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Abstract

Identifying regions of positive selection in genomic data remains a challenge in population
genetics. Most current approaches rely on comparing values of summary statistics calcu-
lated in windows. We present an approach termed SURFDAWave, which translates mea-
sures of genetic diversity calculated in genomic windows to functional data. By transforming
our discrete data points to be outputs of continuous functions defined over genomic space,
we are able to learn the features of these functions that signify selection. This enables us to
confidently identify complex modes of natural selection, including adaptive introgression.
We are also able to predict important selection parameters that are responsible for shaping
the inferred selection events. By applying our model to human population-genomic data, we
recapitulate previously identified regions of selective sweeps, such as OCAZ2in Europeans,
and predict that its beneficial mutation reached a frequency of 0.02 before it swept 1,802
generations ago, a time when humans were relatively new to Europe. In addition, we identify
BNC2in Europeans as a target of adaptive introgression, and predict that it harbors a bene-
ficial mutation that arose in an archaic human population that split from modern humans
within the hypothesized modern human-Neanderthal divergence range.

Author summary

As populations adapt to their environments, specific patterns indicating selection remain
in the distribution of genetic diversity across their genomes. A hallmark of positive natural
selection is the reduction of genetic diversity surrounding beneficial mutations. The origin
of the beneficial mutation, or whether it originated in a population being examined or
within another, can be uncovered through the spatial distribution of the reduction of
genetic diversity. In addition, other information about the strength, timing, and initial fre-
quency of beneficial mutations can be learned by examining patterns of diversity across
genomic regions. We use functional data analysis to capture differences among the spatial
distributions of genetic variation expected by diverse evolutionary processes, and further
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apply it to dissect how selection parameters affect such patterns. Using this method, we
learn the underlying origins, timings, and strengths of beneficial mutations that have
impacted modern human genomic diversity.

Introduction

Positive selection is one the most fundamental forces shaping the diversity of life that we can
observe today [1, 2]. When positive selection acts on a beneficial mutation, it causes a “wave-
like” pattern in the decrease in diversity of the genome [3]. As in waves found in the ocean or
air, certain patterns might emerge depending on the properties of the cause and the environ-
mental materials (genetic background). Examining these patterns might allow us to learn
about the forces causing them. For example, the angle between the crest (top of a wave) and
trough (bottom of a wave) might be informative for learning about the strength of selection
(and concurrently the time taken for a selective event to occur). Similarly, different modes of
positive selection may have on average different patterns. For example, if the crest of the wave
extends above the rest position (neutrality), then this may be the signal of adaptive introgres-
sion as shown in ref. [4].

Capturing diversity patterns as they vary spatially has been the goal of a number of recent
methods [5, 6, 7]. References [5] and [6] attempt to recognize sweeps by learning how diversity
(measured by summary statistics) changes across a number of windows encompassing the
sweep. However, these methods do not explicitly model the overall patterns formed by selec-
tion events. Other methods forgo explicitly measuring diversity and transform SNP data
directly to images to learn population-genetic parameters such as recombination rates [8, 7]
and to identify selected regions [7]. The complementary approach shown in ref. [9] explicitly
models the spatial autocorrelation of summary statistics to capture the underlying wave pat-
terns produced by selective sweeps.

Fortunately, there exist techniques not widely applied in genomics that allow observations
on continuous data [10]. Functional data analysis is a recent sub-field of statistics in which
measured values are known to be the output of functions [11, 12]. Relatedness between data
points is inherent in this type of data analysis, which operates on values across a continuum.
Transforming our measures of genetic diversity across a genomic region into functional data
ensures that the spatial pattern is used to draw conclusions. Although we will be applying this
method to assess how genetic diversity varies across the space of a genomic region, there is
potential to apply this method to understand how diversity changes temporally [e.g., 13, 14,
15]. With the deluge of ancient genome datasets emerging, it may be possible to examine how
the spatial distribution of genetic diversity changes across time at different positively-selected
genomic regions to learn their adaptive parameters, such as selection strength, sweep softness,
and timing of selection. Functional data analysis can also be applied to understand how genetic
diversity changes across physical geographic regions and can potentially be useful in ecological
modeling [e.g., 16, 17, 18].

We present a method termed SURFDA Wave (Sweep inference Using Regularized FDA
with WAVElets) in which we first model genetic diversity as functions, and then learn the
importance of different aspects of genetic diversity across the examined genomic space in pre-
dicting selection parameters. We show that SURFDA Wave accurately predicts parameters
such as selection strength, initial frequency of mutation before becoming beneficial, and time
of selection. We also demonstrate that SURFDA Wave can be used to classify selective sweeps,
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while remaining robust to confounding factors. Finally, we apply SURFDA Wave to empirical
data to predict the selection parameters on regions classified as sweeps.

Results

SURFDAWave is a wavelet-based regression method used to classify selective sweeps and pre-
dict adaptive parameters (Fig 1; see Materials and methods for a brief discussion of wavelets).
Here we briefly present its performance in terms of both classification of selective sweeps and
in estimating parameters responsible for shaping sweeps. We compare classification perfor-
mance of SURFDA Wave to Trendsetter [9], as Trendsetter also models the spatial autocorrela-
tion of summary statistics, and we also provide a comprehensive comparison to two other
leading sweep classifiers—evolBoosting [19] and diploS/HIC [6]. See Materials and methods
for details on these comparisons, as well as important considerations regarding the alteration
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Fig 1. Cartoon illustrating SURFDA Wave function. For each statistic, SURFDA Wave standardizes values before transforming values
into their wavelet representations (Middle boxes in panels A and B.). The wavelet representations are analyzed at all possible levels from
the most detailed or highest level to least detailed or lowest level (Right of middle boxes in panels A and B). The top row shows how a
binary classifier chooses wavelet coefficients to differentiate between sweeps and neutrality. Because the case shown is binomial, there is
only one line showing the function for a sweep, as the function for neutrality would be the inverse. The middle row shows how there is a
separate model for each selection parameter we predict. In this case the three different colored lines in the right box are the regression
coefficient functions for three different selection parameters. (Panel C) A cartoon example of how a feature vector might undergo
discrete wavelet transform. A feature vector (here of length eight) is transformed by either pairwise subtraction (for mother wavelet
coefficients) or pairwise addition (for father wavelet coefficients) in subsequent steps to obtain a multiresolution breakdown of the data.
Level zero provides the least amount of detail, while level two captures the feature vector values in higher resolution. SURFDA Wave uses
this breakdown of coefficients to identify important ones through penalized regression. Using wavelet functions, such as the Haar
functions shown here it is then possible to generate wavelets (coefficient function) as shown in the final panel on the right.

https://doi.org/10.1371/journal.pgen.1008896.9001
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of default settings of Trendsetter to use the same summary statistics as SURFDAwave and the
use of two classes for diploS/HIC instead of the five classes that it was originally designed for.
Although we modify Trendsetter from its original implementation, we chose to focus on how
the modeling of the summary statistics, rather than the number or choice of summary statis-
tics, would affect differences in classification rates between these two methods.

Classification of selective sweeps

We trained the SURFDA Wave classifier to differentiate between sweeps and neutrality as
described in Materials and Methods. We conducted simulations under three different demo-
graphic histories—constant size, human sub-Saharan African (YRI), and human European
(CEU)—to compare how different demographic histories affect our results [20]. All simula-
tions are conducted using SLiM [21] using a mutation rate of 1.25 x 10™® per site per genera-
tion [22] and recombination rate drawn from an exponential distribution with mean

3 x 1077 per site per generation (truncated at three times the mean) to simulate two Mb
regions (see Materials and methods). For all sweep simulations, we drew selection start time,
initial frequency of beneficial mutation, and selection strength of the beneficial allele from a
distribution, such that all sweep scenarios comprise a range of hard and soft sweep settings.
The initial frequency of the beneficial allele and the selection coefficient are drawn from
f€[1/(2N), 0.1] and s € [0.005, 0.5] per generation, respectively, while the start time of the
mutation was drawn uniformly at random from between 1,020 and 3,000 generations ago.
Though it is possible to apply SURFDA Wave with many combinations of summary statistics
in any number p = 2/ windows (where J is a positive integer), we use an implementation that
employs the summary statistics 7, Hy, H,, Hy/Hj, and frequencies of first to fifth most com-
mon haplotypes, all calculated in p = 128 genomic windows (see Materials and methods).
The limitation that p = 2/ is necessary for the process of discrete wavelet transform as used
by SURFDAWave (see Materials and methods). The discrete wavelet transform allows data
to be resolved into several levels, each containing information with differing amounts of
detail. The number of levels is determined by J, and the process of resolving data into levels
is the limiting factor for p, as at each level the number of wavelets is half of the previous.
Limiting the number of windows to 2’ ensures that the number of wavelets is an integer at all
levels (Fig 1).

We first train a classifier using summary statistics calculated on simulations that reflect the
CEU European human demographic history [20]. Fig 2 and S3 Fig show that SURFDA Wave
has similar accuracy to Trendsetter regardless of the regularization penalty used [23]. This is
reflected in the patterns we observe for importance of summary statistics through examining
the regression coefficients (8s) for each model. Fig 3 shows how SURFDA Wave and Trendset-
ter both identify H, as uninformative, while Hy, is informative. S1 and S2 Figs respectively pro-
vide information on how these two methods have similar patterns of importance for other
summary statistics as well. In addition, comparison to diploS/HIC and evolBoosting show
that these methods perform comparably to SURFDA Wave, with evolBoosting classifying neu-
tral simulations correctly more often than all other methods, but performing worse overall.
However, classification by diploS/HIC differed from SURFDA Wave only by a few percentage
points.

To examine whether the type of wavelet used influences SURFDA Wave’s classification
rates, we incorporate a comparison of two popular wavelets (Daubechies’ least-asymmetric vs.
Haar). The Haar wavelets are composed of block shaped functions, while Daubechies’ least-
asymmetric wavelets are composed of more localized smooth functions (Fig 3). Because the
shapes of the spatial distributions of genetic diversity are relatively simple, we anticipate both
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Fig 2. SURFDA Wave classifier performance compared to Trendsetter, diploS/HIC, and evolBoosting when differentiating between
sweeps and neutrality and trained and tested with simulations based on CEU (top row) and YRI (bottom row) demographic
history. (Left) Power to differentiate between sweep and neutrality by comparing the probability of a sweep under sweep simulations
with the same probability in simulations of neutrality including zoomed in region between 0.0 and 0.2 on the x-axis and 0.8 and 1.0 on
the y-axis. (Right confusion matrices) Confusion matrices comparing classification rates of the methods. SURFDA Wave applied using
Daubechies’ least- Asymmetric wavelets to estimate spatial distributions of summary statistics with y penalties and level chosen through
cross validation (see Training the models). Summary statistics 7, Hy, Hy,, Ho/Hj, and frequency of the first, second, third, fourth, and
fifth most common haplotypes used by both Trendsetter and SURFDA Wave.

https://doi.org/10.1371/journal.pgen.1008896.9002

of these types of wavelets to be able to adequately capture the signal. This expectation is also
motivated by results in ref. [9] comparing the classification accuracy of Trendsetter when using
constant and linear trend-filtering functions, which respectively model curves with similar
characteristics to the Haar and Dabechies’ least-asymmetric wavelets employed by SURFDA-
Wave. We find that the type of wavelets used as basis functions does not dramatically influence
the overall classification rates (S3 Fig). However, visualizing the coefficient functions for each
summary statistic shows that the overall shape is much smoother when using Daubechies’
least-asymmetric (S1 Fig) compared to Haar (S4 Fig) wavelets. We find smoothness of the
coefficient functions to be desirable, and for this reason, most of our results are shown using
Daubechies’ least-asymmetric wavelets. We also notice that although classification rates are
similar regardless of whether we use ridge penalization (y = 0), lasso penalization (y = 1), or
choosing the optimal elastic net parameter y through cross validation (S3 Fig), the resulting
regression coefficient functions are vastly different, especially when we use y = 0 (S1, S5 and

S6 Figs).

