

1 **Title:** New approaches for inferring phylogenies in the presence of paralogs

2

3 **Authors:** Megan L. Smith^{1*} and Matthew W. Hahn¹

4

5 Department of Biology and Department of Computer Science, Indiana University, Bloomington,

6 IN 47405, USA

7

8 *Correspondence: mls16@indiana.edu (M.L. Smith).

9

10

11

12

13 **Keywords:** phylogenomics, duplication, incomplete lineage sorting, polyploidy

14

15 **Abstract**

16

17 The availability of whole genome sequences was expected to supply essentially unlimited data
18 for phylogenetics. However, strict reliance on single-copy genes for this purpose has drastically
19 limited the amount of data that can be used. Here, we review several approaches for increasing
20 the amount of data used for phylogenetic inference, focusing on methods that allow for the
21 inclusion of duplicated genes (paralogs). Recently developed methods that are robust to high
22 levels of incomplete lineage sorting also appear to be robust to the inclusion of paralogs,
23 suggesting a promising way to take full advantage of genomic data. We discuss the pitfalls of
24 these approaches, as well as further avenues for research.

25 **The search for orthologs**

26

27 The business of phylogeny-building has been transformed by the availability of whole genome
28 sequences (reviewed in [1]). Indeed, the promise of “phylogenomics” was access to many
29 thousands of loci [2]. However, the data requirements of most phylogenetic inference methods—
30 single-copy genes present in almost all species sampled (Figure 1A)—have meant that a growing
31 number of phylogenomic studies have actually used very small amounts of data. For instance, in
32 their dataset of 76 arthropod genomes, Thomas et al. [3] found *no* genes that were single-copy
33 and present in all species. This study is not unique: even with whole-genome data, as the number
34 of species sampled goes up, the number of single-copy genes found in all taxa goes down [4].

35

36 Phylogeny estimation has long relied on the identification of single-copy orthologous genes,
37 filtering out paralogous genes found in multiple copies in one or more species (Box 1). Indeed,
38 when Fitch [5] introduced the terms ortholog and paralog it was in the context of species
39 phylogeny estimation: “Phylogenies require orthologous, not paralogous, genes.” This sentiment
40 is echoed repeatedly in the literature [6,7], based on the belief that, since orthologous genes are
41 related by speciation events alone, their relationships should more accurately reflect the species
42 phylogeny. Similar claims are made about the privileged use of orthologs in protein-function
43 prediction [8–10].

44

45 However, accurate methods for inferring species trees using both orthologs and paralogs were
46 proposed more than 40 years ago [11], and efficient software implementing these approaches has
47 been around for at least 20 years [12]. Methods using orthologs and paralogs work because gene
48 trees containing duplication events also include all of the speciation events that follow (Figure
49 1B). While each duplication event does add a branch not found in the species tree, it also doubles
50 the amount of information contained about subsequent speciation events. Most significantly,
51 recent methods developed for phylogeny inference using orthologs [13,14] turn out to be highly
52 accurate and extremely efficient when applied to datasets including paralogs. Although the
53 application of these approaches to such datasets is just beginning, their promise for
54 phylogenomics is clear.

55

56 In this review, we discuss ways to combat the limitation of single-copy orthologs by increasing
57 the amount of data that can be used in phylogenomics, while still maintaining a high degree of
58 accuracy. We first discuss the problem of gene tree heterogeneity, and how it affects the
59 accuracy of species trees. Next, we review two broad approaches for increasing the amount of
60 data used in phylogenomic inference: one that still includes only orthologs and one that includes
61 both orthologs and paralogs. We also describe the newly developed phylogenetic methods that
62 make both of these approaches possible. Finally, we identify some key topics to consider when
63 inferring phylogenies in the presence of paralogs, including promising future areas of research on
64 this topic.

65

66 **Gene tree heterogeneity and the problem of “hidden paralogy”**

67

68 Gene tree heterogeneity—a mismatch between the topology of a single region and the topology
69 of a species—is now recognized as common in phylogenetics [15]. This heterogeneity may be
70 due to a number of biological factors, including incomplete lineage sorting (ILS), introgression,
71 and gene duplication and loss (GDL) [16], in addition to technical factors such as error in gene
72 tree reconstruction. This heterogeneity has important consequences for species tree inference, as
73 if it is not accounted for it can lead to an incorrect phylogeny. Methods developed to deal with
74 multiple causes of heterogeneity can also help us to infer phylogenies from a broader set of loci.

75

76 In particular, high levels of ILS can mislead many species tree methods, whether they apply
77 maximum likelihood methods to concatenated alignments of all loci [17] or count gene tree
78 topologies individually [18]. Partly because of these issues, methods that account for ILS when
79 estimating species phylogenies have proliferated [19–24]. These gene-tree-based methods
80 usually construct a separate tree for each locus (excluding the methods in refs. [20] and [23]),
81 combining these trees together in a principled way to infer a species tree. As with most
82 phylogenetic approaches, these methods were designed to use datasets consisting of only single-
83 copy orthologs, as they account only for ILS as a source of gene tree heterogeneity. Importantly,
84 however, many of these methods also deal naturally with missing data; this will be key for
85 several of the new approaches described below.

86

87 Gene duplication and loss leads to gene tree heterogeneity by adding duplication events to gene
88 trees (Box 1). Such events are not expected in histories that follow only the species tree, so trees
89 that contain more than one copy of a gene are generally removed from phylogenetic datasets.
90 More insidiously, “hidden paralogs” [25], or “pseudo-orthologs” [26], contain only a single copy
91 per species due to differential loss of duplicate copies across species (Figure 2) and can be
92 mistaken for single-copy orthologs. The topologies inferred from pseudo-orthologs can differ
93 from the species tree via a process that is rarely modeled by phylogenetic methods.

94

95 Although they are much feared, few studies have actually evaluated the effects of including
96 pseudo-orthologs on phylogenetic inference, and these found mixed results. Brown and Thomson
97 [27] suggested that outlier loci supporting a contentious placement of turtles were paralogs, and
98 that these had an extreme effect on Bayesian inference applied to a concatenated dataset. Many
99 other studies have shown differences in the species tree inferred from datasets assembled using
100 different orthology detection tools, differences that are possibly due to the inclusion of pseudo-
101 orthologs [reviewed in 6]. Some of these studies found substantial differences in the inferred
102 trees [28], while others found minimal effects [29,30].

103

104 What is clear from the work briefly summarized here is that there are many causes of gene tree
105 heterogeneity that have the capacity to mislead phylogenetic inference. With respect to
106 increasing the types of loci that can be used in phylogenomics, we would like any approaches
107 using these loci to be robust to the known problems caused by both ILS and hidden paralogy.

108

109 **Increasing data availability without including paralogs**

110

111 If only orthologous genes are required, there are multiple ways to increase the total number of
112 loci used in phylogenetic inference. Below, we discuss two such approaches that can increase the
113 amount of available data: relaxing filters for missing data (Figure 1C) and sampling lineage-
114 specific duplicates (Figure 1D).

115

116 *Sampling single-copy orthologs with missing data*

117

118 Often, researchers require that all or most of their taxa are sampled for a locus to be included in
119 phylogenetic inference. However, the actual effects of including missing data—i.e. loci for
120 which no sequences exist in one or more species—remain unclear. In concatenated analyses,
121 simulation studies have demonstrated that there are limited negative effects of missing data [31].
122 Other studies have argued that the issue is a lack of informative data rather than missing data *per*
123 *se* [32,33]. Many empirical studies show little effect of including missing data [34,35], and often
124 the positive effects of including a larger number of loci or sites seem to outweigh the negative
125 effects of missing data [36,37].

