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Abstract

Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and
therefore most detection approaches only achieve optimal performances when sufficiently small genomic
regions (i.e., windows) are examined. Such methods are sensitive to window sizes and suffer substantial
losses in power when windows are large. Here, we employ mixture models to construct a set of five
composite likelihood ratio test statistics, which we collectively term B statistics. These statistics are
agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show
that they exhibit comparable power to the best-performing current methods, and retain substantially
high power regardless of window sizes. They also display considerable robustness to high mutation rates
and uneven recombination landscapes, as well as an array of other common confounding scenarios. More-
over, we applied a specific version of the B statistics, termed B2, to a human population-genomic dataset
and recovered many top candidates from prior studies, including the then-uncharacterized STPG2 and
CCDC169 -SOHLH2, both of which are related to gamete functions. We further applied B2 on a bonobo
population-genomic dataset. In addition to the MHC-DQ genes, we uncovered several novel candidate
genes, such as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally,
we show that our methods can be extended to account for multi-allelic balancing selection, and inte-
grated the set of statistics into open-source software named BalLeRMix for future applications by the
scientific community.

Introduction

Balancing selection maintains polymorphism at selected genetic loci, and can operate through a variety
of mechanisms (Charlesworth, 2006). In addition to overdominance (Charlesworth and Charlesworth,
2010), other processes such as sexual selection (Cho et al., 2006), periodical environmental shifts (Bergland
et al., 2014), pleiotropy (Andrés, 2001; Mitchell-Olds et al., 2007), meiotic drive (Ubeda and Haig, 2004;
Charlesworth and Charlesworth, 2010), and negative frequency-dependent selection (Charlesworth and
Charlesworth, 2010) can also maintain diversity at underlying loci. Due to the increasing availability of
population level genomic data, in which allele frequencies and genomic density of polymorphisms can be
assessed in detail, there is an expanding interest in studying balancing selection and detecting its genomic
footprints (e.g., Andrés et al., 2009; Leffler et al., 2013; DeGiorgio et al., 2014; Gao et al., 2015; Hunter-
Zinck and Clark, 2015; Sheehan and Song, 2016; Lonn et al., 2017; Sweeney et al., 2017; Guirao-Rico et al.,
2017; Siewert and Voight, 2017, 2020; Bitarello et al., 2018; Ye et al., 2018; Cheng and DeGiorgio, 2019).
However, despite multiple efforts to design statistics for identifying balanced loci (e.g., DeGiorgio et al.,
2014; Siewert and Voight, 2017, 2020; Bitarello et al., 2018; Cheng and DeGiorgio, 2019), performances of
existing methods still leave room for improvement.
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Early methods applied to this problem evaluated departures from neutral expectations of genetic di-
versity at a particular genomic region. For example, the Hudson-Kreitman-Aguadé (HKA) test (Hudson
et al., 1987) uses a chi-square statistic to assess whether genomic regions have higher density of polymor-
phic sites when compared to a putative neutral genomic background. In contrast, Tajima’s D (Tajima,
1989) measures the distortion of allele frequencies from the neutral site frequency spectrum (SFS) under
a model with constant population size. However, these early approaches were not tailored for balancing
selection and have limited power. Recently, novel and more powerful summary statistics (Siewert and
Voight, 2017, 2020; Bitarello et al., 2018) and model-based approaches (DeGiorgio et al., 2014; Cheng and
DeGiorgio, 2019) have been developed to specifically target regions under balancing selection. In general,
the summary statistics capture deviations of allele frequencies from a putative equilibrium frequency of a
balanced polymorphism. In particular, the non-central deviation statistic (Bitarello et al., 2018) adopts
an assigned value as this putative equilibrium frequency, whereas the β and β(2) statistics of Siewert and
Voight (2017, 2020) use the frequency of the central polymorphic site instead. On the other hand, the T
statistics of DeGiorgio et al. (2014) and Cheng and DeGiorgio (2019) compare the composite likelihood of
the data under an explicit coalescent model of long-term balancing selection (Hudson et al., 1987; Hudson
and Kaplan, 1988) to the composite likelihood under the genome-wide distribution of variation, which is
taken as neutral.

Nevertheless, all extant approaches are limited by their sensitivity to the size of the region that the
statistics are computed on (hereafter referred to as the “window size”). Because the footprints of long-term
balancing selection are typically narrow (Hudson and Kaplan, 1988; Charlesworth, 2006), small windows
with fixed size comparable to that of the theoretical footprint based on a genome-wide recombination
rate estimate are commonly used in practice, especially for summary statistics. However, such small
fixed window sizes not only lead to increased noise in the estimation of each statistic, but also render
the statistic incapable of adapting to varying footprint sizes across the genome due to factors such as
the uneven recombination landscape (Smukowski and Noor, 2011). Though adopting a larger window
may reduce noise, true signals will likely be overwhelmed by the surrounding neutral regions, diminishing
method power as shown by Cheng and DeGiorgio (2019). Available model-based approaches (DeGiorgio
et al., 2014; Cheng and DeGiorgio, 2019) could have been made robust to window sizes if they instead
adopted the SFS expected under a neutrally-evolving population of constant size as the null hypothesis,
because their model of balancing selection for the alternative hypothesis converges to this constant-size
neutral model for large recombination rates. However, this neutral model does not account for demographic
factors that can impact the genome-wide distribution of allele frequencies, such as population size changes.
To guard against such demographic influences, the model-based T1 and T2 statistics (DeGiorgio et al., 2014;
Cheng and DeGiorgio, 2019) employ the genome-wide SFS instead, compromising the robustness against
large windows. Moreover, Cheng and DeGiorgio (2019) showed that although the power of the T2 statistic
decays much slower than other approaches as window size increases, the loss of power is still substantial.

In this article, we describe a set of composite likelihood ratio test statistics that are based on a mixture
model (Figures 1A and B) that integrates both the genome-wide level of variation and the enrichment
of sites with allele frequencies close to the equilibrium allele frequency of long-term balancing selection.
Note that the latter has been successfully captured by the summary statistics β (Siewert and Voight,
2017, 2020) and NCD (Bitarello et al., 2018). This framework of nested models allows for robust and
flexible detection of balancing selection that can augment the size of genomic regions considered in each
test to best fit the data. Dependent on the types of data available, we propose a set of five likelihood
ratio test statistics termed B2, B2,MAF, B1, B0, and B0,MAF, which respectively accommodate data with
substitutions and derived (B2) or minor (B2,MAF) allele frequency polymorphisms, with substitutions
and polymorphisms with unknown allele frequency (B1), and with derived (B0) or minor (B0,MAF) allele
frequency polymorphisms only. We comprehensively evaluated their performances under an array of diverse
simulated scenarios, including their powers for balancing selection with varying ages, distinct strengths and
equilibrium frequencies, robustness against window sizes, and robustness against confounding factors such
as demographic history, recombination rate variation, and mutation rate variation. We also compared
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and discussed their performances with other leading approaches—namely HKA, β, β∗, β(2), NCD, T1,
and T2. To gauge the performance of B statistics on empirical data, we re-examined contemporary human
populations in the 1000 Genomes Project dataset (The 1000 Genomes Project Consortium, 2015) to uncover
previously hypothesized candidates. Furthermore, we performed an exploratory whole-genome scan with
B2 on bonobo genomic data (Prado-Martinez et al., 2013) to probe for long-term balancing selection in
the other close relative of humans. We further extended our framework to consider multi-allelic balancing
selection, and examined the performances of extant methods on cases of multi-locus balancing selection.
Lastly, we developed the software BalLeRMix (BALancing selection LikElihood Ratio MIXture models) to
implement these novel tests for the convenience of the scientific community.