We also train a classifier to differentiate between selective sweeps and neutrality using sim-
ulations of the YRI sub-Saharan African human demographic history [20] over a range of y
values in SURFDA Wave and all compared classification methods. Overall, we notice an
increase in the percentage of simulations classified correctly when we compare to classifiers
trained under the CEU demographic history for all of the methods tested (Fig 2 and S7 Fig).
Noticeably, evolBooting again outperforms all other methods in correct classification of neu-
trality, but still has smaller overall classification accuracy than the other methods. Comparing
within SURFDA Wave, we see that the patterns formed by the spatial distributions of the coeffi-
cients for each summary statistic are similar regardless of the y penalty used (S8-S10 Figs).
The noisy functions resulting from the use of ¥ = 0 tend to obscure any pattern in the spatial
distribution of the underlying regression functions and as a result make the function more
difficult to interpret. For this reason we proceed with either y = 1 or y chosen through cross
validation.
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Fig 3. Reconstructed wavelets from regression coefficients (8s) in sweep versus neutrality scenarios for summary statistics H, and
H,, for SURFDA Wave and Trendsetter when both methods were trained on simulations of scenarios simulated under demographic
specifications for European CEU demographic history. Note that the wavelet reconstructions for all summary statistics are plotted on
the same scale, thereby making the distributions of some summaries difficult to decipher as their magnitudes are relatively small.
SURFDAWave results compare the use of Daubechies’ least-asymmetric to Haar wavelets to estimate spatial distributions of summary
statistics. Summary statistics 7, H,, Hy,, H»/H,, and frequency of the first, second, third, fourth, and fifth most common haplotypes used
by both Trendsetter and SURFDA Wave. Level and y chosen through cross validation for SURFDA Wave (see Training the models).

https://doi.org/10.1371/journal.pgen.1008896.9003

Through cross validation (see Training the models) we also chose the level at which the dis-
crete wavelet transform (DWT) has best performance for classification. Using wavelets as our
basis functions has the advantage of allowing our regression coefficients to be represented at
different resolutions, denoted by different levels j, (see Materials and methods). Choosing
these levels through cross validation allows our method to determine the smoothness of the
regression coefficient function because choosing a coarser resolution (lower level) results in a
smooth function, whereas choosing a finer resolution (higher level) will result in a more rug-
ged function. As detailed in Materials and Methods, the total number of levels at which DWT
can be applied equals log,(p) — 1, which when p = 128 (as is used here) means we have six dif-
ferent levels j, € {0, 1, 2, 3, 4, 5}. To illustrate the differences among levels, we show a model
using DWT with the coarsest level (jo = 0) compared to a model using DWT with the finest
(jo = 5), with both models employing Daubechies’ least asymmetric wavelets with a lasso
(y = 1) penalty (S11 Fig). It is clear that the summary statistic H, is informative for both of
these models, however the noisy wavelet reconstructions seen for j, = 5 reveals an emphasis on
local features that is absent when we enforce j, = 0.

To compare the effect of bottlenecks and expansions on classification rates to those under a
constant-size demographic history, we trained and tested a classifier using simulations of a
constant-size demographic model to differentiate between neutrality and sweeps. As expected,
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we find both neutral and sweep simulations are classified correctly more often than when clas-
sifying simulations of more complicated non-equilibrium demographic histories (S3 Fig),
such as those of the CEU and YRI populations.

Adaptive introgression is a complex form of natural selection that produces genetic diversity
footprints distinct from typical selective sweeps [4]. In both selective sweeps and adaptive intro-
gression, diversity generally decreases surrounding the beneficial mutation. In adaptive intro-
gression, however, diversity increases before the signal decays to the level of neutrality. This
slight increase in diversity compared to the neutral background is most clearly seen when the
two populations (donor and recipient) are highly diverged (Fig 4). We test how well SURFDA-
Wave can differentiate among adaptive introgression, sweeps, and neutrality, using the same
summary statistics discussed in the Results section (see Material and methods for simulation
details). Similar to previous sweep simulations, for adaptive introgression simulations we drew
selection start time, initial frequency of beneficial mutation, selection strength of the beneficial
allele, and the donor and recipient divergence time from a distribution, such that all adaptive
introgression scenarios comprise a range of hard and soft sweep settings. As shown in Fig 4,
SURFDAWave is only able to correctly classify sweep simulations in 52.5% of cases, misidenti-
fying them as adaptive introgression 43.2% of the time under the CEU-based simulations with
similar results for YRI. As we saw in Fig 4, this is because when divergence times for donor and
recipient populations are recent, then the signature of adaptive introgression looks more like a
selective sweep. We also compare SURFDA Wave to the classifiers evolBoosting, diplo/SHIC,
and Trendsetter and see that classification results from other methods are similar to SURFDA-
Wave (Fig 4), with correct classification ability decreasing significantly when compared to the
two class problem of distinguishing between sweeps and neutrality. Overall, we find that evol-
Boosting performs better than other methods when differentiating neutrality from selection,
but slightly worse in the classification of sweeps. We also note that all methods seem to perform
more similarly to each other when trained and tested with the YRI demographic history.

To investigate whether the inclusion of other summary statistics, which may better assess
genomic variation, boosts classification accuracy of SURFDA Wave we include an additional
set of summary statistics, specifically adding the mean, variance, skewness, and kurtosis of the
squared correlation coefficient r* [24] calculated between all possible SNPs sampled from each
pair of windows (see Materials and methods). Because visualizing these statistics in square
matrices is informative, we refer to them as two-dimensional statistics, and refer to 7, H;, H;5,
H,/H,, and frequencies of first to fifth most common haplotypes as one-dimensional statistics.
We see that the inclusion of two-dimensional statistics increases the correct classification of
selective sweeps substantially for both populations to 62.5% in CEU and 62.7% in YRI (Fig 4).
The percent of adaptive introgression simulations classified correctly also increased for YRI
going from 64.7% to 68.6%. With the addition of two-dimensional statistics we find that SURF-
DA Wave has the most significant increase in correct classification rates, compared to all other
methods. We can see how the inclusion of the two dimensional statistics affects the model by
directly comparing the reconstructed wavelets across the spatial distributions of the nine sum-
mary statistics included in both models. By examining the coefficients of the two-dimensional
statistics for the model using both types of statistics, we can see that the skewness and kurtosis
of r* are informative in separating neutrality from the other classes (Fig 5 and S12 Fig). Inter-
estingly, the statistic H; is important in separating neutrality from both types of selection in
the model including two-dimensional statistics for the CEU demographic history, but clearly
does not serve this purpose in the model trained with only one-dimensional statistics (S13
and S14 Figs). However, this is not the case when examining the same statistic for YRI demo-
graphic history (S15 and S16 Figs). This may be due to the fact that when different statistics are
included the importance of other statistics in the model is changed.
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specifications. Summary statistics 7, Hy, Hy», Ho/H;, and frequency of the first, second, third, fourth, and fifth most common haplotypes
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divergence times. The black dotted line shows the value of the statistic when the divergence time is shorter (30,000 generations ago) and
the gray line shows the value when the divergence time is longer (400,000 generations ago).

https://doi.org/10.1371/journal.pgen.1008896.9004

Classification with confounding factors

Testing SURFDA Wave on simulations of biological events that might confound classification
is necessary to ensure that it can be applied under diverse empirical scenarios. For this reason
we test classification performance of SURFDA Wave under simulations with extensive missing
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https://doi.org/10.1371/journal.pgen.1008896.9005

data. To simulate missing data as we might find it in genome sequences due to technical issues,
such as alignability and mappability [25], we remove large randomly spaced chunks of the sim-
ulated data (see Materials and methods). We show that missing data does not substantially
affect the performance of SURFDA Wave when classifying neutral simulations with missing
data (Fig 6). We do, however, observe a slight decrease in performance in the classification of
selective sweeps when sweep simulations are missing data, with an increase in the percentage
of sweep simulations missing data being classified as neutral. This robustness to missing data
can be attributed to the types of summary statistics applied and the manner in which they are
calculated using SNP-delimited windows [9]. Another common confounding factor is back-
ground selection, in which deleterious mutations cause a loss of diversity which might be con-
fused for selection signatures [26]. For this reason we test SURFDA Wave’s performance on
background selection, which we simulate based on the distribution of effect sizes and spatial
distribution of coding elements in the human genome, as in refs. [27] and [9] (see Materials
and methods for details). We find that 93.4% and 94.2% of background selection scenarios
under the CEU and YRI demographic histories, respectively, are classified as neutral (Fig 6). In
comparison to other classifiers we notice the performance of SURFDA Wave is comparable to
Trendsetter and diploS/HIC under these background selection scenarios, but that evolBoosting
erroneously classifies background selection as a sweep often (Fig 6). We also notice that while
both Trendsetter and SURFDA Wave tend to conservatively misclassify sweep simulations
missing data as neutral, evolBoosting and diploS/HIC tend to misclassify neutral simulations
missing data as sweeps. The reason for this elevated rate of misclassifying neutral regions miss-
ing data as sweeps is because evolBoosting and diploS/HIC use as input summary statistics
computed in fixed physical length windows by default, meaning that reductions in haplotypic
diversity due to missing data can masquerade as false sweep signatures. However, ref. [9] dem-
onstrated that these issues can be avoided by ensuring that evolBoosting and diploS/HIC are
trained with simulations containing missing data, and so we believe missing data would not be
a major issue for any of the classifiers that we examine.

Along with issues of background selection and missing data, there are also known difficul-
ties with establishing accurate demographic histories of present populations. Similar to the
results shown in ref. [9], we again show that SURFDA Wave loses performance when
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https://doi.org/10.1371/journal.pgen.1008896.9006

demographic specifications are less accurate. With a classifier trained to differentiate between
sweeps and neutrality in CEU European populations, we mis-classify 37.9% of sweep simula-
tions conducted under YRI sub-Saharan African demographic history as neutral. However,
the percentage of neutral YRI simulations classified as neutral increases to 99.1% when tested
with a CEU trained demographic history. In the opposite case, with the classifier trained to
differentiate sweeps from neutrality with simulations of YRI, when we test sweep simulations
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conducted under the CEU demographic history we classify 99.2% correctly, however we mis-
classify simulations of neutrality as sweeps 26.0% of the time (S18 Fig). These mis-classifica-
tions are largely rescued when we train a classifier trained across a diverse set of demographic
histories (S18 Fig), with classification rates for CEU almost reaching classification rates of
when only trained with simulations conducted under the CEU demographic history and a
slight decrease in correct percentages for the YRI history.

We next probe the effect of sample size on classification rates in simulated data (S19 Fig). In
many cases, large sample sizes may be unavailable such as in the case of rare species, like bono-
bos, chimpanzees, and other great apes [28], and for this reason testing SURFDA Wave on a
variety of sample sizes (n = 20, 50, or 200) beyond the n = 100 already considered allows us to
evaluate whether it still has power to distinguish sweeps from neutrality with more uncertainty
in estimates of summary statistics. We observe a slight decrease in classification ability of
SURFDA Wave with a lower sample size of n = 20, but it is still able to classify greater than 90%
of sweeps correctly. Similarly, Trendsetter, diploS/HIC, and evolBoosting also have noticeable
decreases in classification rates when summary statistics are calculated from smaller samples.
For all methods, the greatest increase in correct classification rate tends to stem from a sample
size increase from n = 20 to n = 50.

Although we have designed SURFDA Wave to be used to detect and understand selection
in human populations, we believe its application can be extended to other species. To test
this we apply the SURFDA Wave classifier using simulations conducted under Drosophila
parameters to differentiate between sweeps and neutrality (520 Fig), and include a compari-
son to Trendsetter, diploS/HIC, and evolBoosting. Demographic parameters were based on
the model of ref. [29], and we detail the procedure for simulating training and testing data
under this model in the Materials and Methods section. In a similar pattern to human param-
eters, we see that neutrality is classified correctly more often by all methods than selection,
and the overall correct classification percentages are lower for Drosophila parameters. How-
ever we note that all methods tend to be more conservative when classifying sweeps, often
misclassifying sweeps as neutrality. This is because our simulations of Drosophila are con-
ducted by drawing demographic parameters from posterior distributions of their estimates
[29]. Uncertainty in this distribution make sweeps more difficult to detect as shown by refs.
[30] and [31].

Finally, we test SURFDA Wave to see how it performs under varying recombination rates.
Training and testing with simulations using recombination rate drawn from an exponential
distribution with mean 10~® per site per generation shows results similar to our previous mod-
els (S21 Fig). Results from a model trained and tested with recombination rates drawn ran-
domly from the CEU human recombination map show classification rates for neutrality that
are similar to classification rates from the model using rates drawn from an exponential distri-
bution with mean 3 x 10~ per site per generation, but with lower percentages of sweep simula-
tions classified correctly.

