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Abstract

Identifying regions of positive selection in genomic data remains a challenge in population

genetics. Most current approaches rely on comparing values of summary statistics calcu-

lated in windows. We present an approach termed SURFDAWave, which translates mea-

sures of genetic diversity calculated in genomic windows to functional data. By transforming

our discrete data points to be outputs of continuous functions defined over genomic space,

we are able to learn the features of these functions that signify selection. This enables us to

confidently identify complex modes of natural selection, including adaptive introgression.

We are also able to predict important selection parameters that are responsible for shaping

the inferred selection events. By applying our model to human population-genomic data, we

recapitulate previously identified regions of selective sweeps, such as OCA2 in Europeans,

and predict that its beneficial mutation reached a frequency of 0.02 before it swept 1,802

generations ago, a time when humans were relatively new to Europe. In addition, we identify

BNC2 in Europeans as a target of adaptive introgression, and predict that it harbors a bene-

ficial mutation that arose in an archaic human population that split from modern humans

within the hypothesized modern human-Neanderthal divergence range.

Author summary

As populations adapt to their environments, specific patterns indicating selection remain

in the distribution of genetic diversity across their genomes. A hallmark of positive natural

selection is the reduction of genetic diversity surrounding beneficial mutations. The origin

of the beneficial mutation, or whether it originated in a population being examined or

within another, can be uncovered through the spatial distribution of the reduction of

genetic diversity. In addition, other information about the strength, timing, and initial fre-

quency of beneficial mutations can be learned by examining patterns of diversity across

genomic regions. We use functional data analysis to capture differences among the spatial

distributions of genetic variation expected by diverse evolutionary processes, and further
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apply it to dissect how selection parameters affect such patterns. Using this method, we

learn the underlying origins, timings, and strengths of beneficial mutations that have

impacted modern human genomic diversity.

Introduction

Positive selection is one the most fundamental forces shaping the diversity of life that we can

observe today [1, 2]. When positive selection acts on a beneficial mutation, it causes a “wave-

like” pattern in the decrease in diversity of the genome [3]. As in waves found in the ocean or

air, certain patterns might emerge depending on the properties of the cause and the environ-

mental materials (genetic background). Examining these patterns might allow us to learn

about the forces causing them. For example, the angle between the crest (top of a wave) and

trough (bottom of a wave) might be informative for learning about the strength of selection

(and concurrently the time taken for a selective event to occur). Similarly, different modes of

positive selection may have on average different patterns. For example, if the crest of the wave

extends above the rest position (neutrality), then this may be the signal of adaptive introgres-

sion as shown in ref. [4].

Capturing diversity patterns as they vary spatially has been the goal of a number of recent

methods [5, 6, 7]. References [5] and [6] attempt to recognize sweeps by learning how diversity

(measured by summary statistics) changes across a number of windows encompassing the

sweep. However, these methods do not explicitly model the overall patterns formed by selec-

tion events. Other methods forgo explicitly measuring diversity and transform SNP data

directly to images to learn population-genetic parameters such as recombination rates [8, 7]

and to identify selected regions [7]. The complementary approach shown in ref. [9] explicitly

models the spatial autocorrelation of summary statistics to capture the underlying wave pat-

terns produced by selective sweeps.

Fortunately, there exist techniques not widely applied in genomics that allow observations

on continuous data [10]. Functional data analysis is a recent sub-field of statistics in which

measured values are known to be the output of functions [11, 12]. Relatedness between data

points is inherent in this type of data analysis, which operates on values across a continuum.

Transforming our measures of genetic diversity across a genomic region into functional data

ensures that the spatial pattern is used to draw conclusions. Although we will be applying this

method to assess how genetic diversity varies across the space of a genomic region, there is

potential to apply this method to understand how diversity changes temporally [e.g., 13, 14,

15]. With the deluge of ancient genome datasets emerging, it may be possible to examine how

the spatial distribution of genetic diversity changes across time at different positively-selected

genomic regions to learn their adaptive parameters, such as selection strength, sweep softness,

and timing of selection. Functional data analysis can also be applied to understand how genetic

diversity changes across physical geographic regions and can potentially be useful in ecological

modeling [e.g., 16, 17, 18].

We present a method termed SURFDAWave (Sweep inference Using Regularized FDA

with WAVElets) in which we first model genetic diversity as functions, and then learn the

importance of different aspects of genetic diversity across the examined genomic space in pre-

dicting selection parameters. We show that SURFDAWave accurately predicts parameters

such as selection strength, initial frequency of mutation before becoming beneficial, and time

of selection. We also demonstrate that SURFDAWave can be used to classify selective sweeps,

PLOS GENETICS Learning about positive selection with functional data analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008896 August 27, 2020 2 / 44

T32GM102057), the NASA Pennsylvania Space

Grant Graduate Fellowship, and the Graduate

Research Innovation Grant from the Huck

Institutes of the Life Sciences. HK is supported by a

National Human Genome Research Institute pre-

doctoral fellowship (1F31HG010574-01). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.



while remaining robust to confounding factors. Finally, we apply SURFDAWave to empirical

data to predict the selection parameters on regions classified as sweeps.

Results

SURFDAWave is a wavelet-based regression method used to classify selective sweeps and pre-

dict adaptive parameters (Fig 1; see Materials and methods for a brief discussion of wavelets).

Here we briefly present its performance in terms of both classification of selective sweeps and

in estimating parameters responsible for shaping sweeps. We compare classification perfor-

mance of SURFDAWave to Trendsetter [9], as Trendsetter also models the spatial autocorrela-

tion of summary statistics, and we also provide a comprehensive comparison to two other

leading sweep classifiers—evolBoosting [19] and diploS/HIC [6]. See Materials and methods

for details on these comparisons, as well as important considerations regarding the alteration

Fig 1. Cartoon illustrating SURFDAWave function. For each statistic, SURFDAWave standardizes values before transforming values

into their wavelet representations (Middle boxes in panels A and B.). The wavelet representations are analyzed at all possible levels from

the most detailed or highest level to least detailed or lowest level (Right of middle boxes in panels A and B). The top row shows how a

binary classifier chooses wavelet coefficients to differentiate between sweeps and neutrality. Because the case shown is binomial, there is

only one line showing the function for a sweep, as the function for neutrality would be the inverse. The middle row shows how there is a

separate model for each selection parameter we predict. In this case the three different colored lines in the right box are the regression

coefficient functions for three different selection parameters. (Panel C) A cartoon example of how a feature vector might undergo

discrete wavelet transform. A feature vector (here of length eight) is transformed by either pairwise subtraction (for mother wavelet

coefficients) or pairwise addition (for father wavelet coefficients) in subsequent steps to obtain a multiresolution breakdown of the data.

Level zero provides the least amount of detail, while level two captures the feature vector values in higher resolution. SURFDAWave uses

this breakdown of coefficients to identify important ones through penalized regression. Using wavelet functions, such as the Haar

functions shown here it is then possible to generate wavelets (coefficient function) as shown in the final panel on the right.

https://doi.org/10.1371/journal.pgen.1008896.g001

PLOS GENETICS Learning about positive selection with functional data analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008896 August 27, 2020 3 / 44



of default settings of Trendsetter to use the same summary statistics as SURFDAwave and the

use of two classes for diploS/HIC instead of the five classes that it was originally designed for.

Although we modify Trendsetter from its original implementation, we chose to focus on how

the modeling of the summary statistics, rather than the number or choice of summary statis-

tics, would affect differences in classification rates between these two methods.

Classification of selective sweeps

We trained the SURFDAWave classifier to differentiate between sweeps and neutrality as

described in Materials and Methods. We conducted simulations under three different demo-

graphic histories—constant size, human sub-Saharan African (YRI), and human European

(CEU)—to compare how different demographic histories affect our results [20]. All simula-

tions are conducted using SLiM [21] using a mutation rate of 1.25 × 10−8 per site per genera-

tion [22] and recombination rate drawn from an exponential distribution with mean

3 × 10−9 per site per generation (truncated at three times the mean) to simulate two Mb

regions (see Materials and methods). For all sweep simulations, we drew selection start time,

initial frequency of beneficial mutation, and selection strength of the beneficial allele from a

distribution, such that all sweep scenarios comprise a range of hard and soft sweep settings.

The initial frequency of the beneficial allele and the selection coefficient are drawn from

f 2 [1/(2N), 0.1] and s 2 [0.005, 0.5] per generation, respectively, while the start time of the

mutation was drawn uniformly at random from between 1,020 and 3,000 generations ago.

Though it is possible to apply SURFDAWave with many combinations of summary statistics

in any number p = 2J windows (where J is a positive integer), we use an implementation that

employs the summary statistics p̂, H1, H12, H2/H1, and frequencies of first to fifth most com-

mon haplotypes, all calculated in p = 128 genomic windows (see Materials and methods).

The limitation that p = 2J is necessary for the process of discrete wavelet transform as used

by SURFDAWave (see Materials and methods). The discrete wavelet transform allows data

to be resolved into several levels, each containing information with differing amounts of

detail. The number of levels is determined by J, and the process of resolving data into levels

is the limiting factor for p, as at each level the number of wavelets is half of the previous.

Limiting the number of windows to 2J ensures that the number of wavelets is an integer at all

levels (Fig 1).

We first train a classifier using summary statistics calculated on simulations that reflect the

CEU European human demographic history [20]. Fig 2 and S3 Fig show that SURFDAWave
has similar accuracy to Trendsetter regardless of the regularization penalty used [23]. This is

reflected in the patterns we observe for importance of summary statistics through examining

the regression coefficients (βs) for each model. Fig 3 shows how SURFDAWave and Trendset-
ter both identify H1 as uninformative, while H12 is informative. S1 and S2 Figs respectively pro-

vide information on how these two methods have similar patterns of importance for other

summary statistics as well. In addition, comparison to diploS/HIC and evolBoosting show

that these methods perform comparably to SURFDAWave, with evolBoosting classifying neu-

tral simulations correctly more often than all other methods, but performing worse overall.

However, classification by diploS/HIC differed from SURFDAWave only by a few percentage

points.

To examine whether the type of wavelet used influences SURFDAWave’s classification

rates, we incorporate a comparison of two popular wavelets (Daubechies’ least-asymmetric vs.

Haar). The Haar wavelets are composed of block shaped functions, while Daubechies’ least-

asymmetric wavelets are composed of more localized smooth functions (Fig 3). Because the

shapes of the spatial distributions of genetic diversity are relatively simple, we anticipate both
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of these types of wavelets to be able to adequately capture the signal. This expectation is also

motivated by results in ref. [9] comparing the classification accuracy of Trendsetter when using

constant and linear trend-filtering functions, which respectively model curves with similar

characteristics to the Haar and Dabechies’ least-asymmetric wavelets employed by SURFDA-
Wave. We find that the type of wavelets used as basis functions does not dramatically influence

the overall classification rates (S3 Fig). However, visualizing the coefficient functions for each

summary statistic shows that the overall shape is much smoother when using Daubechies’

least-asymmetric (S1 Fig) compared to Haar (S4 Fig) wavelets. We find smoothness of the

coefficient functions to be desirable, and for this reason, most of our results are shown using

Daubechies’ least-asymmetric wavelets. We also notice that although classification rates are

similar regardless of whether we use ridge penalization (γ = 0), lasso penalization (γ = 1), or

choosing the optimal elastic net parameter γ through cross validation (S3 Fig), the resulting

regression coefficient functions are vastly different, especially when we use γ = 0 (S1, S5 and

S6 Figs).

We also train a classifier to differentiate between selective sweeps and neutrality using sim-

ulations of the YRI sub-Saharan African human demographic history [20] over a range of γ
values in SURFDAWave and all compared classification methods. Overall, we notice an

increase in the percentage of simulations classified correctly when we compare to classifiers

trained under the CEU demographic history for all of the methods tested (Fig 2 and S7 Fig).

Noticeably, evolBooting again outperforms all other methods in correct classification of neu-

trality, but still has smaller overall classification accuracy than the other methods. Comparing

within SURFDAWave, we see that the patterns formed by the spatial distributions of the coeffi-

cients for each summary statistic are similar regardless of the γ penalty used (S8–S10 Figs).

The noisy functions resulting from the use of γ = 0 tend to obscure any pattern in the spatial

distribution of the underlying regression functions and as a result make the function more

difficult to interpret. For this reason we proceed with either γ = 1 or γ chosen through cross

validation.

Fig 2. SURFDAWave classifier performance compared to Trendsetter, diploS/HIC, and evolBoosting when differentiating between

sweeps and neutrality and trained and tested with simulations based on CEU (top row) and YRI (bottom row) demographic

history. (Left) Power to differentiate between sweep and neutrality by comparing the probability of a sweep under sweep simulations

with the same probability in simulations of neutrality including zoomed in region between 0.0 and 0.2 on the x-axis and 0.8 and 1.0 on

the y-axis. (Right confusion matrices) Confusion matrices comparing classification rates of the methods. SURFDAWave applied using

Daubechies’ least-Asymmetric wavelets to estimate spatial distributions of summary statistics with γ penalties and level chosen through

cross validation (see Training the models). Summary statistics p̂, H1, H12, H2/H1, and frequency of the first, second, third, fourth, and

fifth most common haplotypes used by both Trendsetter and SURFDAWave.

https://doi.org/10.1371/journal.pgen.1008896.g002
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Through cross validation (see Training the models) we also chose the level at which the dis-

crete wavelet transform (DWT) has best performance for classification. Using wavelets as our

basis functions has the advantage of allowing our regression coefficients to be represented at

different resolutions, denoted by different levels j0 (see Materials and methods). Choosing

these levels through cross validation allows our method to determine the smoothness of the

regression coefficient function because choosing a coarser resolution (lower level) results in a

smooth function, whereas choosing a finer resolution (higher level) will result in a more rug-

ged function. As detailed in Materials and Methods, the total number of levels at which DWT

can be applied equals log2(p) − 1, which when p = 128 (as is used here) means we have six dif-

ferent levels j0 2 {0, 1, 2, 3, 4, 5}. To illustrate the differences among levels, we show a model

using DWT with the coarsest level (j0 = 0) compared to a model using DWT with the finest

(j0 = 5), with both models employing Daubechies’ least asymmetric wavelets with a lasso

(γ = 1) penalty (S11 Fig). It is clear that the summary statistic H12 is informative for both of

these models, however the noisy wavelet reconstructions seen for j0 = 5 reveals an emphasis on

local features that is absent when we enforce j0 = 0.

