑑& (i.e., 𝑗 supports the bipartition 97 

{𝑎, 𝑏}|{𝑐, 𝑑}). The concordance factor for 𝑞 is defined as: 98 



CF'(𝑥) =
|{𝑗:	𝑗	is	concordant	with	𝑥}|
|{𝑗:	𝑗	is	decisive	for	𝑥}|  99 

Since many such quartets exist around branch 𝑥 (when sampling individual tips from 100 

within A, B, C, and D), we define sCF(𝑥) as the mean CF'(𝑥) over m random quartets:  101 

sCF(𝑥) =
1
𝑚PQCF'(𝑥)

'

R 102 

Thus, the sCF is the average proportion of sites decisive for 𝑥 that are concordant with 𝑥. In 103 

effect, the sCF is a measure of concordance for sites that is directly comparable to the 104 

measure of concordance for single-locus trees provided by the gCF. Unlike related quartet 105 

approaches that are based on maximum likelihood tree inference and that calculate 106 

discordance at the level of the whole alignment (Strimmer and von Haeseler 1997; Pease et 107 

al. 2018), the sCF uses parsimony criteria to calculate discordance at the level of individual 108 

sites. We note that the sCF is closely related to the values derived from spectral analysis 109 

(Hendy and Penny 1993; Charleston 1998). Spectral analysis is a tree-independent method of 110 

investigating phylogenetic signal. In the simple case of binary data, such that each site 111 

corresponds to a bipartition of taxa, the spectral support for a single branch counts the 112 

number of sites that correspond to the bipartition defined by that branch. In the case of binary 113 

data, this is the same as the value CF'(𝑥) that we define above. The sCF in this case differs 114 

from the spectral support insofar as it is calculated by averaging over a large set of CF'(𝑥) 115 

values calculated by repeatedly subsampling quartets of taxa from an alignment. 116 

 Similarly to gene discordance factors, we also define the site discordance factors 117 

sCF(𝑦) = sDF!(𝑥) and sCF(𝑧) = sDF$(𝑥). There is no sDFP category, because unlike the 118 

gDF values, every decisive site must contribute to one of the three proportions sCF(𝑥), 119 



sDF!(𝑥), or sDF$(𝑥);	any quartet of taxa resolves into exactly three tree topologies shown in 120 

Figure 1. In other words, the sum of sCF(𝑥), sDF!(𝑥), and sDF$(𝑥) will always be 1.  121 

 122 

gCF and sCF for rooted trees 123 

The above definitions of gCF and sCF apply only to unrooted trees. However, in the 124 

case that users have a rooted reference tree as well as rooted gene trees, we can extend the 125 

calculation of the gCF to allow us to calculate different gCF values on either side of the root. 126 

To do this we first add a virtual root node into the rooted reference tree 𝑇, resulting in an 127 

unrooted tree 𝑇′. Similarly, we convert the rooted gene trees 𝑇# into unrooted trees 𝑇#( by 128 

adding the same virtual root. This allows us to then follow the same procedure as above for 129 

calculating gCF values on unrooted trees, with the sole difference that the output is a rooted 130 

instead of an unrooted reference tree. In this case, it is possible to calculate gCF values on a 131 

rooted reference tree where the gCF values on either side of the root may differ. In all other 132 

cases (i.e. for sCF values, and if either the reference tree or the gene trees are unrooted), it is 133 

not possible to calculate different concordance factors on either side of the root. 134 

 135 

Implementation in IQ-TREE 2 136 

We provide two new options, --gcf and --scf, in IQ-TREE version 2 {Minh 2020} to 137 

compute gCF and sCF respectively. A tutorial for how to use these options is provided at 138 

http://www.iqtree.org/doc/Concordance-Factor. Both options can be combined in a single 139 

run, which will calculate the gCF and sCF for every branch in the input reference tree. While 140 

sCFs can be calculated on any alignment, the calculation of gCFs requires individual gene 141 

trees.  We have therefore implemented a convenient option, -S, to specify a partition file or a 142 

http://www.iqtree.org/doc/Concordance-Factor


directory of single-locus alignments in which IQ-TREE will infer separate trees for each 143 

partition or alignment (Minh et al. 2020).  144 

IQ-TREE provides a suite of output files to assist users in understanding and 145 

investigating gCF and sCF values. It provides tree files that can be viewed in most tree 146 