Model Description

A classical footprint of balancing selection is the increase in the proportion of sites with moderate allele fre-
quencies that are close to the equilibrium frequency at the balanced locus (Kaplan et al., 1988; Siewert and
Voight, 2017). Previous modeling attempts (Kaplan et al., 1988; Song and Steinrücken, 2012; DeGiorgio
et al., 2014; Cheng and DeGiorgio, 2019) primarily focused on delineating the underlying population-genetic
processes, such as through coalescent or diffusion theory. Though these models are able to capture the
distortion in the SFS resulting from balancing selection, their intricate mathematical formulations bring
challenges to further model extensions to more complicated scenarios as well as the associated computa-
tions. As an alternative, it may be appealing to model the effect of balancing selection through statistical
approximations of the expected features in the data.

Based on this idea, for a locus under balancing selection that is maintaining a pair of allelic classes, we
can approximate the process of observing k0 copies of the selected allele balanced at equilibrium frequency
x ∈ (0, 1) in n samples, as following a binomial sampling process with n trials and a success rate x. For
a bi-allelic neutral site that is linked to this selected locus, we assume that the k derived alleles observed
from the n samples at this neutral site are all on the same haplotype with the k0 selected alleles balanced at
frequency x. That is, we assume k = k0 and consider the k derived alleles on the neutral site as surrogates
for the balanced alleles of the allelic class with which they are fixed. Therefore, when these two sites are
in complete linkage, k can also be considered as binomially distributed with n trials and a success rate x.
Meanwhile, for a neutral site not linked to this selected locus, we assume that k follows the distribution
expected by the genome-wide SFS. Taken together, the probability Pn(k) of observing k derived alleles out
of n sampled alleles at a neutral site can be written as

Pn(k) = P[Completely linked to the selected locus] · P[k = k0 out of n binomially sampled with rate x]

+ P[Not completely linked to the selected locus] · P[k out of n observed in the genome].

Alternatively, this integration of two conditional probabilities can also be viewed as a mixture model, in
which the two mixing components represent probabilities under balancing selection and neutrality (based on
the genome-wide empirical distribution), with their respective mixing proportions α and 1−α representing
the probabilities of being completely linked to the selected locus or not, respectively. To approximate
α, we chose to consider the exponential decay function, which has been adopted as a proxy for linkage
disequilibrium (e.g. Nielsen et al., 2005; Moorjani et al., 2011; Loh et al., 2013). To accommodate the
varying rates of linkage decay, we introduce a free parameter A > 0 for the statistic to optimize over, which
essentially determines the size of the footprint of balancing selection, with smaller values of A having wider
footprints than larger values. Hence, for a neutral site d recombination units away from the selected locus,
the probability that it is linked to the selected locus can be approximated by

P[Completely linked to the selected locus] = αA(d) = e−Ad.
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Therefore, for a neutral site d recombination units away from the selected locus, we approximate the
probability mass function for sampling k derived alleles out of n sampled alleles as

fn,x,A(k, d) = αA(d) · hn,x(k) + [1− αA(d)] · gn(k),

where hn,x(k) denotes the normalized binomial probability of sampling k successes out of n trials with
success rate x, and gn(k) is the normalized genome-wide SFS denoting the proportion of sites with k
derived alleles observed out of n sampled alleles. This formulation also applies when k represents the
number of minor allele copies, for situations in which the ancestral allele cannot be polarized with an
outgroup. See subsequent subsection for precise definitions of normalized hn,x(k) and gn(k).

Note that although we constructed this mixture-model framework by combining conditional probabili-
ties of the derived alleles at a neutral site to be on the same haplotype with one of the two balanced allele
classes, the interpretation of the mixing weight αA(d) is in effect not constrained to linkage and recombi-
nation. Other factors that can affect the local SFS, such as the accumulation of low-frequency mutations,
can be accounted for by incorporating the genome-wide SFS as well. Although these factors can also vary
by recombination distance, we formulate αA(d) based on the properties of linkage decay alone to simplify
our model.

In the following subsections, we describe a set of composite likelihood ratio statistics (B2, B2,MAF,
B1, B0, and B0,MAF) constructed based on this mixture model approach for identifying loci undergoing
bi-allelic balancing selection. We also extended this framework to consider multi-allelic balancing selection,
and describe these models in Supplementary Note 1. Note that all the composite likelihood ratio statistics
considered here assume that balancing selection is acting on a single locus. This set of composite likelihood
ratio statistics have been implemented in the open-source software package BalLeRMix, which is available
at https://github.com/bioXiaoheng/BalLeRMix/tree/master/software.

Probability distributions given derived allele polymorphisms and substitutions

For n sampled alleles at an informative site (i.e., polymorphism or substitution), when the ancestral state
to each site can be confidently assigned, denote the number of derived alleles as k, k = 1, 2, . . . , n. Let
ξn(k) be the total number of informative sites across the whole-genome with k derived alleles observed out
of n sampled alleles. The probability of observing such a site is therefore

g(2)n (k) =
ξn(k)∑n
j=1 ξn(j)

.

When balancing selection maintains an equilibrium frequency of x on the site under selection, the outcomes
of observing derived alleles on this site (out of n lineages) can be approximated by a binomial distribution
of n trials with a success probability of x. Following this binomial model, the probability of observing the
selected site with k observed derived alleles is

h(2)n,x(k) =
Bin(k;n, x)∑n
j=1 Bin(j;n, x)

.

Note the values of gn(k) and hn,x(k) are conditional on the number of sampled alleles n, and therefore our
model requires that the sample size be made explicit at each informative site. Permitting the sample size
to differ across sites is important, as missing genotype calls are often common in empirical studies, with
sample sizes naturally varying across the genome.

For an informative site d recombination units away from the presumed site under selection, it can
either be linked to the derived (with equilibrium frequency x) or ancestral (with equilibrium frequency
1−x) haplotype under balancing selection, resulting in a bimodal distribution (Figure 1C). Therefore, the
probability of observing k derived alleles out of n sampled alleles is

f
(2)
n,x,A(k, d) = αA(d)

[
1

2
h(2)n,x(k) +

1

2
h
(2)
n,1−x(k)

]
+
[
1− αA(d)

]
g(2)n (k),
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where αA(d) = exp(−Ad) and where A is a model parameter that determines the size of the genomic
footprint of balancing selection. When allele frequency information is unavailable at polymorphic sites, the
probability of observing a polymorphic site (k 6= n) or substitution (k = n) would be

f
(1)
n,x,A(k, d) = f

(2)
n,x,A(n, d)1{k=n} +

[
1− f (2)n,x,A(n, d)

]
1{k 6=n},

where 1{E} is a dummy variable that takes the value one if the expression E is true, and zero otherwise.
Similarly, when substitutions are not considered or are missing in the data (i.e., only observe derived

allele counts k = 1, 2, . . . , n− 1), the two mixing components can be normalized as

g(0)n (k) =
ξn(k)∑n−1
j=1 ξn(j)

,

and

h(0)n,x(k) =
Bin(k;n, x)∑n−1
j=1 Bin(j;n, x)

.