To compare the effect of bottlenecks and expansions on classification rates to those under a

constant-size demographic history, we trained and tested a classifier using simulations of a

constant-size demographic model to differentiate between neutrality and sweeps. As expected,

Fig 3. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutrality scenarios for summary statistics H1 and

H12 for SURFDAWave and Trendsetter when both methods were trained on simulations of scenarios simulated under demographic

specifications for European CEU demographic history. Note that the wavelet reconstructions for all summary statistics are plotted on

the same scale, thereby making the distributions of some summaries difficult to decipher as their magnitudes are relatively small.

SURFDAWave results compare the use of Daubechies’ least-asymmetric to Haar wavelets to estimate spatial distributions of summary

statistics. Summary statistics p̂, H1, H12, H2/H1, and frequency of the first, second, third, fourth, and fifth most common haplotypes used

by both Trendsetter and SURFDAWave. Level and γ chosen through cross validation for SURFDAWave (see Training the models).

https://doi.org/10.1371/journal.pgen.1008896.g003
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we find both neutral and sweep simulations are classified correctly more often than when clas-

sifying simulations of more complicated non-equilibrium demographic histories (S3 Fig),

such as those of the CEU and YRI populations.

Adaptive introgression is a complex form of natural selection that produces genetic diversity

footprints distinct from typical selective sweeps [4]. In both selective sweeps and adaptive intro-

gression, diversity generally decreases surrounding the beneficial mutation. In adaptive intro-

gression, however, diversity increases before the signal decays to the level of neutrality. This

slight increase in diversity compared to the neutral background is most clearly seen when the

two populations (donor and recipient) are highly diverged (Fig 4). We test how well SURFDA-
Wave can differentiate among adaptive introgression, sweeps, and neutrality, using the same

summary statistics discussed in the Results section (see Material and methods for simulation

details). Similar to previous sweep simulations, for adaptive introgression simulations we drew

selection start time, initial frequency of beneficial mutation, selection strength of the beneficial

allele, and the donor and recipient divergence time from a distribution, such that all adaptive

introgression scenarios comprise a range of hard and soft sweep settings. As shown in Fig 4,

SURFDAWave is only able to correctly classify sweep simulations in 52.5% of cases, misidenti-

fying them as adaptive introgression 43.2% of the time under the CEU-based simulations with

similar results for YRI. As we saw in Fig 4, this is because when divergence times for donor and

recipient populations are recent, then the signature of adaptive introgression looks more like a

selective sweep. We also compare SURFDAWave to the classifiers evolBoosting, diplo/SHIC,

and Trendsetter and see that classification results from other methods are similar to SURFDA-
Wave (Fig 4), with correct classification ability decreasing significantly when compared to the

two class problem of distinguishing between sweeps and neutrality. Overall, we find that evol-

Boosting performs better than other methods when differentiating neutrality from selection,

but slightly worse in the classification of sweeps. We also note that all methods seem to perform

more similarly to each other when trained and tested with the YRI demographic history.

To investigate whether the inclusion of other summary statistics, which may better assess

genomic variation, boosts classification accuracy of SURFDAWave we include an additional

set of summary statistics, specifically adding the mean, variance, skewness, and kurtosis of the

squared correlation coefficient r2 [24] calculated between all possible SNPs sampled from each

pair of windows (see Materials and methods). Because visualizing these statistics in square

matrices is informative, we refer to them as two-dimensional statistics, and refer to p̂, H1, H12,

H2/H1, and frequencies of first to fifth most common haplotypes as one-dimensional statistics.

We see that the inclusion of two-dimensional statistics increases the correct classification of

selective sweeps substantially for both populations to 62.5% in CEU and 62.7% in YRI (Fig 4).

The percent of adaptive introgression simulations classified correctly also increased for YRI

going from 64.7% to 68.6%. With the addition of two-dimensional statistics we find that SURF-
DAWave has the most significant increase in correct classification rates, compared to all other

methods. We can see how the inclusion of the two dimensional statistics affects the model by

directly comparing the reconstructed wavelets across the spatial distributions of the nine sum-

mary statistics included in both models. By examining the coefficients of the two-dimensional

statistics for the model using both types of statistics, we can see that the skewness and kurtosis

of r2 are informative in separating neutrality from the other classes (Fig 5 and S12 Fig). Inter-

estingly, the statistic H1 is important in separating neutrality from both types of selection in

the model including two-dimensional statistics for the CEU demographic history, but clearly

does not serve this purpose in the model trained with only one-dimensional statistics (S13

and S14 Figs). However, this is not the case when examining the same statistic for YRI demo-

graphic history (S15 and S16 Figs). This may be due to the fact that when different statistics are

included the importance of other statistics in the model is changed.

PLOS GENETICS Learning about positive selection with functional data analysis
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Classification with confounding factors

Testing SURFDAWave on simulations of biological events that might confound classification

is necessary to ensure that it can be applied under diverse empirical scenarios. For this reason

we test classification performance of SURFDAWave under simulations with extensive missing

Fig 4. Classification rates when differentiating among adaptive introgression, sweeps, and neutrality. (Top row) SURFDAWave
classification rates. The two first columns are showing classification rates when trained and tested with simulations conducted under

CEU European and YRI Yoruban population demographic history specifications when trained with one-dimensional statistics (p̂, H1,

H12, H2/H1, and frequencies of first to fifth most common haplotypes) while the second two columns show results for the same two

populations using both one and two-dimensional statistics (including the preceding statistics as well as the mean, varaiance, skewness,

and kurtosis of r2). The γ for the classifiers trained with only the one dimensional statistics is chosen through cross validation (see

Training the models), but is specified γ = 1 for the results in the two columns on the right. The level is chosen through cross validation

for all SURFDAWave models. (Bottom three rows of confusion matrices) Confusion matrices comparing classification rates for

Trendsetter, diploS/HIC, and evolBoosting with simulations conducted under European (CEU) and Yoruba (YRI) demographic history

specifications. Summary statistics p̂, H1, H12, H2/H1, and frequency of the first, second, third, fourth, and fifth most common haplotypes

used by Trendsetter. (Bottom right) Value of expected heterozygosity across simulated regions of adaptive introgression with varying

divergence times. The black dotted line shows the value of the statistic when the divergence time is shorter (30,000 generations ago) and

the gray line shows the value when the divergence time is longer (400,000 generations ago).

https://doi.org/10.1371/journal.pgen.1008896.g004
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data. To simulate missing data as we might find it in genome sequences due to technical issues,

such as alignability and mappability [25], we remove large randomly spaced chunks of the sim-

ulated data (see Materials and methods). We show that missing data does not substantially

affect the performance of SURFDAWave when classifying neutral simulations with missing

data (Fig 6). We do, however, observe a slight decrease in performance in the classification of

selective sweeps when sweep simulations are missing data, with an increase in the percentage

of sweep simulations missing data being classified as neutral. This robustness to missing data

can be attributed to the types of summary statistics applied and the manner in which they are

calculated using SNP-delimited windows [9]. Another common confounding factor is back-

ground selection, in which deleterious mutations cause a loss of diversity which might be con-

fused for selection signatures [26]. For this reason we test SURFDAWave’s performance on

background selection, which we simulate based on the distribution of effect sizes and spatial

distribution of coding elements in the human genome, as in refs. [27] and [9] (see Materials

and methods for details). We find that 93.4% and 94.2% of background selection scenarios

under the CEU and YRI demographic histories, respectively, are classified as neutral (Fig 6). In

comparison to other classifiers we notice the performance of SURFDAWave is comparable to

Trendsetter and diploS/HIC under these background selection scenarios, but that evolBoosting

erroneously classifies background selection as a sweep often (Fig 6). We also notice that while

both Trendsetter and SURFDAWave tend to conservatively misclassify sweep simulations

missing data as neutral, evolBoosting and diploS/HIC tend to misclassify neutral simulations

missing data as sweeps. The reason for this elevated rate of misclassifying neutral regions miss-

ing data as sweeps is because evolBoosting and diploS/HIC use as input summary statistics

computed in fixed physical length windows by default, meaning that reductions in haplotypic

diversity due to missing data can masquerade as false sweep signatures. However, ref. [9] dem-

onstrated that these issues can be avoided by ensuring that evolBoosting and diploS/HIC are

trained with simulations containing missing data, and so we believe missing data would not be

a major issue for any of the classifiers that we examine.

Along with issues of background selection and missing data, there are also known difficul-

ties with establishing accurate demographic histories of present populations. Similar to the

results shown in ref. [9], we again show that SURFDAWave loses performance when

Fig 5. Three dimensional representations of reconstructed wavelets from regression coefficients (βs) when differentiating among

adaptive introgression, sweeps, and neutrality for summary statistics kurtosis of pairwise r2 for SURFDAWave when γ = 1, when

trained with statistics p̂, H1, H12, H2/H1, frequencies of first to fifth most common haplotypes, and mean, variance, skewness, and

kurtosis of pairwise r2. SURFDAWave was trained on simulations of scenarios simulated under demographic specifications for

European CEU demographic history. Note that the wavelet reconstructions for all summary statistics are plotted on the same scale,

thereby making the distributions of some summaries difficult to decipher as their magnitudes are relatively small. SURFDAWave results

shown are using Daubechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level chosen through

cross validation.

https://doi.org/10.1371/journal.pgen.1008896.g005
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demographic specifications are less accurate. With a classifier trained to differentiate between

sweeps and neutrality in CEU European populations, we mis-classify 37.9% of sweep simula-

tions conducted under YRI sub-Saharan African demographic history as neutral. However,

the percentage of neutral YRI simulations classified as neutral increases to 99.1% when tested

with a CEU trained demographic history. In the opposite case, with the classifier trained to

differentiate sweeps from neutrality with simulations of YRI, when we test sweep simulations

Fig 6. Comparison of method performance under confounding factors (missing data and background selection) when trained with

either CEU or YRI demographic histories when SURFDAWave, Trendsetter, diploS/HIC, and evolBoosting are trained to

differentiate between sweeps and neutrality. (Left column) Probability of mis-classifying neutrally-evolving genomic regions missing

data as a sweep. Comparing probability of sweep in simulations missing data (probability of false signal) with the probability of any

sweep in neutral simulations (false positive rate). (Left middle column) Probability of mis-classifying background selection simulations

as sweep. Comparing the probability of a sweep in simulations of background selection (probability of false signal) with probability of

sweep in neutral simulations (false positive rate). (Right columns) Confusion matrices showing classification rates when classifying

simulations of each class with missing data, and when classifying background selection simulations. Results for both CEU (Right middle

column) and YRI (Right column) demographic history. SURFDAWave is trained using Daubechies’ least-Asymmetric wavelets. Optimal

γ and and level were chosen through cross validation (see Training the models). Summary statistics p̂, H1, H12, H2/H1, and frequency of

the first, second, third, fourth, and fifth most common haplotypes used by both Trendsetter and SURFDAWave.

https://doi.org/10.1371/journal.pgen.1008896.g006
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conducted under the CEU demographic history we classify 99.2% correctly, however we mis-

classify simulations of neutrality as sweeps 26.0% of the time (S18 Fig). These mis-classifica-

tions are largely rescued when we train a classifier trained across a diverse set of demographic

histories (S18 Fig), with classification rates for CEU almost reaching classification rates of

when only trained with simulations conducted under the CEU demographic history and a

slight decrease in correct percentages for the YRI history.

We next probe the effect of sample size on classification rates in simulated data (S19 Fig). In

many cases, large sample sizes may be unavailable such as in the case of rare species, like bono-

bos, chimpanzees, and other great apes [28], and for this reason testing SURFDAWave on a

variety of sample sizes (n = 20, 50, or 200) beyond the n = 100 already considered allows us to

evaluate whether it still has power to distinguish sweeps from neutrality with more uncertainty

in estimates of summary statistics. We observe a slight decrease in classification ability of

SURFDAWave with a lower sample size of n = 20, but it is still able to classify greater than 90%

of sweeps correctly. Similarly, Trendsetter, diploS/HIC, and evolBoosting also have noticeable

decreases in classification rates when summary statistics are calculated from smaller samples.

For all methods, the greatest increase in correct classification rate tends to stem from a sample

size increase from n = 20 to n = 50.

Although we have designed SURFDAWave to be used to detect and understand selection

in human populations, we believe its application can be extended to other species. To test

this we apply the SURFDAWave classifier using simulations conducted under Drosophila
parameters to differentiate between sweeps and neutrality (S20 Fig), and include a compari-

son to Trendsetter, diploS/HIC, and evolBoosting. Demographic parameters were based on

the model of ref. [29], and we detail the procedure for simulating training and testing data

under this model in the Materials and Methods section. In a similar pattern to human param-

eters, we see that neutrality is classified correctly more often by all methods than selection,

and the overall correct classification percentages are lower for Drosophila parameters. How-

ever we note that all methods tend to be more conservative when classifying sweeps, often

misclassifying sweeps as neutrality. This is because our simulations of Drosophila are con-

ducted by drawing demographic parameters from posterior distributions of their estimates

[29]. Uncertainty in this distribution make sweeps more difficult to detect as shown by refs.