126

127 There has been a lot of recent work on the effects of missing data on gene-tree-based methods
128 that can account for ILS [14,19,21,24]. Because these methods combine individual gene trees
129 from each locus, they can naturally accommodate missing taxa in a subset of trees. Studies have
130 shown that ILS methods can be robust to substantial levels of missing data, whether these are
131 randomly or non-randomly distributed [38, 39, 40]. Note, however, that these results may break-
132 down in cases of extreme branch lengths [41,42].

133

134 Based on these considerations, one simple way to drastically increase the amount of data that can
135 be used for phylogenetic inference is to relax missing data thresholds. For quartet-based methods
136 such as ASTRAL [13], the minimum number of taxa required from each locus is four (Figure
137 1C), as a four-taxon unrooted tree is all that is needed to specify phylogenetic relationships.
138 Empirically, results of relaxing these thresholds can be dramatic. For example, Eaton and Ree
139 [43] found that requiring a minimum of four taxa increased the number of loci available in a
140 group of flowering plants nearly 9-fold compared to requiring that all taxa be sampled. The
141 relative advantage gained by using these methods can only go up as more taxa are included in a
142 dataset, though researchers should try to ensure that species are represented approximately
143 evenly across loci to avoid cases where most of the signal for some branches comes from a small
144 number of genes (e.g. [44]).

145

146 *Sampling orthologs that have lineage-specific duplication events*

147

148 The requirement that only orthologs be sampled for phylogenetic inference does not mean that
149 we must only include single-copy orthologs. Notably, there is no theoretical reason to exclude
150 loci that have undergone lineage-specific duplications, as they can have many-to-one
151 orthologous relationships with single-copy genes (Box 1). For example, in Figure 1D species-
152 specific duplications have occurred in lineages **a** and **e**. Since the two copies in each species are
153 both orthologous to the gene copies in all other lineages, if we chose a single gene from each
154 species the resulting gene tree would include only speciation events. There can be no gene tree
155 heterogeneity induced by such a sampling scheme, even when there are more than two copies in
156 each species.

157

158 Surprisingly, this approach has rarely been used in phylogenetics research. The number of loci
159 that could be included would greatly increase, but the computational burden would increase
160 slightly, as well (Box 2). These numbers could be increased even further, too: there should be no
161 negative effect on the inferred topology of including duplications specific to a *pair* of sister
162 species. In other words, if one or more duplication events occur in the ancestor of a pair of
163 species, sampling a single copy from each of these species cannot induce gene tree
164 heterogeneity. This occurs because there is only a single way this pair can be related, and such
165 gene tree invariance cannot be ensured for duplicates ancestral to three or more species. Though
166 the inclusion of duplicates specific to a pair of sister species should not affect the inferred
167 topology, it could affect estimates of terminal branch lengths (see section on “Branch lengths”
168 below). Broadening sampling to include these genes would lead to a further increase in the
169 number of loci available for phylogenetic inference.

170

171 **Estimating species trees in the presence of paralogs**

172

173 In the methods described thus far we have still limited ourselves to analyses involving only
174 orthologous loci. If we relax this restriction even more, we can again greatly increase the number
175 of loci to be used. Below, we review five general approaches for reconstructing species trees in
176 the presence of paralogs. We largely go through these methods in the chronological order in
177 which they appeared in the literature, spending the most time at the end on promising new
178 methods.

179

180 *Gene Tree Parsimony*

181

182 The earliest methods to infer species trees in the presence of gene duplication and loss used gene
183 tree parsimony (GTP) [11,45,46]. In these approaches the aim is to find the species tree with the
184 minimum “reconciliation” cost [47] to a collection of input gene trees; i.e. the species tree that
185 minimizes the distance to all gene trees. Reconciliation costs are calculated based on explicit
186 biological causes of gene tree heterogeneity, including, but not limited to, GDL. Some software
187 packages calculate reconciliation costs based on minimizing duplications and losses
188 [11,46,48,49], while others focus completely on minimizing the number of differences induced
189 by ILS [50,51], or allow users to choose among these reconciliation costs [52]. Recognizing that
190 these processes do not act in isolation, recent approaches consider both GDL and ILS [53], with
191 some additionally incorporating introgression [54,55]. Although these approaches appear to deal
192 with ILS, they do not completely account for very high levels of ILS when inferring the species
193 tree [56], and therefore may give misleading results in such cases.

194

195 *Robinson-Foulds-based methods*

196

197 The Robinson-Foulds (RF) distance between two trees measures the number of branches that
198 must be removed, and the number of subsequent branches that must be added to make them have
199 the same topology [57]. RF species tree methods try to find the species tree that minimizes the
200 RF distance to a collection of input gene trees [58]. Although this is a similar approach to gene
201 tree parsimony, RF-based approaches make no assumptions about the biological processes
202 leading to heterogeneity between the gene trees and the species tree, and there are therefore no
203 options to apply different costs to different processes.

204

205 Although RF-based methods as originally described were applicable only to input trees with no
206 duplicates, interest in applying these methods to multi-copy gene trees (i.e. those with both
207 orthologs and paralogs) led to several advancements that permitted the calculation of RF
208 distances between them [59,60]. Chaudhary et al. [61,62] then introduced an approach for
209 finding a species tree using multi-copy gene trees as input. Their method, MulRF, compares

210 favorably to GTP approaches [63], and has recently been improved by Molloy and Warnow [64].
211 RF methods appear to perform well under general conditions [63, 64], though, like GTP
212 methods, they are not accurate under high levels of ILS [65].

213

214 *Probabilistic Methods*

215

216 Several probabilistic approaches have been introduced for inferring species trees in the presence
217 of gene duplication and loss, but these are often much more computationally intensive than GTP
218 and RF methods. For example, PHYLDOD jointy estimates gene family trees, species trees, and
219 the number of duplications and losses under a model of GDL by maximizing their likelihood
220 given a set of alignments [66]. However, PHYLDOD does not consider other sources of gene
221 tree incongruence (e.g. ILS) and the computational costs are high, preventing its application to
222 large genomic datasets [63].

223

224 De Oliveira Martins et al. [67] introduced *guenomu*, a probabilistic supertree approach to infer
225 species trees in the presence of both ILS and GDL. *Guenomu* implements a hierarchical
226 Bayesian model: it takes as input a posterior distribution of gene trees and uses a multivariate
227 distance metric based on ILS and GDL to infer a posterior distribution of species trees. However,
228 like PHYLDOD, *guenomu* is computationally intensive, and therefore neither approach truly
229 expands the number of loci one could use in phylogenomics.

230

231 *Methods based on Neighbor Joining (and other clustering approaches)*

232

233 Neighbor Joining (NJ; [68]) and other distance-based approaches are popular methods for
234 species tree inference using orthologs. Newer application of these approaches can accommodate
235 ILS by calculating a distance matrix from a collection of gene trees inferred from separate loci,
236 and then NJ or another clustering algorithm is used to estimate a species tree from this distance
237 matrix. Distance methods applicable to gene trees can broadly be divided into two classes: those
238 that construct distance matrices based on sequence distances and those that construct distance
239 matrices based on internode distances. The former approach includes the methods implemented
240 in STEAC [69] and METAL [70]. Methods based on internode distances include STAR [69],

241 NJ_{st} [14], and ASTRID [21]. Distance-based approaches have been proven to return the correct
242 species tree under high levels of ILS [70–72].