Prediction of selection parameters

Classification of selective sweeps provides a limited understanding of the evolutionary pro-
cesses shaping genomic regions. To gain deeper insight about the underlying adaptive pro-
cesses, we also tested the ability of SURFDA Wave to predict the selection parameters involved
in shaping sweeps. We trained a multi-response linear regression model to jointly learn the
log-scaled initial frequency of the adaptive allele prior to it becoming beneficial, the log-scaled
selection coefficient, and the time at which the mutation becomes beneficial (see Materials and
methods) using demographic specifications for the CEU and YRI populations. We include the
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https://doi.org/10.1371/journal.pgen.1008896.9007

same set of m = 9 summary statistics as used to train the sweep classifier in the preceding sec-
tion, each computed across p = 128 windows. Prediction of initial frequency, selection coeffi-
cient, and time of selection is accurate (S22 Fig) with the root mean squared error (RMSE)
equal to 0.49 for the log-scaled selection coefficient, 0.43 for the log-scaled initial frequency,
and 20.3 for time at which selection began for unstandardized log-scaled selection coefficient,
unstandardized log-scaled initial frequency, and the unscaled and unstandardized time of
selection, respectively (Fig 7). We find that the mean absolute error (MAE) is always lower in
value than the RMSE (S1-S13 Tables). The RMSE for the YRI population is similar to that of
the CEU (S1 and S2 Tables). Visualizing the coefficient functions after regularized regression
conveys that most summary statistics are informative in predicting parameters (523 and 524
Figs), with the exception of the frequency of the most common haplotype, which is flat across
the entire spatial distribution in both models.

To test the influence of confounding factors such as missing data on the prediction model,
we simulate missing data as in the Classification with confounding factors section above. We
find that predicting parameters with missing data increases RMSE slightly (S3 and S4 Tables),
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with standardized RMSE for selection coefficient (s), initial frequency (f), and time of selection
(Tsep) changing from 0.91, 0.98, and 0.67 to 0.93, 1.03, and 0.87 in CEU and from 0.95, 0.96,
and 0.76 to 1.12, 1.11, and 1.21 in YRI, respectively. This results in a percent change in the
RMSE in CEU of 2.2% for s, 5.1% for f, and 29.8% for T. Similarly, for YRI we observe a per-
cent change of 17.8%, 15.5%, and 59.2% for s, f, and T, respectively. We also test robustness
of the SURFADA Wave prediction model to demographic mis-specification, by considering
test simulations performed under CEU demographic specifications with a model trained

with simulations performed under YRI demographic specifications, and vice versa (S5 and S6
Tables). Again, we find that the RMSE increases compared to training and testing with the
same population demographic histories for both experiments, but the RMSE is less than the
error due to missing data with a percent change in s, f, and T for CEU of 3.2, 8.1, and 32.1,
respectively. For YRI, we find respective percent changes of 4.1, 22.9 and 47.4. In order to test
whether it is possible to rescue this decrease in predictive ability because of demographic mis-
specification, we train a model with a mixture of CEU and YRI simulations (S7 Table and S25
Fig). We notice that for most selection parameters our ability to predict is better than when we
mis-specify demography.

We also simulate selective sweeps including background selection, simulated as described
in Classification with confounding factors, with the exception of including a beneficial mutation
in the center of the simulated chromosome. We find that the RMSE values are very close to the
RMSE with no confounding factors (S8 and S9 Tables). Using simulations of differing sample
sizes we test whether the number 7 of haploid genomes sampled influences our ability to pre-
dict selection parameters (510 Table and S25 Fig). We show that there is clearly a decrease in
error as sample size increases. We notice that the selection coefficient s has a more significant
decrease in RMSE between sample sizes of #n = 20 and 50 than between 50 and 200, whereas f
experiences the opposite. In addition, we test two models with differing recombination rates to
see how this type of variation affects our predictions. We find that using a recombination rate
drawn from exponential distribution with mean 10~° per site per generation truncated at three
times the mean has similar results to using recombination rate drawn from exponential distri-
bution with mean 3 x 10 per site per generation truncated at three times the mean (S11
Table and S25 Fig). This is likely because there is substantial overlap between these distribu-
tions. However, using varying recombination rate across simulated genomic segments drawn
from a human empirical recombination map decreases our ability to predict selection parame-
ters (S11 Table and S25 Fig). We notice our ability to predict all these selection parameters,
especially f decreases. Specifically, our ability to predict f decreases by 6%. Finally, we test how
selection parameter prediction would be affected if we tested with parameters that are not
included in the training parameter range (S12 Table and S25 Fig). We test models trained
under f € [1/(2N), 0.1] with test simulations for which f € [0.1, 0.2], such that starting allele fre-
quency for sweeps is completely outside the distribution of the training data. Under this set-
ting, we see that not only is the error for finflated substantially, but for the other selection
parameters as well.

In addition to being able to predict the selection parameters responsible for shaping classi-
cal selective sweeps, we also probed whether SURFDA Wave could predict selection parameters
important in shaping sweeps due to adaptive introgression. An interesting parameter specific
to adaptive introgression is the time at which the donor and recipient populations diverged.
Instead of predicting the time at which a mutation became beneficial, as we show above in Pre-
diction of selection parameter, we train models to predict the donor-recipient split time, along
with the selection strength and initial frequency of the mutation before it became beneficial
(S13 Table and S26 Fig). The RMSE values for the selection strength and time of selection are
similar to the values predicted for regular selective sweeps (S1 Table).
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Application to empirical data

Using variant calls in the CEU and YRI populations from the 1000 Genomes dataset [32],
SURFDAwave recapitulated many of the classical sweep candidates observed by other studies,
and moreover classified the vast majority of the CEU and YRI genomes as neutral (S14 and
S15 Tables), with a greater percentage of the YRI genome being classified as neutral than the
CEU genome. This is the result of a combination of factors, including our classifiers reduced
ability to distinguish sweeps from neutrality in populations with complex demographic histo-
ries, such as the CEU population (see Classification of selective sweeps). To make our method
more conservative, we applied a probability threshold for selective sweeps. If the probability of
a selective sweep is less than or equal to 0.7, then we consider this region to be neutral. S27 Fig
shows that the SURFDA Wave classifier predicts probability distributions close to actual proba-
bility distributions, which validates our use of a probability threshold. In addition, we believe
our use of balanced training data with an equal number of simulations for each class contrib-
utes to the calibrated classifiers. Among the genes classified as selective sweeps in the CEU
population, we found LCT, OCA2, and SLC45A2, which were previously hypothesized as
targets of selection [33, 34, 35, 36] (Fig 8). In the YRI population we classify the genes SYT1,
HEMGN, GRIK5, and NNT as under positive selection, recapitulating the work of refs. [37],
[38], and [39] (Fig 8). In addition, we also compute the proportion of shared sweeps between
these populations by calculating the proportion of non-overlapping 10 kb segments that were
classified as sweeps in YRI, that are also classified as sweeps in CEU, as well as the opposite
[protocol as in 9]. We find that 21% of sweeps classified as such in CEU are also classified as
sweep in YRI. Similarly, we find 19% percent of sweep classifications in YRI are shared by
CEU.

As we have already trained models to jointly predict the selection strength, the time at
which the mutation became beneficial, and the frequency of the adaptive mutation before
becoming beneficial, we next use all of the human genome regions classified as sweeps to learn
about the underlying parameters shaping variation at these candidates. We first examined
OCA2, a gene that is involved in eye coloration [40, 41, 42], and predicted that the time at
which a mutation on this gene became beneficial was 1,802 generations ago, and that the bene-
ficial mutation had a selection strength of s = 0.06 and an initial frequency of f= 0.02. This pre-
diction is made on the set of statistics classified as sweep with the highest probability in the
region containing the gene OCA2 with 0.978 probability. Using a generation time of 29 years
for humans, implies the mutation became beneficial about 52,258 years ago, a time during
which modern humans were relatively new to Europe [43]. SLC45A2, another gene involved
in pigmentation [44], harbors a test window with a sweep probability of 0.694 and the pre-
dicted selection strength, initial frequency, and selection time are s = 0.04, f= 0.02, and 2,000
generations ago, respectively. In the YRI population we predict that a mutation on HEMGN, a
gene that regulates the development of blood cells [45], first became beneficial 1,960 genera-
tions ago and has a selection coefficient of s = 0.03 and frequency at which it became beneficial
of f=0.016. We predict that the selective sweep occurring on the region around SYT1, muta-
tions on which are associated with neurodevelopmental disorders [46], began 2,260 genera-
tions ago with a selection coefficient of s = 0.04 and an initial frequency of f = 0.02.

In the list of 444 genes in YRI classified as sweep with probability greater than or equal to
0.7, we examine the range of predictions for each parameter and the genes predicted to have
selection parameters at the fringes of each range. For each gene, we only include the prediction
for the feature vector where the predicted probability of classification as sweep is the highest
within that gene. We find that the gene with the minimum selection coefficient within this list
is HCG23, with an inferred coefficient of s = 0.018. We inferred that a sweep initiated on this
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https://doi.org/10.1371/journal.pgen.1008896.9008

gene 1,259 generations ago when the initial frequency of the beneficial mutation was f= 0.017.
The highest probability of this gene being classified as a sweep is 0.986. We also predict that
the gene with the highest initial frequency also had the most recent sweep initiation time. This
gene, STPG2 (Sperm-tail PG rich repeat containing protein 2), is highly expressed in the testis
[47], and we predict that this had a mutation reach a frequency of f = 0.039 about 666 genera-
tions ago, at which point it was predicted to become beneficial.
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In a similar examination of the CEU population, we find 2,265 genes are classified as sweep
with a probability greater than 0.7. The oldest selection time we predict (2,922 generations or
84,738 years, with a generation time of 29 years) occurred on VPS35, a gene on which muta-
tions are associated with Parkinson’s Disease [48]. We infer that strong selection (s = 0.05)
began on this gene when a selected mutation reached a frequency of f= 0.016. HLA-DRBI
plays an important role in the immune system and has been previously predicted to be under
balancing selection [49]. We find that this gene has the highest inferred selection coefficient of
s=0.14 and lowest inferred initial frequency of f = 0.004 out of our set of genes for the CEU.
This may be indicative of a mutation around this region becoming immediately beneficial
after it occurred, which we predict was about 1,718 generations ago.

We compare the distributions of selection parameters for the sets of likely selected genes
discussed above. In 528 Fig, we can see that while some genes are predicted to have more
recent times of selection, most are predicted to have a time of selection greater than 2000 gen-
erations ago in both populations. Among the more recent sweeps, we also find a greater range
of predicted initial frequencies than those genes that were predicted to have an earlier selection
start time. Overall, the distributions for predicted parameters in both populations overlap
extensively for all selection parameters (Fig 7). We also observe that SURFDA Wave’s predic-
tion of the initial frequency (f) is not dependent on the probability of a sweep (529 Fig), but as
the probability of sweep increases SURFDA Wave is are more likely to predict stronger selec-
tion coefficients (s) and slightly more recent selection start times.

Finally, we apply the classification and prediction models to locate adaptive introgression
and learn the adaptive introgression parameters. We find that regardless of the types of statis-
tics used, we classify the majority of the genome as neutral, and classify more of the genome as
sweep than as adaptive introgression (S16-S19 Tables). Importantly, we find that we are able
to recapitulate signals of previously-identified regions of adaptive introgression in the CEU
population with SURFDA Wave, such as BNC2 [50, 51] and APOL4 [4] (S30 Fig). BNC2 is
another gene thought to play a role in human skin color determination [52], whereas the gene
APOLA4 is significantly up-regulated in people diagnosed with schizophrenia [53]. By applying
the SURFDA Wave prediction models to the summary statistic computed at these genes, we
estimate that the beneficial mutation in APOL4 reached an initial frequency of f = 0.05 and
had a selection strength of s = 0.01, with the donor and recipient populations splitting 19,760
generations, or about 573,000 years, ago (using a generation time of 29 years). We also estimate
that the selection strength on the BNC2 gene is stronger and harder than the signature on
APOL4, with s = 0.04 and f= 0.01. Moreover, the predicted donor and recipient split time of
20,180 generations (585,220 years) ago from variation at BNC2 is similar to the estimate from
APOLA4.

Discussion

In this article, we demonstrated that SURFDA Wave is able to locate selective sweeps, and also
predict selection parameters responsible for shaping those sweeps. Moreover, we showed that
SURFDA Wave is capable of differentiating between sweeps and neutrality, and is also able to
accurately predict the time at which the selected mutation became beneficial, the frequency a
mutation reached before becoming beneficial, and the selection coefficient. In addition, using
image-based feature vectors increased our ability to differentiate among neutrality, adaptive
introgression, and sweeps. We were able to recapitulate earlier findings by predicting genes as
adaptive that were previously hypothesized to be under positive selection.