[30] and [31].

Finally, we test SURFDAWave to see how it performs under varying recombination rates.

Training and testing with simulations using recombination rate drawn from an exponential

distribution with mean 10−8 per site per generation shows results similar to our previous mod-

els (S21 Fig). Results from a model trained and tested with recombination rates drawn ran-

domly from the CEU human recombination map show classification rates for neutrality that

are similar to classification rates from the model using rates drawn from an exponential distri-

bution with mean 3 × 10−9 per site per generation, but with lower percentages of sweep simula-

tions classified correctly.

Prediction of selection parameters

Classification of selective sweeps provides a limited understanding of the evolutionary pro-

cesses shaping genomic regions. To gain deeper insight about the underlying adaptive pro-

cesses, we also tested the ability of SURFDAWave to predict the selection parameters involved

in shaping sweeps. We trained a multi-response linear regression model to jointly learn the

log-scaled initial frequency of the adaptive allele prior to it becoming beneficial, the log-scaled

selection coefficient, and the time at which the mutation becomes beneficial (see Materials and

methods) using demographic specifications for the CEU and YRI populations. We include the
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same set of m = 9 summary statistics as used to train the sweep classifier in the preceding sec-

tion, each computed across p = 128 windows. Prediction of initial frequency, selection coeffi-

cient, and time of selection is accurate (S22 Fig) with the root mean squared error (RMSE)

equal to 0.49 for the log-scaled selection coefficient, 0.43 for the log-scaled initial frequency,

and 20.3 for time at which selection began for unstandardized log-scaled selection coefficient,

unstandardized log-scaled initial frequency, and the unscaled and unstandardized time of

selection, respectively (Fig 7). We find that the mean absolute error (MAE) is always lower in

value than the RMSE (S1–S13 Tables). The RMSE for the YRI population is similar to that of

the CEU (S1 and S2 Tables). Visualizing the coefficient functions after regularized regression

conveys that most summary statistics are informative in predicting parameters (S23 and S24

Figs), with the exception of the frequency of the most common haplotype, which is flat across

the entire spatial distribution in both models.

To test the influence of confounding factors such as missing data on the prediction model,

we simulate missing data as in the Classification with confounding factors section above. We

find that predicting parameters with missing data increases RMSE slightly (S3 and S4 Tables),

Fig 7. SURFDAWave predictors’ performance on simulated data and prediction results on empirical data. (Top row) Difference

between unstandardized selection parameters with SURFDAWave for the CEU and YRI demographic models. (Left box plot) Difference

in prediction and truth of log scaled time at which mutation became beneficial (measured in generations before present). (Middle

box plot) Difference in prediction and truth of log scaled frequency reached by mutation prior to it becoming beneficial (f). (Right

box plot) Difference in prediction and truth of log scaled selection coefficient (s). (Bottom row) Predicted distribution of selection

parameters for all genes in YRI and CEU with probability of being classified as sweep greater than 0.7. (Left) Distribution of predicted

time of selection (measured in generations before present). (Middle) Distribution of predicted frequency reached by mutation before

becoming beneficial (initial frequency (f)). (Right) Distribution of predicted selection coefficient (s).

https://doi.org/10.1371/journal.pgen.1008896.g007
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with standardized RMSE for selection coefficient (s), initial frequency (f), and time of selection

(Tsel) changing from 0.91, 0.98, and 0.67 to 0.93, 1.03, and 0.87 in CEU and from 0.95, 0.96,

and 0.76 to 1.12, 1.11, and 1.21 in YRI, respectively. This results in a percent change in the

RMSE in CEU of 2.2% for s, 5.1% for f, and 29.8% for Tsel. Similarly, for YRI we observe a per-

cent change of 17.8%, 15.5%, and 59.2% for s, f, and Tsel, respectively. We also test robustness

of the SURFADAWave prediction model to demographic mis-specification, by considering

test simulations performed under CEU demographic specifications with a model trained

with simulations performed under YRI demographic specifications, and vice versa (S5 and S6

Tables). Again, we find that the RMSE increases compared to training and testing with the

same population demographic histories for both experiments, but the RMSE is less than the

error due to missing data with a percent change in s, f, and Tsel for CEU of 3.2, 8.1, and 32.1,

respectively. For YRI, we find respective percent changes of 4.1, 22.9 and 47.4. In order to test

whether it is possible to rescue this decrease in predictive ability because of demographic mis-

specification, we train a model with a mixture of CEU and YRI simulations (S7 Table and S25

Fig). We notice that for most selection parameters our ability to predict is better than when we

mis-specify demography.

We also simulate selective sweeps including background selection, simulated as described

in Classification with confounding factors, with the exception of including a beneficial mutation

in the center of the simulated chromosome. We find that the RMSE values are very close to the

RMSE with no confounding factors (S8 and S9 Tables). Using simulations of differing sample

sizes we test whether the number n of haploid genomes sampled influences our ability to pre-

dict selection parameters (S10 Table and S25 Fig). We show that there is clearly a decrease in

error as sample size increases. We notice that the selection coefficient s has a more significant

decrease in RMSE between sample sizes of n = 20 and 50 than between 50 and 200, whereas f
experiences the opposite. In addition, we test two models with differing recombination rates to

see how this type of variation affects our predictions. We find that using a recombination rate

drawn from exponential distribution with mean 10−8 per site per generation truncated at three

times the mean has similar results to using recombination rate drawn from exponential distri-

bution with mean 3 × 10−9 per site per generation truncated at three times the mean (S11

Table and S25 Fig). This is likely because there is substantial overlap between these distribu-

tions. However, using varying recombination rate across simulated genomic segments drawn

from a human empirical recombination map decreases our ability to predict selection parame-

ters (S11 Table and S25 Fig). We notice our ability to predict all these selection parameters,

especially f decreases. Specifically, our ability to predict f decreases by 6%. Finally, we test how

selection parameter prediction would be affected if we tested with parameters that are not

included in the training parameter range (S12 Table and S25 Fig). We test models trained

under f 2 [1/(2N), 0.1] with test simulations for which f 2 [0.1, 0.2], such that starting allele fre-

quency for sweeps is completely outside the distribution of the training data. Under this set-

ting, we see that not only is the error for f inflated substantially, but for the other selection

parameters as well.

In addition to being able to predict the selection parameters responsible for shaping classi-

cal selective sweeps, we also probed whether SURFDAWave could predict selection parameters

important in shaping sweeps due to adaptive introgression. An interesting parameter specific

to adaptive introgression is the time at which the donor and recipient populations diverged.

Instead of predicting the time at which a mutation became beneficial, as we show above in Pre-
diction of selection parameter, we train models to predict the donor-recipient split time, along

with the selection strength and initial frequency of the mutation before it became beneficial

(S13 Table and S26 Fig). The RMSE values for the selection strength and time of selection are

similar to the values predicted for regular selective sweeps (S1 Table).
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Application to empirical data

Using variant calls in the CEU and YRI populations from the 1000 Genomes dataset [32],

SURFDAwave recapitulated many of the classical sweep candidates observed by other studies,

and moreover classified the vast majority of the CEU and YRI genomes as neutral (S14 and

S15 Tables), with a greater percentage of the YRI genome being classified as neutral than the

CEU genome. This is the result of a combination of factors, including our classifiers reduced

ability to distinguish sweeps from neutrality in populations with complex demographic histo-

ries, such as the CEU population (see Classification of selective sweeps). To make our method

more conservative, we applied a probability threshold for selective sweeps. If the probability of

a selective sweep is less than or equal to 0.7, then we consider this region to be neutral. S27 Fig

shows that the SURFDAWave classifier predicts probability distributions close to actual proba-

bility distributions, which validates our use of a probability threshold. In addition, we believe

our use of balanced training data with an equal number of simulations for each class contrib-

utes to the calibrated classifiers. Among the genes classified as selective sweeps in the CEU

population, we found LCT, OCA2, and SLC45A2, which were previously hypothesized as

targets of selection [33, 34, 35, 36] (Fig 8). In the YRI population we classify the genes SYT1,

HEMGN, GRIK5, and NNT as under positive selection, recapitulating the work of refs. [37],

[38], and [39] (Fig 8). In addition, we also compute the proportion of shared sweeps between

these populations by calculating the proportion of non-overlapping 10 kb segments that were

classified as sweeps in YRI, that are also classified as sweeps in CEU, as well as the opposite

[protocol as in 9]. We find that 21% of sweeps classified as such in CEU are also classified as

sweep in YRI. Similarly, we find 19% percent of sweep classifications in YRI are shared by

CEU.

As we have already trained models to jointly predict the selection strength, the time at

which the mutation became beneficial, and the frequency of the adaptive mutation before

becoming beneficial, we next use all of the human genome regions classified as sweeps to learn

about the underlying parameters shaping variation at these candidates. We first examined

OCA2, a gene that is involved in eye coloration [40, 41, 42], and predicted that the time at

which a mutation on this gene became beneficial was 1,802 generations ago, and that the bene-

ficial mutation had a selection strength of s = 0.06 and an initial frequency of f = 0.02. This pre-

diction is made on the set of statistics classified as sweep with the highest probability in the

region containing the gene OCA2 with 0.978 probability. Using a generation time of 29 years

for humans, implies the mutation became beneficial about 52,258 years ago, a time during

which modern humans were relatively new to Europe [43]. SLC45A2, another gene involved

in pigmentation [44], harbors a test window with a sweep probability of 0.694 and the pre-

dicted selection strength, initial frequency, and selection time are s = 0.04, f = 0.02, and 2,000

generations ago, respectively. In the YRI population we predict that a mutation on HEMGN, a

gene that regulates the development of blood cells [45], first became beneficial 1,960 genera-

tions ago and has a selection coefficient of s = 0.03 and frequency at which it became beneficial

of f = 0.016. We predict that the selective sweep occurring on the region around SYT1, muta-

tions on which are associated with neurodevelopmental disorders [46], began 2,260 genera-

tions ago with a selection coefficient of s = 0.04 and an initial frequency of f = 0.02.

In the list of 444 genes in YRI classified as sweep with probability greater than or equal to

0.7, we examine the range of predictions for each parameter and the genes predicted to have

selection parameters at the fringes of each range. For each gene, we only include the prediction

for the feature vector where the predicted probability of classification as sweep is the highest

within that gene. We find that the gene with the minimum selection coefficient within this list

is HCG23, with an inferred coefficient of s = 0.018. We inferred that a sweep initiated on this
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gene 1,259 generations ago when the initial frequency of the beneficial mutation was f = 0.017.

The highest probability of this gene being classified as a sweep is 0.986. We also predict that

the gene with the highest initial frequency also had the most recent sweep initiation time. This

gene, STPG2 (Sperm-tail PG rich repeat containing protein 2), is highly expressed in the testis

[47], and we predict that this had a mutation reach a frequency of f = 0.039 about 666 genera-

tions ago, at which point it was predicted to become beneficial.

Fig 8. SURFDAWave classifier’s application to empirical data for CEU (left column) and YRI (right column) populations.

Probability of sweep across the genomic region of labeled chromosome containing the genes of interest. SURFDAWave is trained to

differentiate between selective sweeps and neutrality with simulations conducted under demographic specifications of the CEU or YRI

demographic history. The black dots show the predicted probability of sweep and the gray bars show the positions of the labeled genes.

Gaps between black dots are the result of filtering low quality genomic regions (see Application of empirical data), such that no SNPs

exist in these regions and can therefore not be classified (see S33 Fig as an example of how we classify a SNP spanned by our feature

vector).

https://doi.org/10.1371/journal.pgen.1008896.g008
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In a similar examination of the CEU population, we find 2,265 genes are classified as sweep

with a probability greater than 0.7. The oldest selection time we predict (2,922 generations or

84,738 years, with a generation time of 29 years) occurred on VPS35, a gene on which muta-

tions are associated with Parkinson’s Disease [48]. We infer that strong selection (s = 0.05)

began on this gene when a selected mutation reached a frequency of f = 0.016. HLA-DRB1
plays an important role in the immune system and has been previously predicted to be under

balancing selection [49]. We find that this gene has the highest inferred selection coefficient of

s = 0.14 and lowest inferred initial frequency of f = 0.004 out of our set of genes for the CEU.

This may be indicative of a mutation around this region becoming immediately beneficial

after it occurred, which we predict was about 1,718 generations ago.

We compare the distributions of selection parameters for the sets of likely selected genes

discussed above. In S28 Fig, we can see that while some genes are predicted to have more

recent times of selection, most are predicted to have a time of selection greater than 2000 gen-

erations ago in both populations. Among the more recent sweeps, we also find a greater range

of predicted initial frequencies than those genes that were predicted to have an earlier selection

start time. Overall, the distributions for predicted parameters in both populations overlap

extensively for all selection parameters (Fig 7). We also observe that SURFDAWave’s predic-

tion of the initial frequency (f) is not dependent on the probability of a sweep (S29 Fig), but as

the probability of sweep increases SURFDAWave is are more likely to predict stronger selec-

tion coefficients (s) and slightly more recent selection start times.

