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Abstract

The availability of whole genome sequences was expected to supply essentially unlimited data
for phylogenetics. However, strict reliance on single-copy genes for this purpose has drastically
limited the amount of data that can be used. Here, we review several approaches for increasing
the amount of data used for phylogenetic inference, focusing on methods that allow for the
inclusion of duplicated genes (paralogs). Recently developed methods that are robust to high
levels of incomplete lineage sorting also appear to be robust to the inclusion of paralogs,
suggesting a promising way to take full advantage of genomic data. We discuss the pitfalls of

these approaches, as well as further avenues for research.
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The search for orthologs

The business of phylogeny-building has been transformed by the availability of whole genome
sequences (reviewed in [1]). Indeed, the promise of “phylogenomics” was access to many
thousands of loci [2]. However, the data requirements of most phylogenetic inference methods—
single-copy genes present in almost all species sampled (Figure 1A)—have meant that a growing
number of phylogenomic studies have actually used very small amounts of data. For instance, in
their dataset of 76 arthropod genomes, Thomas et al. [3] found no genes that were single-copy
and present in all species. This study is not unique: even with whole-genome data, as the number

of species sampled goes up, the number of single-copy genes found in all taxa goes down [4].

Phylogeny estimation has long relied on the identification of single-copy orthologous genes,
filtering out paralogous genes found in multiple copies in one or more species (Box 1). Indeed,
when Fitch [5] introduced the terms ortholog and paralog it was in the context of species
phylogeny estimation: “Phylogenies require orthologous, not paralogous, genes.” This sentiment
is echoed repeatedly in the literature [6,7], based on the belief that, since orthologous genes are
related by speciation events alone, their relationships should more accurately reflect the species
phylogeny. Similar claims are made about the privileged use of orthologs in protein-function

prediction [8—10].

However, accurate methods for inferring species trees using both orthologs and paralogs were
proposed more than 40 years ago [11], and efficient software implementing these approaches has
been around for at least 20 years [12]. Methods using orthologs and paralogs work because gene
trees containing duplication events also include all of the speciation events that follow (Figure
1B). While each duplication event does add a branch not found in the species tree, it also doubles
the amount of information contained about subsequent speciation events. Most significantly,
recent methods developed for phylogeny inference using orthologs [13,14] turn out to be highly
accurate and extremely efficient when applied to datasets including paralogs. Although the
application of these approaches to such datasets is just beginning, their promise for

phylogenomics is clear.
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In this review, we discuss ways to combat the limitation of single-copy orthologs by increasing
the amount of data that can be used in phylogenomics, while still maintaining a high degree of
accuracy. We first discuss the problem of gene tree heterogeneity, and how it affects the
accuracy of species trees. Next, we review two broad approaches for increasing the amount of
data used in phylogenomic inference: one that still includes only orthologs and one that includes
both orthologs and paralogs. We also describe the newly developed phylogenetic methods that
make both of these approaches possible. Finally, we identify some key topics to consider when
inferring phylogenies in the presence of paralogs, including promising future areas of research on

this topic.

Gene tree heterogeneity and the problem of “hidden paralogy”

Gene tree heterogeneity—a mismatch between the topology of a single region and the topology
of a species—is now recognized as common in phylogenetics [15]. This heterogeneity may be
due to a number of biological factors, including incomplete lineage sorting (ILS), introgression,
and gene duplication and loss (GDL) [16], in addition to technical factors such as error in gene
tree reconstruction. This heterogeneity has important consequences for species tree inference, as
if it is not accounted for it can lead to an incorrect phylogeny. Methods developed to deal with

multiple causes of heterogeneity can also help us to infer phylogenies from a broader set of loci.