Our results show that capturing the spatial distribution of selective sweeps is informative
for identifying and differentiating between different types of adaptive regions and learning
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about the evolutionary parameters that shape them. Differentiating between the loss of diver-
sity resulting in adaptive introgression compared to selective sweeps requires a method to
learn the wave-like pattern formed by each, the most informative portion of which will be the
difference between the crest and trough regions. Moreover, our SURFDA Wave approach is
not restricted to application on adaptive introgression and selective sweep scenarios, and can
be implemented for probing genomic variation of other evolutionary processes that leave a
spatial or temporal signature in genomic data. Such examples include the identification of
genomic targets of balancing selection [e.g., 54, 55, 56, 57, 58, 59], complex forms of adaptation
such as staggered selective sweeps [60] that have yet to be interrogated for in genomic data,
and non-adaptive processes such as recombination rate estimation [e.g., 8, 7, 61].

There are a number of potential applications of our methodological framework. For one, it
is possible to naturally extend SURFDA Wave to incorporate genomic data from ancient sam-
ples, and several recent studies have employed ancient DNA to directly examine temporal
allele frequency fluctuations to identify positively-selected loci [e.g., 62, 63, 14, 64, 65, 66].
SURFDAWave’s framework would allow examination of changes in the spatial distribution of
genetic diversity over time by incorporating information from ancient genomes of a single
population at various time points throughout history, and summarizing patterns of variation
using two-dimensional wavelet bases. However, a specific limitation of the implementation of
SURFDAWave as we describe it here is that, for each dimension, its application is restricted to
using feature vectors of length p in which log,(p) is a non-negative integer. We acknowledge
that this constraint may make it difficult for SURFDA Wave to be widely applied, especially
when incorporating information from ancient DNA. Though we choose to use wavelets in our
implementation, other basis functions that do not have such limitations on numbers of fea-
tures, such as B-spline and polynomial basis functions [11], can be used instead. However,
unlike wavelets, these bases do not form orthonormal basis functions, and using them results
in more complicated functional regression models.

Along with SURFDA Wave’s flexibility in terms of classification problems, we also demon-
strated that this framework can be adapted to predict different selection parameters. Our
results suggest that SURFDA Wave can predict split time of the donor and recipient popula-
tions (526 Fig). It is possible, however, that introgression patterns in species in which donor
and recipient populations have greater divergence times would leave a more prominent foot-
print (i.e., a larger difference between the crest and trough positions), and allow better predic-
tions of their divergence time to be made (Fig 4).

We observe several interesting patterns in our results that may point to potential limitations
of SURFDA Wave. In Fig 7 we see that our prediction of initial frequencies for both the CEU
and YRI fall within the range 0.01 to 0.03. Because we are limiting our analysis to sweeps classi-
fied with a probability greater than 0.7, we believe this range of initial frequencies is likely
most detectable as a sweep. In addition, though there is evidence that hard sweeps are rare in
human populations [67], it is difficult with SURFDA Wave to predict an initial frequency
resulting in a hard sweep from a de novo mutation because such sweeps are the result of an ini-
tial frequency of 1/(2N). This frequency is at the boundary of the distribution of our training
data. Moreover, the definition of hard sweep may also differ among situations and between
research groups. For example, a single beneficial mutation increasing in frequency does so
along with a genetic background, and in populations with low diversity with similar genetic
backgrounds it may be possible to observe hard sweeps of a single genomic background at
high frequency even if the beneficial allele was selected when it was at a frequency greater than
1/(2N). Furthermore, the difference in genomic footprints between sweeps resulting from ini-
tial frequency 1/(2N) and those from frequency x/(2N) for small x € {2, 3, .. .}, may be difficult
to observe due to the hardening of soft sweeps phenomenon [68, 31]. For these reasons, we
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believe that sweeps lie on a continuum of softness, and predicting the initial frequency of a
sweep provides value beyond discrete classification of a sweep as hard or soft. Other evolution-
ary processes such as gene conversion, may also influence linkage disequilibrium patterns and
potentially affect our parameter inference [69]. However, gene conversion tracts are usually
short, and because SURFDA Wave examines a long physical genomic region we believe these
inferences should be minimally affected [69].

Another potential limitation of SURFDA Wave is that it does not make use of donor genome
information in the case of classification for adaptive introgression. Though genome sequences
exist for Neanderthal and Denisova, there are many cases in which such data does not, and
may never exist [70, 71]. One such example is introgression in African populations. Environ-
mental conditions in the continent could mean a reference genome for the donor population
may never be possible [72]. For this reason we designed SURFDA Wave to be flexible and allow
applications for which donor reference data does not exist. However, recent methods have
been developed to identify introgressed regions without the requirement of a reference
genome [73, 74], making it possible to narrow the locations of adaptive introgression to
introgressed regions identified by other methods. Because genome sequence information for
African donor archaic populations does not exist [75], we cannot infer parameters such as
divergence times with modern humans. However, this information does exist in the case of
Neanderthal introgression with non-African populations, and incorporating it will reduce
uncertainty in simulation parameters used to train models leading to improved classification
and predictions. Estimation of parameters such as divergence time between donor and target
populations, time of admixture, admixture fraction from the donor, and population size of the
donor can be improved if donor reference genome sequence data exists. In addition, recent
methods estimating some of these parameters without reference data for donor populations
introgressing into Africans can also be used to make simulations for these cases more realistic
and narrow down the parameter range for which simulated replicates are drawn [76]. Estimat-
ing these parameters using SURFDA Wave trained across a range may also provide information
about potential donor populations given archaeological and anthropological knowledge about
populations given their geographical ranges.

In addition, SURFDA Wave is currently designed to detect and analyze putative selected
regions using information from a single population. However, incorporating multiple popula-
tions would likely provide greater power to not only detect selection, but predict selection
parameters as well [77, 78]. Including other populations allows the use of statistics such as
XP-EHH that can identify selected loci by looking at population differentiation [79]. In addi-
tion, likelihood methods modeling differentiation between populations find that including an
additional population allows better localization of the beneficial mutation as well as yields
higher detection power [80]. Though we have demonstrated the utility of employing wavelets
in a statistical learning framework to detect selected loci and predict selection parameters,
SURFDA Wave along with other machine learning approaches [e.g., 19, 81, 82, 6, 9] could
be made more powerful by employing summary statistics that examine diversity within and
differentiation among multiple populations jointly [e.g., 77]. Specifically, the application to dis-
tinguishing scenarios of adaptive introgression and non-introgression sweeps may benefit sub-
stantially by using information from other populations such as with the S$* statistic [83, 84, 85,
51] and other multi-population measures [86, 87, 88].

Both sweeps and adaptive introgression result in a decrease of haplotypic diversity (and
increase in haplotype similarity) surrounding the beneficial mutation. In soft sweeps this
decrease is less dramatic than in hard sweeps, making the spatial distribution of diversity in
soft sweeps potentially appear more like that of adaptive introgression. For this reason, it is
imperative to utilize summary statistics that capture the sometimes subtle differences between
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these two evolutionary mechanisms. Specifically adaptive introgression leads to a decrease in
mean pairwise sequence difference below the neutral baseline nearby the selected locus, fol-
lowed by increase above the neutral baseline (or rest position) at moderate distances (“adaptive
ridges”) forming the crest of the wave, and then a relaxation to the neutral baseline levels far
from the site under selection [4, and as demonstrated in Fig 4]. In contrast, hard sweeps do
not display this increase in nucleotide diversity at moderate distances from the selected locus,
and soft sweeps do not substantially alter the site frequency spectrum [89] and therefore the
mean pairwise sequence difference, which is a summary of this spectrum. Moreover, ref. [4]
shows that their method for detecting adaptive introgression from distortions in the site fre-
quency spectrum has the ability to uncover soft adaptive introgression sweeps from multiple
introgressed haplotypes, demonstrating that there is even a difference in the spatial signature
of nucleotide diversity for soft sweeps and soft introgression sweeps. Indeed, the authors note
that both hard and soft introgression sweeps leave more similar genomic footprints to each
other than do non-introgression hard and soft sweeps, with both modes of introgression
sweeps displaying the crests and troughs of nucleotide diversity characteristic of adaptive
introgression. As we notice a substantial increase in differentiation between sweeps and adap-
tive introgression when including the mean, variance, skewness, and kurtosis of the squared
correlation coefficient (%) of pairwise windows (Fig 4), we believe these statics might also be
capturing some of these signatures, such as the “adaptive ridges” observed in Fig 4. Other sta-
tistics, such as ones that assess sequence differences between the top two most-frequent haplo-
type may aid in distinguishing between soft sweeps and adaptive introgression, for which there
may be similar haplotype distributions, but with likely greater haplotype divergence between
the most frequent haplotypes under adaptive introgression [86, 90].

We show how incorporating different types of features, specifically two-dimensional statis-
tics, such as the 7 measured in pairwise windows mentioned above, improves the classification
ability of SURFDA Wave (Fig 4). Several recent innovative approaches have explored the use of
image-based or two-dimensional features to predict population-genetic processes. For exam-
ple, ref. [7] uses the derived or ancestral states from population simulation data directly rather
than extracting information from these simulations through the use of summary statistics, and
convert this information to images. This raw information can also be converted into wavelet
data prior using it as a feature in classification or prediction models. Along with the flexibility
that SURFDA Wave provides in terms of feature input (e.g., one- or two-dimensional statistics),
other potential enhancements may increase its prediction and classification accuracy. In our
application we assume a linear model. However, it is possible that a linear model is not an
accurate representation, and instead employing a more flexible model would enhance our pre-
dictions if the actual relationship is non-linear. Therefore, using non-linear model such as a
neural network with at least one hidden layer [91, 92] in place of simple linear and logistic
regression models may be able to improve the performance of SURFDA Wave. An implemen-
tation of SURFDA Wave along with results for genome wide scans for sweeps discussed in this
article can be downloaded from http://degiorgiogroup.fau.edu/surfdawave.html.

Materials and methods
Wavelet estimation of summary statistic spatial distribution

Consider a sample of n training examples, in which m summary statistics are computed at p
positions along a genomic region. Let X;; = [Xj5 1, X525 - - - Xiys,p) T denote the vector of values
for summary statistic s, s = 1, 2, .. ., m, for training example i, i = 1, 2, . . ., n calculated at each
of the p positions in a genomic region, where x;; is the value of the summary statistic at
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T
im

position t;, j=1,2, ..., p. For convenience, define the vector x, = [x/,, x”. ]" contain-

S <
i1 X2 )
ing the values of each of the m summary statistics calculated at the p positions.
Each vector of summary of summary statistics x; ; is the result of some unknown function
fi.(t) defined on genomic position t. The relationship between the function and the summary

statistic data points can be represented as
Xisj :fi,s(tj) + €

where f; (t)) is the function f; () evaluated at position #; of summary statistics s in observation
i, and where €;;; is an error term associated with observation i that is normally distributed
with mean zero and standard deviation one. As in ref. [11], we can approximate this function
f:.s(t) as alinear combination of a set of B orthonormal basis functions {¢;(#), (1), . . ., ¢p(t)}
as

f(t) = Zci,s,b%(t),

where ¢; 1, b=1,2, ..., B, denotes the coefficient of the bth basis function ¢,(f) associated
with summary statistic s of observation i. Note by definition of the B basis functions being
orthonormal, we have

/ g, ()"t = 1
forb=1,2,...,Band
/ 2.()g,(1)dt = 0

for a # b [93]. Orthonormal basis functions commonly used in functional data analysis
include wavelets [94] and the Fourier functions [11]. The number B of basis functions is a
parameter, and is chosen through cross validation. Basis functions are independent functions
that can be combined to approximate more complex functions.

Here we choose to use wavelets as our basis function in part because of their ability to
capture information at different resolutions or “detail levels”. Each of these detail levels are
captured through combinations of pairs of wavelets termed “mother” and “father” wavelet
functions, the breakdown of which is illustrated with an example in Fig 1. The father wavelet
function is often referred to as the scaling function, while the mother wavelet function is often
called the wavelet function. Each of these wavelet functions captures a different aspect of the
data, the father captures “low-frequency” signals, while the mother captures more detailed or
“high-frequency” trends [95]. For the purpose of simplicity we discuss the use of Haar wavelets
for illustration, however the process differs for other wavelets. We provide a mathematical
treatment for Haar wavelets and reference for the mathematical form of Daubechies’ least-
asymmetric wavelets below. For Haar wavelets, a feature vector with p = 2/ features undergoes
discrete wavelet transformation through subsequent pairwise addition (for father wavelet coef-
ficients) and subtraction (for mother wavelet coefficients). The process of discrete wavelet
transform begins at the most detailed level (level ] — 1) and proceeds until the coarsest detail
level (level zero). For each round of transformation, the number of coefficients is half the
number in the previous level. This process continues until the number of coefficients is one.
These coefficients can then be used as inputs for the wavelet basis functions. The Haar wavelet
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functions are

1 0<t<1/2
y(t)=¢ -1 1/2<t<1
0 otherwise,

for the mother wavelet function and

1 0<t<1
-]

0 otherwise,

for the father wavelet function. For other wavelet types, these functions will differ. For each
detail level (or scale) j and location k, k € {0, 1, . . ., 2/ — 1} where location is the wavelet number
per level, we can respectively define the mother and father wavelet basis functions as

V() = 272927t — k),
and
G(t) = 27°¢(27t — k).