243
244 Extending distance methods to cases including paralogs is straightforward, because distance
245 matrices can be calculated as averages over multiple samples from a species. Application to
246 datasets containing orthologs and paralogs has already been done using NJ_{st} [63,73] and
247 ASTRID [74]. STAG [4] is another distance method introduced specifically to estimate species
248 trees from multi-copy gene trees, though it requires that loci have no missing species. Testing the
249 accuracy of distance methods using orthologs and paralogs, Chaudhary et al. [63] found that NJ_{st}
250 was outperformed by methods based on GTP, RF distances, and probabilistic models. In
251 contrast, Yan et al. [73] found that NJ_{st} performed comparably to quartet-based methods, and
252 Legried et al. [74] found that ASTRID had similar or higher accuracy than all other methods
253 evaluated. Overall, distance-based methods appear to be a generally accurate and efficient
254 method for inferring species trees using paralogs.

255

256 *Quartet-based Methods*

257

258 Methods to build species trees from quartet sub-trees have been around for some time [75–79],
259 but have found renewed popularity due to the introduction of more accurate, more efficient
260 algorithms. These methods scale well to genomic datasets and are robust to both high levels of
261 ILS [80,81], and, as mentioned earlier, large amounts of missing data. ASTRAL [13,19,80] is
262 among the most popular of these methods: it infers a species tree from a set of input gene trees,
263 extracting quartets from them automatically, and finding the phylogeny that maximizes the
264 number of shared quartet trees. ASTRAL was designed for use with single-copy orthologs, but
265 can accommodate multiple haplotypes sampled within species (ASTRAL-multi [82]). In these
266 cases, ASTRAL-multi effectively averages over haplotypes by sampling quartets with at most
267 one sequence per species.

268

269 Gene trees with paralogs in them take advantage of the same sampling scheme used by
270 ASTRAL-multi, and perform very well because the most common quartet in multi-copy gene
271 trees is still the quartet that matches the species tree (Figure 2; [73,74]). ASTRAL-multi has

272 multiple mathematical guarantees about its accuracy in the presence of both ILS and GDL, at
273 least under some models [74], and simulation studies have also demonstrated its accuracy
274 [73,74]. Most recently, a version of the software explicitly built for the inclusion of paralogs,
275 ASTRAL-Pro, outperformed ASTRAL-multi, MulRF, and GTP methods [65].

276

277 Quartet-based methods are also robust to the hidden paralog problem, as can be illustrated by an
278 extreme example. Yan et al. [73] suggested that such methods should be accurate even if a single
279 gene is randomly selected from each species for each gene tree and used as input to ASTRAL (a
280 sampling scheme that has been referred to as “ASTRAL-ONE” [73,74]). In such a scenario,
281 there are more combinations of sampled genes that result in pseudo-orthologs than in true
282 orthologs (Figure 2B). However, one-third of the pseudo-ortholog combinations match the
283 species tree topology, and the other two-thirds are split evenly between the two alternative
284 topologies. Together, the orthologs and pseudo-orthologs matching the species tree ensure that
285 this quartet is always the most common [74,83]; simulations show that with even a few hundred
286 loci accurate species trees can be recovered using this approach [73]. Although the numbers of
287 tree topologies given here only involve four species (including the outgroup) and one duplication
288 event, they should hold for all larger trees since these can be deconstructed into quartets (cf.
289 [84]). In biological scenarios involving similarly extreme gene loss, both orthologs and pseudo-
290 orthologs matching the species tree are more likely to be sampled because they require fewer
291 losses to produce them than the pseudo-ortholog trees that do not match (Figure 2B). This makes
292 the species tree even more likely to be accurately inferred using quartet methods.

293

294 Because of their relative simplicity, ease-of-use, speed, accuracy, and robustness to multiple
295 issues that confound other phylogenetic methods, quartet methods have become a mainstay of
296 standard phylogenetic inference using single-copy orthologs. For all of the same reasons, they
297 are likely to become widely used when sampling both orthologs and paralogs. We also suspect
298 that methods related to ASTRAL that have not yet been evaluated under the inclusion of
299 paralogs (e.g., [20]) will perform equally well under these conditions.

300

301 **Considerations when inferring phylogenies with paralogs**

302

303 Although multiple of the methods discussed here ensure accurate inference of species tree
304 topologies when paralogs are used, there are important caveats and implications that merit
305 specific consideration. Below, we discuss several of these.

306

307 *Branch lengths*

308

309 Although topology estimates should not be biased by the inclusion of paralogs, the same is not
310 true for branch lengths. When branch lengths are estimated as substitutions per site [85,86], the
311 inclusion of pseudo-orthologs will force branches to be longer than they actually are (e.g. Figure
312 2; [84]). Conversely, when branch lengths are estimated in coalescent units [13,24], the
313 additional gene tree heterogeneity introduced by paralogs (hidden or not) will result in the
314 underestimation of branch lengths. No matter what type of branch lengths are to be estimated, we
315 recommend that the dataset used be restricted to orthologs. Thus, a reasonable approach would
316 be to estimate a species tree topology using all genes, and then to estimate branch lengths on this
317 topology with a dataset including only orthologs (allowing for sampling among species-specific
318 paralogs; Figure 1D).

319

320 *Alignment*

321

322 One of the most error-prone, but underappreciated, steps in phylogenomics is alignment.
323 Automated alignment of thousands of loci means that many errors can creep in, especially when
324 non-homologous (alternative) exons are sampled from different species. Fortunately, there are
325 good methods for identifying regions with low alignment quality (e.g. GUIDANCE2; [87]). A
326 related problem involves deciding how to choose among lineage-specific paralogs (Figure 1D) in
327 order to maximize alignment length while minimizing alignment error. One promising approach
328 would be to co-opt methods designed to choose among alternative isoforms at a single locus:
329 some of these try to pick the set of genes that are most similar in length across species to avoid
330 the inclusion of non-homologous exons [88]. Combining such methods with tools that identify
331 and filter unreliable portions of alignments [87,89–92] should minimize error.

332

333 *Polyploidy*

334

335 Polyploidy is a special case of gene duplication and loss in which the whole genome is
336 duplicated, and offers a particular challenge both to methods for identifying orthologs and to
337 species tree inference. In autopolyploidy both sets of chromosomes come from the same species,
338 and gene copies are paralogs that behave in much the same manner as the smaller duplication
339 events described above. Therefore, the gene tree methods discussed here should not be misled by
340 autopolyploidy.

341

342 Allopolyploidy occurs when the chromosome number doubles via hybridization between species;
343 the resulting gene copies are referred to as homeologs [93]. Since gene copies found in the same
344 allopolyploid genome are related through speciation between the parental species, homeologs are
345 not paralogs in the traditional sense. Similarly, there is not a single bifurcating species tree that
346 describes relationships involving allopolyploids. While this makes it difficult to evaluate the
347 effect of including homeologs on traditional species tree inference, gene-tree-based methods
348 should identify one of the two potentially correct species tree topologies as the correct topology
349 [e.g., 94].