In particular, high levels of ILS can mislead many species tree methods, whether they apply
maximum likelihood methods to concatenated alignments of all loci [17] or count gene tree
topologies individually [18]. Partly because of these issues, methods that account for ILS when
estimating species phylogenies have proliferated [19—24]. These gene-tree-based methods
usually construct a separate tree for each locus (excluding the methods in refs. [20] and [23]),
combining these trees together in a principled way to infer a species tree. As with most
phylogenetic approaches, these methods were designed to use datasets consisting of only single-
copy orthologs, as they account only for ILS as a source of gene tree heterogeneity. Importantly,
however, many of these methods also deal naturally with missing data; this will be key for

several of the new approaches described below.
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Gene duplication and loss leads to gene tree heterogeneity by adding duplication events to gene
trees (Box 1). Such events are not expected in histories that follow only the species tree, so trees
that contain more than one copy of a gene are generally removed from phylogenetic datasets.
More insidiously, “hidden paralogs™ [25], or “pseudo-orthologs™ [26], contain only a single copy
per species due to differential loss of duplicate copies across species (Figure 2) and can be
mistaken for single-copy orthologs. The topologies inferred from pseudo-orthologs can differ

from the species tree via a process that is rarely modeled by phylogenetic methods.

Although they are much feared, few studies have actually evaluated the effects of including
pseudo-orthologs on phylogenetic inference, and these found mixed results. Brown and Thomson
[27] suggested that outlier loci supporting a contentious placement of turtles were paralogs, and
that these had an extreme effect on Bayesian inference applied to a concatenated dataset. Many
other studies have shown differences in the species tree inferred from datasets assembled using
different orthology detection tools, differences that are possibly due to the inclusion of pseudo-
orthologs [reviewed in 6]. Some of these studies found substantial differences in the inferred

trees [28], while others found minimal effects [29,30].

What is clear from the work briefly summarized here is that there are many causes of gene tree
heterogeneity that have the capacity to mislead phylogenetic inference. With respect to
increasing the types of loci that can be used in phylogenomics, we would like any approaches

using these loci to be robust to the known problems caused by both ILS and hidden paralogy.
Increasing data availability without including paralogs

If only orthologous genes are required, there are multiple ways to increase the total number of
loci used in phylogenetic inference. Below, we discuss two such approaches that can increase the
amount of available data: relaxing filters for missing data (Figure 1C) and sampling lineage-

specific duplicates (Figure 1D).

Sampling single-copy orthologs with missing data
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Often, researchers require that all or most of their taxa are sampled for a locus to be included in
phylogenetic inference. However, the actual effects of including missing data—i.e. loci for
which no sequences exist in one or more species—remain unclear. In concatenated analyses,
simulation studies have demonstrated that there are limited negative effects of missing data [31].
Other studies have argued that the issue is a lack of informative data rather than missing data per
se [32,33]. Many empirical studies show little effect of including missing data [34,35], and often
the positive effects of including a larger number of loci or sites seem to outweigh the negative

effects of missing data [36,37].

There has been a lot of recent work on the effects of missing data on gene-tree-based methods
that can account for ILS [14,19,21,24]. Because these methods combine individual gene trees
from each locus, they can naturally accommodate missing taxa in a subset of trees. Studies have
shown that ILS methods can be robust to substantial levels of missing data, whether these are
randomly or non-randomly distributed [38, 39, 40]. Note, however, that these results may break-

down in cases of extreme branch lengths [41,42].

Based on these considerations, one simple way to drastically increase the amount of data that can
be used for phylogenetic inference is to relax missing data thresholds. For quartet-based methods
such as ASTRAL [13], the minimum number of taxa required from each locus is four (Figure
1C), as a four-taxon unrooted tree is all that is needed to specify phylogenetic relationships.
Empirically, results of relaxing these thresholds can be dramatic. For example, Eaton and Ree
[43] found that requiring a minimum of four taxa increased the number of loci available in a
group of flowering plants nearly 9-fold compared to requiring that all taxa be sampled. The
relative advantage gained by using these methods can only go up as more taxa are included in a
dataset, though researchers should try to ensure that species are represented approximately
evenly across loci to avoid cases where most of the signal for some branches comes from a small

number of genes (e.g. [44]).