The functions for Daubechies’ least-asymmetric wavelets are more complex and can be exam-
ined in ref. [96]. Here we approximate the function f; () using wavelets at a detail level of j,
[97] as

200 —1 —1 2-1

ﬁ>5J()(t) - Z Cisjo kP k + szlflklplk

k=0 Jj=jo k=0

where ] = log,(p) is the number of detail levels, ¢; () and y;x(¢) are the the father and mother
wavelet basis functions at scale j and location k, respectively, and c;x and d;x are the coeffi-
cients for the father and mother wavelets at scale j and location k for summary statistic s in
observation i. Note that the father and mother wavelet bases form an orthonormal basis [93].
Moreover, regardless of the chosen detail level jo, the number of distinct wavelet coefficients

and bases used to compute f, ; is 2, as

201 —12-1

21 + 221 =2 4 sz

j=jo k=0 Jj=io

jo—1

= 9 4 ZQJ ZQJ

1=2" 1—2b
— 9 _
* 1-2 1-2
=9
where we used the identity for geometric series [98]
n—1 _ rn
Zarj =a
— 1—r

for real constants a and r, r # 1.
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Penalized functional multinomial regression to classify genomic regions

After approximating functions f (t) of each summary statistic s in observation i at detail

i,:jo
level jo, we then use these functions (i.e., their associated coefficients) as the independent vari-
ables to model multinomial regression. Denote the vector of length p = 2/ containing estimated

father and mother basis coefficients for summary statistics s in observation i at detail level j, as

R R ~ T
giﬁs.jo = [Ci,s,jﬂ,N s Cisjgio 1) diﬁs,joﬁm e 7dz:,s,/714,21*171]

Furthermore, define the concatenated vector of length m x p of such coefficients across all m
summary statistics for observation i by

T T T 1T
gi.jo = [gi.l‘jo’ 513,2.]'07 s 7§i.mJo] :

As in ref. [99], we model

(&)
P[)’i =k | ‘fi.'a] —_—
! Z! 1 (él}())
where
’7/)(51',]‘0) :O!/+Z/ ﬁ(’s 1510 )
m 200 —1 tp 12-1
:aé+z Zczsm / ﬂés(t) jo.k dt"‘ZZd;s]k/ ﬁ[s jk dt
s=1 L k= h Jj=jo k=0

for£=1,2, ..., K This is similar to other multinomial regression models, with the the caveat
that we replaced the summation with an integration across the interval [t,, ¢,] for position .
Here i is the index for the observation number, y; is the categorical response variable with val-
ues y; = forclass ¢, for € =1,2, ..., K, o, is the intercept parameter for class ¢, and B, (¢) is the
function for summary statistic s of class .

To learn the functions f,(t), we can note that we may also approximate them with the
same set of basis functions as we did for approximating f; ((¢). That is, we can approximate the
function S, (f) using wavelets at a detail level of j; as

200 —1 —1 2-1

§ § § %
ﬁfsm c/s](]k jo.k + d(s]klp}k

k=0 Jj=io k=0

where ¢; ;, and dj;, are the coefficients for the father and mother wavelets at scale j and loca-

tion k for summary statistic s in class £. Denote the vector of length p = 2/ containing father
and mother basis coefficients for summary statistic s for class £ at detail level j; as

d*

]T
ls)—12-1-1

— ko * k3
Cé’,&ja = [C/Z.s,jo,l’ s 761(75)]40)210 -1 de.s.jo,m AR )

and further define the concatenated vector of length m x p of such coefficients across all m
summary statistics for class € by

T T T 4T
Cuip = Longyr Cozsr 2 Coma]

Plugging in this approximation, and using the orthnormality of the set of basis functions, we
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obtain
—1 2-1
’11’( ’Jl) OC(’+Z szUk Zs]()k+zzd151k U5k
s=1 j=jo k=0
T
=o+ gi-io CfJn
which yields
Pl = k|, ) = <22 F Sl
i ij - K T °
3 explo, + 51',10 C@},]
Let & = [ay, @, . . ., ax]” denote the vector of intercept terms for each of the K classes and

define the matrix Z; containing m X p rows and K columns by
o [Cl-jo’ CZJD’ te ’CK-I'D]'

The log likelihood of observing the set of model parameters {a, Z; } given the collection of

data points {y;,§;; }" is

10g£(“7 i {)/175110}, 1 EZIOgP[y |§l]0 l{y, k}

i=1 k=1
K
T T
- _Z Z %+ §i<jockJ0)l{Yi:k} — log (ZCXP{OC[ + 5ll}'ncf-]’0}>‘| ’
i=1 | k=1 (=1

where 1;,;=k} is an indicator random variable that takes the values one if y; = k and zero
otherwise.
From this likelihood function, we wish to estimate the intercept terms & and the coefficients

Z, . Define & as an estimate of @ and Z}.ﬂ an estimate of Z; . Moreover, as our model is over-
parameterized, we need to maximize a penalized log likelihood function. Denoting ||-||; and
|I]|2 as the £; and ¢, norms, respectively, define

K

PEN,(Z,) = > (018, Il + (1 =), )
=1
m 200 —1 12-1
553 [Z(/%,OA =06 0”) + S5 (Ml + (1= () )]
(=1 s=1 k=0 j=jg k=0

to be the elastic-net penalty [23] controlled by parameter y € [0, 1] on the coefficients for the
basis functions of the regression coefficient functions, and let A denote a tuning parameter
associated with this penalty. A value of y = 0 leads to the standard ridge regression penalty,
and y = 1 leads to the lasso penalty. We can therefore estimate the coefficient functions as
T arg max
(a ZJo )\’ /) = a.Z. .\ y [logﬁ( > o2 {yl’ g’]o} ) APEN, ( Jn)}

To perform this estimation, we first learn the underlying functions f; ((¢) based on orthonormal

wavelet basis functions at detail level jo, yielding the estimated set of coefficients {& o }Ll and
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hence estimated functions

20-1 —1 29—

fifs.ju(t) = ’510" Jook + szwkw}k

k= j=jo k=0

These basis function coefficients are then employed as input covariates to the penalized regres-
sion model, for which ten-fold cross validation is used to estimate the tuning parameter A, the
tuning parameter y controlling the elastic-net penalty, and associated parameters @ and Z, .

This process is repeated for different detail levels jo =0, 1, ..., ] — 1 to estimate the j, that mini-
mizes the ten-fold cross validation error, and the best fitting values of regression model param-

eters & and 2;‘0 are estimated. These estimates lead to a classifier for future input data, as well

as learned functions

200 —1 —1 2-1

ﬁkes-ju (t) = ZE;JO-I‘ Jook + sz”] klp}k
k=0 j=jo k=0
for summary statistics,s=1,2,...,m,inclass k, k = 1, 2, .. ., K. After parameter inference, the
most likely class k is estimated as
arg max exp[a, + &7 ()]

I;:

ke{l,2,. K} expla, +&0 ¢, ]

In addition, the probability of each class k can be determined by removing the arg max portion
of the equation as

A explo, +ET (.
P(k) =— P[ k . 5l~Jof:71f~JoA] ,
> i exple, + gi,j(]cf.jn]

which will allow us to use this probability to determine the weight of the classification and use
probability thresholds to increase confidence in our results.

Penalized functional linear regression to infer evolutionary parameters

Once identifying the most likely class k, we then estimate the underlying evolutionary parame-
ters o = [07, 0%, . . ., 0] T that gave rise to patterns within the genomic region provided that it
was estimated to be non-neutral, where 0y, 0, . . ., 0, represent the g evolutionary parameters

we are estimating for class k.

Consider again the approximated functions f (t) of each summary statistic s in observa-

02540
tion i at detail level jo. We will use these functions (and as in the preceding section, their associ-

ated coefficients) as the independent variables to model multivariate linear regression as

m tP R
Oy =0+ Z / ﬂz,s(t)fi,sjo(t)dt + €y
s=1 Jt

-1 21 t
=% + Z Exs]“ / ﬁ[s JU dt + szzsjk / ﬁ&s(t)lpj,k(t)dt + ei,/
s=1 | k=0 =i k= h
for¢=1,2,...,q. Hereiis the index for the observation number, g; , is the response value

for evolutionary parameter o, of observation i, ¢, is the intercept for evolutionary parameter
0p, Be,s(t) is the function for summary statistic s of evolutionary parameter gy, and ¢; , is the
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error associated with observation i of evolutionary parameter g,. Moreover, define the vector
of length g containing the evolutionary parameters that generated observation i by

T
o, = [a,.‘l,(ru., .. .,O’i‘q] .

As in the preceding section, to learn the functions 3, (f) we can approximate them using
wavelets at a detail level of j, as

200 —1 —12-1
%
ﬁfsm E Cés]Uk Jo-k +§ :§ :dés]klpjk
k=0 j=io k=0

where ¢; ;, and dj ;, are the coefficients for the father and mother wavelets at scale j and loca-

tion k for summary statistic s of evolutionary parameter o,. Denote the vector of length p = 2/
containing father and mother basis coefficients for summary statistics s for evolutionary
parameter o, at detail level j, as

é' = [C* C* ) % x ]T
Lo L1777 00 Tl 200 10 Plsijo,00 1 Pls -1 -1-1) o

and further define the concatenated vector of length m x p of such coefficients across all m
summary statistics for evolutionary parameter o, by

T T T T
Cf-jo = [Cf’JJU’ C“:ZJU’ T ’CZ‘W‘JU] !

Plugging in this approximation, and using the orthonormality of the set of basis functions, we

obtain
m 200 -1 -1 2/-1
ai,/ﬁ —O(/+§ E Czs]nkcésjuk—'_z :E dis]k Ls,jk
s=1 Jj=jo k=0

T
=+ gi-jo é/[ido + €

Leta = [a), a, .. ., o) T denote the vector of intercept terms for each of the g evolutionary
parameters and define the matrix Z; containing m x p rows and g columns by

o [é’l-j()’ 52-1'0’ o ’C%jn}'

The loss function of the collection of data points {c;, &

{a, Zjo} is

. }"  given the set of model parameters
Jo 2 i=1

q n

LaZjU ({o-iﬁéi,jo}:‘:]) = ZZ(GLK — 0= 52()52J0)2~

(=1 i=1

From this loss function, we wish to estimate the intercept terms & and the coefficients Z; .

Define & as an estimate of & and 2].0 as an estimate of Z; . Similarly to the previous section,

define

q

PEN«;(ZJ‘O) = Z(V”gﬁjo‘ll +(1 - V)HCMOHE)

=1
m [20—1 —19-1
* 2
—ZZ Z(/‘C/,swk|+(1_? Cmmk ) +ZZ(V|d/SJk|+ 7( /sj,k) )
=1 =1 | k= j=jo k=

to be the elastic-net penalty [23] controlled by parameter ¥ € [0, 1] on the coefficients for the
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basis functions of the regression coefficient functions, and let A denote a tuning parameter
associated with this penalty. We can therefore estimate the coefficient functions as

PSP arg min

(@2, 09) = 7 0 (L, (10,617 + APEN, (2, )]
) ]07 b

As in preceding section, we perform this estimation, we first learn the underlying functions
fi.(t) based on orthonormal wavelet basis functions at detail level j,, yielding the estimated set
of coefficients {£, io }:,1:1 and hence estimated functions f isj, (£)- These basis function coeffi-
cients are then input as covariates to the penalized regression model, for which ten-fold cross
validation is used to estimate the tuning parameter A, the tuning parameter y controlling the
elastic-net penalty, and associated parameters & and Z; . This process is repeated for different
detail levels jo=0, 1, ..., ] — 1 to estimate the j, that minimizes the ten-fold cross validation
error, and the best fitting values of regression model parameters & and Z j, are estimated.
These estimates lead to an estimator for the g underlying evolutionary parameters for future
input data, as well as learned functions 3 1, (f) for summary statistic s, s = 1,2, ..., m of evolu-

tionary parameter o, £ =1, 2, . . ., q. After parameter inference, evolutionary parameter o, is
estimated as

A _ A AT p
0, =0+ gi,joéfju'

Training the models

For the ten-fold cross validation procedure, we split our training data into ten balanced sub-
sets and supply values of the elastic net parameter (y) we are interested in exploring, with
those values being ¥ € {0.0, 0.1, 0.2, .. ., 1.0}. For each pair of y parameter and detail (scale)
level jo (jo €10, 1, ..., J — 1}) combinations, we train a model with 90% of the data and vali-
date with the remaining 10%, iterating through each fold, while keeping count of the per-
centage of correct classifications for each combination. Conditional on ¥, the glmnet [100]
software that we employ to train elastic net models performs an automatic search across the
space of regularization tuning parameter (1) to identify the optimal value. When all level (jo)
and y combinations have been tested (each associated with an optimal regularization param-
eter A) we finally choose the model with the highest percentage of correct classifications, and
train a final model using the entire training dataset for these parameters.