Finally, we apply the classification and prediction models to locate adaptive introgression

and learn the adaptive introgression parameters. We find that regardless of the types of statis-

tics used, we classify the majority of the genome as neutral, and classify more of the genome as

sweep than as adaptive introgression (S16–S19 Tables). Importantly, we find that we are able

to recapitulate signals of previously-identified regions of adaptive introgression in the CEU

population with SURFDAWave, such as BNC2 [50, 51] and APOL4 [4] (S30 Fig). BNC2 is

another gene thought to play a role in human skin color determination [52], whereas the gene

APOL4 is significantly up-regulated in people diagnosed with schizophrenia [53]. By applying

the SURFDAWave prediction models to the summary statistic computed at these genes, we

estimate that the beneficial mutation in APOL4 reached an initial frequency of f = 0.05 and

had a selection strength of s = 0.01, with the donor and recipient populations splitting 19,760

generations, or about 573,000 years, ago (using a generation time of 29 years). We also estimate

that the selection strength on the BNC2 gene is stronger and harder than the signature on

APOL4, with s = 0.04 and f = 0.01. Moreover, the predicted donor and recipient split time of

20,180 generations (585,220 years) ago from variation at BNC2 is similar to the estimate from

APOL4.

Discussion

In this article, we demonstrated that SURFDAWave is able to locate selective sweeps, and also

predict selection parameters responsible for shaping those sweeps. Moreover, we showed that

SURFDAWave is capable of differentiating between sweeps and neutrality, and is also able to

accurately predict the time at which the selected mutation became beneficial, the frequency a

mutation reached before becoming beneficial, and the selection coefficient. In addition, using

image-based feature vectors increased our ability to differentiate among neutrality, adaptive

introgression, and sweeps. We were able to recapitulate earlier findings by predicting genes as

adaptive that were previously hypothesized to be under positive selection.

Our results show that capturing the spatial distribution of selective sweeps is informative

for identifying and differentiating between different types of adaptive regions and learning
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about the evolutionary parameters that shape them. Differentiating between the loss of diver-

sity resulting in adaptive introgression compared to selective sweeps requires a method to

learn the wave-like pattern formed by each, the most informative portion of which will be the

difference between the crest and trough regions. Moreover, our SURFDAWave approach is

not restricted to application on adaptive introgression and selective sweep scenarios, and can

be implemented for probing genomic variation of other evolutionary processes that leave a

spatial or temporal signature in genomic data. Such examples include the identification of

genomic targets of balancing selection [e.g., 54, 55, 56, 57, 58, 59], complex forms of adaptation

such as staggered selective sweeps [60] that have yet to be interrogated for in genomic data,

and non-adaptive processes such as recombination rate estimation [e.g., 8, 7, 61].

There are a number of potential applications of our methodological framework. For one, it

is possible to naturally extend SURFDAWave to incorporate genomic data from ancient sam-

ples, and several recent studies have employed ancient DNA to directly examine temporal

allele frequency fluctuations to identify positively-selected loci [e.g., 62, 63, 14, 64, 65, 66].

SURFDAWave’s framework would allow examination of changes in the spatial distribution of

genetic diversity over time by incorporating information from ancient genomes of a single

population at various time points throughout history, and summarizing patterns of variation

using two-dimensional wavelet bases. However, a specific limitation of the implementation of

SURFDAWave as we describe it here is that, for each dimension, its application is restricted to

using feature vectors of length p in which log2(p) is a non-negative integer. We acknowledge

that this constraint may make it difficult for SURFDAWave to be widely applied, especially

when incorporating information from ancient DNA. Though we choose to use wavelets in our

implementation, other basis functions that do not have such limitations on numbers of fea-

tures, such as B-spline and polynomial basis functions [11], can be used instead. However,

unlike wavelets, these bases do not form orthonormal basis functions, and using them results

in more complicated functional regression models.

Along with SURFDAWave’s flexibility in terms of classification problems, we also demon-

strated that this framework can be adapted to predict different selection parameters. Our

results suggest that SURFDAWave can predict split time of the donor and recipient popula-

tions (S26 Fig). It is possible, however, that introgression patterns in species in which donor

and recipient populations have greater divergence times would leave a more prominent foot-

print (i.e., a larger difference between the crest and trough positions), and allow better predic-

tions of their divergence time to be made (Fig 4).

We observe several interesting patterns in our results that may point to potential limitations

of SURFDAWave. In Fig 7 we see that our prediction of initial frequencies for both the CEU

and YRI fall within the range 0.01 to 0.03. Because we are limiting our analysis to sweeps classi-

fied with a probability greater than 0.7, we believe this range of initial frequencies is likely

most detectable as a sweep. In addition, though there is evidence that hard sweeps are rare in

human populations [67], it is difficult with SURFDAWave to predict an initial frequency

resulting in a hard sweep from a de novo mutation because such sweeps are the result of an ini-

tial frequency of 1/(2N). This frequency is at the boundary of the distribution of our training

data. Moreover, the definition of hard sweep may also differ among situations and between

research groups. For example, a single beneficial mutation increasing in frequency does so

along with a genetic background, and in populations with low diversity with similar genetic

backgrounds it may be possible to observe hard sweeps of a single genomic background at

high frequency even if the beneficial allele was selected when it was at a frequency greater than

1/(2N). Furthermore, the difference in genomic footprints between sweeps resulting from ini-

tial frequency 1/(2N) and those from frequency x/(2N) for small x 2 {2, 3, . . .}, may be difficult

to observe due to the hardening of soft sweeps phenomenon [68, 31]. For these reasons, we
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believe that sweeps lie on a continuum of softness, and predicting the initial frequency of a

sweep provides value beyond discrete classification of a sweep as hard or soft. Other evolution-

ary processes such as gene conversion, may also influence linkage disequilibrium patterns and

potentially affect our parameter inference [69]. However, gene conversion tracts are usually

short, and because SURFDAWave examines a long physical genomic region we believe these

inferences should be minimally affected [69].

Another potential limitation of SURFDAWave is that it does not make use of donor genome

information in the case of classification for adaptive introgression. Though genome sequences

exist for Neanderthal and Denisova, there are many cases in which such data does not, and

may never exist [70, 71]. One such example is introgression in African populations. Environ-

mental conditions in the continent could mean a reference genome for the donor population

may never be possible [72]. For this reason we designed SURFDAWave to be flexible and allow

applications for which donor reference data does not exist. However, recent methods have

been developed to identify introgressed regions without the requirement of a reference

genome [73, 74], making it possible to narrow the locations of adaptive introgression to

introgressed regions identified by other methods. Because genome sequence information for

African donor archaic populations does not exist [75], we cannot infer parameters such as

divergence times with modern humans. However, this information does exist in the case of

Neanderthal introgression with non-African populations, and incorporating it will reduce

uncertainty in simulation parameters used to train models leading to improved classification

and predictions. Estimation of parameters such as divergence time between donor and target

populations, time of admixture, admixture fraction from the donor, and population size of the

donor can be improved if donor reference genome sequence data exists. In addition, recent

methods estimating some of these parameters without reference data for donor populations

introgressing into Africans can also be used to make simulations for these cases more realistic

and narrow down the parameter range for which simulated replicates are drawn [76]. Estimat-

ing these parameters using SURFDAWave trained across a range may also provide information

about potential donor populations given archaeological and anthropological knowledge about

populations given their geographical ranges.

In addition, SURFDAWave is currently designed to detect and analyze putative selected

regions using information from a single population. However, incorporating multiple popula-

tions would likely provide greater power to not only detect selection, but predict selection

parameters as well [77, 78]. Including other populations allows the use of statistics such as

XP-EHH that can identify selected loci by looking at population differentiation [79]. In addi-

tion, likelihood methods modeling differentiation between populations find that including an

additional population allows better localization of the beneficial mutation as well as yields

higher detection power [80]. Though we have demonstrated the utility of employing wavelets

in a statistical learning framework to detect selected loci and predict selection parameters,

SURFDAWave along with other machine learning approaches [e.g., 19, 81, 82, 6, 9] could

be made more powerful by employing summary statistics that examine diversity within and

differentiation among multiple populations jointly [e.g., 77]. Specifically, the application to dis-

tinguishing scenarios of adaptive introgression and non-introgression sweeps may benefit sub-

stantially by using information from other populations such as with the S� statistic [83, 84, 85,

51] and other multi-population measures [86, 87, 88].

Both sweeps and adaptive introgression result in a decrease of haplotypic diversity (and

increase in haplotype similarity) surrounding the beneficial mutation. In soft sweeps this

decrease is less dramatic than in hard sweeps, making the spatial distribution of diversity in

soft sweeps potentially appear more like that of adaptive introgression. For this reason, it is

imperative to utilize summary statistics that capture the sometimes subtle differences between

PLOS GENETICS Learning about positive selection with functional data analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008896 August 27, 2020 18 / 44



these two evolutionary mechanisms. Specifically adaptive introgression leads to a decrease in

mean pairwise sequence difference below the neutral baseline nearby the selected locus, fol-

lowed by increase above the neutral baseline (or rest position) at moderate distances (“adaptive

ridges”) forming the crest of the wave, and then a relaxation to the neutral baseline levels far

from the site under selection [4, and as demonstrated in Fig 4]. In contrast, hard sweeps do

not display this increase in nucleotide diversity at moderate distances from the selected locus,

and soft sweeps do not substantially alter the site frequency spectrum [89] and therefore the

mean pairwise sequence difference, which is a summary of this spectrum. Moreover, ref. [4]

shows that their method for detecting adaptive introgression from distortions in the site fre-

quency spectrum has the ability to uncover soft adaptive introgression sweeps from multiple

introgressed haplotypes, demonstrating that there is even a difference in the spatial signature

of nucleotide diversity for soft sweeps and soft introgression sweeps. Indeed, the authors note

that both hard and soft introgression sweeps leave more similar genomic footprints to each

other than do non-introgression hard and soft sweeps, with both modes of introgression

sweeps displaying the crests and troughs of nucleotide diversity characteristic of adaptive

introgression. As we notice a substantial increase in differentiation between sweeps and adap-

tive introgression when including the mean, variance, skewness, and kurtosis of the squared

correlation coefficient (r2) of pairwise windows (Fig 4), we believe these statics might also be

capturing some of these signatures, such as the “adaptive ridges” observed in Fig 4. Other sta-

tistics, such as ones that assess sequence differences between the top two most-frequent haplo-

type may aid in distinguishing between soft sweeps and adaptive introgression, for which there

may be similar haplotype distributions, but with likely greater haplotype divergence between

the most frequent haplotypes under adaptive introgression [86, 90].

We show how incorporating different types of features, specifically two-dimensional statis-

tics, such as the r2 measured in pairwise windows mentioned above, improves the classification

ability of SURFDAWave (Fig 4). Several recent innovative approaches have explored the use of

image-based or two-dimensional features to predict population-genetic processes. For exam-

ple, ref. [7] uses the derived or ancestral states from population simulation data directly rather

than extracting information from these simulations through the use of summary statistics, and

convert this information to images. This raw information can also be converted into wavelet

data prior using it as a feature in classification or prediction models. Along with the flexibility

that SURFDAWave provides in terms of feature input (e.g., one- or two-dimensional statistics),

other potential enhancements may increase its prediction and classification accuracy. In our

application we assume a linear model. However, it is possible that a linear model is not an

accurate representation, and instead employing a more flexible model would enhance our pre-

dictions if the actual relationship is non-linear. Therefore, using non-linear model such as a

neural network with at least one hidden layer [91, 92] in place of simple linear and logistic

regression models may be able to improve the performance of SURFDAWave. An implemen-

tation of SURFDAWave along with results for genome wide scans for sweeps discussed in this

article can be downloaded from http://degiorgiogroup.fau.edu/surfdawave.html.

Materials and methods

Wavelet estimation of summary statistic spatial distribution

Consider a sample of n training examples, in which m summary statistics are computed at p
positions along a genomic region. Let xi,s = [xi,s,1, xi,s,2, . . ., xi,s,p]T denote the vector of values

for summary statistic s, s = 1, 2, . . ., m, for training example i, i = 1, 2, . . ., n calculated at each

of the p positions in a genomic region, where xi,s,j is the value of the summary statistic at

PLOS GENETICS Learning about positive selection with functional data analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008896 August 27, 2020 19 / 44



position tj, j = 1, 2, . . ., p. For convenience, define the vector xi ¼ ½xT
i;1; x

T
i;2; . . . ; xT

i;m�
T

contain-

ing the values of each of the m summary statistics calculated at the p positions.

Each vector of summary of summary statistics xi,s is the result of some unknown function

fi,s(t) defined on genomic position t. The relationship between the function and the summary

statistic data points can be represented as

xi;s;j ¼ fi;sðtjÞ þ �i;s;j;

where fi,s(tj) is the function fi,s(t) evaluated at position tj of summary statistics s in observation

i, and where �i,s,j is an error term associated with observation i that is normally distributed

with mean zero and standard deviation one. As in ref. [11], we can approximate this function

fi,s(t) as a linear combination of a set of B orthonormal basis functions {φ1(t), φ2(t), . . ., φB(t)}
as

fi;sðtÞ �
XB

b¼1

ci;s;bφbðtÞ;

where ci,s,b, b = 1, 2, . . ., B, denotes the coefficient of the bth basis function φb(t) associated

with summary statistic s of observation i. Note by definition of the B basis functions being

orthonormal, we have

Z

½φbðtÞ�
2dt ¼ 1

for b = 1, 2, . . ., B and

Z

φaðtÞφbðtÞdt ¼ 0

for a 6¼ b [93]. Orthonormal basis functions commonly used in functional data analysis

include wavelets [94] and the Fourier functions [11]. The number B of basis functions is a

parameter, and is chosen through cross validation. Basis functions are independent functions

that can be combined to approximate more complex functions.