Sampling orthologs that have lineage-specific duplication events
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The requirement that only orthologs be sampled for phylogenetic inference does not mean that
we must only include single-copy orthologs. Notably, there is no theoretical reason to exclude
loci that have undergone lineage-specific duplications, as they can have many-to-one
orthologous relationships with single-copy genes (Box 1). For example, in Figure 1D species-
specific duplications have occurred in lineages a and e. Since the two copies in each species are
both orthologous to the gene copies in all other lineages, if we chose a single gene from each
species the resulting gene tree would include only speciation events. There can be no gene tree
heterogeneity induced by such a sampling scheme, even when there are more than two copies in

each species.

Surprisingly, this approach has rarely been used in phylogenetics research. The number of loci
that could be included would greatly increase, but the computational burden would increase
slightly, as well (Box 2). These numbers could be increased even further, too: there should be no
negative effect on the inferred topology of including duplications specific to a pair of sister
species. In other words, if one or more duplication events occur in the ancestor of a pair of
species, sampling a single copy from each of these species cannot induce gene tree
heterogeneity. This occurs because there is only a single way this pair can be related, and such
gene tree invariance cannot be ensured for duplicates ancestral to three or more species. Though
the inclusion of duplicates specific to a pair of sister species should not affect the inferred
topology, it could affect estimates of terminal branch lengths (see section on “Branch lengths”
below). Broadening sampling to include these genes would lead to a further increase in the

number of loci available for phylogenetic inference.

Estimating species trees in the presence of paralogs

In the methods described thus far we have still limited ourselves to analyses involving only
orthologous loci. If we relax this restriction even more, we can again greatly increase the number
of loci to be used. Below, we review five general approaches for reconstructing species trees in
the presence of paralogs. We largely go through these methods in the chronological order in
which they appeared in the literature, spending the most time at the end on promising new

methods.
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Gene Tree Parsimony

The earliest methods to infer species trees in the presence of gene duplication and loss used gene
tree parsimony (GTP) [11,45,46]. In these approaches the aim is to find the species tree with the
minimum “reconciliation” cost [47] to a collection of input gene trees; i.e. the species tree that
minimizes the distance to all gene trees. Reconciliation costs are calculated based on explicit
biological causes of gene tree heterogeneity, including, but not limited to, GDL. Some software
packages calculate reconciliation costs based on minimizing duplications and losses
[11,46,48,49], while others focus completely on minimizing the number of differences induced
by ILS [50,51], or allow users to choose among these reconciliation costs [52]. Recognizing that
these processes do not act in isolation, recent approaches consider both GDL and ILS [53], with
some additionally incorporating introgression [54,55]. Although these approaches appear to deal
with ILS, they do not completely account for very high levels of ILS when inferring the species

tree [56], and therefore may give misleading results in such cases.

Robinson-Foulds-based methods

The Robinson-Foulds (RF) distance between two trees measures the number of branches that
must be removed, and the number of subsequent branches that must be added to make them have
the same topology [57]. RF species tree methods try to find the species tree that minimizes the
RF distance to a collection of input gene trees [58]. Although this is a similar approach to gene
tree parsimony, RF-based approaches make no assumptions about the biological processes
leading to heterogeneity between the gene trees and the species tree, and there are therefore no

options to apply different costs to different processes.

Although RF-based methods as originally described were applicable only to input trees with no
duplicates, interest in applying these methods to multi-copy gene trees (i.e. those with both
orthologs and paralogs) led to several advancements that permitted the calculation of RF
distances between them [59,60]. Chaudhary et al. [61,62] then introduced an approach for

finding a species tree using multi-copy gene trees as input. Their method, MulRF, compares
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favorably to GTP approaches [63], and has recently been improved by Molloy and Warnow [64].
RF methods appear to perform well under general conditions [63, 64], though, like GTP
methods, they are not accurate under high levels of ILS [65].