viewers, which contain information on both the proportional data (gCF, gDF1, gDF2, gDFP; 147 

sCF, sDF1, sDF2) and their corresponding absolute count data (gCF_N, gDF1_N, gDF2_N, 148 

gDFP_N; sCF_N, sDF1_N, sDF2_N), as well as the number of decisive genes and sites for 149 

each branch (gN and sN, respectively). It also provides a tree file that combines information 150 

on the gCF, sCF, and any bootstrap values that have been calculated (e.g. Figure 2). In 151 

addition to this, IQ-TREE provides a ‘.cf.stat’ file that contains all 16 concordance and 152 

discordance values listed above for every branch in the reference tree in a machine-readable 153 

tabulated format, and through the --cf-verbose option it provides tabulated files that detail for 154 

every branch in the reference tree whether each gene tree was concordant with that branch 155 

(the ‘.cf.stat_tree’ file produced from a --gcf analysis), and the average number of sites in 156 

each locus that were concordant with that branch (the ‘.cf.stat_loci’ file produced from a --scf 157 

analysis). Together these output files provide both a convenient overview of the data, and the 158 

opportunity to understand in much more detail the extent to which each locus is concordant 159 

or discordant with the reference tree.  160 

 161 

Application to empirical datasets 162 

To demonstrate the use of gCF and sCF values, we first analysed a dataset containing 163 

3,220 ultra-conserved elements (UCEs) from lizards, totalling 1,301,107 bp for 43 species 164 

(Rodriguez et al. 2018). To do this, we estimated a concatenated maximum likelihood (ML) 165 

tree, 3,220 UCE trees, and the gCF, sCF, and bootstrap values with IQ-TREE (Figure 2).  166 



To investigate the relationships between dataset size, concordance factors, and 167 

bootstrap values, we also analysed a collection of nine additional empirical phylogenomic 168 

datasets that represent a range of clades and data types (Table 1). For each dataset, we 169 

performed 20 analyses across a 20-fold range of dataset sizes: the first analysis included 10 170 

randomly selected loci from the complete dataset, and each subsequent analysis added 10 171 

more randomly selected loci up to a maximum of 200 loci. For each such analysis, we 172 

calculated the gCF, sCF, and bootstrap values for every branch of the concatenated ML tree 173 

estimated from the 200-locus dataset, with the same approach as above. For the lizard dataset, 174 

we calculated both standard bootstrap (StdBoot) values (Felsenstein 1985) and ultrafast 175 

bootstrap (UFBoot) values (Hoang et al. 2018). As expected (Minh et al. 2013), we observed 176 

that StdBoot and UFBoot values were very similar (Figure 3B, supplementary figure 8D); 177 

therefore, because of the high computational cost of calculating StdBoot values, we 178 

calculated only UFBoot values for the remaining nine datasets. Since the results of all 10 179 

analyses are very similar, we focus here on the lizard dataset, and present the results for the 180 

other 9 datasets in the supplementary figures. 181 

Reproducible analyses are provided in the supplementary material available at 182 

https://doi.org/10.5281/zenodo.1949287.  183 

 184 

Interpretation of gCF and sCF values 185 

Our analyses highlight a number of important differences between concordance 186 

factors and bootstrap values. First, concordance factors of any type tend to be much lower 187 

than bootstrap values or other measures of statistical support for branches in the species tree 188 

(e.g. Fig 3, supplementary figures 1 to 10). This is because bootstrap values measure the 189 

sampling variance in support of a focal branch, while gCF and sCF values measure the 190 

https://doi.org/10.5281/zenodo.1949287


underlying variance in support of that branch at the gene- and site-level respectively. In other 191 

words, resampled datasets may always return the same tree (i.e. 100% bootstrap support), 192 

even though incomplete lineage sorting or other processes that lead to genealogical 193 

discordance are at work (e.g. gCF and sCF values <<100%). Of particular note is that a very 194 

high bootstrap value (e.g. of 100%) does not predict or require a similarly high concordance 195 

factor. For example, although all but one bootstrap value on the tree in Figure 1 is 100%, the 196 

smallest gCF and sCF values are 4.5% and 33.2% respectively. This pattern is repeated 197 

across all 200 analyses we performed on all 10 empirical datasets (Figure 3, supplementary 198 

figures 1 to 10). 199 

Because they measure different things, concordance factors and bootstrap values are 200 

affected very differently by the addition of loci to a dataset (Figure 3, supplementary figures 201 