The probability of observing a polymorphic site with k derived alleles out of n sampled alleles is then

f
(0)
n,x,A(k, d) = αA(d)

[
1

2
h(0)n,x(k) +

1

2
h
(0)
n,1−x(k)

]
+
[
1− αA(d)

]
g(0)n (k).

Probability distributions given minor allele polymorphisms and substitutions

When alleles cannot be confidently polarized, minor allele frequencies are often used instead. For infor-
mative sites with n sampled alleles, denote the minor allele count as k, k = 0, 1, . . . , bn/2c, and the total
number of such sites in the genome as ηn(k). Substitutions are assigned to ηn(0), as the minor allele count
is zero. The probability of observing a site with k minor alleles out of n sampled alleles in the genome is

g(2,MAF)
n (k) =

ηn(k)∑bn/2c
j=0 ηn(j)

.

Assume the equilibrium minor allele frequency at the locus undergoing long-term balancing selection
is x ∈ (0, 0.5]. The probability of observing k minor alleles out of n sampled alleles is then

h(2,MAF)
n,x (k) =

Bin(k;n, x) + Bin(n− k;n, x)1{k 6=n/2}∑n
j=1 Bin(j;n, x)

.

Hence, for an informative site d recombination units away from the presumed site under selection, the
probability of observing k minor alleles out of n sampled alleles is

f
(2,MAF)
n,x,A (k, d) = αA(d)h(2,MAF)

n,x (k) + [1− αA(d)] g(2,MAF)
n (k).

Similarly, when substitutions are not considered or are missing in the data (i.e., only observed minor alleles
counts k = 1, 2, . . . , bn/2c), the two mixing components can be normalized as

g(0,MAF)
n (k) =

ηn(k)∑bn/2c
j=1 ηn(j)

and

h(0,MAF)
n,x (k) =

Bin(k;n, x) + Bin(n− k;n, x)1{k 6=n/2}∑n−1
j=1 Bin(j;n, x)

.

The probability of observing a polymorphic site with k minor alleles out of n sampled alleles is then

f
(0,MAF)
n,x,A (k, d) = αA(d)h(0,MAF)

n,x (k) + [1− αA(d)] g(0,MAF)
n (k).
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Composite likelihood ratio tests based on the mixture models

In the preceding subsection, we have provided the marginal probability distributions for the number of
observed copies of either a derived or a minor allele at an informative site that is a certain distance from a
locus undergoing bi-allelic balancing selection. Because we cannot obtain the full likelihood that accounts
for the joint distribution of allele frequencies across all informative sites that are in high linkage disequi-
librium, we instead make the simplifying assumption that neighboring informative sites are independent.
This assumption, albeit invalid, allows us to gain insight from the composite likelihood, which is computed
by multiplying the marginal probability distributions for all informative sites. By maximizing the resulting
composite likelihood from the full model across our parameter space, we can also obtain estimates of the
optimal parameter values (i.e., x̂ and Â), which confer information about the features of the footprints
consistent with balancing selection.

Based on the probability distributions described for the five models, for each model X ∈
{“2”, “2,MAF”, “1”, “0”, “0,MAF”}, the composite likelihood of a genomic region with L informative sites
under the null hypothesis of neutrality is

L(X)
0 (n,k) =

L∏
i=1

g(X)
ni

(ki),

where n = [n1, n2, . . . , nL] and k = [k1, k2, . . . , kL] are the vectors of sample sizes and derived or minor
allele counts, respectively, at the L informative sites in the genomic region. Recall that the probabilities
of sampling a certain number of derived or minor alleles under our model depend on the sample sizes at
informative sites, and because sample sizes often vary across the genome due to missing data in empirical
studies, we make explicit the sample sizes across all informative sites in the vector n. Similarly, the
composite likelihood under the alternative hypothesis of model X would be

L(X)
a (x,A ; n,k,d) =

L∏
i=1

f
(X)
ni,x,A

(ki, di),

where d = [d1, d2, . . . , dL] is the vector of recombination distances between the test site and each of the L
informative sites. This likelihood is maximized at

(x̂, Â) =
arg max

(x,A)
L(X)
a (x,A ; n,k,d).

Hence, under model X ∈ {“2”, “2,MAF”, “1”, “0”, “0,MAF”}, the log composite likelihood ratio test statis-
tic for the test site is

BX = 2
[

lnL(X)
a (x̂, Â ; n,k,d)− lnL(X)

0 (n,k)
]
.

Note that although log-likelihood ratio test statistics can be considered as following χ2 distributions (of
which the degree of freedom is the number of free parameters, e.g., two in the full models described above),
B statistics are a set of composite log-likelihood ratio (CLR) statistics, which do not follow regular χ2

distributions (Varin et al., 2011; Pace et al., 2011). In order for a CLR statistic to approximately follow an
asymptotic χ2 distribution, it needs to undergo adjustment (Pace et al., 2011) that also yields the effective
degree of freedom of the asymptotic distribution the adjusted CLR statistic conforms to. This adjustment
process is based on the set of observations used to compute the CLR, which is different for every test site.
Because for B statistics, the size of the genomic region considered by each test varies across the genome and
because the informative sites included in the region are highly correlated, the effective degree of freedom
also varies across test sites. Therefore, we cannot infer significance from the values of B statistic alone by
referencing the χ2 distribution.

Moreover, and probably even more important, is that because the model under the null hypothesis only
accounts for mean demographic effects based on the genome-wide SFS and not its higher moments (e.g.,
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variance), the resulting p-value obtained from a χ2 distribution after the statistical adjustment would still
deviate from what is commonly expected when the test rejects neutrality (i.e., neutral evolution under an
explicit demographic model). We therefore would recommend mass simulation under an appropriate demo-
graphic model to generate the “null” distribution of B statistics in order to accurately infer the significance
of each test, with the caveat that such an endeavour would require extensive computational resources due
to the millions of simulations needed, the lengths of the simulated segments, and the optimization of the B
statistics on each of these simulated segments. Lastly, in order to infer genome-wide significance, p-values
need to be corrected for multiple testing, e.g., through Bonferroni correction (Bonferroni, 1935), Simes
method (Simes, 1986), or Benjamini-Hochberg procedures (Benjamini and Hochberg, 1995).

Interpretation of estimated A and x parameters

The likelihood for the alternative model is maximized over the parameters A and x, where, in our formu-
lation for bi-allelic balancing selection in the previous subsections, x represents the presumed equilibrium
minor allele frequency, and A decides the rate of exponential decay for the probability of two sites being
linked, which essentially describes the influence of balancing selection on neutral sites of varying distance
away from the test site. After optimizing over this parameter space, the parameter values under the opti-
mal likelihood, Â and x̂, provide information on the nature of detected genomic footprints. The value of
x̂ should reflect the enriched minor allele frequency across the region. Note that not all mechanisms for
balancing selection will maintain the balanced alleles at fixed frequencies (Asmussen and Basnayake, 1990;
Bergland et al., 2014), and so x̂ rather represents the value around which our model presumes the allele
frequencies across the region are enriched. Therefore, we advise that caution be used when interpreting x̂
as the equilibrium frequencies without further information about the potential mechanisms that may have
acted to maintain the polymorphisms.