Probabilistic Methods

Several probabilistic approaches have been introduced for inferring species trees in the presence
of gene duplication and loss, but these are often much more computationally intensive than GTP
and RF methods. For example, PHYLDOG jointly estimates gene family trees, species trees, and
the number of duplications and losses under a model of GDL by maximizing their likelihood
given a set of alignments [66]. However, PHYLDOG does not consider other sources of gene
tree incongruence (e.g. ILS) and the computational costs are high, preventing its application to

large genomic datasets [63].

De Oliveira Martins et al. [67] introduced guenomu, a probabilistic supertree approach to infer
species trees in the presence of both ILS and GDL. Guenomu implements a hierarchical
Bayesian model: it takes as input a posterior distribution of gene trees and uses a multivariate
distance metric based on ILS and GDL to infer a posterior distribution of species trees. However,
like PHYLDOG, guenomu is computationally intensive, and therefore neither approach truly

expands the number of loci one could use in phylogenomics.

Methods based on Neighbor Joining (and other clustering approaches)

Neighbor Joining (NJ; [68]) and other distance-based approaches are popular methods for
species tree inference using orthologs. Newer application of these approaches can accommodate
ILS by calculating a distance matrix from a collection of gene trees inferred from separate loci,
and then NJ or another clustering algorithm is used to estimate a species tree from this distance
matrix. Distance methods applicable to gene trees can broadly be divided into two classes: those
that construct distance matrices based on sequence distances and those that construct distance
matrices based on internode distances. The former approach includes the methods implemented

in STEAC [69] and METAL [70]. Methods based on internode distances include STAR [69],



241 N« [14], and ASTRID [21]. Distance-based approaches have been proven to return the correct
242 species tree under high levels of ILS [70-72].

243

244  Extending distance methods to cases including paralogs is straightforward, because distance
245  matrices can be calculated as averages over multiple samples from a species. Application to
246  datasets containing orthologs and paralogs has already been done using NJy [63,73] and

247  ASTRID [74]. STAG [4] is another distance method introduced specifically to estimate species
248  trees from multi-copy gene trees, though it requires that loci have no missing species. Testing the
249  accuracy of distance methods using orthologs and paralogs, Chaudhary et al. [63] found that NJ
250  was outperformed by methods based on GTP, RF distances, and probabilistic models. In

251  contrast, Yan et al. [73] found that NJs performed comparably to quartet-based methods, and
252 Legried et al. [74] found that ASTRID had similar or higher accuracy than all other methods
253  evaluated. Overall, distance-based methods appear to be a generally accurate and efficient

254  method for inferring species trees using paralogs.

255

256  Quartet-based Methods

257

258  Methods to build species trees from quartet sub-trees have been around for some time [75-79],
259  but have found renewed popularity due to the introduction of more accurate, more efficient
260  algorithms. These methods scale well to genomic datasets and are robust to both high levels of
261  ILS [80,81], and, as mentioned earlier, large amounts of missing data. ASTRAL [13,19,80] is
262  among the most popular of these methods: it infers a species tree from a set of input gene trees,
263  extracting quartets from them automatically, and finding the phylogeny that maximizes the
264  number of shared quartet trees. ASTRAL was designed for use with single-copy orthologs, but
265  can accommodate multiple haplotypes sampled within species (ASTRAL-multi [82]). In these
266  cases, ASTRAL-multi effectively averages over haplotypes by sampling quartets with at most
267  one sequence per species.

268

269  Gene trees with paralogs in them take advantage of the same sampling scheme used by

270  ASTRAL-multi, and perform very well because the most common quartet in multi-copy gene

271  trees is still the quartet that matches the species tree (Figure 2; [73,74]). ASTRAL-multi has

10
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multiple mathematical guarantees about its accuracy in the presence of both ILS and GDL, at
least under some models [74], and simulation studies have also demonstrated its accuracy
[73,74]. Most recently, a version of the software explicitly built for the inclusion of paralogs,

ASTRAL-Pro, outperformed ASTRAL-multi, MulRF, and GTP methods [65].