350

351 *Detecting introgression*

352

353 Much less consideration has been given to the effect of including paralogs when attempting to
354 detect introgression. The most commonly used phylogenetic methods for detecting introgression
355 are based on the expectation that, for any quartet of species, the two minor topologies (i.e. the
356 topologies that do not match the species tree) should occur at the same frequency; therefore,
357 asymmetries between topologies can provide evidence for introgression [95–98]. We suggest
358 here that, for methods that depend on the frequencies of minor topologies to detect introgression,
359 the inclusion of paralogs should not bias inference. Consider the example shown in Figure 2: as
360 discussed above, the most common topology matches the species tree. However, four topologies
361 do not match the species tree. These four potential trees all require three lineage-specific losses
362 (one in each taxon), and should occur at equal frequency under a model of GDL in the absence
363 of introgression, similarly to under cases without duplication. Thus, methods for detecting
364 introgression based on asymmetry in minor topologies should perform well in the presence of

365 paralogs. This proposal merits additional consideration, however, as does the effect of paralogs
366 on additional methods for detecting introgression not discussed here.

367

368 *Concatenation*

369

370 To carry out a concatenated analysis, one gene copy must be sampled per species per locus and
371 put into a single alignment. If the intention is to include only orthologs (whether single-copy or
372 not), a small number of pseudo-orthologs can have an extreme, negative influence on
373 phylogenetic relationships [27,99]. This occurs because pseudo-orthologs have internal branches
374 that are longer than those of true orthologs (Figure 2B), giving them more phylogenetically
375 informative changes. To minimize these potential problems, it may in fact help to instead include
376 all of the data, rather than attempting to include only orthologs. We imagine here a sampling
377 scheme similar to the approach taken in [73], where a single copy is randomly sampled per
378 species (i.e. “ASTRAL-ONE”). Not only are more underlying tree topologies guaranteed to
379 match the species tree topology, but the pseudo-orthologs matching the species tree have longer
380 internal branches than those matching alternate topologies (Figure 2B). Thus, with enough data,
381 the topology matching the species tree should be favored by concatenated analyses, even in the
382 presence of pseudo-orthologs. While certainly not a standard phylogenetic analysis, we suggest
383 that this may be a fruitful way forward in the future.

384

385 **Concluding Remarks**

386

387 Despite the massive amount of genomic data being collected across the tree of life, phylogeny
388 inference is often restricted to a small portion of this data due to filtering for single-copy
389 orthologs and minimal missing data. Recent work has demonstrated that several leading methods
390 for species tree inference perform well in the presence of paralogs, suggesting a source of
391 additional data for phylogenomic inference. Additionally, recent work has shown that missing
392 data may not be as much of an issue as feared. Thus, the amount of data available for
393 phylogenomic inference may be much larger than previously thought. Future work should
394 consider branch length estimation when paralogs are present, as well as the potential effects of
395 paralog inclusion on inferences of introgression.

396

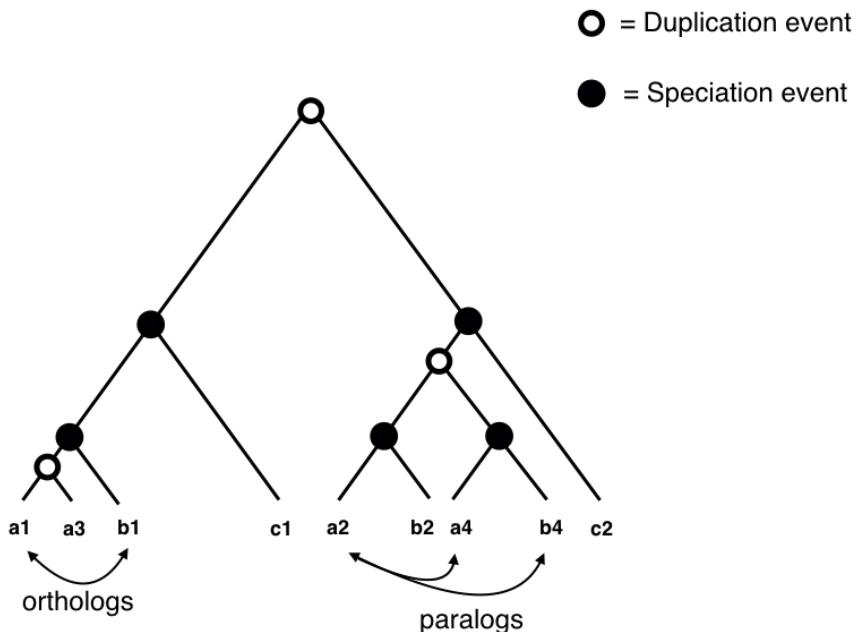
397 **Acknowledgements**

398 We thank Rob Lanfear and Erin Molloy for helpful comments. This work was supported by a
399 National Science Foundation postdoctoral fellowship to MLS (DBI-2009989) and an NSF grant
400 to MWH (DEB-1936187).

401

402 **Box 1. Types of homologous relationships and implications for phylogenetic inference**

403



404

405 *Homologous* loci share a common ancestor. *Orthologous* loci share a common ancestor due to
 406 speciation (e.g. *a*1 and *b*1), while *paralogous* loci share a common ancestor due to duplication
 407 (e.g. *a*1 and *a*3; [5]). Orthology relationships can be classified as *one-to-one*, *one-to-many*, and
 408 *many-to-many* based on whether speciation was followed by duplication in neither, either, or
 409 both lineages [100]. For example, *b*1 and *c*1, are *one-to-one* orthologs. These are the orthologs
 410 that are typically used in phylogenetic inference. Specifically, researchers target single-copy
 411 orthologs, which exist in only a single copy in all species considered. However, many-to-one or
 412 many-to-many orthologs may also be useful. Since the duplication event leading to paralogs *a*1
 413 and *a*3 occurred after the speciation event with *b*1, they have a *many-to-one* orthologous
 414 relationship. Such lineage-specific duplications should not affect phylogenetic inference because
 415 *a*1 and *a*3 are *co-orthologous* to *b*1 and *c*1, meaning that either copy has an orthologous
 416 relationship with *b*1 and *c*1. Similarly, *a*2 and *a*4 have a *many-to-one* orthologous relation to *c*2.
 417 The large numbers of complex *many-to-many* relationships that can arise (for instance, the
 418 relationship between *a*1, *a*2, *e*1, and *e*2 in Figure 1D) make ortholog group delimitation a
 419 difficult task, though these loci can still be used in many types of phylogenetic inference.