Calculating summary statistics

Informative summary statistics are likely the most important aspect of developing prediction
models. In this manuscript we discuss the use of several sets of summary statistics. For our ini-
tial comparison, we utilize a similar set of summary statistics as discussed in ref. [9] including
the mean pairwise sequence difference (%), Hy, Hy», and H,/H;. As shown in ref. [9] * was not
informative for classification rates, and for this reason, we omit +* as applied in [9] from our
model. Moreover, ref. [9] found that haplotype-based statistics were often more informative
than site frequency-based statistics, and for this reason we include the frequencies of the first,
second, third, fourth, and fifth most common haplotypes. We also removed all sites with
minor allele count less than three because this dramatically reduced the differences between
simulated and empirical site frequency spectra (S31 Fig). To keep our performance evaluation
consistent with the empirical assessment, we also removed these sites for tests with simulations
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of a constant-size demographic history, although models trained with these simulations were
not applied to empirical data.

We calculated each of these m = 9 summary statistics in p genomic windows across the
region of interest, where each window consists of 10 SNPs and overlaps with its neighbors for
five SNPs, as shown in S33 Fig. Using SNP-based windows, rather than windows based on
physical length has made our method more conservative in classification problems [101, 9].
Because wavelet transformation requires that the number of observations p be a power of two,
we investigated p = 128, leading to 645 SNPs overall used for classification of a genomic region.
The classified SNP is the SNP that falls in center of the overlap of windows p/2 and p/2 + 1,
and is taken as the putative location of the site under selection. A schematic illustrating how
summary statistics are calculated in SURFDA Wave is given in S33 Fig.

We also explore the use of other statistics that may better differentiate more complex types
of selection, such as the set of mean values of r* between each window pair. Each one-dimen-
sional statistic (i.e., T, Hy, Hi,, Hy/Hy, and the frequencies of first to fifth most common haplo-
types) is computed using p = 128 overlapping windows, of which 64 are non-overlapping.
Because the 7 statistic calculated between each pair of windows is more time consuming to
compute than the one-dimensional statistics, we only compute the 7* statistic between the
p = 64 non-overlapping 10-SNP windows, for a total of 64 x (64 + 1)/2 = 2, 080 pairwise r°
computations across the set of 64 non-overlapping windows. In addition to the mean of 7%, we
also use the set of values for the variance, skewness, and kurtosis of 7> computed at each win-
dow pair, with an additional 2,080 pairwise computations for each of these statistics.

Simulations to test method performance

We designed SURFDA Wave to learn about adaptation in human populations, so for this rea-
son we focus our simulations on human based parameters. All simulation results use the soft-
ware SLiM [21]. We use demographic estimates from ref. [20] to model the bottlenecks and
expansions experienced by human populations. In addition we also simulate a constant-size
demographic history with an effective population size of N = 10* [102] diploid individuals. For
all demographic histories we use a mutation rate of 1.25 x 10~° per site per generation [22] and
recombination rate drawn from an exponential distribution with mean 3 x 10~ per site per
generation [20] and truncated at three times the mean [27] to simulate genomic regions of
length two Mb. In addition, we include for comparison two varying recombination rate sce-
narios, one in which we use a recombination rate drawn from an exponential distribution with
mean 10~° per site per generation, and truncated at three times the mean [27], and another in
which we draw recombination rate from a human recombination map [103]. Specifically, we
randomly draw two Mb regions from a CEU-based recombination map and use the rate and
location in those regions to simulate. For selection simulations we let a mutation occur in a
generation drawn uniformly at random between 1,020 and 3,000 generations ago, and set this
mutation as beneficial with selection strength s € [0.005, 0.5] per generation (drawn uniformly
at random on a log scale) once it reached frequency f € [1/(2N), 0.1] (drawn uniformly at ran-
dom on a log scale). This results in our selection simulations containing both hard and soft
sweeps. Some combinations of selection parameters are difficult to achieve and for this reason
may be under-represented in our simulations (compared to our input parameters) (534 Fig).
To test the performance of SURFDA Wave on more complex selection scenarios we simulate
adaptive introgression. To do this, we simulate a single population that splits into two popula-
tions (a recipient and a donor) at a time randomly selected between 13,000 and 32,000 genera-
tions ago. This range captures the predicted split times among human, Neanderthal, and
Denisovan populations [104]. After allowing the two populations to evolve in isolation, we
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then simulate a neutral mutation in the center of the two Mb chromosome to occur between
1,020 and 3,000 generations ago in the simulated donor population. Following this, the donor
population admixes into the recipient population in which the donor replace between 1 to
10% of the recipient population. After admixture, we treat the simulation as a regular sweep
setting and follow the protocol described for sweep simulations by allowing the neutral muta-
tion to attain a certain frequency f € [1/(2N), 0.1] before converting it to beneficial.

We also simulated background selection following the protocol described in ref. [27], in
which purifying selection is simulated by setting a negative selection coefficient if mutations
fall within simulated coding regions. The distribution of coding regions is drawn from both
the phastCons [105] and GENCODE [106] databases. Uniformly choosing a random starting
point as a SNP in the human genome, we simulate 10°, two Mb chromosomes with 75% of
mutations falling within coding regions to have a selection coefficient drawn from a gamma
distribution with mean —0.0294 with the remaining 25% as neutral, which models the distribu-
tion of fitness effects consistent with the human genome [107]. As in ref. [9], we simulated
missing data by removing thirty percent of the simulated SNPs in blocks, with each of ten
non-overlapping blocks containing 3% of the total data. This process simulates the effects of
filters that remove regions of low mappability or alignability [25]. To test the accuracy of our
prediction models we also simulate 1000 sweeps with background selection.

In order to test the performance of SURFDA Wave on species other than humans we simu-
late both sweeps and neutrality using Drosophila demographic parameters as adapted from ref.
[29] in both refs. [31] and [30]. Demographic parameters such as population split times and
effective population sizes are drawn from posterior distributions of their estimates [Table S1 of
ref. 30]. As in ref. [31], we used the coalescent-simulator ms [108] to generate neutral variation
(burn-in) for its speed, and used the output from these simulations to seed the haplotypic vari-
ation within SLiM [21], and employed a recombination rate of 5 x 10~ per site per generation
and mutation rate of 10~ per site per generation as in ref. [30]. For selection settings, we simu-
late a mutation to occur again in a generation drawn from between 1,020 and 3,000 genera-
tions ago and once it attains frequency f € [1/(2N), 0.1] we set its selection coefficient to s €
[0.005, 0.5] per generation. These selection parameters are the same as the ones used in human
simulations as we wanted to analyze the effects of species demographic history.

Because we are unsure of how much training data is required to adequately fit models with
our noisy data, we conducted an experiment to see how different numbers of training data
points per class affect classification rates (532 Fig). We include in our training data either
1000, 3000, 5000, or 7000 feature vectors for each class (adaptive introgression, neutrality, or
sweep). As we increase the number of training data points per class we see an increase in the
number of simulations classified correctly for both sweep and adaptive introgression classes.
However, we also observe a slight decrease in the number of neutral simulations classified cor-
rectly between 5000 and 7000 simulations per class. Although the overall percent correct is
greatest when using 7000 per class as expected, we use 5000 simulations per class both because
of the higher neutral classification accuracy and because using 5000 simulations takes less time
than using 7000.

Comparison to Trendsetter, diploS/HIC, and evolBoosting

For all classification problems analyzed in this manuscript we provided comparison to other
recently-developed methods for classifying selective sweeps [19, 6, 9]. For both evolBoosting
and diploS/HIC we apply these methods using their default settings, in terms of window
length, window size, and statistics used by the classifier. However, we modify diploS/HIC to be
used as a binary (or three class for adaptive introgression settings) classifier without requiring
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“linked-sweep” classes. This is important, as summary statistics chosen for diploS/HIC may
have been optimized for a five-class setting, and the overall performance of diploS/HIC may
diverge from what we present here if the default separate “hard sweep”, “soft sweep”, “linked-
hard sweep”, and “linked-soft sweep” classes were included. In addition we use the summary
statistics 7T, Hy, Hy,, Hy/H,, and frequency of the first, second, third, fourth, and fifth most
common haplotypes calculated at 128 windows as input data for training both in Trendsetter
and SURFDA Wave, making this implementation slightly different than that published in ref.
[9]. We believe that this slight alteration of Trendsetter is much less important than the reduc-
tion of diploS/HIC to a binary classifier. In addition to classification results, we also provide a
run time comparison.

To compare the runtime, we used the t ime command in bash on our workstation running
the Centos 7 operating system with two 2.10 GHz processors, each with six cores that are able to
run two threads (for a total of 24 threads). For comparison purposes we used an identical set of
training simulations conducted under constant demographic history with 5000 simulations for
each of the two classes (sweep and neutral). We report the “real” or wall clock time required for
training each of the classification methods we used in our comparisons (S20 Table), once the
feature vectors were already computed. We find that Trendsetter is the slowest method, owing
to the fact that we used the d = 2 linear trend penalty in our analysis. SURFDA Wave is the sec-
ond slowest taking approximately 1400 seconds to run. Both diploS/HIC and evolBoosting have
much faster training times. Comparatively, however, both of these methods require much lon-
ger to calculate feature vectors from data relative to both SURFDA Wave and Trendsetter.

Application to empirical data

To locate regions of selection in human genomes, we conducted scans using phased haplotype
data from the central European (CEU) and sub-Saharan African Yoruban (YRI) populations
in the 1000 Genomes Project dataset [32]. Because some genomic regions are difficult to
sequence, map, or align, and result in low quality data that is prone to errors, we split the
genomes into 100 kb non-overlapping segments, and removed those with mean CRG100 score
less than 0.9 [109]. Though this does result in some statistics being calculated in windows span-
ning large genomic regions, we find that because we are using SNP-based windows SURFDA-
Wave is more likely to be conservative and classify these windows as neutral (Fig 6). Moreover,
SURFDAWave classifies the window centered on the SNP in the middle of windows p/2 and p/
2 + 1 (e.g., see S33 Fig), and as a result, no filtered regions will be classified as no SNPs reside in
these filtered regions. As described in Calculating summary statsitics, we also removed all sites
with minor allele frequency less than three. We then split the remaining data for each chromo-
some into windows of 10 SNPs where each window overlaps its neighbor for five SNPs, and
computed summary statistics discussed in section Calculating summary statistics for each win-
dow. As we are investigating p = 128, each set of statistics for 128 windows comprises a feature
vector. When scanning the genome, we shift one window at a time, so that the putative site of
selection (the middle SNP falling in the overlap of windows p/2 and p/2 + 1) will shift by five
SNPs each iteration. These feature vectors are used as input to both the SURFDA Wave classi-
fier and predictor. As we value the correct classification of neutral genomic regions, we use
5000 simulated replicates of each class to train classifiers, because we notice a decrease in the
number of correctly classified neutral regions when we use more (S32 Fig).

Supporting information

S1 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (7T, for YRI
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and CEU populations. The values show RMSE and MAE measured between standardized
log-scaled predicted and actual parameters in simulated data.
(PDF)

$2 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T,) for YRI
and CEU populations. The values show RMSE and MAE measured between log-scaled pre-
dicted and actual parameters after unstandardizing.

(PDF)

S3 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when pre-
dicting selection coefficient (s), initial frequency (f), and time of selection (T) for YRI and
CEU populations tested on simulations of missing data. The values show RMSE and MAE
measured between standardized log-scaled predicted and actual parameters in simulated data.
(PDF)

$4 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for YRI
and CEU populations tested on simulations of missing data. The values show RMSE and
MAE measured between log-scaled predicted and actual parameters after unstandardizing.
(PDF)

S5 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for YRI
and CEU populations when tested with models trained with simulations of the opposite
demography. The values show RMSE and MAE measured between standardized log-scaled
predicted and actual parameters in simulated data.