Quartet-based methods are also robust to the hidden paralog problem, as can be illustrated by an
extreme example. Yan et al. [73] suggested that such methods should be accurate even if a single
gene is randomly selected from each species for each gene tree and used as input to ASTRAL (a
sampling scheme that has been referred to as “ASTRAL-ONE” [73,74]). In such a scenario,
there are more combinations of sampled genes that result in pseudo-orthologs than in true
orthologs (Figure 2B). However, one-third of the pseudo-ortholog combinations match the
species tree topology, and the other two-thirds are split evenly between the two alternative
topologies. Together, the orthologs and pseudo-orthologs matching the species tree ensure that
this quartet is always the most common [74,83]; simulations show that with even a few hundred
loci accurate species trees can be recovered using this approach [73]. Although the numbers of
tree topologies given here only involve four species (including the outgroup) and one duplication
event, they should hold for all larger trees since these can be deconstructed into quartets (cf.
[84]). In biological scenarios involving similarly extreme gene loss, both orthologs and pseudo-
orthologs matching the species tree are more likely to be sampled because they require fewer
losses to produce them than the pseudo-ortholog trees that do not match (Figure 2B). This makes

the species tree even more likely to be accurately inferred using quartet methods.

Because of their relative simplicity, ease-of-use, speed, accuracy, and robustness to multiple
issues that confound other phylogenetic methods, quartet methods have become a mainstay of
standard phylogenetic inference using single-copy orthologs. For all of the same reasons, they
are likely to become widely used when sampling both orthologs and paralogs. We also suspect
that methods related to ASTRAL that have not yet been evaluated under the inclusion of

paralogs (e.g., [20]) will perform equally well under these conditions.

Considerations when inferring phylogenies with paralogs

11
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Although multiple of the methods discussed here ensure accurate inference of species tree
topologies when paralogs are used, there are important caveats and implications that merit

specific consideration. Below, we discuss several of these.

Branch lengths

Although topology estimates should not be biased by the inclusion of paralogs, the same is not
true for branch lengths. When branch lengths are estimated as substitutions per site [85,86], the
inclusion of pseudo-orthologs will force branches to be longer than they actually are (e.g. Figure
2; [84]). Conversely, when branch lengths are estimated in coalescent units [13,24], the
additional gene tree heterogeneity introduced by paralogs (hidden or not) will result in the
underestimation of branch lengths. No matter what type of branch lengths are to be estimated, we
recommend that the dataset used be restricted to orthologs. Thus, a reasonable approach would
be to estimate a species tree topology using all genes, and then to estimate branch lengths on this
topology with a dataset including only orthologs (allowing for sampling among species-specific

paralogs; Figure 1D).

Alignment

One of the most error-prone, but underappreciated, steps in phylogenomics is alignment.
Automated alignment of thousands of loci means that many errors can creep in, especially when
non-homologous (alternative) exons are sampled from different species. Fortunately, there are
good methods for identifying regions with low alignment quality (e.g. GUIDANCE2; [87]). A
related problem involves deciding how to choose among lineage-specific paralogs (Figure 1D) in
order to maximize alignment length while minimizing alignment error. One promising approach
would be to co-opt methods designed to choose among alternative isoforms at a single locus:
some of these try to pick the set of genes that are most similar in length across species to avoid
the inclusion of non-homologous exons [88]. Combining such methods with tools that identify

and filter unreliable portions of alignments [87,89-92] should minimize error.

Polyploidy

12
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Polyploidy is a special case of gene duplication and loss in which the whole genome is
duplicated, and offers a particular challenge both to methods for identifying orthologs and to
species tree inference. In autopolyploidy both sets of chromosomes come from the same species,
and gene copies are paralogs that behave in much the same manner as the smaller duplication
events described above. Therefore, the gene tree methods discussed here should not be misled by

autopolyploidy.

Allopolyploidy occurs when the chromosome number doubles via hybridization between species;
the resulting gene copies are referred to as homeologs [93]. Since gene copies found in the same
allopolyploid genome are related through speciation between the parental species, homeologs are
not paralogs in the traditional sense. Similarly, there is not a single bifurcating species tree that
describes relationships involving allopolyploids. While this makes it difficult to evaluate the
effect of including homeologs on traditional species tree inference, gene-tree-based methods
should identify one of the two potentially correct species tree topologies as the correct topology

[e.g., 94].