1 to 10). In all of the 10 empirical datasets that we analysed, adding loci to the dataset tended 202 

to increase the bootstrap values of individual branches (e.g. Figure 3A, see also 203 

supplementary figures) and concomitantly the proportion of branches with a bootstrap value 204 

of 100% (Figure 3B, see also supplementary information). This is expected: the bootstrap is 205 

effectively measuring the standard error of the mean in a dataset (where the mean represents 206 

the tree inferred from the full dataset), and this standard error will go down with more 207 

samples. The same is not true of concordance factors, which display some estimation error 208 

when datasets are small (e.g. 30 or fewer loci in Figure 3), but subsequently remain almost 209 

completely insensitive to the addition of loci to the dataset (Figure 3, supplementary figures 210 

1-10). This is also expected: any measure of the underlying variance (or standard deviation) 211 

in a distribution will have some estimation error when the sample size is small, but should not 212 

change monotonically as the sample size increases. These differences highlight the 213 

complementary information that can be gained from calculating both bootstrap values and 214 

concordance factors for individual branches. One measure is not better or worse than the 215 



other, rather, concordance factors provide useful information that bootstraps do not, and vice 216 

versa. Note that bootstrap values or posterior probabilities calculated by resampling gene 217 

trees (e.g., Sayyari and Mirarab 2016) have the same behaviour as the site-wise bootstrap 218 

carried out here, and are also not equivalent to concordance factors.  219 

In principle, both gCF and sCF values can range from 0% (no genes / sites are 220 

concordant with the focal branch) to 100% (all genes / sites are concordant with the focal 221 

branch). In practice however, as exemplified in Figure 3 and supplementary figures 1 to 10, 222 

empirical gCF values tend to range from 0% to 100%, while empirical sCF values are rarely 223 

lower than 33% (represented by the dashed line in the sCF panel of Figure 3A). This is due to 224 

an important underlying difference in the way that the two values are calculated. The sCF is 225 

calculated from quartets, so a single site can only support one of three topologies (Figure 1). 226 

Because of this, if there is no consistent information in an alignment (e.g. if a long alignment 227 

were generated at random) we expect a roughly equal proportion of sites supporting each of 228 

the three trees, leading to an sCF value of approximately 33% (for the same reason, sCF 229 

values for very long branches will approach 33% due to saturation). The same is not true for 230 

gCF values, because a gene tree can support not only the three possible relationships shown 231 

in Figure 1, but any other relationship in which one or more of clades A, B, C, or D is not 232 

monophyletic. The higher the number of gene trees in this latter group, the closer the gCF 233 

value will be to 0%. Because of this, we should expect gCF values to be particularly low 234 

when gene trees are estimated from alignments with limited information or where branch x is 235 

extremely short; in such cases either technical or biological processes may increase the 236 

proportion of gene trees that fail to recover the monophyly of clades A, B, C, or D found in 237 

the reference tree. Missing data may also impact gCF and sCF values, however, the 238 

relationship here is less clear. The requirement that a gene tree or a site is decisive (i.e. could 239 

in principle contain branch x, see above) should limit the impact of missing data on gCF and 240 



sCF estimates. Nevertheless, since phylogenetic estimates are known to worsen as the 241 

proportion of missing data increases (e.g., Roure et al. 2013; Xi et al. 2016), it is plausible 242 

that concordance factors may systematically decrease as the proportion of missing data 243 

increases. 244 

Finally, cases where the sCF value is lower than 33% may be of particular interest. 245 

These cases are, by definition, those in which maximum parsimony (MP) would favour a 246 

different resolution of a split found in the reference tree. If the reference tree was calculated 247 

from any method other than MP, there are at least two explanations for an sCF value lower 248 

than 33%. First, the branch of interest may be in an area of parameter space in which high 249 

levels of incomplete lineage sorting are known to mislead concatenated ML analyses 250 