Meanwhile, Â describes the rate of the exponential decay of the probability αA(d) = exp(−Ad) of
the two loci being linked, and should intuitively be informative of the impact of balancing selection on
nearby neutral sites. The smaller the Â, the wider the footprint would be, and likely the younger the
balanced polymorphism. However, multi-locus balancing selection can also give rise to wide footprints
(Barton and Navarro, 2002; Navarro and Barton, 2002; Tennessen, 2018), which could induce small Â
values. Furthermore, a large A reduces the number of informative sites that yield meaningful likelihood
ratios, and can thus also occur when data in the examined area fit the alternative model poorly. Therefore,
we advise only comparing the Â values among regions with reasonably high composite likelihood ratios,
and that caution be used when making inferences from these values as they do not map to an explicit
evolutionary model.

Results

Performances on simulated data

We simulated 50 kilobase (kb) long sequences using SLiM3.2 (Haller and Messer, 2019), under the three-
species demographic model (Figure S1) inspired by the demographic history of great apes (see Methods),
and extensively evaluated the performances of all five B statistic variants. We also compared the B
statistics to the summary statistics β, β∗, HKA, NCD2, and β(2), which are respectively analogues to B0,
B0,MAF, B1, B2,MAF, and B2, and to the likelihood statistics T1 and T2, which are respectively analogues
to B1 and B2.

Robust high power under varying window sizes

We first examined the robustness of the B statistics to overly large window sizes, under a scenario of
strong heterozygote advantage (selective coefficient s = 0.01 with dominance coefficient h = 20) acting on
a mutation that arose 7.5 × 104 generations prior to sampling, with all sites flanking the selected locus
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evolving neutrally. Because BetaScan (Siewert and Voight, 2017, 2020) (which implements the standardized
and nonstandardized β, β∗, and β(2) statistics, among which we only consider the standardized) operates
on windows of fixed physical length, we adopted window sizes of 1, 1.5, 2.5, 3, 5, 10, 15, 20, and 25 kb for
all summary statistics and B statistics. The T statistics were applied on windows with matching expected
numbers of informative sites. Supplementary Note 2 details the calculation for matching the number of
informative sites to physical length of a genomic region.

To reduce potential stochastic fluctuations in the number of true positives when the false positive
rate is controlled at a low level, we examined the area under a partial curve with no greater than a
5% false positive rate (hereafter referred to as “partial AUC”). As shown in Figure 2A (see split views
for separate groups of statistics in Figure S2), under optimal window sizes for most other statistics, all
variants of B statistics display substantial partial AUCs comparable to that of the respective T statistic
variant, which has outperformed other equivalent summary statistics in most previous simulation studies
(DeGiorgio et al., 2014; Siewert and Voight, 2017, 2020; Bitarello et al., 2018; Cheng and DeGiorgio, 2019).
Most remarkably, as the window size increases, while all other statistics exhibit drastic decays in power,
the powers of all variants of the B statistic only show minor decreases. In fact, when comparing the
powers under 25 kb windows against those under optimal window sizes for each statistic, the powers of
all statistics drop more than twice as much as B1 and B2 (Figure 2B). In comparison with each method’s
optimal performance, most statistics (except all B statistics and T2, the model-based analog of B2) lose
more than 80% of their optimal power under the largest window size examined (Figure 2C). Although T2
still retains considerably higher partial AUC compared to all other extant methods, it still decreases to a
value substantially lower than that of B2. Such robustness of B statistics to large windows is reasonable
and expected, because the probability distribution of allele frequencies at sites far enough from the test
site will match the genome-wide SFS, thereby contributing little to the overall likelihood ratio.

Among all statistics evaluated, we found that those considering polymorphism data only (i.e., B0 vari-
ants and β variants) demonstrated relatively poor robustness to increases in window size. This result
indicates that the detectable footprint of balancing selection in polymorphism data by itself may decay
faster than other types of information, and that incorporating substitution data may help improve robust-
ness to large windows.

Considering that the powers of all B statistics stabilize at a fixed level as the window size increases
(Figure 2), we permit the B statistics to employ all informative sites on a chromosome. However, to
reduce computational load, we only consider sites with mixing proportion αA(d) ≥ 10−8 for each value of
A considered during optimization, which does not create discernible differences in performance from when
all data are considered (Figure S3). However, to ensure that other methods still display considerable power
for their comparisons, we applied the summary statistics with their optimal window sizes of one kb, and T
statistics with numbers of informative sites expected in a one kb window (see Methods), unless otherwise
stated.

High power for detecting balancing selection of varying age and selective strength

Next, we explored the powers of B statistics when the selective strength s, equilibrium frequency (controlled
by the dominance parameter h), and the age of balancing selection vary. Specifically, we examined scenar-
ios where the selective coefficients were moderate (s = 0.01, Figures 3A, C, D, and E) or weak (s = 10−3,
Figure 3B), and when the equilibrium frequency of the minor allele is approximately 0.5 (h = 20, Fig-
ures 3A and B), 0.4 (h = 3, Figure 3C), 0.3 (h = 1.75, Figure 3D), or 0.2 (h = 1.33, Figure 3E). Across all
scenarios considered, T2 and β∗ show the highest power for old balancing selection. The best-performing
B variants, B2 and B2,MAF, display high power as well, and are often comparable to that of the β(2) statis-
tic. The power of B1 is also similar to HKA, which is its summary statistic analogue. Furthermore, we
noticed that B statistics exhibit superior power for younger balanced alleles, particularly when balancing
selection is more recent than 2 × 105 generations, and when the equilibrium frequency does not equal to
0.5 (Figure S4). For older selected polymorphisms, although several statistics outperform B statistics, it is
important to point out that all previous methods were provided optimal window sizes, whereas B statistics
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were set to use all sites with considerable αA(d), under which they show lower power than when window
sizes are optimized (Figures 2A and S2C). This difference in performance between previous methods ap-
plied with their optimal window sizes and B statistics can also explain the seemingly inferior performance
of the two B0 variants when compared with the analogous β statistics, as the B0 variants lose more power
than other B variants when computed on extended windows. When applied with the same window size,
however, B0 outperforms β by a large margin (Figures 2A and S2C). Nevertheless, these results give us
confidence that B statistics have generally high power to detect young and old balancing selection, even
when adopting large windows.

Robustness to recombination rate variation and elevated mutation rates

Despite their flexibility in window size and high power for detecting balancing selection, model-based
methods, such as the T and B statistics, incorporate recombination distances in their inference framework,
and can therefore be especially susceptible to potential inaccuracies in input recombination maps. Addi-
tionally, because many approaches for detecting balancing selection aim to identify genomic regions with
increased genetic diversity, the elevation of mutation rates is also a common and potent confounding factor
for detecting balancing selection (Charlesworth, 2006; Siewert and Voight, 2020; Cheng and DeGiorgio,
2019).

To test their robustness to inaccurate recombination rates, we applied B and T statistics on simulated
sequences with uneven recombination maps (102-fold fluctuations in recombination rates; see Methods).
When the sequences evolve neutrally, neither approach is misled (Figures S5 and S6). When the fluctuation
in recombination rate is even more drastic (e.g., 104-fold instead of 102), all methods tend to report fewer
false signals than they would under a uniform map (Figures S7 and S8). This result suggests that the
misleading effects of inaccurate recombination maps are limited.