420

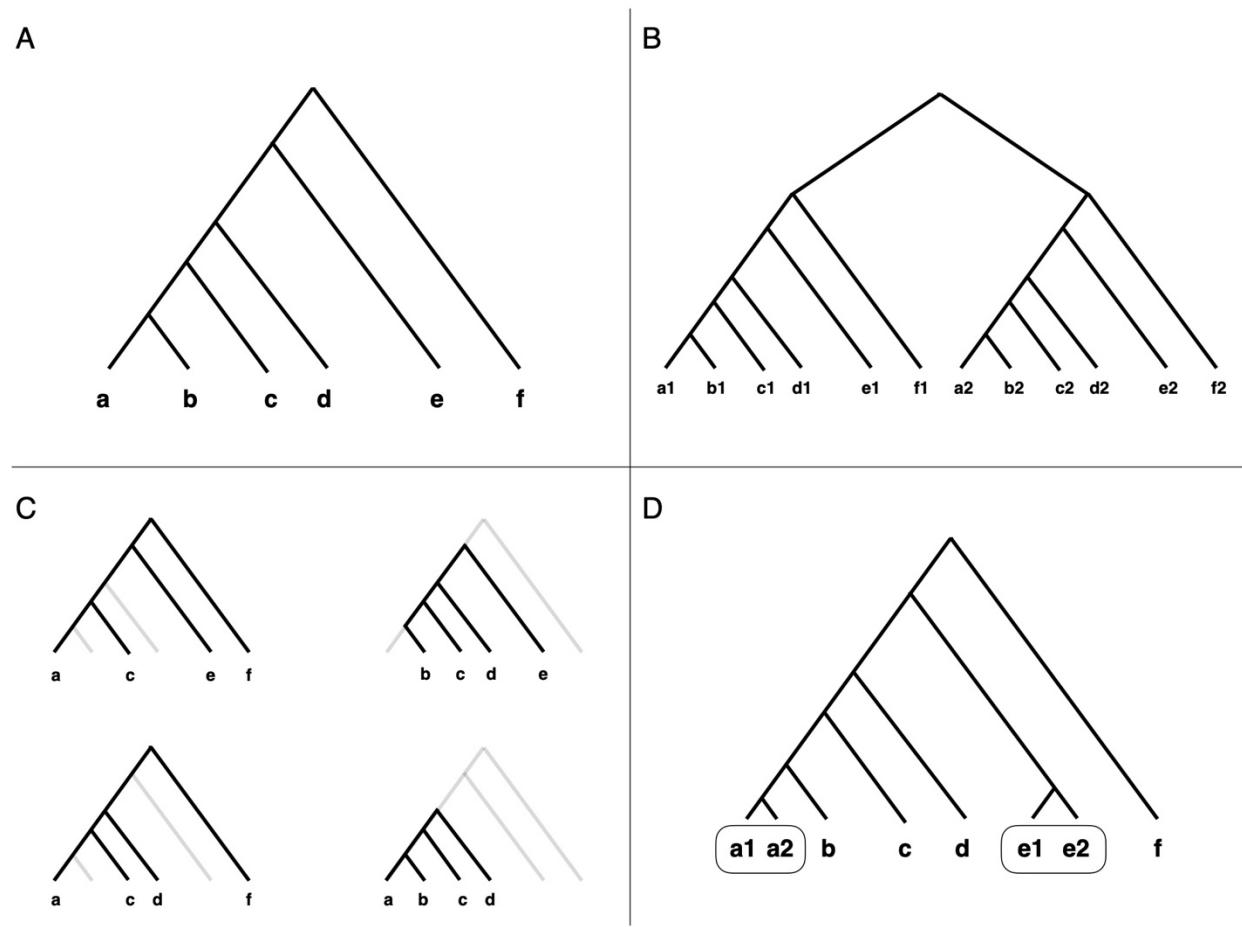
421 **Box 2. Identifying orthologous genes and sampling lineage-specific paralogs.**

422

423 Due to interest in identifying orthologs both for phylogeny reconstruction and for functional
424 prediction, several methods for ortholog detection have been developed (reviewed in [100]). The
425 most commonly used approaches for ortholog detection are graph-based approaches [100] which
426 rely on the identification of reciprocal best hits (RBHs). This is based on the assumption that the
427 two most closely related homologs between a pair of species should be orthologs. After RBHs
428 are identified, some approach must be used to construct groups of orthologous sequences; for
429 example, in OrthoMCL [101] a Markov clustering algorithm is used to identify orthogroups,
430 which consist of orthologs and recent paralogs. Typically, for downstream phylogenomic
431 inference, single-copy orthologs present in most species are extracted from these results. While
432 lineage-specific duplicates need not be excluded from datasets for phylogenetic inference (see
433 main text), it is not straightforward to extract these from the output of many graph-based
434 approaches. The most obvious way to identify and include these genes is by reconstructing gene
435 trees for all orthogroups, identifying lineage-specific duplicates, and selecting one copy per
436 species for downstream inference. Some recently introduced branch-cutting methods can also
437 sample such genes from orthogroups containing duplicates. Yang and Smith [102] consider
438 several different branch-cutting algorithms to extract orthologs appropriate for phylogeny
439 estimation, and these considerably increase the number of genes available for phylogenetic
440 inference. For example, in a Hymenoptera dataset analyzed by these authors, the number of
441 orthologs present in at least eight taxa increased from 4,937 using only single-copy-orthologs to
442 9,128 under one branch-cutting technique [102]. Thus, even when including paralogs is not
443 desirable, orthologs can be extracted from many datasets not traditionally considered in
444 phylogenetic inference.

445

446 **Figure 1. Sampling orthologs and paralogs (Key Figure)**



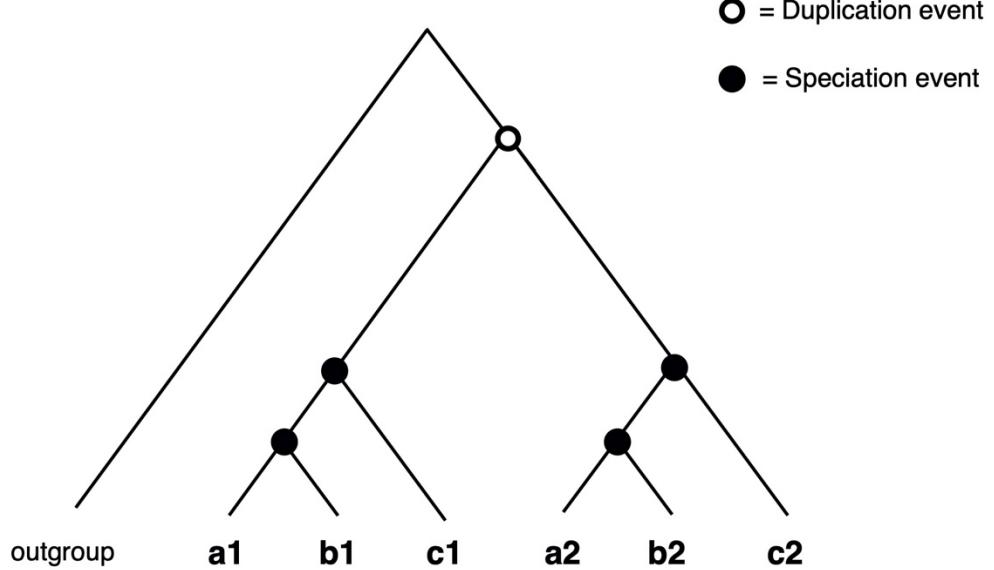
447

448 Figure 1. Sampling orthologs and paralogs. There are several potential sampling strategies in
449 phylogenetic inference. Here, we illustrate a few of these, although these categories are not
450 mutually exclusive. (A) Phylogenies can be constructed from complete sampling of single-copy
451 orthologs. (B) Phylogenies can be reconstructed from sets of paralogs. The tree shown has a
452 single duplication event in the ancestor of all species. (C) Phylogenies can be constructed from
453 genes with missing data, either due to incomplete sampling or to gene loss. (D) Phylogenies can
454 be constructed from loci with lineage-specific duplications. Duplications in lineages **a** and **e**
455 result in two copies in each of these species in the tree shown. Sampling a single copy from each
456 species should not affect phylogenetic inference.