(PDF)

$6 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for YRI
and CEU populations when tested with models trained with simulations of the opposite
demography. The values show RMSE and MAE measured between log-scaled predicted and
actual parameters after unstandardizing.

(PDF)

$7 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for
CEU and YRI populations when trained with simulations conducted under both YRI and
CEU demographic histories and tested with the specified (CEU or YRI) demographic his-
tory. The values show RMSE and MAE measured between standardized log-scaled predicted
and actual parameters.

(PDF)

S8 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for YRI
and CEU populations when tested with simulations of selective sweeps plus background
selection. The values show RMSE and MAE measured between standardized log-scaled pre-
dicted and actual parameters in simulated data.

(PDEF)

S9 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for YRI
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and CEU populations when tested with simulations of selective sweeps plus background
selection. The values show RMSE and MAE measured between log-scaled predicted and actual
parameters after unstandardizing.

(PDF)

$10 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for
CEU populations when trained and tested with simulations sampling n = 20, 50, or 200
haploid genomes. The values show RMSE and MAE measured between standardized log-
scaled predicted and actual parameters.

(PDF)

S11 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (7,) for
CEU populations when trained and tested with simulations using recombination rate
drawn from an exponential distribution with mean 10~® truncated at three times the mean
per site per generation or rate drawn from an empirical human recombination map. The
values show RMSE and MAE measured between standardized log-scaled predicted and actual
parameters.

(PDF)

$12 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of selection (T) for YRI
and CEU populations when tested with simulations of selective sweeps with f € [0.1, 0.2].
The values show RMSE and MAE measured between standardized log-scaled predicted and
actual parameters.

(PDF)

$13 Table. Root mean squared error (RMSE) and mean absolute error (MAE) values when
predicting selection coefficient (s), initial frequency (f), and time of donor-recipient split
(Tspiir) under adaptive introgression scenarios for YRI and CEU populations. The values
show RMSE and MAE measured between standardized log-scaled predicted and actual param-
eters in simulated data.

(PDF)

$14 Table. Classification of CEU data with classifier trained to differentiate sweeps and
neutrality, y = 1, Level 1 chosen through cross validation (see Training the models), Daube-
chies’ least asymmetic wavelets.

(PDF)

S15 Table. Classification of YRI data with classifier trained to differentiate sweeps and
neutrality, ¥ = 1, Level 1 chosen through cross validation (see Training the models), Daube-
chies’ least asymmetic wavelets.

(PDF)

$16 Table. Classification of CEU data with classifier trained to differentiate adaptive intro-
gression, sweeps, and neutrality, ¥ = 1, Level 1 chosen through cross validation (see Train-
ing the models), Daubechies’ least asymmetic wavelets.

(PDF)

$17 Table. Classification of CEU data with classifier trained to differentiate adaptive
introgression, sweeps, and neutrality, y = 1, Level 1 chosen through cross validation (see
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Training the models), Daubechies’ least asymmetic wavelets, including two-dimensional
statistics.
(PDF)

$18 Table. Classification of YRI data with classifier trained to differentiate adaptive intro-
gression, sweeps, and neutrality, y = 1, Level 1 chosen through cross validation (see Train-
ing the models), Daubechies’ least asymmetic wavelets.

(PDF)

$19 Table. Classification of YRI data with classifier trained to differentiate adaptive intro-
gression, sweeps, and neutrality, ¥ = 1, Level 1 chosen through cross validation (see Training
the models), Daubechies’ least asymmetic wavelets, including two-dimensinoal statistics.
(PDF)

$20 Table. Runtime comparison when training SURFDA Wave (Daubechies’ least-asym-
metric wavelets), Trendsetter (linear trend filtering), diploS/HIC, and evolBoosting with
5000 simulations each when differentiating between sweeps and neutrality. All estimates
assume that feature vectors have already been computed for each method.

(PDF)

S1 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep versus neutrality
scenarios for summary statistics 7, Hy, Hy,, H»/H,, and frequencies of first to fifth most
common haplotypes for SURFDA Wave when y = 1. SURFDA Wave was trained on simula-
tions of scenarios simulated under demographic specifications for European CEU demo-
graphic history. Note that the wavelet reconstructions for all summary statistics are plotted on
the same scale, thereby making the distributions of some summaries difficult to decipher as
their magnitudes are relatively small. SURFDA Wave results shown are using Daubechies’
least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level 1 cho-
sen through cross validation.

(PDF)

S2 Fig. Spatial distribution of regression coefficients (fs) in sweep scenarios for summary
statistics H,, H,,, H,/H;, and frequencies of first to sixth most common haplotypes for
Trendsetter with a linear d = 2 trend penalty. Trendsetter was trained on simulations of con-
stant demographic history.

(PDF)

S3 Fig. SURFDA Wave classifier performance on simulated data. (Left column) Power to dif-
ferentiate between sweep and neutrality by comparing the probability of a sweep under sweep
simulations with the same probability in simulations of neutrality when using varying y penal-
ties, wavelet types, and demographic histories. (Top row confusion matrices) Confusion matri-
ces comparing classification rates of SURFDA Wave when trained and tested with the CEU
demographic history when using Daubechies’ least- Asymmetric wavelets to estimate spatial
distributions of summary statistics when using either y = 1, y = 0, or ¥ chosen through cross
validation (see Training the models). (Middle row confusion matrices) Confusion matrices
comparing classification rates of SURFDA Wave when trained and tested with the CEU demo-
graphic history when using Haar wavelets to estimate spatial distributions of summary statis-
tics when using either y = 1, ¥ = 0, or ¥ chosen through cross validation. (Bottom) Confusion
matrix showing classification rates of SURFDA Wave when trained and tested with constant
demographic history when using Daubechies’ least-Asymmetric wavelets.

(PDF)
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S4 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep versus neutral-
ity scenarios for summary statistics 77, Hy, Hy,, H,/H;, and frequencies of first to fifth
most common haplotypes for SURFDA Wave when y = 1. SURFDA Wave was trained on
simulations of scenarios simulated under demographic specifications for European CEU
demographic history. Note that the wavelet reconstructions for all summary statistics are
plotted on the same scale, thereby making the distributions of some summaries difficult to
decipher as their magnitudes are relatively small. SURFDA Wave results shown are using
Haar wavelets to estimate spatial distributions of summary statistics. Level 2 chosen through
cross validation.

(PDF)

S5 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep versus neutrality
scenarios for summary statistics 7, H,, H,,, H,/H,, and frequencies of first to fifth most
common haplotypes for SURFDA Wave when y = 0. SURFDA Wave was trained on simula-
tions of scenarios simulated under demographic specifications for European CEU demo-
graphic history. Note that the wavelet reconstructions for all summary statistics are plotted on
the same scale, thereby making the distributions of some summaries difficult to decipher as
their magnitudes are relatively small. SURFDA Wave results shown are using Daubechies’
least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level 4 cho-
sen through cross validation.

(PDF)

S6 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep versus neutrality
scenarios for summary statistics 7, Hy, Hy,, H,/H, and frequencies of first to fifth most
common haplotypes for SURFDA Wave when y = 0.7. SURFDA Wave was trained on simula-
tions of scenarios simulated under demographic specifications for European CEU demo-
graphic history. Note that the wavelet reconstructions for all summary statistics are plotted on
the same scale, thereby making the distributions of some summaries difficult to decipher as
their magnitudes are relatively small. SURFDA Wave results shown are using Daubechies’
least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level 4 and
¥ = 0.7 chosen through cross validation.

(PDF)

S7 Fig. SURFDA Wave performance on simulated data trained and tested with simulations
conducted with YRI demographic history to differentiate between sweeps and neutrality.
SURFDA Wave parameters using Daubechies’ least- Asymmetric wavelets to estimate spatial
distributions of summary statistics and using ¥ = 1 or y = 0. (Left) Power to differentiate
between sweep and neutrality by comparing the probability of a sweep under sweep simula-
tions with the same probability in simulations of neutrality when using varying y penalties in
SURFDAWave. (Right confusion matrices) Classification rates using SURFDA Wave when
usingy=1land y=0.

(PDF)

S8 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep versus neutrality
scenarios for summary statistics 7, Hy, Hy,, Hy/H;, and frequencies of first to fifth most
common haplotypes for SURFDA Wave when y = 0. SURFDA Wave was trained on simula-
tions of scenarios simulated under demographic specifications for sub-Saharan African YRI
demographic history. Note that the wavelet reconstructions for all summary statistics are
plotted on the same scale, thereby making the distributions of some summaries difficult to
decipher as their magnitudes are relatively small. SURFDA Wave results shown are using Dau-
bechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level
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4 chosen through cross validation.
(PDF)

S9 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep versus neutrality
scenarios for summary statistics 7, Hy, Hy,, Hy/H, and frequencies of first to fifth most
common haplotypes for SURFDA Wave when y = 0.5. SURFDA Wave was trained on simula-
tions of scenarios simulated under demographic specifications for sub-Saharan African YRI
demographic history. Note that the wavelet reconstructions for all summary statistics are plot-
ted on the same scale, thereby making the distributions of some summaries difficult to deci-
pher as their magnitudes are relatively small. SURFDA Wave results shown are using
Daubechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics.
Level 1 and y chosen through cross validation.

(PDF)

$10 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep versus neutral-
ity scenarios for summary statistics 77, Hy, Hy,, H>/H;, and frequencies of first to fifth
most common haplotypes for SURFDA Wave when y = 1. SURFDA Wave was trained on sim-
ulations of scenarios simulated under demographic specifications for sub-Saharan African
YRI demographic history. Note that the wavelet reconstructions for all summary statistics are
plotted on the same scale, thereby making the distributions of some summaries difficult to
decipher as their magnitudes are relatively small. SURFDA Wave results shown are using Dau-
bechies’ least-asymmetric wavelets to estimate spatial distributions of summmry statistics.
Level 1 chosen through cross validation.

(PDF)

S11 Fig. Reconstructed wavelets from regression coefficients (fs) in sweep vs. neutrality
scenarios for summary statistics H; and H;, showing difference between discrete wavelet

transform at level 0 and level 5. Using Daubechies’ least-Asymmetric wavelets and y = 1.
(PDF)

$12 Fig. Reconstructed wavelets from regression coefficients (fs) when differentiating
among adaptive introgression, sweeps, and neutrality scenarios for summary statistics
mean, variance, skewness, and kurtosis of pairwise r* for SURFDA Wave when y = 1,
when trained with statistics 7, Hy, H,,, H,/H;, and frequencies of first to fifth most com-
mon haplotypes (S14 Fig). SURFDA Wave was trained on simulations of scenarios simulated
under demographic specifications for European CEU demographic history. Note that the
wavelet reconstructions for all summary statistics are plotted on the same scale, thereby mak-
ing the distributions of some summaries difficult to decipher as their magnitudes are rela-
tively small. SURFDA Wave results shown are using Daubechies’ least-asymmetric wavelets
to estimate spatial distributions of summary statistics. Level 1 chosen through cross valida-
tion.

(PDF)

$13 Fig. Reconstructed wavelets from regression coefficients (fs) when differentiating
among adaptive introgression, sweeps, and neutrality scenarios for summary statistics 7,
H,, Hy,, H,/H,, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when y = 1. SURFDA Wave was trained on simulations of scenarios simulated under
demographic specifications for European CEU demographic history. Note that the wavelet
reconstructions for all summary statistics are plotted on the same scale, thereby making the
distributions of some summaries difficult to decipher as their magnitudes are relatively small.
SURFDA Wave results shown are using Daubechies’ least-asymmetric wavelets to estimate
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spatial distributions of summary statistics. Level 1 chosen through cross validation.
(PDF)

S14 Fig. Reconstructed wavelets from regression coefficients (fs) when differentiating
among adaptive introgression, sweeps, and neutrality scenarios for summary statistics 7,
H,, Hy,, H,/H,, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when y = 1, when trained with additional statistics mean, variance, skewness, and
kurtosis of pairwise r* (512 Fig). SURFDA Wave was trained on simulations of scenarios sim-
ulated under demographic specifications for European CEU demographic history. Note that
the wavelet reconstructions for all summary statistics are plotted on the same scale, thereby
making the distributions of some summaries difficult to decipher as their magnitudes are rela-
tively small. SURFDA Wave results shown are using Daubechies’ least-asymmetric wavelets to
estimate spatial distributions of summary statistics. Level 1 chosen through cross validation.
(PDF)

S$15 Fig. Reconstructed wavelets from regression coefficients (fs) when differentiating
among adaptive introgression, sweeps, and neutrality scenarios for summary statistics 7,
H,, Hy,, H,/H,, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when y = 1. SURFDA Wave was trained on simulations of scenarios simulated under
demographic specifications for sub-Saharan African YRI demographic history. Note that the
wavelet reconstructions for all summary statistics are plotted on the same scale, thereby mak-
ing the distributions of some summaries difficult to decipher as their magnitudes are relatively
small. SURFDA Wave results shown are using Daubechies’ least-asymmetric wavelets to esti-
mate spatial distributions of summary statistics. Level 1 chosen through cross validation.
(PDF)

S16 Fig. Reconstructed wavelets from regression coefficients (fs) when differentiating
among adaptive introgression, sweeps, and neutrality scenarios for summary statistics 7,
H,, H,,, H,/H,, and frequencies of first to fifth most common haplotypes for SURFDA-
Wave when y = 1, when trained with additional statistics mean, variance, skewness, and
kurtosis of pairwise r* (S17 Fig). SURFDA Wave was trained on simulations of scenarios sim-
ulated under demographic specifications for sub-Saharan African YRI demographic history.
Note that the wavelet reconstructions for all summary statistics are plotted on the same scale,
thereby making the distributions of some summaries difficult to decipher as their magnitudes
are relatively small. SURFDA Wave results shown are using Daubechies’ least-asymmetric
wavelets to estimate spatial distributions of summary statistics. Level 1 chosen through cross
validation.