To examine their robustness against unexpected mutation rate variation, we next simulated a 10 kb
mutational hotspot at the center of the 50 kb sequence with a mutation rate five times higher than original
and surrounding rate µ, and applied each statistic with parameters derived from the original neutral
replicates with constant mutation rate µ across the entire sequence. All methods exhibit considerable
robustness against this regional increase of mutation rate (Figure S9 and S10).

We further considered an elevated mutation rate of 5µ across the entire 50 kb sequence, and re-examined
the robustness of each method. As expected, most statistics display substantially inflated proportions of
false signals (i.e., reported signals of balancing selection from sequences neutrally evolving with 5µmutation
rate; Figures S11A and D and S12). Among them, the B2 statistic reports the least proportion of false
signals, followed by the B1 statistic. Meanwhile, at low false positive rates, B2 and B2,MAF statistics
report higher proportions of false signals than T2, their coalescence model-based analogue, whereas B1

outperformed T1. Additionally, all statistics that consider only polymorphism data, namely the B0, B0,MAF,
β, and β∗ statistics, are substantially misled. The β(2) statistic, albeit taking substitutions into account,
also displays surprisingly high proportions of false signals.

We next explored how the regional mutation rate elevation in the genome could affect the detection
of balancing selection. To this end, we mixed neutral sequences evolving with 5µ mutation rates with
those with the original µ mutation rate at varying proportions (5, 10, 25, or 50%), and used these mixed
pools of neutral sequences as the “whole-genome” to compute their SFSs, inter-species coalescent times, and
polymorphism-substitution ratios to inform T , B, β, and HKA statistics of the neutral variation levels. We
then scanned these sequences with summary statistics adopting one-kb windows, T statistics adopting 12-
site windows, and B statistics using the whole sequence. We found that as the proportion of fast-mutating
neutral sequences increases, most methods show substantially compromised powers (Figure S13). Among
them, however, T2 and NCD consistently exhibit considerable power throughout all scenarios examined,
followed by T1, B2,MAF, B1, and B2, which still retain some power despite substantial drops. Meanwhile,
the methods that do not effectively utilize substitutions, i.e., B0, B0,MAF and β statistics, almost lose all
the power. This is consistent with previous results, suggesting that the absence of substitution renders
methods for detecting balancing selection susceptible to the confounding effects of unexpected mutation
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rates.
With knowledge of their robustness against unexpected mutation rate elevation, we further examined

the powers of each method to detect balancing selection within sequences evolving with high mutation
rates when they are correctly informed. That is, T and β statistics are provided the correct population-
scaled mutation rate and inter-species coalescent time, and all except for B statistics adopt their optimal
window sizes of one kb (60 informative sites for T statistics). We simulated sequences undergoing balancing
selection that initiated 250,000 generations ago with a neutral mutation rate of 5µ across the simulated
segment, and applied summary and T statistics on the sequences mutating at a rate of 5µ, with their
optimal window sizes under the correct mutation rate. Figure S14 demonstrates that the powers of all
methods are substantially higher than for the identical scenario with sequences evolving under the original
neutral mutation rate µ (compare to Figures 3C and S4C). This improved detection ability likely results
from the roughly five-fold increase in the number of informative sites included within each window. The
T statistics display lower areas under their receiver operating characteristic curves than their equivalent
B statistics (Figure S14A), and the B0,MAF and B2,MAF statistics perform substantially worse than their
respective derived allele frequency counterparts B0 and B2. Moreover, as with other simulated scenarios,
we find that the power of B0,MAF is lower than others (Figure S14B). However, when the window size
for all summary statistics is expanded from the optimal one kb to a sub-optimal five kb, their powers
substantially decrease to levels similar to B0,MAF.

Robust power under realistic demographic models

The influence of demographic history was the major motivation for T statistics to adopt the genome-wide
SFS instead of the coalescence-based constant-size neutral model as the null hypothesis, despite that the
latter being nested under the alternative model for balancing selection used by the T statistics. This trade-
off has endowed T statistics with considerable robustness to population size changes (DeGiorgio et al., 2014;
Cheng and DeGiorgio, 2019), but has also potentially compromised their robustness to large windows, as
shown in Robust high power under varying window sizes subsection of the Results. For B statistics, however,
because their null models both reflect the genome-wide SFS and are nested under the alternative models,
they should exhibit considerable robustness to both oversized windows and demographic changes.

To evaluate their performances under recent population expansions and bottlenecks, we considered the
demographic histories of contemporary European humans (Terhorst et al., 2017, CEU; Figure S15A) and
bonobos (Prado-Martinez et al., 2013, Figure S16A; see details in Methods), respectively. The former have
been extensively characterized (e.g., Lohmueller et al., 2009; Gravel et al., 2011; Terhorst et al., 2017), and
therefore can reliably reflect the performance of each method under realistic scenarios. On the other hand,
because we intend to apply the B statistics on bonobo genomic data, we are also interested in evaluating
their performance under an inferred bonobo demographic model.

As previously described, we applied the B statistics with unlimited window sizes, whereas the other
statistics were provided with smaller window sizes matching the theoretical size for a footprint of long-
term balancing selection (see Supplementary Note 2). Despite being provided disadvantageous window
sizes, B statistics still demonstrate comparable to, and often higher power than, current summary statis-
tic approaches, both under the human (Figure S15) and the bonobo (Figure S16) demographic models.
Although T2 has higher power than the B statistics, we note that the T statistics were operating with
optimal window sizes, whereas the window sizes for B statistics are identified across a parameter range.
When B1 and B2 are applied with identical window sizes as T1 and T2 (Figures S17 and S18), the margins
between their performances are no longer substantial. Additionally, we noticed that most statistics tend
to have higher power for sequences evolving under the bonobo demographic history than under that of the
Europeans (notice that the y-axes in Figures S15 and S16 have different scales).
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Robust power under varying mutation rates across target and outgroup species

In addition to temporally-varying population sizes, differing mutation rates between closely-related species
may also affect the performance of the coalescence-based T statistics, as they assume a uniform neutral
mutation rate along the genealogy relating the lineages from the ingroup and outgroup species. Among
great apes, for example, accumulating evidence suggests that humans have substantially lower mutation
rates than other great apes (as reviewed by Scally and Durbin, 2012).

To examine the behavior of each method when mutation rates of the target and outgroup species differ,
we simulated a two-species demographic history, with the target and outgroup species respectively evolving
at neutral rates µ = 1.2 × 10−8 and µ = 2.5 × 10−8 mutations per site per generation (see Methods for
details). We introduced an adaptive mutation evolving under balancing selection at varying time points
prior to sampling along this demographic history, and examined the power of each statistic to detect
balancing selection across a diverse array of selection parameters (Figure S19).