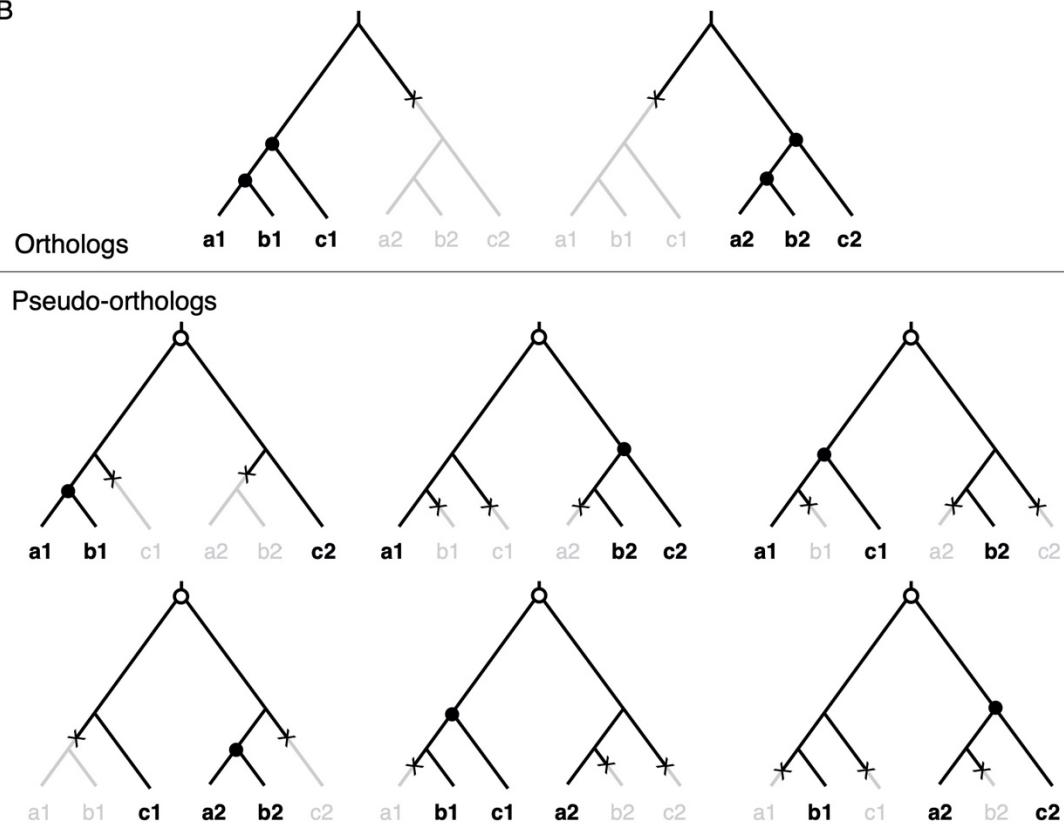
457

458 **Figure 2. Orthologs, pseudo-orthologs, and quartet frequencies.**

A



B



461 Figure 2. Orthologs, pseudo-orthologs, and quartet frequencies. (A) The full history of a locus in
462 three species and an outgroup, including one duplication event and two speciation events (which
463 are shown separately for each set of orthologs). (B) Scenarios where only a single gene copy is
464 sampled per species; the outgroup is assumed to be sampled in each, but is not shown for clarity.
465 The single copies may be present because of gene losses (shown here as X's), or simply because
466 a single copy is randomly chosen per species. The latter case is also what would happen if there
467 were no missing copies but quartets were sampled from the full gene tree as input to ASTRAL
468 [73, 74]. There are four quartets that match the species tree: the two orthologs and the two left-
469 most pseudo-orthologs ("hidden paralogs"). The remaining pseudo-orthologs either place
470 lineages **b** and **c** sister to one another (center) or **a** and **c** sister to one another (right). Therefore,
471 quartet methods should perform well even when paralogs are included, because the most
472 common set of relationships should still match the species tree. Note that if genes are single-copy
473 because of gene losses, the species tree relationship is likely to become even more common: the
474 orthologs require only one loss in their history and the matching pseudo-orthologs require two
475 losses. Pseudo-orthologs not matching the species tree can only be generated when there are
476 three separate loss events.

477

478 **References**

479 1 Scornavacca, C. et al. (2020) *Phylogenetics in the Genomic Era*, No commercial publisher |
480 Authors open access book.

481 2 Delsuc, F. et al. (2005) Phylogenomics and the reconstruction of the tree of life. *Nat. Rev. Genet.* 6, 361–375

483 3 Thomas, G.W.C. et al. (2020) Gene content evolution in the arthropods. *Genome Biol.* 21, 15

484 4 Emms, D.M. and Kelly, S. (2018) STAG: Species tree inference from all genes. *bioRxiv*
485 DOI: 10.1101/267914

486 5 Fitch, W.M. (1970) Distinguishing homologous from analogous proteins. *Syst. Zool.* 19, 99–
487 113

488 6 Fernández, R. et al. (2020) Orthology: Definitions, prediction, and impact on species
489 phylogeny inference. In *Phylogenetics in the Genomic Era* (Scornavacca, C. et al., eds), pp.
490 2.4:1–2.4:14, No commercial publisher | Authors open access book

491 7 Kapli, P. et al. (2020) Phylogenetic tree building in the genomic age. *Nat. Rev. Genet.* 21,
492 428–444

493 8 Nehrt, N.L. et al. (2011) Testing the ortholog conjecture with comparative functional
494 genomic data from mammals. *PLOS Comput. Biol.* 7, e1002073

495 9 Studer, R.A. and Robinson-Rechavi, M. (2009) How confident can we be that orthologs are
496 similar, but paralogs differ? *Trends Genet.* 25, 210–216

497 10 Stamboulian, M. et al. (2019) The ortholog conjecture revisited: The value of orthologs and
498 paralogs in function prediction. *bioRxiv* DOI: 10.1101/2019.12.27.889691

499 11 Goodman, M. et al. (1979) Fitting the gene lineage into its species lineage, a parsimony
500 strategy illustrated by cladograms constructed from globin sequences. *Syst. Biol.* 28, 132–
501 163

502 12 Chen, K. et al. (2000) NOTUNG: A program for dating gene duplications and optimizing
503 gene family trees. *J. Comput. Biol.* 7, 429–447

504 13 Zhang, C. et al. (2018) ASTRAL-III: Polynomial time species tree reconstruction from
505 partially resolved gene trees. *BMC Bioinformatics* 19, 153

506 14 Liu, L. and Yu, L. (2011) Estimating species trees from unrooted gene trees. *Syst. Biol.* 60,
507 661–667

508 15 Bravo, G.A. et al. (2019) Embracing heterogeneity: Coalescing the tree of life and the future
509 of phylogenomics. *PeerJ* 7, e6399

510 16 Maddison, W.P. (1997) Gene trees in species trees. *Syst. Biol.* 46, 523–536

511 17 Kubatko, L.S. and Degnan, J.H. (2007) Inconsistency of phylogenetic estimates from
512 concatenated data under coalescence. *Syst. Biol.* 56, 17–24

513 18 Degnan, J.H. and Rosenberg, N.A. (2006) Discordance of species trees with their most likely
514 gene trees. *PLOS Genet.* 2, e68

515 19 Mirarab, S. and Warnow, T. (2015) ASTRAL-II: Coalescent-based species tree estimation
516 with many hundreds of taxa and thousands of genes. *Bioinformatics* 31, i44–i52

517 20 Chifman, J. and Kubatko, L. (2014) Quartet inference from SNP data under the coalescent
518 model. *Bioinformatics* 30, 3317–3324

519 21 Vachaspati, P. and Warnow, T. (2015) ASTRID: Accurate species trees from internode
520 distances. *BMC Genomics* 16, S3