Detecting introgression

Much less consideration has been given to the effect of including paralogs when attempting to
detect introgression. The most commonly used phylogenetic methods for detecting introgression
are based on the expectation that, for any quartet of species, the two minor topologies (i.e. the
topologies that do not match the species tree) should occur at the same frequency; therefore,
asymmetries between topologies can provide evidence for introgression [95-98]. We suggest
here that, for methods that depend on the frequencies of minor topologies to detect introgression,
the inclusion of paralogs should not bias inference. Consider the example shown in Figure 2: as
discussed above, the most common topology matches the species tree. However, four topologies
do not match the species tree. These four potential trees all require three lineage-specific losses
(one in each taxon), and should occur at equal frequency under a model of GDL in the absence
of introgression, similarly to under cases without duplication. Thus, methods for detecting

introgression based on asymmetry in minor topologies should perform well in the presence of

13
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paralogs. This proposal merits additional consideration, however, as does the effect of paralogs

on additional methods for detecting introgression not discussed here.

Concatenation

To carry out a concatenated analysis, one gene copy must be sampled per species per locus and
put into a single alignment. If the intention is to include only orthologs (whether single-copy or
not), a small number of pseudo-orthologs can have an extreme, negative influence on
phylogenetic relationships [27,99]. This occurs because pseudo-orthologs have internal branches
that are longer than those of true orthologs (Figure 2B), giving them more phylogenetically
informative changes. To minimize these potential problems, it may in fact help to instead include
all of the data, rather than attempting to include only orthologs. We imagine here a sampling
scheme similar to the approach taken in [73], where a single copy is randomly sampled per
species (i.e. “ASTRAL-ONE”). Not only are more underlying tree topologies guaranteed to
match the species tree topology, but the pseudo-orthologs matching the species tree have longer
internal branches than those matching alternate topologies (Figure 2B). Thus, with enough data,
the topology matching the species tree should be favored by concatenated analyses, even in the
presence of pseudo-orthologs. While certainly not a standard phylogenetic analysis, we suggest

that this may be a fruitful way forward in the future.

Concluding Remarks

Despite the massive amount of genomic data being collected across the tree of life, phylogeny
inference is often restricted to a small portion of this data due to filtering for single-copy
orthologs and minimal missing data. Recent work has demonstrated that several leading methods
for species tree inference perform well in the presence of paralogs, suggesting a source of
additional data for phylogenomic inference. Additionally, recent work has shown that missing
data may not be as much of an issue as feared. Thus, the amount of data available for
phylogenomic inference may be much larger than previously thought. Future work should
consider branch length estimation when paralogs are present, as well as the potential effects of

paralog inclusion on inferences of introgression.
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Box 1. Types of homologous relationships and implications for phylogenetic inference

QO = Duplication event

@ = Speciation event

al a3 b1 ¢l a2 b2 a4 b4 c2
orthologs
paralogs

Homologous loci share a common ancestor. Orthologous loci share a common ancestor due to
speciation (e.g. al and bl), while paralogous loci share a common ancestor due to duplication
(e.g. al and a3; [5]). Orthology relationships can be classified as one-to-one, one-to-many, and
many-to-many based on whether speciation was followed by duplication in neither, either, or
both lineages [100]. For example, bl and c1, are one-fo-one orthologs. These are the orthologs
that are typically used in phylogenetic inference. Specifically, researchers target single-copy
orthologs, which exist in only a single copy in all species considered. However, many-to-one or
many-to-many orthologs may also be useful. Since the duplication event leading to paralogs al
and a3 occurred after the speciation event with b1, they have a many-to-one orthologous
relationship. Such lineage-specific duplications should not affect phylogenetic inference because
al and a3 are co-orthologous to bl and cl, meaning that either copy has an orthologous
relationship with bl and c1. Similarly, a2 and a4 have a many-to-one orthologous relation to c2.
The large numbers of complex many-to-many relationships that can arise (for instance, the
relationship between al, a2, el, and e2 in Figure 1D) make ortholog group delimitation a

difficult task, though these loci can still be used in many types of phylogenetic inference.
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Box 2. Identifying orthologous genes and sampling lineage-specific paralogs.