(PDF)

S$17 Fig. Reconstructed wavelets from regression coefficients (fs) when differentiating
among adaptive introgression, sweeps, and neutrality scenarios for summary statistics
mean, variance, skewness, and kurtosis of pairwise * for SURFDA Wave when v =1, when
trained with statistics 7, H,, H;,, H,/H,, and frequencies of first to fifth most common
haplotypes (516 Fig). SURFDA Wave was trained on simulations of scenarios simulated under
demographic specifications for sub-Saharan African YRI demographic history. Note that the
wavelet reconstructions for all summary statistics are plotted on the same scale, thereby mak-
ing the distributions of some summaries difficult to decipher as their magnitudes are relatively
small. SURFDA Wave results shown are using Daubechies’ least-asymmetric wavelets to esti-
mate spatial distributions of summary statistics. Level 1 chosen through cross validation.
(PDF)
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$18 Fig. Confusion matrices showing classification results for demographic mis-specifi-
cation compared to when classifiers are trained with multiple demographic histories
rates in SURFDA Wave, Trendsetter, diploS/HIC, and evolBoosting. Summary statistics 7,
H,, Hy,, H,/H,, and frequency of the first, second, third, fourth, and fifth most common hap-
lotypes used by both Trendsetter and SURFDA Wave. SURFDA Wave results shown are using
Daubechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics
when level and y are chosen through cross validation (see Training the models). Training
data consist of a balanced dataset of simulations conducted under demographic specifica-
tions for European (CEU) and African (YRI) human populations when training for multiple
demographic histories. (Left) Classification rates of simulations conducted under CEU Euro-
pean demographic specifications when the model is trained with simulations conducted
under YRI African demographic specifications. (Middle right) Classification rates of simula-
tions conducted under YRI African demographic specifications when the model is trained
with simulations conducted under CEU European demographic specifications. (Middle
right) Classification rates of simulations conducted under CEU European demographic
specifications. (Right) Classification rates of simulations conducted under YRI African
demographic specifications.

(PDF)

$19 Fig. Confusion matrices showing the effect sample size has on classification rates. We
train and test SURFDA Wave, Trendsetter, diploS/HIC, and evolBoosting classifiers to dif-
ferentiate sweeps and neutrality using sample sizes of n = 20, 50, and 200 haploid genomes.
SURFDA Wave results shown are using Daubechies’ least-asymmetric wavelets to estimate spa-
tial distributions of summary statistics and y and levels are chosen through cross validation
(see Training the models). Summary statistics 7, Hy, Hy,, Ho/H,, and frequency of the first, sec-
ond, third, fourth, and fifth most common haplotypes used by both Trendsetter and SURFDA-
Wave.

(PDF)

$20 Fig. Confusion matrices comparing classification rates when SURFDA Wave, Trendset-
ter, diploS/HIC, and evolBoosting are trained and tested using simulations conducted
under Drosophila population parameters to differentiate between sweeps and neutrality.
SURFDA Wave results shown are using Daubechies’ least-asymmetric wavelets to estimate spa-
tial distributions of summary statistics and y and levels are chosen through cross validation
(see Training the models). Summary statistics 7, Hy, Hy,, Ho/H;, and frequency of the first, sec-
ond, third, fourth, and fifth most common haplotypes used by both Trendsetter and SURFDA-
Wave.

(PDF)

$21 Fig. Confusion matrices comparing classification rates of SURFDA Wave, Trendsetter,
diploS/HIC, and evolBoosting when applied to simulations with a recombination rate
drawn from an exponential distribution with mean 10~° per site per generations, truncated
at three times the mean (top row) and recombination rate drawn from a human empirical
recombination map (bottom row) to differentiate between sweeps and neutrality. All simu-
lations were conducted under European (CEU) demographic history specifications. SURFDA-
Wave results shown are using Daubechies’ least-asymmetric wavelets to estimate spatial
distributions of summary statistics and y and levels are chosen through cross validation (see
Training the models). Summary statistics 7, H,, Hy,, H,/H;, and frequency of the first, second,
third, fourth, and fifth most common haplotypes used by both Trendsetter and SURFDA Wave.
(PDF)
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$22 Fig. Difference between standardized predicted and actual selection parameters with
SURFDAWave for the CEU and YRI demographic models. (Left box plot) Difference in pre-
diction and truth of log scaled time at which mutation became beneficial. (Middle box plot)
Difference in prediction and truth of log scaled frequency reached by mutation prior to it
becoming beneficial (f). (Right box plot) Difference in prediction and truth of log scaled selec-
tion coefficient (s).

(PDF)

$23 Fig. Reconstructed wavelets from regression coefficients (fs) in predicting time at
which mutation became beneficial, frequency reached by mutation before becoming bene-
ficial, and selection strength for summary statistics 7, Hy, H,,, H»/H,, and frequencies of
first to fifth most common haplotypes for SURFDA Wave when y = 0.6. SURFDA Wave was
trained on simulations of scenarios simulated under demographic specifications for European
CEU demographic history. Note that the wavelet reconstructions for all summary statistics are
plotted on the same scale, thereby making the distributions of some summaries difficult to
decipher as their magnitudes are relatively small. SURFDA Wave results shown are using Dau-
bechies’ least-asymmetric wavelets to estimate spatial distributions of summary statistics. Level
1 and y = 0.6 chosen through cross validation.

(PDF)

$24 Fig. Reconstructed wavelets from regression coefficients (fs) in predicting time at
which mutation became beneficial, frequency reached by mutation before becoming bene-
ficial, and selection strength for summary statistics 77, Hy, H;,, H»/H;, and frequencies of
first to fifth most common haplotypes for SURFDA Wave when y = 0.7. SURFDA Wave was
trained on simulations of scenarios simulated under demographic specifications for sub-Sara-
han African YRI demographic history. Note that the wavelet reconstructions for all summary
statistics are plotted on the same scale, thereby making the distributions of some summaries
difficult to decipher as their magnitudes are relatively small. SURFDA Wave results shown are
using Daubechies’ least-asymmetric wavelets to estimate spatial distributions of summary sta-
tistics. Level 0 and y = 0.7 chosen through cross validation.

(PDF)

$25 Fig. Difference between standardized predicted and actual selection parameters with
SURFDAWave under several confounding scenarios. Difference in prediction and truth of
time at which mutation became beneficial, difference in prediction and truth of log scaled fre-
quency reached by mutation prior to it becoming beneficial (f), and difference in prediction
and truth of log scaled selection coefficient (s) shown as set of three box plots. (Top row)
Parameter prediction when training and testing sample sizes are n = 20, 50 or 200 shown for
the CEU demographic history. (Row two) Parameter prediction when recombination rate is
drawn from an exponential distribution with mean 10™® per site per generation, truncated at
three times the mean or when recombination is drawn from a human empirical recombination
map using CEU demographic history. (Row three) Parameter prediction when testing range
for initial frequency is f € [0.1, 0.2], which falls outside of training range for CEU and YRI
demographic histories. (Bottom row) Parameter prediction when training data is a balanced
dataset containing simulations from both CEU and YRI demographic histories and is tested
under the specified demographic history.

(PDF)

$26 Fig. Difference between standardized predicted and actual selection parameters with
SURFDA Wave for the CEU and YRI demographic models. (Left box plot) Difference in pre-
diction and truth of log scaled time at which donor and recipient populations split. (Middle
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box plot) Difference in prediction and truth of log scaled frequency reached by mutation prior
to it becoming beneficial (f). (Right box plot) Difference in prediction and truth of log scaled
selection coefficient (s).

(PDF)

$27 Fig. Reliability diagrams showing how close our predicted probabilities are to actual
probabilities. For each classifier we predict the probability of sweep for test 1000 simulations.
We divide the predicted probabilities into 950 overlapping windows each of length 0.5, with
the first window beginning ranging from 0 to 0.05 and the second from 0.001 to 0.051 and so
on with the last window ranging from 0.95 to 1.0. Using these ranges as thresholds, we calcu-
late the mean probability of all predicted probabilities within this range (Mean Prediction)
along with the fraction of these cases that are classified as sweep (Observed Fraction).

(PDF)

$28 Fig. Predicted selection parameters for all genes in YRI and CEU with probability of
being classified as sweep greater than 0.7 (Left) Scatter plot of predicted initial frequency
mutation reached before becoming beneficial (Initial frequency) versus generations before
present at which selection began (Time of selection). (Middle) Scatter plot of Selection coef-
ficient versus Time of selection. (Right) Scatter plot of Initial frequency versus selection coeffi-
cient.

(PDF)

$29 Fig. Predicted selection parameters for all genes in YRI (orange) and CEU (blue) with
probability of being classified as sweep greater than 0.5 divided into bins of probability of
sweep (Left) Predicted number of generations before present at which selection began
(Time of selection) as a function of the probability of sweep. (Middle) Frequency reached
by mutation before becoming beneficial (f) as a function of probability of sweep. (Right) Selec-
tion coefficient (s) as a function of probability of sweep.

(PDF)

$30 Fig. SURFDA Wave classifier’s application to empirical data for CEU to detect adaptive
introgression. Probability of adaptive introgression across the genomic region of labeled chro-
mosome containing the genes of interest. SURFDA Wave is trained to differentiate among
selective sweeps, adaptive introgression, and neutrality with simulations conducted under
demographic specifications of the CEU demographic history. The black dots show the pre-
dicted probability of adaptive introgression and the gray bars show the positions of the labeled
genes. Gaps between black dots are the result of filtering low quality genomic regions (see
Application of empirical data), such that no SNPs exist in these regions and can therefore not
be classified (see S33 Fig as an example of how we classify a SNP spanned by our feature vec-
tor).

(PDF)

$31 Fig. Sum of squared differences between the empirical CEU and the simulated neutral
Terhorst normalized minor allele frequency spectra conditional on removing all minor
allele classes with k or fewer minor alleles.

(PDF)

$32 Fig. Confusion matrices comparing classification rates of SURFDA Wave differentiat-
ing among adaptive introgression, sweeps, and neutrality when simulated under a con-
stant-size demographic model with non-adaptive introgression with 1000, 3000, 5000, or
7000 training samples per class. SURFDA Wave results shown are using Daubechies’ least-
asymmetric wavelets to estimate spatial distributions of summary statistics. Level and gamma
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chosen through cross validation.
(PDF)

$33 Fig. Schematic illustrating windows for which summary statistics are calculated in our
implementation of SURFDA Wave. Each bold black line underlines one of the eight 10-SNP
long windows. Here we show a sample of six haplotypes (rows) across a string of SNPs (col-
umns) for which we calculate summary statistics in p = 8 windows. Summary statistics are cal-
culated for each 10-SNP window, with windows overlapping with each neighbor for five SNPs.
The central SNP is taken to be the putative selected site and is located in the overlap of win-
dows four and five. Here we have underlined the alternating windows used to calculate the
two-dimensional statistics in red.

(PDF)

$34 Fig. Distribution of selection parameters for simulations of sweeps conducted with
demographic history parameters of CEU (top row) and YRI (bottom row). (Left column)
Distribution of time at which tracked mutation becomes beneficial (reaches initial frequency)
in simulations of selective sweeps. (Middle column) Distribution of log-scaled initial frequency
(input parameter) reached by mutation before becoming beneficial in simulations of selective
sweeps. (Right column) Distribution of log-scaled selection coefficient in simulations of selec-
tive sweep.

(PDF)
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