521 22 Heled, J. and Drummond, A.J. (2010) Bayesian inference of species trees from multilocus
522 data using *BEAST. *Mol. Biol. Evol.* 27, 570–580

523 23 Bryant, D. et al. (2012) Inferring species trees directly from biallelic genetic markers:
524 Bypassing gene trees in a full coalescent analysis. *Mol. Biol. Evol.* 29, 1917–1932

525 24 Liu, L. et al. (2010) A maximum pseudo-likelihood approach for estimating species trees
526 under the coalescent model. *BMC Evol. Biol.* 10, 302

527 25 Doolittle, W.F. and Brown, J.R. (1994) Tempo, mode, the progenote, and the universal root.
528 *Proc. Natl. Acad. Sci.* 91, 6721–6728

529 26 Koonin, E.V. (2005) Orthologs, paralogs, and evolutionary genomics. *Annu. Rev. Genet.* 39,
530 309–338

531 27 Brown, J.M. and Thomson, R.C. (2017) Bayes factors unmask highly variable information
532 content, bias, and extreme influence in phylogenomic analyses. *Syst. Biol.* 66, 517–530

533 28 Altenhoff, A.M. et al. (2019) OMA standalone: Orthology inference among public and
534 custom genomes and transcriptomes. *Genome Res.* 29, 1152–1163

535 29 Kallal, R.J. et al. (2018) A phylotranscriptomic backbone of the orb-weaving spider family
536 Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. *Mol.*
537 *Phylogenet. Evol.* 126, 129–140

538 30 Fernández, R. et al. (2018) Phylogenomics, diversification dynamics, and comparative
539 transcriptomics across the spider tree of life. *Curr. Biol.* 28, 1489–1497

540 31 Roure, B. et al. (2013) Impact of missing data on phylogenies inferred from empirical
541 phylogenomic data sets. *Mol. Biol. Evol.* 30, 197–214

542 32 Wiens, J.J. (2003) Missing data, incomplete taxa, and phylogenetic accuracy. *Syst. Biol.* 52,
543 528–538

544 33 Wiens, J.J. (2006) Missing data and the design of phylogenetic analyses. *Syst. Biol.* 39, 34–
545 42

546 34 Philippe, H. et al. (2004) Phylogenomics of eukaryotes: Impact of missing data on large
547 alignments. *Mol. Biol. Evol.* 21, 1740–1752

548 35 Driskell, A.C. et al. (2004) Prospects for building the tree of life from large sequence
549 databases. *Science* 306, 1172–1174

550 36 Hosner, P.A. et al. (2016) Avoiding missing data biases in phylogenomic inference: An
551 empirical study in the landfowl (Aves: Galliformes). *Mol. Biol. Evol.* 33, 1110–1125

552 37 Wiens, J.J. and Morrill, M.C. (2011) Missing data in phylogenetic analysis: Reconciling
553 results from simulations and empirical data. *Syst. Biol.* 60, 719–731

554 38 Nute, M. et al. (2018) The performance of coalescent-based species tree estimation methods
555 under models of missing data. *BMC Genomics* 19, 286

556 39 Xi, Z. et al. (2016) The impact of missing data on species tree estimation. *Mol. Biol. Evol.*
557 33, 838–860

558 40 Molloy, E.K. and Warnow, T. (2018) To include or not to include: The impact of gene
559 filtering on species tree estimation methods. *Syst. Biol.* 67, 285–303

560 41 Rhodes, J.A. et al. (2020) NJst and ASTRID are not statistically consistent under a random
561 model of missing data. *arXiv preprint arXiv:2001.07844*.

562 42 Nute, M. et al. (2020) Correction to: The performance of coalescent-based species tree
563 estimation methods under models of missing data. *BMC Genomics* 21, 133

564 43 Eaton, D.A.R. and Ree, R.H. (2013) Inferring phylogeny and introgression using RADseq
565 data: An example from flowering plants (*Pedicularis*: Orobanchaceae). *Syst. Biol.* 62, 689–
566 706

567 44 Gatesy, J. et al. (2019) Partitioned coalescence support reveals biases in species-tree methods
568 and detects gene trees that determine phylogenomic conflicts. *Mol. Phylogenet. Evol.* 139,
569 106539

570 45 Page, R.D.M. (1994) Maps between trees and cladistic analysis of historical associations
571 among genes, organisms, and areas. *Syst. Biol.* 43, 58–77

572 46 Guigo, R. et al. (1996) Reconstruction of ancient molecular phylogeny. *Mol. Phylogenet.*
573 *Evol.* 6, 189–213

574 47 Boussau, B. and Scornavacca, C. (2020) Reconciling gene trees with species trees. In
575 *Phylogenetics in the Genomic Era* pp. 3.2:1-3.2:23, No commercial publisher | Authors open
576 access book

577 48 Wehe, A. et al. (2008) DupTree: A program for large-scale phylogenetic analyses using gene
578 tree parsimony. *Bioinformatics* 24, 1540–1541

579 49 Bayzid, M.S. and Warnow, T. (2018) Gene tree parsimony for incomplete gene trees:
580 Addressing true biological loss. *Algorithms Mol. Biol.* 13, 1

581 50 Maddison, W.P. and Knowles, L.L. (2006) Inferring phylogeny despite incomplete lineage
582 sorting. *Syst. Biol.* 55, 21–30

583 51 Than, C. and Nakhleh, L. (2009) Species tree inference by minimizing deep coalescences.
584 *PLOS Comput. Biol.* 5, e1000501

585 52 Chaudhary, R. et al. (2010) iGTP: A software package for large-scale gene tree parsimony
586 analysis. *BMC Bioinformatics* 11, 574

587 53 Wu, Y.-C. et al. (2014) Most parsimonious reconciliation in the presence of gene
588 duplication, loss, and deep coalescence using labeled coalescent trees. *Genome Res.* 24,
589 475–486

590 54 Stolzer, M. et al. (2012) Inferring duplications, losses, transfers and incomplete lineage
591 sorting with nonbinary species trees. *Bioinformatics* 28, i409–i415

592 55 Chan, Y. et al. (2017) Inferring incomplete lineage sorting, duplications, transfers and losses
593 with reconciliations. *J. Theor. Biol.* 432, 1–13

594 56 Than, C.V. and Rosenberg, N.A. (2011) Consistency properties of species tree inference by
595 minimizing deep coalescences. *J. Comput. Biol.* 18, 1–15

596 57 Robinson, D.F. and Foulds, L.R. (1981) Comparison of phylogenetic trees. *Math. Biosci.* 53,
597 131–147

598 58 Bansal, M.S. et al. (2010) Robinson-Foulds supertrees. *Algorithms Mol. Biol.* 5, 18

599 59 Puigbo, P. et al. (2007) TOPD/FMTS: A new software to compare phylogenetic trees.
600 *Bioinformatics* 23, 1556–1558

601 60 Marcet-Houben, M. and Gabaldón, T. (2011) TreeKO: A duplication-aware algorithm for the
602 comparison of phylogenetic trees. *Nucleic Acids Res.* 39, e66

603 61 Chaudhary, R. et al. (2013) Inferring species trees from incongruent multi-copy gene trees
604 using the Robinson-Foulds distance. *Algorithms Mol. Biol.* 8, 28

605 62 Chaudhary, R. et al. (2015) MulRF: A software package for phylogenetic analysis using
606 multi-copy gene trees. *Bioinformatics* 31, 432–433

607 63 Chaudhary, R. et al. (2015) Assessing approaches for inferring species trees from multi-copy
608 genes. *Syst. Biol.* 64, 325–339

609 64 Molloy, E.K. and Warnow, T. (2019) FastMulRFS: Fast and accurate species tree estimation
610 under generic gene duplication and loss models. *bioRxiv* DOI: 10.1101/835553

611 65 Zhang, C. et al. (2019) ASTRAL-Pro: Quartet-based species tree inference despite paralogy.
612 *bioRxiv* DOI: 10.1101/2019.12.12.874727.