Across all six combinations of selection parameters considered, we observe similar trends for each statis-
tic when compared with simulations under the constant population size (Figure 3) and CEU (Figure S15)
demographic histories evolving with a constant neutral mutation rate. The T2 statistic performs the best
when s = 0.01 with h = 20 (Figure S19A), under which the equilibrium frequency is closest to 0.5 and when
heterozygotes are most advantageous. As the selective advantage hs and equilibrium frequency decrease,
the margin between the powers of T2 and B2 shrinks, and even reverses for all scenarios with small dom-
inance h (Figures S19C-F). Furthermore, methods based solely on polymorphism and substitution calls
(i.e., T1, B1, and HKA) show improvements in power as the equilibrium frequency decreases, and some
even outperform most of the other statistics (Figures S19D and E). Statistics that ignore substitutions
(i.e., B0, B0,MAF, β, and β∗), on the other hand, perform especially well for recent balancing selection
with high heterozygote advantage (large hs; Figures S19A and B). As the balanced alleles reach their
equilibrium frequencies sooner when the selective advantage of heterozygotes (i.e., hs) is high, sequences
with mutations of higher hs would have older footprints than those with mutations introduced at the same
time but with lower hs. In this respect, it is understandable that B0 and β variants outperform others
only for selection with large hs that are introduced within 150,000 generations prior to sampling.

Based on this two-species model with diverging mutation rates, we further integrated changes in pop-
ulation size of the target species in accordance with the demographic history of the CEU (Terhorst et al.,
2017, Figure S20). From the four sets of selection parameters tested, we found that most methods exhibit
lower power compared with those under constant population sizes (Figure S19). This result is consistent
with the lower powers under simulations with a constant mutation rate when the target population size
evolves under the CEU demographic history (Figure S15) compared with the setting in which the target
evolves with constant size (Figure 3). Despite their lower powers in general, we still observe similar relative
performances across statistics, with T1 and B1 exhibiting higher powers when the heterozygote advantage
hs is small. Moreover, we found that B2,MAF shows superior power to B2.

Re-examining long-term balancing selection in human populations

We applied B2 on contemporary European (Europeans in Utah; CEU, Figure S22) and west African
(Yoruban; YRI, Figure S21) human populations from the 1000 Genomes Project dataset (The 1000
Genomes Project Consortium, 2015) (see Methods) to re-examine the footprints of long-term balancing
selection, which previous studies (DeGiorgio et al., 2014; Siewert and Voight, 2017) have provided cases for
reference. The most outstanding candidates in both scans localize in the HLA-D region (human leukocyte
antigen, also known as major histo-compatibility [MHC] Class II region) (Figures S23 and S24), agreeing
with previous findings (Sanchez-Mazas, 2007; Leffler et al., 2013; DeGiorgio et al., 2014; Teixeira et al.,
2015; Siewert and Voight, 2017; Meyer et al., 2017; Bitarello et al., 2018). Within the HLA-D region, the
B2 scores computed for both populations show extraordinary peaks around HLA-DQ and HLA-DP gene
clusters, although CEU (Figure S23) scores remarkably higher on HLA-DP genes than YRI (Figure S24).
Echoing the critical roles of HLA-D genes in adaptive immunity, the gene ERAP2 exhibits extraordinary
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scores in both populations (Figures S25 and S26). This gene has been reported in past studies of balancing
selection in humans (Andrés et al., 2009, 2010; Bitarello et al., 2018), and Andrés et al. (2010) demon-
strated that its splicing variants can alter the level of MHC-I presentation on B cells. Additionally, we
also observed high B2 scores on CADM2 (Figures S27 and S28) and WFS1 (Figures S29 and S30), on
which Siewert and Voight (2017) characterized potential non-synonymous mutations segregating in both
populations.

In addition to these previously characterized candidates, both scans display extreme B2 scores on
another two top-ranking regions in the T2 scans by DeGiorgio et al. (2014): the STPG2 gene (formerly
named C4orf37 ; Figures S31 and S32) and the CCDC169 -SOHLH2 (formerly named C13orf38 -SOHLH2 ;
Figures S33 and S34) region, with STPG2 particularly more outstanding in the scan of YRI than in CEU.
Intriguingly, both these genes are associated with gametes. The STPG2 gene encodes sperm-tail PG-rich
repeat-containing protein 2, which, despite the paucity of literature that describes its function, is found
in sperm (Uhlén et al., 2015). The high-scoring region on this gene harbors a number of tissue-specific
eQTLs for its expression, especially in brain and reproductive tissues (GTEx Consortium, 2017). The
SOHLH2 gene, on the other hand, encodes the transcription factor Spermatogenesis and Oogenesis Specific
Basic Helix-Loop-Helix-containing protein 2, which plays important roles in both spermatogenesis and
oogenesis (Toyoda et al., 2009; Suzuki et al., 2012). We observed drastically elevated B2 scores (Figure S33)
across an extended region upstream of SOHLH2 that covers the naturally occurring CCDC169 -SOHLH2
readthrough transcript (as introduced in RefSeq database; O’Leary et al., 2015). Similar to STPG2, this
region also features numerous eQTLs for the expression of SOHLH2, especially in endocrine glands, brain,
and reproductive tissues (GTEx Consortium, 2017).

Other regions with outstanding peaks shared by both scans include the genes CPE (Fig-
ures S35 and S36) and MYOM2 (Figures S37 and S38). CPE encodes carboxypeptidase E, a key enzyme
for synthesizing peptide hormones such as insulin and oxytocin, and its mutant mice strain (Cpe fat) exhibits
endocrinic disorders such as obesity and infertility (Naggert et al., 1995). MYOM2 encodes endosacromeric
cytoskeleton M-protein 2, which serves as a structural component of muscle tissues (van der Ven et al.,
1999). Both genes harbor eQTLs reported by GTEx Consortium (2017) around the high-scoring regions.

Probing for footprints of balancing selection in bonobo genomes

We further applied the B2 statistic on the variant calls of 13 bonobos (Prado-Martinez et al., 2013)
lifted-over to human genome assembly GRCh38/hg38. Only bi-allelic single nucleotide polymorphisms
(SNPs) were considered, and substitutions were called using bonobo panPan2 reference sequence (Prüfer
et al., 2012), with the human sequence as the ancestral state. Stringent filters were applied to remove
repetitive regions and regions with poor mappability (see Methods). We observed many genomic regions
with outstanding B2 scores (Figure 4), which include both the MHC-DQ and MHC-DP genes and a few
novel candidates.

Among the outstanding peaks, the top two cover the MHC-DQA1, MHC-DQB1, MHC-DPA1, MHC-
DPB1, and MHC-DPB2 genes, which harbor all the top 0.01 percent B2 scores. (Figure 5A). Such
high scores can be explained both by the elevated proportion of polymorphic sites, 0.299 as compared
with the genome-wide proportion of 0.237 (Figure 5B; note that genes are labeled based on human hg38
genome annotations), as well as the enrichment of polymorphic sites with moderate minor allele frequencies
(Figure 5C). Furthermore, the region exhibits a multimodal SFS, which may correlate to the multiple B2

peaks observed in the region.
In addition to the MHC-DQ and MHC-DP genes, KLRD1 also presents prominent B2 scores (Fig-