Here we choose to use wavelets as our basis function in part because of their ability to

capture information at different resolutions or “detail levels”. Each of these detail levels are

captured through combinations of pairs of wavelets termed “mother” and “father” wavelet

functions, the breakdown of which is illustrated with an example in Fig 1. The father wavelet

function is often referred to as the scaling function, while the mother wavelet function is often

called the wavelet function. Each of these wavelet functions captures a different aspect of the

data, the father captures “low-frequency” signals, while the mother captures more detailed or

“high-frequency” trends [95]. For the purpose of simplicity we discuss the use of Haar wavelets

for illustration, however the process differs for other wavelets. We provide a mathematical

treatment for Haar wavelets and reference for the mathematical form of Daubechies’ least-

asymmetric wavelets below. For Haar wavelets, a feature vector with p = 2J features undergoes

discrete wavelet transformation through subsequent pairwise addition (for father wavelet coef-

ficients) and subtraction (for mother wavelet coefficients). The process of discrete wavelet

transform begins at the most detailed level (level J − 1) and proceeds until the coarsest detail

level (level zero). For each round of transformation, the number of coefficients is half the

number in the previous level. This process continues until the number of coefficients is one.

These coefficients can then be used as inputs for the wavelet basis functions. The Haar wavelet
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functions are

cðtÞ ¼

1 0 � t < 1=2

�1 1=2 � t < 1

0 otherwise;

8
>>><

>>>:

for the mother wavelet function and

�ðtÞ ¼

(
1 0 � t < 1

0 otherwise;

for the father wavelet function. For other wavelet types, these functions will differ. For each

detail level (or scale) j and location k, k 2 {0, 1, . . ., 2j − 1} where location is the wavelet number

per level, we can respectively define the mother and father wavelet basis functions as

cj;kðtÞ ¼ 2�j=2cð2�jt �kÞ;

and

�j;kðtÞ ¼ 2�j=2�ð2�jt �kÞ:

The functions for Daubechies’ least-asymmetric wavelets are more complex and can be exam-

ined in ref. [96]. Here we approximate the function fi,s(t) using wavelets at a detail level of j0
[97] as

fi;s;j0ðtÞ ¼
X2j0 �1

k¼0

ci;s;j0 ;k�j0 ;k
ðtÞ þ

XJ�1

j¼j0

X2j�1

k¼0

di;s;j;kcj;kðtÞ;

where J = log2(p) is the number of detail levels, ϕj,k(t) and ψj,k(t) are the the father and mother

wavelet basis functions at scale j and location k, respectively, and ci,s,j,k and di,s,j,k are the coeffi-

cients for the father and mother wavelets at scale j and location k for summary statistic s in

observation i. Note that the father and mother wavelet bases form an orthonormal basis [93].

Moreover, regardless of the chosen detail level j0, the number of distinct wavelet coefficients

and bases used to compute fi;s;j0 is 2J, as

X2j0 �1

k¼0

1 þ
XJ�1

j¼j0

X2j�1

k¼0

1 ¼ 2j0 þ
XJ�1

j¼j0

2j

¼ 2j0 þ
XJ�1

j¼0

2j �
Xj0�1

j¼0

2j

¼ 2j0 þ
1 �2J

1 �2
�

1 �2j0

1 �2

¼ 2J ;

where we used the identity for geometric series [98]

Xn�1

j¼0

arj ¼ a
1 �rn

1 �r

for real constants a and r, r 6¼ 1.
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Penalized functional multinomial regression to classify genomic regions

After approximating functions f̂ i;s;j0
ðtÞ of each summary statistic s in observation i at detail

level j0, we then use these functions (i.e., their associated coefficients) as the independent vari-

ables to model multinomial regression. Denote the vector of length p = 2J containing estimated

father and mother basis coefficients for summary statistics s in observation i at detail level j0 as

ξi;s;j0
¼ ½ĉi;s;j0 ;1; . . . ; ĉi;s;j0 ;2j0 �1; d̂i;s;j0 ;0

; . . . ; d̂ i;s;J�1;2J�1�1�
T

Furthermore, define the concatenated vector of length m × p of such coefficients across all m
summary statistics for observation i by

ξi;j0
¼ ½ξT

i;1;j0
; ξT

i;2;j0
; . . . ; ξT

i;m;j0
�
T
:

As in ref. [99], we model

P½yi ¼ k j ξi;j0
� ¼

Zkðξi;j0
Þ

PK
‘¼1
Z‘ðξi;j0

Þ
;

where

Z‘ðξi;j0
Þ ¼ a‘ þ

Xm

s¼1

Z tp

t1

b‘;sðtÞf̂ i;s;j0
ðtÞdt

¼ a‘ þ
Xm

s¼1

X2j0 �1

k¼0

ĉ i;s;j0 ;k

Z tp

t1

b‘;sðtÞ�j0 ;k
ðtÞdt þ

XJ�1

j¼j0

X2j�1

k¼0

d̂i;s;j;k

Z tp

t1

b‘;sðtÞcj;kðtÞdt

" #

for ℓ = 1, 2, . . ., K. This is similar to other multinomial regression models, with the the caveat

that we replaced the summation with an integration across the interval [t1, tp] for position t.
Here i is the index for the observation number, yi is the categorical response variable with val-

ues yi = ℓ for class ℓ, for ℓ = 1, 2, . . ., K, αℓ is the intercept parameter for class ℓ, and βℓ,s(t) is the

function for summary statistic s of class ℓ.

To learn the functions βℓ,s(t), we can note that we may also approximate them with the

same set of basis functions as we did for approximating fi,s(t). That is, we can approximate the

function βℓ,s(t) using wavelets at a detail level of j0 as

b‘;s;j0 ðtÞ ¼
X2j0 �1

k¼0

c?
‘;s;j0 ;k

�j0 ;k
ðtÞ þ

XJ�1

j¼j0

X2j�1

k¼0

d?
‘;s;j;kcj;kðtÞ;

where c?
‘;s;j;k and d?

‘;s;j;k are the coefficients for the father and mother wavelets at scale j and loca-

tion k for summary statistic s in class ℓ. Denote the vector of length p = 2J containing father

and mother basis coefficients for summary statistic s for class ℓ at detail level j0 as

z‘;s;j0 ¼ ½c?
‘;s;j0 ;1

; . . . ; c?
‘;s;j0 ;2

j0 �1
; d?

‘;s;j0 ;0
; . . . ; d?

‘;s;J�1;2J�1�1
�
T
;

and further define the concatenated vector of length m × p of such coefficients across all m
summary statistics for class ℓ by

z‘;j0 ¼ ½z
T
‘;1;j0

; z
T
‘;2;j0

; . . . ; z
T
‘;m;j0

�
T
:

Plugging in this approximation, and using the orthnormality of the set of basis functions, we
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obtain

Z‘ðξi;j0
Þ ¼ a‘ þ

Xm

s¼1

X2j0 �1

k¼0

ĉi;s;j0;kc
?

‘;s;j0 ;k
þ
XJ�1

j¼j0

X2j�1

k¼0

d̂ i;s;j;kd
?

‘;s;j;k

" #

¼ a‘ þ ξT
i;j0
z‘;j0

which yields

P½yi ¼ k j ξi;j0
� ¼

exp½ak þ ξT
i;j0
zk;j0 �

PK
‘¼1

exp½a‘ þ ξT
i;j0
z‘;j0 �

:

Let α = [α1, α2, . . ., αK]T denote the vector of intercept terms for each of the K classes and

define the matrix Zj0
containing m × p rows and K columns by

Zj0
¼ ½z1;j0

; z2;j0
; . . . ; zK;j0 �:

The log likelihood of observing the set of model parameters fα;Zj0
g given the collection of

data points fyi; ξi;j0
g
n
i¼1

is

logLðα;Zj0
; fyi; ξi;j0

g
n
i¼1

Þ ¼
1

n

Xn

i¼1

XK

k¼1

logP½yi j ξi;j0
�1fyi¼kg

¼
1

n

Xn

i¼1

XK

k¼1

ðak þ ξT
i;j0
zk;j0 Þ1fyi¼kg �log

XK

‘¼1

expfa‘ þ ξT
i;j0
z‘;j0g

 !" #

;

where 1{yi=k} is an indicator random variable that takes the values one if yi = k and zero

otherwise.

From this likelihood function, we wish to estimate the intercept terms α and the coefficients

Zj0
. Define α̂ as an estimate of α and Ẑ j0

an estimate of Zj0
. Moreover, as our model is over-

parameterized, we need to maximize a penalized log likelihood function. Denoting k�k1 and

k�k2 as the ℓ1 and ℓ2 norms, respectively, define

PENgðZj0
Þ ¼

XK

‘¼1

ðgkz‘;j0k1 þ ð1 �gÞkz‘;j0 k
2

2
Þ

¼
XK

‘¼1

Xm

s¼1

X2j0 �1

k¼0

gjc?
‘;s;j0;k

j þ ð1 �gÞðc?
‘;s;j0 ;k

Þ
2

� �
þ
XJ�1

j¼j0

X2j�1

k¼0

gjd?
‘;s;j;kj þ ð1 �gÞðd?

‘;s;j;kÞ
2

� �
" #

to be the elastic-net penalty [23] controlled by parameter γ 2 [0, 1] on the coefficients for the

basis functions of the regression coefficient functions, and let λ denote a tuning parameter

associated with this penalty. A value of γ = 0 leads to the standard ridge regression penalty,

and γ = 1 leads to the lasso penalty. We can therefore estimate the coefficient functions as

ðα̂; Ẑ j0
; l̂; ĝÞ ¼

arg max
α;Zj0

; l; g
logLðα;Zj0

; fyi; ξi;j0
g
n
i¼1

Þ �lPENgðZj0
Þ

h i
:

To perform this estimation, we first learn the underlying functions fi,s(t) based on orthonormal

wavelet basis functions at detail level j0, yielding the estimated set of coefficients fξ̂ i;j0
g
n

i¼1
and
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hence estimated functions

f̂ i;s;j0
ðtÞ ¼

X2j0 �1

k¼0

ĉi;s;j0 ;k�j0 ;k
ðtÞ þ

XJ�1

j¼j0

X2j�1

k¼0

d̂i;s;j;kcj;kðtÞ:

These basis function coefficients are then employed as input covariates to the penalized regres-

sion model, for which ten-fold cross validation is used to estimate the tuning parameter λ, the

tuning parameter γ controlling the elastic-net penalty, and associated parameters α and Zj0
.

This process is repeated for different detail levels j0 = 0, 1, . . ., J − 1 to estimate the j0 that mini-

mizes the ten-fold cross validation error, and the best fitting values of regression model param-

eters α̂ and Ẑ j0
are estimated. These estimates lead to a classifier for future input data, as well

as learned functions

b̂k;s;j0
ðtÞ ¼

X2j0 �1

k¼0

ĉ?i;s;j0 ;k�j0 ;k
ðtÞ þ

XJ�1

j¼j0

X2j�1

k¼0

d̂?i;s;j;kcj;kðtÞ

for summary statistic s, s = 1, 2, . . ., m, in class k, k = 1, 2, . . ., K. After parameter inference, the

most likely class k̂ is estimated as

k̂ ¼
arg max

k 2 f1; 2; . . . ;Kg

exp½âk þ ξ̂T
i;j0
ẑk;j0 �

PK
‘¼1

exp½â‘ þ ξ̂T
i;j0
ẑ‘;j0 �

:

In addition, the probability of each class k can be determined by removing the arg max portion

of the equation as

P̂ðkÞ ¼
exp½âk þ ξ̂T

i;j0
ẑk;j0 �

PK
‘¼1

exp½â‘ þ ξ̂T
i;j0
ẑ‘;j0 �

;

which will allow us to use this probability to determine the weight of the classification and use

probability thresholds to increase confidence in our results.

Penalized functional linear regression to infer evolutionary parameters

Once identifying the most likely class k̂, we then estimate the underlying evolutionary parame-

ters σ = [σ1, σ2, . . ., σq]T that gave rise to patterns within the genomic region provided that it

was estimated to be non-neutral, where σ1, σ2, . . ., σq represent the q evolutionary parameters

we are estimating for class k̂.

Consider again the approximated functions f̂ i;s;j0
ðtÞ of each summary statistic s in observa-

tion i at detail level j0. We will use these functions (and as in the preceding section, their associ-

ated coefficients) as the independent variables to model multivariate linear regression as

si;‘ ¼ a‘ þ
Xm

s¼1

Z tp

t1

b‘;sðtÞf̂ i;s;j0
ðtÞdt þ �i;‘

¼ a‘ þ
Xm

s¼1

X2j0 �1

k¼0

ĉi;s;j0 ;k

Z tp

t1

b‘;sðtÞ�j0;k
ðtÞdt þ

XJ�1

j¼j0

X2j�1

k¼0

d̂ i;s;j;k

Z tp

t1

b‘;sðtÞcj;kðtÞdt

" #

þ �i;‘

for ℓ = 1, 2, . . ., q. Here i is the index for the observation number, σi,ℓ is the response value

for evolutionary parameter σℓ of observation i, αℓ is the intercept for evolutionary parameter

σℓ, βℓ,s(t) is the function for summary statistic s of evolutionary parameter σℓ, and �i,ℓ is the
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error associated with observation i of evolutionary parameter σℓ. Moreover, define the vector

of length q containing the evolutionary parameters that generated observation i by

σi ¼ ½si;1; si;2; . . . ; si;q�
T
:

As in the preceding section, to learn the functions βℓ,s(t) we can approximate them using

wavelets at a detail level of j0 as

b‘;s;j0 ðtÞ ¼
X2j0 �1

k¼0

c?
‘;s;j0 ;k

�j0 ;k
ðtÞ þ

XJ�1

j¼j0

X2j�1

k¼0

d?
‘;s;j;kcj;kðtÞ;

where c?
‘;s;j;k and d?

‘;s;j;k are the coefficients for the father and mother wavelets at scale j and loca-

tion k for summary statistic s of evolutionary parameter σℓ. Denote the vector of length p = 2J

containing father and mother basis coefficients for summary statistics s for evolutionary

parameter σℓ at detail level j0 as

z‘;s;j0 ¼ ½c?
‘;s;j0 ;1

; . . . ; c?
‘;s;j0 ;2

j0 �1
; d?