(Kubatko and Degnan 2007) but not MP analyses (Mendes and Hahn 2018). Misleading 251 

reference trees may therefore be produced by either concatenated ML of the entire dataset, or 252 

by gene tree methods that use shorter sets of concatenated loci as their input (because most 253 

protein-coding genes are themselves made up of multiple topologies). Second, and more 254 

generally, there are multiple reasons why likelihood, Bayesian, or gene tree methods for 255 

producing a species tree will differ from MP resolutions. For instance, the branch of interest 256 

may be unduly affected by a small number of highly influential sites in a concatenated ML 257 

analysis (Shen et al. 2017). In this case, the influential sites can have an outsized influence on 258 

the ML resolution of a split because they have extreme differences in likelihood between 259 

different resolutions of that split. Because MP does not account for likelihood differences—it 260 

instead weights all sites equally—MP analyses remain unaffected by such outliers. Thus, 261 

cases in which the sCF is much lower than 33% may merit further investigation. 262 

We hope that the user-friendly implementation of gene- and site-concordance factors 263 

in IQ-TREE will assist researchers in gaining additional insights into their phylogenetic 264 

reconstructions. In particular, we encourage phylogeneticists to calculate both bootstrap 265 



values and concordance factors for the branches on their trees, as the two measures provide 266 

complementary information that may help to improve the accuracy of our interpretations of 267 

phylogenetic reconstructions. Indeed, the use of concordance factors may help to alleviate the 268 

commonly cited problem in phylogenomics that bootstrap values provide relatively little 269 

information when they are all 100% (Kumar et al. 2012). 270 
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Table 1. The five DNA and five amino acid (AA) datasets analysed in this study. 366 

No Reference Type Clade Taxa Loci Sites 

1 (Ballesteros and Sharma 

2019) 

AA Chelicerata 53 3,534 1,484,206 

2 (Branstetter et al. 2017) DNA Aculeata 187 807 183,747 

3 (Cannon et al. 2016) DNA Metazoa 78 424 89,792 

4 (Jarvis et al. 2015) AA Aves 52 8,295 4,519,041 

5 (Misof et al. 2014) AA Insecta 144 2,868 595,033 

6 (Ran et al. 2018) AA Spermatophyta 38 1,308 432,014 

7 (Ran et al. 2018) DNA Spermatophyta 38 3,924 1,296,042 

8 (Rodriguez et al. 2018) DNA Prasinohaema 43 3,220 1,301,107 

9 (Wu et al. 2018) AA Mammalia 90 5,162 3,050,199 

10 (Wu et al. 2018) DNA Mammalia 90 15,486 9,150,597 
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Figure legends 369 

Figure 1. Schematic view of a bifurcating tree at an internal branch 𝑥 with four surrounding 370 

sub-trees containing the taxon sets A, B, C, and D. Branch 𝑥 corresponds to the bipartition 371 

𝐴 ∪ 𝐵|𝐶 ∪ 𝐷. In our definition, branch 𝑥 is always present in the reference tree, but it may or 372 

may not be present in each of the input trees. By applying the two nearest neighbour 373 

interchanges (denoted as arrows) one can produce the two other trees that contain taxon sets 374 

A, B, C, and D, but with internal branches y and z. 375 

Figure 2. An example of concordance factors on a dataset of lizards (Rodriguez et al. 2018). 376 

A cladogram is shown to facilitate the plotting of concordance factors on branches. Numbers 377 

on each branch show the site concordance factor (sCF) above the branch (e.g. s73) and the 378 

gene concordance factor (gCF) below the branch (e.g. g37). Bootstrap values are 100% on 379 

every branch, except for the branch leading to Lipinia rouxi and L. pulchella, which has a 380 

bootstrap value of 62%. The inset shows a scatter plot of gCF values against sCF values for 381 

all branches, revealing the large range of gCF and sCF values as well as the fact that for this 382 

dataset sCF values are always at least as large as gCF values. This is likely because of the 383 

short length of the UCE loci used to infer gene trees (Rodriguez et al. 2018). 384 

Figure 3. Concordance factors remain relatively stable as loci are added to an analysis, while 385 

bootstrap values continue to increase towards 100%. A) The results of 20 reanalyses of the 386 

lizard dataset, each of which adds a further ten loci to the analysis, up to a maximum of 200 387 

loci (x-axis). Each coloured line represents a different branch in the tree. The dashed line on 388 

the sCF panel shows a value of 33%. B) For each of the four metrics considered here 389 

(represented by different coloured lines), the number of loci included in the analysis affects 390 

the proportion of the branches that have a value of 100%.   391 
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