ure S39) on its first intron. This gene expresses a natural killer (NK) cell surface antigen, also known as
CD94, and plays a pivotal role in viral defense. Unlike the region covering MHC-DQ genes, the minor
allele frequencies at polymorphic sites around the KLRD1 region are clearly enriched near a frequency of
0.45, instead of the multimodal distribution observed around the MHC-DQ genes. We also found other
high-scoring regions associated with innate immunity, such as the gene GPNMB (Figure S40), gene LY86
(Figure S41), and the intergenic region between BPIFB4 and BPIFA2 (Figure S42).
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Another interesting candidate is the pain perception gene SCN9A (Figure S43), on which the highest
scores overlap with the transcript of its anti-sense RNA gene that regulates its expression. Instead of
enriching toward a single value, the minor allele frequencies at the polymorphic sites across the region are
dispersed, with at least two modes (approximate minor allele frequencies of 0.25 and 0.40). This finding
may correlate with the multiple peaks identified around this region, which may be sensible given the large
number of exons covered. Similarly, the anti-sense RNA gene ARHGEF26-AS1 (Figure S44) harbors
high B2 scores, with allele frequencies enriched around 0.15 and 0.45. Other notable candidates include
PDE1A (Figure S45), which encodes a pivotal enzyme in cellular Ca2+- and cyclic nucleotide signaling
(Michibata et al., 2001) with multiple splicing variants and plays roles in both neurodevelopment (Pekcec
et al., 2018) and sperm functionality (Lefièvre et al., 2002). A few other genes scoring in the top 0.05%
are also involved in spermatogenesis or gamete functionality while serving other important functions, such
as a Ca2+/calmodulin-dependent protein kinase gene CAMK4 (Figure S46; Sikela et al., 1990) and a
cancer-related gene SUSD2 (Figure S47; Watson et al., 2013; Harichandan et al., 2013).

Discussion

In this study, we introduced a novel set of composite likelihood ratio statistics—B2, B2,MAF, B1, B0,
and B0,MAF—to robustly detect footprints of balancing selection with high power and flexibility. The B
statistics are based on a mixture model creating a proper nested likelihood ratio test, which helps them
overcome the common susceptibility to oversized windows held by current methods. We have extensively
evaluated their performances on simulated data compared with current state-of-the-art methods, and have
demonstrated the superior properties of the B statistics under various scenarios. We re-examined balanc-
ing selection in human populations (The 1000 Genomes Project Consortium, 2015), and recovered well-
established candidates including the HLA-D genes and ERAP2. We further applied B2 onto the genomic
data of bonobos (Prado-Martinez et al., 2013), and uncovered not only the MHC-DQ and MHC-DP gene
cluster, but also intriguing candidates that are involved in innate immunity, neuro-sensory development,
and gamete functionality.

Evaluating the performance of B statistics through simulations

In our simulation study, the B statistics showed remarkable robustness to large window sizes, with only
minor decays in power under oversized windows, whereas other methods exhibited large declines in power.
Moreover, even when considering all data available as input (i.e., the most disadvantageous window size)
all variants of B statistics still exhibit comparable power to extant methods and displayed satisfactory
performance across varying types and strengths of balancing selection. Under scenarios with confounding
factors, such as high mutation rate and non-equilibrium demographic history, the B statistics demonstrated
satisfactory robustness as well.

The robustness against varying window sizes is of particular interest in this study, not only because it
ensures high power under large windows, but it also allows the statistics to augment the size of genomic
regions from which they make meaningful inferences. This flexibility grants a key advantage over previous
methods that require the window size to be fixed throughout the scan in order to yield comparable results
across the genome. In particular, because many factors (such as recombination rates) can influence the
footprint size of balancing selection, it is not ideal to adopt a fixed window size for a whole-genome scan
based on a uniform population-scaled recombination rate, and B statistics naturally accommodate such
variability across the genome.

Admittedly, in practice, as the genomic region considered in the tests expands, non-neutral sites will
inevitably be included. This indeed violates our assumption that the test locus is surrounded by neutral
sites only. Nonetheless, because both positive and purifying selection reduce the presentation of sites
with intermediate frequencies (Tajima, 1989; Braverman et al., 1995; Fay and Wu, 2000; Bamshad and
Wooding, 2003), their effect on the SFS is in general opposite to the features expected from balancing
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selection. This suggests that including such sites in the window is unlikely to hamper the power to detect
balancing selection. Meanwhile, when multiple sites in the considered region undergo balancing selection,
the pattern of polymorphisms across the region will indeed differ from that in regions with a single selected
locus. We will discuss the effects of such multi-locus balancing selection in the subsequent subsection
Performance of single-locus methods on multi-locus balancing selection.

One important consideration is that, so far our simulation study (as well as previous ones by DeGior-
gio et al., 2014; Bitarello et al., 2018; Siewert and Voight, 2020) only evaluates the method performance
in the context of single-locus heterozygote advantage. For many other balancing selection mechanisms,
such as negative frequency-dependent selection (Asmussen and Basnayake, 1990) and periodic environ-
mental fluctuations (Bergland et al., 2014), a stable equilibrium cannot be guaranteed (Cockerham et al.,
1972; Asmussen and Feldman, 1977; Ginzburg, 1977). In non-overdominance settings for which particular
equilibrium frequencies indeed exist, the balanced alleles are still maintained near these fixed frequencies,
thereby satisfying the general assumptions of the statistical models underlying our B statistics. More-
over, when such intrinsic equilibrium frequencies do not exist, allele frequencies may still fluctuate around
some mean values. Even if such mean values are unattainable, there will still persist an enrichment of
sites with intermediate frequencies, thereby presenting characteristic footprints of balancing selection. We
therefore believe that our mixture model framework should still have high power to detect footprints of
non-overdominance balancing selection, and that overall, our results have comprehensively characterized
the promising performance of the B statistics.

Confounding effects of mutation rate or recombination rate variation

In our simulation study, sequences with a central 10 kb mutational hotspot did not mislead methods as
much as those with the mutation rate elevated across the entire sequence (Figure S9). This result may
seem counter-intuitive at first, as a smaller region of increased mutation rate may better resemble the
footprints of long-term balancing selection. However, upon a closer examination of the site frequency
spectra and proportions of polymorphic sites (Figure S48), sequences with an extended region of high
mutation rate exhibit a greater departure in these features under scenarios with no elevated mutation
rate than for scenarios with a central mutational hotspot. Specifically, these sequences have more sites
with high derived allele frequencies and a higher proportion of polymorphic sites overall (Figure S48B),
likely resulting from the recurrent mutation on sites that were originally substitutions. The increase is
also more profound on sites with high derived allele frequency. For example, the proportions of sites
with derived allele frequency of 0.96 increased by almost two-fold from approximately 0.00104 to 0.00190,
and the proportions of sites with derived allele frequency of 0.98 increased by almost three-fold from
0.00105 to 0.00273. By contrast, the difference in scale between the proportions of polymorphisms (0.182
versus 0.189) is minor. The larger fold-change in the proportions of high-frequency polymorphisms (i.e.,
sites with k = n − 1, n − 2, and n − 3 derived alleles) relative to that of substitutions (k = n derived
alleles) could explain the more profound inflation in power for the statistics relying only on information at
polymorphic sites. Similarly, after folding the SFS, the large changes in the proportions of low-frequency
alleles were substantially mitigated, echoing the superior performance of B2,MAF and β relative to their
unfolded counterparts.