‘;s;j0 ;0
; . . . ; d?

‘;s;J�1;dJ�1�1
�
T
;

and further define the concatenated vector of length m × p of such coefficients across all m
summary statistics for evolutionary parameter σℓ by

z‘;j0 ¼ ½z
T
‘;1;j0

; z
T
‘;2;j0

; . . . ; z
T
‘;m;j0

�
T
:

Plugging in this approximation, and using the orthonormality of the set of basis functions, we

obtain

si;‘ ¼ a‘ þ
Xm

s¼1

X2j0 �1

k¼0

ĉ i;s;j0 ;kc
?

‘;s;j0 ;k
þ
XJ�1

j¼j0

X2j�1

k¼0

d̂ i;s;j;kd
?

‘;s;j;k

" #

¼ a‘ þ ξT
i;j0
z‘;j0 þ �i;‘:

Let α = [α1, α2, . . ., αq]
T denote the vector of intercept terms for each of the q evolutionary

parameters and define the matrix Zj0
containing m × p rows and q columns by

Zj0
¼ ½z1;j0

; z2;j0
; . . . ; zq;j0 �:

The loss function of the collection of data points fσi; ξi;j0
g
n
i¼1

given the set of model parameters

fα;Zj0
g is

Lα;Zj0
ðfσi; ξi;j0

g
n
i¼1

Þ ¼
Xq

‘¼1

Xn

i¼1

ðsi;‘ �a‘ �ξT
i;j0
z‘;j0Þ

2
:

From this loss function, we wish to estimate the intercept terms α and the coefficients Zj0
.

Define â as an estimate of α and Ẑ j0
as an estimate of Zj0

. Similarly to the previous section,

define

PENgðZj0
Þ ¼

Xq

‘¼1

ðgkz‘;j0k1 þ ð1 �gÞkz‘;j0 k
2

2
Þ

¼
Xq

‘¼1

Xm

s¼1

X2j0 �1

k¼0

gjc?
‘;s;j0;k

j þ ð1 �gÞðc?
‘;s;j0 ;k

Þ
2

� �
þ
XJ�1

j¼j0

X2j�1

k¼0

gjd?
‘;s;j;kj þ ð1 �gÞðd?

‘;s;j;kÞ
2

� �
" #

to be the elastic-net penalty [23] controlled by parameter γ 2 [0, 1] on the coefficients for the
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basis functions of the regression coefficient functions, and let λ denote a tuning parameter

associated with this penalty. We can therefore estimate the coefficient functions as

ðα̂; Ẑ j0
; l̂; ĝÞ ¼

arg min
α;Zj0

; l; g
Lα;Zj0

ðfσi; ξi;j0
g
n
i¼1

Þ þ lPENgðZj0
Þ

h i
:

As in preceding section, we perform this estimation, we first learn the underlying functions

fi,s(t) based on orthonormal wavelet basis functions at detail level j0, yielding the estimated set

of coefficients fξ̂ i;j0
g
n

i¼1
and hence estimated functions f̂ i;s;j0

ðtÞ. These basis function coeffi-

cients are then input as covariates to the penalized regression model, for which ten-fold cross

validation is used to estimate the tuning parameter λ, the tuning parameter γ controlling the

elastic-net penalty, and associated parameters α and Zj0
. This process is repeated for different

detail levels j0 = 0, 1, . . ., J − 1 to estimate the j0 that minimizes the ten-fold cross validation

error, and the best fitting values of regression model parameters α̂ and Ẑ j0
are estimated.

These estimates lead to an estimator for the q underlying evolutionary parameters for future

input data, as well as learned functions b̂‘;s;j0ðtÞ for summary statistic s, s = 1, 2, . . ., m of evolu-

tionary parameter σℓ, ℓ = 1, 2, . . ., q. After parameter inference, evolutionary parameter σℓ is

estimated as

ŝ‘ ¼ â‘ þ ξ̂T
i;j0
ẑ‘;j0 :

Training the models

For the ten-fold cross validation procedure, we split our training data into ten balanced sub-

sets and supply values of the elastic net parameter (γ) we are interested in exploring, with

those values being γ 2 {0.0, 0.1, 0.2, . . ., 1.0}. For each pair of γ parameter and detail (scale)

level j0 (j0 2 {0, 1, . . ., J − 1}) combinations, we train a model with 90% of the data and vali-

date with the remaining 10%, iterating through each fold, while keeping count of the per-

centage of correct classifications for each combination. Conditional on γ, the glmnet [100]

software that we employ to train elastic net models performs an automatic search across the

space of regularization tuning parameter (λ) to identify the optimal value. When all level (j0)

and γ combinations have been tested (each associated with an optimal regularization param-

eter λ) we finally choose the model with the highest percentage of correct classifications, and

train a final model using the entire training dataset for these parameters.

Calculating summary statistics

Informative summary statistics are likely the most important aspect of developing prediction

models. In this manuscript we discuss the use of several sets of summary statistics. For our ini-

tial comparison, we utilize a similar set of summary statistics as discussed in ref. [9] including

the mean pairwise sequence difference (p̂), H1, H12, and H2/H1. As shown in ref. [9] r2 was not

informative for classification rates, and for this reason, we omit r2 as applied in [9] from our

model. Moreover, ref. [9] found that haplotype-based statistics were often more informative

than site frequency-based statistics, and for this reason we include the frequencies of the first,

second, third, fourth, and fifth most common haplotypes. We also removed all sites with

minor allele count less than three because this dramatically reduced the differences between

simulated and empirical site frequency spectra (S31 Fig). To keep our performance evaluation

consistent with the empirical assessment, we also removed these sites for tests with simulations
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of a constant-size demographic history, although models trained with these simulations were

not applied to empirical data.

We calculated each of these m = 9 summary statistics in p genomic windows across the

region of interest, where each window consists of 10 SNPs and overlaps with its neighbors for

five SNPs, as shown in S33 Fig. Using SNP-based windows, rather than windows based on

physical length has made our method more conservative in classification problems [101, 9].

Because wavelet transformation requires that the number of observations p be a power of two,

we investigated p = 128, leading to 645 SNPs overall used for classification of a genomic region.

The classified SNP is the SNP that falls in center of the overlap of windows p/2 and p/2 + 1,

and is taken as the putative location of the site under selection. A schematic illustrating how

summary statistics are calculated in SURFDAWave is given in S33 Fig.

We also explore the use of other statistics that may better differentiate more complex types

of selection, such as the set of mean values of r2 between each window pair. Each one-dimen-

sional statistic (i.e., p̂, H1, H12, H2/H1, and the frequencies of first to fifth most common haplo-

types) is computed using p = 128 overlapping windows, of which 64 are non-overlapping.

Because the r2 statistic calculated between each pair of windows is more time consuming to

compute than the one-dimensional statistics, we only compute the r2 statistic between the

p = 64 non-overlapping 10-SNP windows, for a total of 64 × (64 + 1)/2 = 2, 080 pairwise r2

computations across the set of 64 non-overlapping windows. In addition to the mean of r2, we

also use the set of values for the variance, skewness, and kurtosis of r2 computed at each win-

dow pair, with an additional 2,080 pairwise computations for each of these statistics.

Simulations to test method performance

We designed SURFDAWave to learn about adaptation in human populations, so for this rea-

son we focus our simulations on human based parameters. All simulation results use the soft-

ware SLiM [21]. We use demographic estimates from ref. [20] to model the bottlenecks and

expansions experienced by human populations. In addition we also simulate a constant-size

demographic history with an effective population size of N = 104 [102] diploid individuals. For

all demographic histories we use a mutation rate of 1.25 × 10−8 per site per generation [22] and

recombination rate drawn from an exponential distribution with mean 3 × 10−9 per site per

generation [20] and truncated at three times the mean [27] to simulate genomic regions of

length two Mb. In addition, we include for comparison two varying recombination rate sce-

narios, one in which we use a recombination rate drawn from an exponential distribution with

mean 10−8 per site per generation, and truncated at three times the mean [27], and another in

which we draw recombination rate from a human recombination map [103]. Specifically, we

randomly draw two Mb regions from a CEU-based recombination map and use the rate and

location in those regions to simulate. For selection simulations we let a mutation occur in a

generation drawn uniformly at random between 1,020 and 3,000 generations ago, and set this

mutation as beneficial with selection strength s 2 [0.005, 0.5] per generation (drawn uniformly

at random on a log scale) once it reached frequency f 2 [1/(2N), 0.1] (drawn uniformly at ran-

dom on a log scale). This results in our selection simulations containing both hard and soft

sweeps. Some combinations of selection parameters are difficult to achieve and for this reason

may be under-represented in our simulations (compared to our input parameters) (S34 Fig).

To test the performance of SURFDAWave on more complex selection scenarios we simulate

adaptive introgression. To do this, we simulate a single population that splits into two popula-

tions (a recipient and a donor) at a time randomly selected between 13,000 and 32,000 genera-

tions ago. This range captures the predicted split times among human, Neanderthal, and

Denisovan populations [104]. After allowing the two populations to evolve in isolation, we
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then simulate a neutral mutation in the center of the two Mb chromosome to occur between

1,020 and 3,000 generations ago in the simulated donor population. Following this, the donor

population admixes into the recipient population in which the donor replace between 1 to

10% of the recipient population. After admixture, we treat the simulation as a regular sweep

setting and follow the protocol described for sweep simulations by allowing the neutral muta-

tion to attain a certain frequency f 2 [1/(2N), 0.1] before converting it to beneficial.

We also simulated background selection following the protocol described in ref. [27], in

which purifying selection is simulated by setting a negative selection coefficient if mutations

fall within simulated coding regions. The distribution of coding regions is drawn from both

the phastCons [105] and GENCODE [106] databases. Uniformly choosing a random starting

point as a SNP in the human genome, we simulate 103, two Mb chromosomes with 75% of

mutations falling within coding regions to have a selection coefficient drawn from a gamma

distribution with mean −0.0294 with the remaining 25% as neutral, which models the distribu-

tion of fitness effects consistent with the human genome [107]. As in ref. [9], we simulated

missing data by removing thirty percent of the simulated SNPs in blocks, with each of ten

non-overlapping blocks containing 3% of the total data. This process simulates the effects of

filters that remove regions of low mappability or alignability [25]. To test the accuracy of our

prediction models we also simulate 1000 sweeps with background selection.

In order to test the performance of SURFDAWave on species other than humans we simu-

late both sweeps and neutrality using Drosophila demographic parameters as adapted from ref.

[29] in both refs. [31] and [30]. Demographic parameters such as population split times and

effective population sizes are drawn from posterior distributions of their estimates [Table S1 of

ref. 30]. As in ref. [31], we used the coalescent-simulator ms [108] to generate neutral variation

(burn-in) for its speed, and used the output from these simulations to seed the haplotypic vari-

ation within SLiM [21], and employed a recombination rate of 5 × 10−9 per site per generation

and mutation rate of 10−9 per site per generation as in ref. [30]. For selection settings, we simu-

late a mutation to occur again in a generation drawn from between 1,020 and 3,000 genera-

tions ago and once it attains frequency f 2 [1/(2N), 0.1] we set its selection coefficient to s 2

[0.005, 0.5] per generation. These selection parameters are the same as the ones used in human

simulations as we wanted to analyze the effects of species demographic history.

Because we are unsure of how much training data is required to adequately fit models with

our noisy data, we conducted an experiment to see how different numbers of training data

points per class affect classification rates (S32 Fig). We include in our training data either

1000, 3000, 5000, or 7000 feature vectors for each class (adaptive introgression, neutrality, or

sweep). As we increase the number of training data points per class we see an increase in the

number of simulations classified correctly for both sweep and adaptive introgression classes.

However, we also observe a slight decrease in the number of neutral simulations classified cor-

rectly between 5000 and 7000 simulations per class. Although the overall percent correct is

greatest when using 7000 per class as expected, we use 5000 simulations per class both because

of the higher neutral classification accuracy and because using 5000 simulations takes less time

than using 7000.

Comparison to Trendsetter, diploS/HIC, and evolBoosting

For all classification problems analyzed in this manuscript we provided comparison to other

recently-developed methods for classifying selective sweeps [19, 6, 9]. For both evolBoosting

and diploS/HIC we apply these methods using their default settings, in terms of window

length, window size, and statistics used by the classifier. However, we modify diploS/HIC to be

used as a binary (or three class for adaptive introgression settings) classifier without requiring
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“linked-sweep” classes. This is important, as summary statistics chosen for diploS/HIC may

have been optimized for a five-class setting, and the overall performance of diploS/HIC may

diverge from what we present here if the default separate “hard sweep”, “soft sweep”, “linked-

hard sweep”, and “linked-soft sweep” classes were included. In addition we use the summary

statistics p̂, H1, H12, H2/H1, and frequency of the first, second, third, fourth, and fifth most

common haplotypes calculated at 128 windows as input data for training both in Trendsetter
and SURFDAWave, making this implementation slightly different than that published in ref.

[9]. We believe that this slight alteration of Trendsetter is much less important than the reduc-

tion of diploS/HIC to a binary classifier. In addition to classification results, we also provide a

run time comparison.

To compare the runtime, we used the time command in bash on our workstation running

the Centos 7 operating system with two 2.10 GHz processors, each with six cores that are able to

run two threads (for a total of 24 threads). For comparison purposes we used an identical set of

training simulations conducted under constant demographic history with 5000 simulations for

each of the two classes (sweep and neutral). We report the “real” or wall clock time required for

training each of the classification methods we used in our comparisons (S20 Table), once the

feature vectors were already computed. We find that Trendsetter is the slowest method, owing

to the fact that we used the d = 2 linear trend penalty in our analysis. SURFDAWave is the sec-

ond slowest taking approximately 1400 seconds to run. Both diploS/HIC and evolBoosting have

much faster training times. Comparatively, however, both of these methods require much lon-

ger to calculate feature vectors from data relative to both SURFDAWave and Trendsetter.