Due to interest in identifying orthologs both for phylogeny reconstruction and for functional
prediction, several methods for ortholog detection have been developed (reviewed in [100]). The
most commonly used approaches for ortholog detection are graph-based approaches [100] which
rely on the identification of reciprocal best hits (RBHs).This is based on the assumption that the
two most closely related homologs between a pair of species should be orthologs. After RBHs
are identified, some approach must be used to construct groups of orthologous sequences; for
example, in OrthoMCL [101] a Markov clustering algorithm is used to identify orthogroups,
which consist of orthologs and recent paralogs. Typically, for downstream phylogenomic
inference, single-copy orthologs present in most species are extracted from these results. While
lineage-specific duplicates need not be excluded from datasets for phylogenetic inference (see
main text), it is not straightforward to extract these from the output of many graph-based
approaches. The most obvious way to identify and include these genes is by reconstructing gene
trees for all orthogroups, identifying lineage-specific duplicates, and selecting one copy per
species for downstream inference. Some recently introduced branch-cutting methods can also
sample such genes from orthogroups containing duplicates. Yang and Smith [102] consider
several different branch-cutting algorithms to extract orthologs appropriate for phylogeny
estimation, and these considerably increase the number of genes available for phylogenetic
inference. For example, in a Hymenoptera dataset analyzed by these authors, the number of
orthologs present in at least eight taxa increased from 4,937 using only single-copy-orthologs to
9,128 under one branch-cutting technique [102]. Thus, even when including paralogs is not
desirable, orthologs can be extracted from many datasets not traditionally considered in

phylogenetic inference.

17



446  Figure 1. Sampling orthologs and paralogs (Key Figure)
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448  Figure 1. Sampling orthologs and paralogs. There are several potential sampling strategies in
449  phylogenetic inference. Here, we illustrate a few of these, although these categories are not

450  mutually exclusive. (A) Phylogenies can be constructed from complete sampling of single-copy
451  orthologs. (B) Phylogenies can be reconstructed from sets of paralogs. The tree shown has a

452  single duplication event in the ancestor of all species. (C) Phylogenies can be constructed from
453  genes with missing data, either due to incomplete sampling or to gene loss. (D) Phylogenies can
454  be constructed from loci with lineage-specific duplications. Duplications in lineages a and e

455  result in two copies in each of these species in the tree shown. Sampling a single copy from each
456  species should not affect phylogenetic inference.
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458  Figure 2. Orthologs, pseudo-orthologs, and quartet frequencies.
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Figure 2. Orthologs, pseudo-orthologs, and quartet frequencies. (A) The full history of a locus in
three species and an outgroup, including one duplication event and two speciation events (which
are shown separately for each set of orthologs). (B) Scenarios where only a single gene copy is
sampled per species; the outgroup is assumed to be sampled in each, but is not shown for clarity.
The single copies may be present because of gene losses (shown here as X’s), or simply because
a single copy is randomly chosen per species. The latter case is also what would happen if there
were no missing copies but quartets were sampled from the full gene tree as input to ASTRAL
[73, 74]. There are four quartets that match the species tree: the two orthologs and the two left-
most pseudo-orthologs (“hidden paralogs”). The remaining pseudo-orthologs either place
lineages b and ¢ sister to one another (center) or a and c sister to one another (right). Therefore,
quartet methods should perform well even when paralogs are included, because the most
common set of relationships should still match the species tree. Note that if genes are single-copy
because of gene losses, the species tree relationship is likely to become even more common: the
orthologs require only one loss in their history and the matching pseudo-orthologs require two
losses. Pseudo-orthologs not matching the species tree can only be generated when there are

three separate loss events.
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