613 66 Boussau, B. et al. (2013) Genome-scale coestimation of species and gene trees. *Genome Res.* 23, 323–330

614 67 De Oliveira Martins, L. et al. (2016) A Bayesian supertree model for genome-wide species

615 tree reconstruction. *Syst. Biol.* 65, 397–416

616 68 Saitou, N. and Nei, M. (1987) The neighbor-joining method: A new method for

617 reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4, 406–425

618 69 Liu, L. et al. (2009) Estimating species phylogenies using coalescence times among

619 sequences. *Syst. Biol.* 58, 468–477

620 70 Dasarathy, G. et al. (2015) Data requirement for phylogenetic inference from multiple loci: A new distance method. *IEEE/ACM Trans. Comput. Biol. Bioinform.* 12, 422–432

621 71 Allman, E.S. et al. (2013) Species tree inference by the STAR method and its

622 generalizations. *J. Comput. Biol.* 20, 50–61

623 72 Allman, E.S. et al. (2018) Species tree inference from gene splits by unrooted STAR

624 methods. *IEEE/ACM Trans. Comput. Biol. Bioinform.* 15, 337–342

625 73 Yan, Z. et al. (2018) Species tree inference under the multispecies coalescent on data with

626 paralogs is accurate. *bioRxiv* DOI: 10.1101/498378

627 74 Legried, B. et al. (2020) Polynomial-time statistical estimation of species trees under gene

628 duplication and loss. *Proceedings of RECOMB 2020: The 24th Annual International*

629 *Conference Research in Computational Molecular Biology*, pp. 120-135. Springer, Cham.

630 75 Graur, D. et al. (1996) Phylogenetic position of the order Lagomorpha (rabbits, hares, and

631 allies). *Nature* 379, 333-335

632 76 Bryant, D. and Steel, M. (2001) Constructing optimal trees from quartets. *J. Algorithms* 38,

633 237–259

634 77 Strimmer, K. and von Haeseler, A. (1996) Quartet puzzling: A quartet maximum-likelihood

635 method for reconstructing tree topologies. *Mol. Biol. Evol.* 13, 964–969

636 78 Snir, S. and Rao, S. (2012) Quartet MaxCut: A fast algorithm for amalgamating quartet

637 trees. *Mol. Phylogenetic. Evol.* 62, 1-8

638 79 Reaz, R. et al. (2014) Accurate Phylogenetic Tree Reconstruction from Quartets: A Heuristic

639 Approach. *PLOS One* 9, e104008

640 80 Mirarab, S. et al. (2014) ASTRAL: Genome-scale coalescent-based species tree estimation. *Bioinformatics* 30, i541–i548

641 81 Wascher, M. and Kubatko, L. (2019) Consistency of SVDQuartets and maximum likelihood

642 for coalescent-based species tree estimation. *Syst. Biol.* DOI: 10.1093/sysbio/syaa039

643 82 Rabiee, M. et al. (2019) Multi-allele species reconstruction using ASTRAL. *Mol.*

644 *Phylogenet. Evol.* 130, 286–296

645 83 Markin, A. and Eulenstein, O. (2020) Quartet-based inference methods are statistically

646 consistent under the unified duplication-loss-coalescence model. *arXiv preprint*

647 arXiv:2004.04299.

648 84 Siu-Ting, K. et al. (2019) Inadvertent paralog inclusion drives artifactual topologies and

649 timetree estimates in phylogenomics. *Mol. Biol. Evol.* 36, 1344–1356

650 85 Kozlov, A.M. et al. (2019) RAxML-NG: A fast, scalable and user-friendly tool for maximum

651 likelihood phylogenetic inference. *Bioinformatics* 35, 4453–4455

652 86 Huelsenbeck, J.P. and Ronquist, F. (2001) MrBayes: Bayesian inference of phylogenetic

653 trees. *Bioinformatics* 17, 754–755

654 87 Sela, I. et al. (2015) GUIDANCE2: Accurate detection of unreliable alignment regions

655 accounting for the uncertainty of multiple parameters. *Nucleic Acids Res.* 43, W7–W14

656

657

658

659 88 Villanueva-Cañas, J.L. et al. (2013) Improving genome-wide scans of positive selection by
660 using protein isoforms of similar length. *Genome Biol. Evol.* 5, 457–467

661 89 Capella-Gutiérrez, S. et al. (2009) trimAl: A tool for automated alignment trimming in large-
662 scale phylogenetic analyses. *Bioinformatics* 25, 1972–1973

663 90 Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in
664 phylogenetic analysis. *Mol. Biol. Evol.* 17, 540–552

665 91 Dress, A.W. et al. (2008) Noisy: Identification of problematic columns in multiple sequence
666 alignments. *Algorithms Mol. Biol.* 3, 7

667 92 Landan, G. and Graur, D. (2007) Heads or tails: A simple reliability check for multiple
668 sequence alignments. *Mol. Biol. Evol.* 24, 1380–1383

669 93 Glover, N.M. et al. (2016) Homoeologs: What are they and how do we infer them? *Trends
670 Plant Sci.* 21, 609–621

671 94 Thomas, G.W.C. et al. (2017) Gene-tree reconciliation with MUL-trees to resolve polyploidy
672 events. *Syst. Biol.* 66, 1007–1018

673 95 Huson, D.H. et al. (2005) Reconstruction of reticulate networks from gene trees. *Proceedings
674 of RECOMB 2005: The 9th Annual International Conference Research in Computational
675 Molecular Biology*, pp. 233-249. Berlin: Springer.

676 96 Vanderpool, D. et al. (2020) Primate phylogenomics uncovers multiple rapid radiations and
677 ancient interspecific introgression. *bioRxiv* DOI: 10.1101/2020.04.15.043786

678 97 Yu, Y. and Nakhleh, L. (2015) A maximum pseudo-likelihood approach for phylogenetic
679 networks. *BMC Genomics* 16, S10

680 98 Solís-Lemus, C. and Ané, C. (2016) Inferring phylogenetic networks with maximum
681 pseudolikelihood under incomplete lineage sorting. *PLOS Genet.* 12, e1005896

682 99 Shen, X.-X. et al. (2017) Contentious relationships in phylogenomic studies can be driven by
683 a handful of genes. *Nat. Ecol. Evol.* 1, 126

684 100 Altenhoff, A.M. et al. (2019) Inferring orthology and paralogy. In *Evolutionary Genomics:
685 Statistical and Computational Methods* (Anisimova, M., ed), pp. 149–175, Springer

686 101 Li, L. (2003) OrthoMCL: Identification of ortholog groups for eukaryotic genomes.
687 *Genome Research* 13, 2178-2189

688 102 Yang, Y. and Smith, S. A. (2014) Orthology inference in nonmodel organisms using
689 transcriptomes and low-coverage genomes: Improving accuracy and matrix occupancy
690 for phylogenomics. *Mol. Biol. Evol.* 31, 3081-3092