Application to empirical data

To locate regions of selection in human genomes, we conducted scans using phased haplotype

data from the central European (CEU) and sub-Saharan African Yoruban (YRI) populations

in the 1000 Genomes Project dataset [32]. Because some genomic regions are difficult to

sequence, map, or align, and result in low quality data that is prone to errors, we split the

genomes into 100 kb non-overlapping segments, and removed those with mean CRG100 score

less than 0.9 [109]. Though this does result in some statistics being calculated in windows span-

ning large genomic regions, we find that because we are using SNP-based windows SURFDA-
Wave is more likely to be conservative and classify these windows as neutral (Fig 6). Moreover,

SURFDAWave classifies the window centered on the SNP in the middle of windows p/2 and p/

2 + 1 (e.g., see S33 Fig), and as a result, no filtered regions will be classified as no SNPs reside in

these filtered regions. As described in Calculating summary statsitics, we also removed all sites

with minor allele frequency less than three. We then split the remaining data for each chromo-

some into windows of 10 SNPs where each window overlaps its neighbor for five SNPs, and

computed summary statistics discussed in section Calculating summary statistics for each win-

dow. As we are investigating p = 128, each set of statistics for 128 windows comprises a feature

vector. When scanning the genome, we shift one window at a time, so that the putative site of

selection (the middle SNP falling in the overlap of windows p/2 and p/2 + 1) will shift by five

SNPs each iteration. These feature vectors are used as input to both the SURFDAWave classi-

fier and predictor. As we value the correct classification of neutral genomic regions, we use

5000 simulated replicates of each class to train classifiers, because we notice a decrease in the

number of correctly classified neutral regions when we use more (S32 Fig).

Supporting information

S1 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI
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log-scaled predicted and actual parameters in simulated data.
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S2 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI

and CEU populations. The values show RMSE and MAE measured between log-scaled pre-

dicted and actual parameters after unstandardizing.
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S3 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when pre-

dicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI and

CEU populations tested on simulations of missing data. The values show RMSE and MAE

measured between standardized log-scaled predicted and actual parameters in simulated data.

(PDF)

S4 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI

and CEU populations tested on simulations of missing data. The values show RMSE and

MAE measured between log-scaled predicted and actual parameters after unstandardizing.

(PDF)

S5 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI

and CEU populations when tested with models trained with simulations of the opposite

demography. The values show RMSE and MAE measured between standardized log-scaled

predicted and actual parameters in simulated data.

(PDF)

S6 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI

and CEU populations when tested with models trained with simulations of the opposite

demography. The values show RMSE and MAE measured between log-scaled predicted and

actual parameters after unstandardizing.

(PDF)

S7 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for

CEU and YRI populations when trained with simulations conducted under both YRI and

CEU demographic histories and tested with the specified (CEU or YRI) demographic his-

tory. The values show RMSE and MAE measured between standardized log-scaled predicted

and actual parameters.

(PDF)

S8 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI

and CEU populations when tested with simulations of selective sweeps plus background

selection. The values show RMSE and MAE measured between standardized log-scaled pre-

dicted and actual parameters in simulated data.
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S9 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI
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and CEU populations when tested with simulations of selective sweeps plus background

selection. The values show RMSE and MAE measured between log-scaled predicted and actual

parameters after unstandardizing.

(PDF)

S10 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for

CEU populations when trained and tested with simulations sampling n = 20, 50, or 200

haploid genomes. The values show RMSE and MAE measured between standardized log-

scaled predicted and actual parameters.

(PDF)

S11 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for

CEU populations when trained and tested with simulations using recombination rate

drawn from an exponential distribution with mean 10−8 truncated at three times the mean

per site per generation or rate drawn from an empirical human recombination map. The

values show RMSE and MAE measured between standardized log-scaled predicted and actual

parameters.

(PDF)

S12 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of selection (Tsel) for YRI

and CEU populations when tested with simulations of selective sweeps with f 2 [0.1, 0.2].

The values show RMSE and MAE measured between standardized log-scaled predicted and

actual parameters.

(PDF)

S13 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when

predicting selection coefficient (s), initial frequency (f), and time of donor-recipient split

(Tsplit) under adaptive introgression scenarios for YRI and CEU populations. The values

show RMSE and MAE measured between standardized log-scaled predicted and actual param-

eters in simulated data.

(PDF)

S14 Table. Classification of CEU data with classifier trained to differentiate sweeps and

neutrality, γ = 1, Level 1 chosen through cross validation (see Training the models), Daube-

chies’ least asymmetic wavelets.

(PDF)

S15 Table. Classification of YRI data with classifier trained to differentiate sweeps and

neutrality, γ = 1, Level 1 chosen through cross validation (see Training the models), Daube-

chies’ least asymmetic wavelets.

(PDF)

S16 Table. Classification of CEU data with classifier trained to differentiate adaptive intro-

gression, sweeps, and neutrality, γ = 1, Level 1 chosen through cross validation (see Train-
ing the models), Daubechies’ least asymmetic wavelets.

(PDF)

S17 Table. Classification of CEU data with classifier trained to differentiate adaptive

introgression, sweeps, and neutrality, γ = 1, Level 1 chosen through cross validation (see
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Training the models), Daubechies’ least asymmetic wavelets, including two-dimensional

statistics.

(PDF)

S18 Table. Classification of YRI data with classifier trained to differentiate adaptive intro-

gression, sweeps, and neutrality, γ = 1, Level 1 chosen through cross validation (see Train-
ing the models), Daubechies’ least asymmetic wavelets.

(PDF)

S19 Table. Classification of YRI data with classifier trained to differentiate adaptive intro-

gression, sweeps, and neutrality, γ = 1, Level 1 chosen through cross validation (see Training
the models), Daubechies’ least asymmetic wavelets, including two-dimensinoal statistics.

(PDF)

S20 Table. Runtime comparison when training SURFDAWave (Daubechies’ least-asym-

metric wavelets), Trendsetter (linear trend filtering), diploS/HIC, and evolBoosting with

5000 simulations each when differentiating between sweeps and neutrality. All estimates

assume that feature vectors have already been computed for each method.

(PDF)

S1 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutrality

scenarios for summary statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth most

common haplotypes for SURFDAWave when γ = 1. SURFDAWave was trained on simula-

tions of scenarios simulated under demographic specifications for European CEU demo-

graphic history. Note that the wavelet reconstructions for all summary statistics are plotted on

the same scale, thereby making the distributions of some summaries difficult to decipher as

their magnitudes are relatively small. SURFDAWave results shown are using Daubechies’

least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level 1 cho-

sen through cross validation.

(PDF)

S2 Fig. Spatial distribution of regression coefficients (βs) in sweep scenarios for summary

statistics H1, H12, H2/H1, and frequencies of first to sixth most common haplotypes for

Trendsetter with a linear d = 2 trend penalty. Trendsetter was trained on simulations of con-

stant demographic history.

(PDF)

S3 Fig. SURFDAWave classifier performance on simulated data. (Left column) Power to dif-

ferentiate between sweep and neutrality by comparing the probability of a sweep under sweep

simulations with the same probability in simulations of neutrality when using varying γ penal-

ties, wavelet types, and demographic histories. (Top row confusion matrices) Confusion matri-

ces comparing classification rates of SURFDAWave when trained and tested with the CEU

demographic history when using Daubechies’ least-Asymmetric wavelets to estimate spatial

distributions of summary statistics when using either γ = 1, γ = 0, or γ chosen through cross

validation (see Training the models). (Middle row confusion matrices) Confusion matrices

comparing classification rates of SURFDAWave when trained and tested with the CEU demo-

graphic history when using Haar wavelets to estimate spatial distributions of summary statis-

tics when using either γ = 1, γ = 0, or γ chosen through cross validation. (Bottom) Confusion

matrix showing classification rates of SURFDAWave when trained and tested with constant

demographic history when using Daubechies’ least-Asymmetric wavelets.

(PDF)
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S4 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutral-

ity scenarios for summary statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth

most common haplotypes for SURFDAWave when γ = 1. SURFDAWave was trained on

simulations of scenarios simulated under demographic specifications for European CEU

demographic history. Note that the wavelet reconstructions for all summary statistics are

plotted on the same scale, thereby making the distributions of some summaries difficult to

decipher as their magnitudes are relatively small. SURFDAWave results shown are using

Haar wavelets to estimate spatial distributions of summary statistics. Level 2 chosen through

cross validation.

(PDF)

S5 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutrality

scenarios for summary statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth most

common haplotypes for SURFDAWave when γ = 0. SURFDAWave was trained on simula-

tions of scenarios simulated under demographic specifications for European CEU demo-

graphic history. Note that the wavelet reconstructions for all summary statistics are plotted on

the same scale, thereby making the distributions of some summaries difficult to decipher as

their magnitudes are relatively small. SURFDAWave results shown are using Daubechies’

least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level 4 cho-

sen through cross validation.

(PDF)

S6 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutrality

scenarios for summary statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth most

common haplotypes for SURFDAWave when γ = 0.7. SURFDAWave was trained on simula-

tions of scenarios simulated under demographic specifications for European CEU demo-

graphic history. Note that the wavelet reconstructions for all summary statistics are plotted on

the same scale, thereby making the distributions of some summaries difficult to decipher as

their magnitudes are relatively small. SURFDAWave results shown are using Daubechies’

least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level 4 and

γ = 0.7 chosen through cross validation.

(PDF)

S7 Fig. SURFDAWave performance on simulated data trained and tested with simulations

conducted with YRI demographic history to differentiate between sweeps and neutrality.

SURFDAWave parameters using Daubechies’ least-Asymmetric wavelets to estimate spatial

distributions of summary statistics and using γ = 1 or γ = 0. (Left) Power to differentiate

between sweep and neutrality by comparing the probability of a sweep under sweep simula-

tions with the same probability in simulations of neutrality when using varying γ penalties in

SURFDAWave. (Right confusion matrices) Classification rates using SURFDAWave when

using γ = 1 and γ = 0.

(PDF)

S8 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutrality

scenarios for summary statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth most

common haplotypes for SURFDAWave when γ = 0. SURFDAWave was trained on simula-

tions of scenarios simulated under demographic specifications for sub-Saharan African YRI

demographic history. Note that the wavelet reconstructions for all summary statistics are

plotted on the same scale, thereby making the distributions of some summaries difficult to

decipher as their magnitudes are relatively small. SURFDAWave results shown are using Dau-

bechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level
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4 chosen through cross validation.

(PDF)

S9 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutrality

scenarios for summary statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth most

common haplotypes for SURFDAWave when γ = 0.5. SURFDAWave was trained on simula-

tions of scenarios simulated under demographic specifications for sub-Saharan African YRI

demographic history. Note that the wavelet reconstructions for all summary statistics are plot-

ted on the same scale, thereby making the distributions of some summaries difficult to deci-

pher as their magnitudes are relatively small. SURFDAWave results shown are using

Daubechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics.

Level 1 and γ chosen through cross validation.

(PDF)

S10 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep versus neutral-

ity scenarios for summary statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth

most common haplotypes for SURFDAWave when γ = 1. SURFDAWave was trained on sim-

ulations of scenarios simulated under demographic specifications for sub-Saharan African

YRI demographic history. Note that the wavelet reconstructions for all summary statistics are

plotted on the same scale, thereby making the distributions of some summaries difficult to

decipher as their magnitudes are relatively small. SURFDAWave results shown are using Dau-

bechies’ least-asymmetric wavelets to estimate spatial distributions of summmry statistics.

Level 1 chosen through cross validation.

(PDF)

S11 Fig. Reconstructed wavelets from regression coefficients (βs) in sweep vs. neutrality

scenarios for summary statistics H1 and H12 showing difference between discrete wavelet

transform at level 0 and level 5. Using Daubechies’ least-Asymmetric wavelets and γ = 1.

(PDF)

S12 Fig. Reconstructed wavelets from regression coefficients (βs) when differentiating

among adaptive introgression, sweeps, and neutrality scenarios for summary statistics

mean, variance, skewness, and kurtosis of pairwise r2 for SURFDAWave when γ = 1,

when trained with statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth most com-

mon haplotypes (S14 Fig). SURFDAWave was trained on simulations of scenarios simulated

under demographic specifications for European CEU demographic history. Note that the

wavelet reconstructions for all summary statistics are plotted on the same scale, thereby mak-

ing the distributions of some summaries difficult to decipher as their magnitudes are rela-

tively small. SURFDAWave results shown are using Daubechies’ least-asymmetric wavelets

to estimate spatial distributions of summary statistics. Level 1 chosen through cross valida-

tion.

(PDF)

S13 Fig. Reconstructed wavelets from regression coefficients (βs) when differentiating

among adaptive introgression, sweeps, and neutrality scenarios for summary statistics π̂ ,

H1, H12, H2/H1, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when γ = 1. SURFDAWave was trained on simulations of scenarios simulated under

demographic specifications for European CEU demographic history. Note that the wavelet

reconstructions for all summary statistics are plotted on the same scale, thereby making the

distributions of some summaries difficult to decipher as their magnitudes are relatively small.

SURFDAWave results shown are using Daubechies’ least-asymmetric wavelets to estimate
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spatial distributions of summary statistics. Level 1 chosen through cross validation.

(PDF)

S14 Fig. Reconstructed wavelets from regression coefficients (βs) when differentiating

among adaptive introgression, sweeps, and neutrality scenarios for summary statistics π̂ ,

H1, H12, H2/H1, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when γ = 1, when trained with additional statistics mean, variance, skewness, and

kurtosis of pairwise r2 (S12 Fig). SURFDAWave was trained on simulations of scenarios sim-

ulated under demographic specifications for European CEU demographic history. Note that

the wavelet reconstructions for all summary statistics are plotted on the same scale, thereby

making the distributions of some summaries difficult to decipher as their magnitudes are rela-

tively small. SURFDAWave results shown are using Daubechies’ least-asymmetric wavelets to

estimate spatial distributions of summary statistics. Level 1 chosen through cross validation.

(PDF)

S15 Fig. Reconstructed wavelets from regression coefficients (βs) when differentiating

among adaptive introgression, sweeps, and neutrality scenarios for summary statistics π̂ ,

H1, H12, H2/H1, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when γ = 1. SURFDAWave was trained on simulations of scenarios simulated under

demographic specifications for sub-Saharan African YRI demographic history. Note that the

wavelet reconstructions for all summary statistics are plotted on the same scale, thereby mak-

ing the distributions of some summaries difficult to decipher as their magnitudes are relatively

small. SURFDAWave results shown are using Daubechies’ least-asymmetric wavelets to esti-

mate spatial distributions of summary statistics. Level 1 chosen through cross validation.

(PDF)

S16 Fig. Reconstructed wavelets from regression coefficients (βs) when differentiating

among adaptive introgression, sweeps, and neutrality scenarios for summary statistics π̂ ,

H1, H12, H2/H1, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when γ = 1, when trained with additional statistics mean, variance, skewness, and

kurtosis of pairwise r2 (S17 Fig). SURFDAWave was trained on simulations of scenarios sim-

ulated under demographic specifications for sub-Saharan African YRI demographic history.

Note that the wavelet reconstructions for all summary statistics are plotted on the same scale,

thereby making the distributions of some summaries difficult to decipher as their magnitudes

are relatively small. SURFDAWave results shown are using Daubechies’ least-asymmetric

wavelets to estimate spatial distributions of summary statistics. Level 1 chosen through cross

validation.

(PDF)

S17 Fig. Reconstructed wavelets from regression coefficients (βs) when differentiating

among adaptive introgression, sweeps, and neutrality scenarios for summary statistics

mean, variance, skewness, and kurtosis of pairwise r2 for SURFDAWave when γ = 1, when

trained with statistics π̂ , H1, H12, H2/H1, and frequencies of first to fifth most common

haplotypes (S16 Fig). SURFDAWave was trained on simulations of scenarios simulated under

demographic specifications for sub-Saharan African YRI demographic history. Note that the

wavelet reconstructions for all summary statistics are plotted on the same scale, thereby mak-

ing the distributions of some summaries difficult to decipher as their magnitudes are relatively

small. SURFDAWave results shown are using Daubechies’ least-asymmetric wavelets to esti-

mate spatial distributions of summary statistics. Level 1 chosen through cross validation.

(PDF)
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S18 Fig. Confusion matrices showing classification results for demographic mis-specifi-

cation compared to when classifiers are trained with multiple demographic histories

rates in SURFDAWave, Trendsetter, diploS/HIC, and evolBoosting. Summary statistics p̂,

H1, H12, H2/H1, and frequency of the first, second, third, fourth, and fifth most common hap-

lotypes used by both Trendsetter and SURFDAWave. SURFDAWave results shown are using

Daubechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics

when level and γ are chosen through cross validation (see Training the models). Training

data consist of a balanced dataset of simulations conducted under demographic specifica-

tions for European (CEU) and African (YRI) human populations when training for multiple

demographic histories. (Left) Classification rates of simulations conducted under CEU Euro-

pean demographic specifications when the model is trained with simulations conducted

under YRI African demographic specifications. (Middle right) Classification rates of simula-

tions conducted under YRI African demographic specifications when the model is trained

with simulations conducted under CEU European demographic specifications. (Middle

right) Classification rates of simulations conducted under CEU European demographic

specifications. (Right) Classification rates of simulations conducted under YRI African

demographic specifications.

(PDF)

S19 Fig. Confusion matrices showing the effect sample size has on classification rates. We

train and test SURFDAWave, Trendsetter, diploS/HIC, and evolBoosting classifiers to dif-

ferentiate sweeps and neutrality using sample sizes of n = 20, 50, and 200 haploid genomes.

SURFDAWave results shown are using Daubechies’ least-asymmetric wavelets to estimate spa-

tial distributions of summary statistics and γ and levels are chosen through cross validation

(see Training the models). Summary statistics p̂, H1, H12, H2/H1, and frequency of the first, sec-

ond, third, fourth, and fifth most common haplotypes used by both Trendsetter and SURFDA-
Wave.
(PDF)

S20 Fig. Confusion matrices comparing classification rates when SURFDAWave, Trendset-
ter, diploS/HIC, and evolBoosting are trained and tested using simulations conducted

under Drosophila population parameters to differentiate between sweeps and neutrality.

SURFDAWave results shown are using Daubechies’ least-asymmetric wavelets to estimate spa-

tial distributions of summary statistics and γ and levels are chosen through cross validation

(see Training the models). Summary statistics p̂, H1, H12, H2/H1, and frequency of the first, sec-

ond, third, fourth, and fifth most common haplotypes used by both Trendsetter and SURFDA-
Wave.
(PDF)

S21 Fig. Confusion matrices comparing classification rates of SURFDAWave, Trendsetter,
diploS/HIC, and evolBoosting when applied to simulations with a recombination rate

drawn from an exponential distribution with mean 10−8 per site per generations, truncated

at three times the mean (top row) and recombination rate drawn from a human empirical

recombination map (bottom row) to differentiate between sweeps and neutrality. All simu-

lations were conducted under European (CEU) demographic history specifications. SURFDA-
Wave results shown are using Daubechies’ least-asymmetric wavelets to estimate spatial

distributions of summary statistics and γ and levels are chosen through cross validation (see

Training the models). Summary statistics p̂, H1, H12, H2/H1, and frequency of the first, second,

third, fourth, and fifth most common haplotypes used by both Trendsetter and SURFDAWave.
(PDF)
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S22 Fig. Difference between standardized predicted and actual selection parameters with

SURFDAWave for the CEU and YRI demographic models. (Left box plot) Difference in pre-

diction and truth of log scaled time at which mutation became beneficial. (Middle box plot)

Difference in prediction and truth of log scaled frequency reached by mutation prior to it

becoming beneficial (f). (Right box plot) Difference in prediction and truth of log scaled selec-

tion coefficient (s).
(PDF)

S23 Fig. Reconstructed wavelets from regression coefficients (βs) in predicting time at

which mutation became beneficial, frequency reached by mutation before becoming bene-

ficial, and selection strength for summary statistics π̂ , H1, H12, H2/H1, and frequencies of

first to fifth most common haplotypes for SURFDAWave when γ = 0.6. SURFDAWave was

trained on simulations of scenarios simulated under demographic specifications for European

CEU demographic history. Note that the wavelet reconstructions for all summary statistics are

plotted on the same scale, thereby making the distributions of some summaries difficult to

decipher as their magnitudes are relatively small. SURFDAWave results shown are using Dau-

bechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level

1 and γ = 0.6 chosen through cross validation.

(PDF)

S24 Fig. Reconstructed wavelets from regression coefficients (βs) in predicting time at

which mutation became beneficial, frequency reached by mutation before becoming bene-

ficial, and selection strength for summary statistics π̂ , H1, H12, H2/H1, and frequencies of

first to fifth most common haplotypes for SURFDAWave when γ = 0.7. SURFDAWave was

trained on simulations of scenarios simulated under demographic specifications for sub-Sara-

han African YRI demographic history. Note that the wavelet reconstructions for all summary

statistics are plotted on the same scale, thereby making the distributions of some summaries

difficult to decipher as their magnitudes are relatively small. SURFDAWave results shown are

using Daubechies’ least-asymmetric wavelets to estimate spatial distributions of summary sta-

tistics. Level 0 and γ = 0.7 chosen through cross validation.

(PDF)

S25 Fig. Difference between standardized predicted and actual selection parameters with

SURFDAWave under several confounding scenarios. Difference in prediction and truth of

time at which mutation became beneficial, difference in prediction and truth of log scaled fre-

quency reached by mutation prior to it becoming beneficial (f), and difference in prediction

and truth of log scaled selection coefficient (s) shown as set of three box plots. (Top row)

Parameter prediction when training and testing sample sizes are n = 20, 50 or 200 shown for

the CEU demographic history. (Row two) Parameter prediction when recombination rate is

drawn from an exponential distribution with mean 10−8 per site per generation, truncated at

three times the mean or when recombination is drawn from a human empirical recombination

map using CEU demographic history. (Row three) Parameter prediction when testing range

for initial frequency is f 2 [0.1, 0.2], which falls outside of training range for CEU and YRI

demographic histories. (Bottom row) Parameter prediction when training data is a balanced

dataset containing simulations from both CEU and YRI demographic histories and is tested

under the specified demographic history.

(PDF)

S26 Fig. Difference between standardized predicted and actual selection parameters with

SURFDAWave for the CEU and YRI demographic models. (Left box plot) Difference in pre-

diction and truth of log scaled time at which donor and recipient populations split. (Middle
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box plot) Difference in prediction and truth of log scaled frequency reached by mutation prior

to it becoming beneficial (f). (Right box plot) Difference in prediction and truth of log scaled

selection coefficient (s).
(PDF)

S27 Fig. Reliability diagrams showing how close our predicted probabilities are to actual

probabilities. For each classifier we predict the probability of sweep for test 1000 simulations.

We divide the predicted probabilities into 950 overlapping windows each of length 0.5, with

the first window beginning ranging from 0 to 0.05 and the second from 0.001 to 0.051 and so

on with the last window ranging from 0.95 to 1.0. Using these ranges as thresholds, we calcu-

late the mean probability of all predicted probabilities within this range (Mean Prediction)

along with the fraction of these cases that are classified as sweep (Observed Fraction).

(PDF)

S28 Fig. Predicted selection parameters for all genes in YRI and CEU with probability of

being classified as sweep greater than 0.7 (Left) Scatter plot of predicted initial frequency

mutation reached before becoming beneficial (Initial frequency) versus generations before

present at which selection began (Time of selection). (Middle) Scatter plot of Selection coef-

ficient versus Time of selection. (Right) Scatter plot of Initial frequency versus selection coeffi-

cient.

(PDF)

S29 Fig. Predicted selection parameters for all genes in YRI (orange) and CEU (blue) with

probability of being classified as sweep greater than 0.5 divided into bins of probability of

sweep (Left) Predicted number of generations before present at which selection began

(Time of selection) as a function of the probability of sweep. (Middle) Frequency reached

by mutation before becoming beneficial (f) as a function of probability of sweep. (Right) Selec-

tion coefficient (s) as a function of probability of sweep.

(PDF)

S30 Fig. SURFDAWave classifier’s application to empirical data for CEU to detect adaptive

introgression. Probability of adaptive introgression across the genomic region of labeled chro-

mosome containing the genes of interest. SURFDAWave is trained to differentiate among

selective sweeps, adaptive introgression, and neutrality with simulations conducted under

demographic specifications of the CEU demographic history. The black dots show the pre-

dicted probability of adaptive introgression and the gray bars show the positions of the labeled

genes. Gaps between black dots are the result of filtering low quality genomic regions (see

Application of empirical data), such that no SNPs exist in these regions and can therefore not

be classified (see S33 Fig as an example of how we classify a SNP spanned by our feature vec-

tor).

(PDF)

S31 Fig. Sum of squared differences between the empirical CEU and the simulated neutral

Terhorst normalized minor allele frequency spectra conditional on removing all minor

allele classes with k or fewer minor alleles.

(PDF)

S32 Fig. Confusion matrices comparing classification rates of SURFDAWave differentiat-

ing among adaptive introgression, sweeps, and neutrality when simulated under a con-

stant-size demographic model with non-adaptive introgression with 1000, 3000, 5000, or

7000 training samples per class. SURFDAWave results shown are using Daubechies’ least-

asymmetric wavelets to estimate spatial distributions of summary statistics. Level and gamma
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chosen through cross validation.

(PDF)

S33 Fig. Schematic illustrating windows for which summary statistics are calculated in our

implementation of SURFDAWave. Each bold black line underlines one of the eight 10-SNP

long windows. Here we show a sample of six haplotypes (rows) across a string of SNPs (col-

umns) for which we calculate summary statistics in p = 8 windows. Summary statistics are cal-

culated for each 10-SNP window, with windows overlapping with each neighbor for five SNPs.

The central SNP is taken to be the putative selected site and is located in the overlap of win-

dows four and five. Here we have underlined the alternating windows used to calculate the

two-dimensional statistics in red.

(PDF)

S34 Fig. Distribution of selection parameters for simulations of sweeps conducted with

demographic history parameters of CEU (top row) and YRI (bottom row). (Left column)

Distribution of time at which tracked mutation becomes beneficial (reaches initial frequency)

in simulations of selective sweeps. (Middle column) Distribution of log-scaled initial frequency

(input parameter) reached by mutation before becoming beneficial in simulations of selective

sweeps. (Right column) Distribution of log-scaled selection coefficient in simulations of selec-

tive sweep.

(PDF)
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69. Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP. Gene conversion: mechanisms, evolu-

tion and human disease. Nature Reviews Genetics. 2007; 8:762–775. https://doi.org/10.1038/nrg2193

PMID: 17846636

70. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. A High-Coverage Genome

Sequence from an Archaic Denisovan Individual. Science. 2012; 338:222–226. https://doi.org/10.

1126/science.1224344 PMID: 22936568
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