Another unexpected result from the simulations of elevated mutation rate is the drastic inflation of
false signals reported by β statistics (Figure S11), which can also be observed in the non-standardized
β statistics (Figure S49). Although Siewert and Voight (2020) tested their power to detect balancing
selection under high mutation rate, it was unexplored whether their β statistics would mis-classify highly
mutable neutral sequences as those undergoing balancing selection, and our results show that they could
be easily misled. However, we further found that the performances of the standardized β statistics largely
improve when provided with the correct mutation rate and divergence time (Figure S49B). This result
partly confirms the superiority of standardized β statistics over the unstandardized ones. It also suggests
that β statistics are considerably susceptible to the confounding effect of mutation rate elevation, and
that their performance relies highly on the accuracy of the provided mutation rate. Instead of using a
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constant mutation rate for the entire scan, we propose that providing locally-inferred population-scaled
mutation rates θ may help improve the robustness of β statistics. Indeed, when we instead estimate θ
using the mean pairwise sequence difference θ̂π (Tajima, 1983) for each replicate and provided BetaScan

the respective inferred value as the θ parameter, the standardized statistics no longer report as many false
signals (Figure S49C). However, we also observed that providing a locally-inferred θ estimate compromises
the power of standardized β statistics to detect balancing selection, both under normal (i.e., µ) and
elevated (i.e., 5µ) mutation rates (Figures S50 and S51, respectively), especially for the unfolded β∗ and
β(2) statistics. This result is probably because, in addition to an elevation in mutation rate, the locally-
inferred θ can also be inflated by footprints of balancing selection, thereby decreasing the β statistic’s
sensitivity.

In contrast to mutation rate variation, all statistics are robust to recombination rate variation, with
B0 and B0,MAF reporting substantially fewer false signals than the others (Figure S5). This robustness
to recombination rate variation may be explained by the high similarity in the SFS and proportion of
polymorphic sites to sequences evolving under a uniform recombination rate (Figure S52).

Effect of multiple testing on sequences with high mutation rates

BecauseB, T , and β statistics are computed on every informative site, as suggested by Cheng and DeGiorgio
(2019), multiple-testing can account for some inflation in their powers because sequences with a higher
mutation rate will have a greater number of informative sites. To evaluate the effect of multiple testing for
sequences with high mutation rates, we down-sampled the test sites (see Methods) such that the number
of test scores being computed approximately matches that under the original mutation rate µ. Although
all statistics show varying levels of improvements in performance (Figures S11B, C, E, and F), some still
report high proportions of false signals, especially all β statistics and B0,MAF. That is, multiple-testing
cannot account for all the factors that drive these statistics to mis-identify features of elevated mutation
rates as footprints of balancing selection. This result corresponds to the fact that both the SFS and the
density of polymorphic sites are altered under scenarios with extended regions of elevated mutation rate
(Figure S48), likely due to recurrent mutation.

Furthermore, we observed that both before and after down-sampling, the T statistics report fewer
false signals than their respective B statistic analogues. One potential factor behind their marginally
superior performance may be that T statistics perform tests on fixed numbers of informative sites, instead
of genomic regions measured by physical lengths (as did B statistics and the summary statistics). For T
statistics, the size of the genomic region covered by the same number of informative sites would be much
narrower under rapidly mutating sequences than in sequences with the original mutation rate. This means
that the resulting T scores in either scenario are reflective of the levels of variation for sequences with
drastically different lengths. To account for this factor, we provide B1 and B2 with informative site-based
windows identical to that of T statistics and re-examined their performances (Figures S53 and S54). After
matching the windows, B1 and B2 variants in turn display higher robustness than T1 and T2 to elevated
mutation rates, suggesting that B statistics are at least comparably robust to T statistics. Meanwhile, we
also matched the window size for B0 variants and β to gauge the effect of adopting large windows on the
proportions of false signals from B0 variants. When B0 scans the sequences with one kb windows, though
there is an increase in the resulting number of false signals (Figures S53A and S54C), at a 1% false positive
rate the proportions of false signals for the two B0 variants only increase by less than 0.1, and are still
substantially lower than that of β and β∗ (Figures S53B and S54C and D).

Comparing the B statistics with the T statistics

Because the T statistics of DeGiorgio et al. (2014) have previously been the only model-based approach for
the detection of long-term balancing selection from polymorphism data in a single species, the comparisons
between the model-based B and T approaches is particularly intriguing for researchers with empirical data
suitable for the application of either. The T statistics are based on an explicit coalescent model (Hudson
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and Kaplan, 1988; Kaplan et al., 1988), and have been shown to have superior power to a number of other
methods in previous studies (DeGiorgio et al., 2014; Siewert and Voight, 2017, 2020; Bitarello et al., 2018;
Cheng and DeGiorgio, 2019), consistent with our simulation results. The B statistics, on the other hand,
employ a mixture model, where the component modeling balancing selection is not based on an explicit
evolutionary model, but nevertheless shows impressive performance on simulated data, as the shape of the
distribution of allele frequencies is similar to what might be expected under balancing selection. The often
superior performances of both approaches over summary statistics is understandable, as both utilize the
genomic spatial distribution of genetic diversity in their inferences.

However, within the T statistic framework, the model for the null hypothesis (neutrality) is not nested
in the alternative hypothesis (balancing selection). Although the T1 and T2 statistics could have adopted
nested models by employing the standard neutral coalescent as the model for the null hypothesis, doing so
would increase susceptibility to demographic factors, which can also alter the genome-wide SFS. To better
account for these factors, DeGiorgio et al. (2014) instead employed the genome-wide distribution of genetic
variation to compute probabilities under the null hypothesis of neutrality. This explains the substantial
decay in power for both T statistics as the window size increases (Figures 2 and S2A and B), as well as its
robust performance under varying sized demographic models (DeGiorgio et al., 2014; Cheng and DeGiorgio,
2019, Figures S15 and S16). In contrast to the T statistics, the null model for B statistics (which also
employs the genome-wide SFS) is nested within the alternative, due to their mixture model framework. This
feature mitigates the biases introduced by sites far from the test site, while simulataneously accounting for
demographic factors. Consequently, the B statistics display robust performance under oversized windows
and realistic demographic models in our simulations (Figures 2, S2, S15, and S16).

Another advantage of the B statistics over the T statistic approach, especially for B2 compared
with T2, is the computational load. Because the probability distribution of allele frequencies under
the Kaplan-Darden-Hudson (Kaplan et al., 1988) model is difficult to compute, the T2 statistic relies
on previously-generated sets of simulated site frequency spectra over a grid of equilibrium frequencies
x ∈ {0.05, 0.10, . . . , 0.95} for each distinct sample size n and recombination distance d. Generation of such
frequency spectra is computationally intensive, and the load increases substantially with the increase in
sample size, thereby limiting the application of T2 to datasets with larger sample sizes. However, this
is not a limitation of B2, as the SFS under balancing selection is determined simply as a mixture of the
given genome-wide distribution of allele frequencies and a statistical distribution with closed-form solutions
whose computational cost is minor, and only increases linearly with the sample size. Moreover, the rapid
computation of this spectrum permits a finer grid of equilibrium frequencies x to be interrogated.

Considering multi-allelic or multi-locus balancing selection

Both model-based approaches employed by the T and B statistics assume that balancing selection acts
on a single bi-allelic locus. Whereas this case may be the most intuitive and simplistic scenario to model
and simulate, many well-established empirical examples of balancing selection—such as the MHC locus
in animals (Wills, 1991; Hedrick, 2002), the ABO blood group in primates (Saitou and Yamamoto, 1997;
Fumagalli et al., 2009; Ségurel et al., 2012; Leffler et al., 2013), and the plant self-incompatibility locus
(Charlesworth et al., 2000)—feature multiple alleles balanced across an extended genomic region. It there-
fore brings into question how these methods perform on genomic regions evolving under multi-allelic or
multi-locus balancing selection, and whether current frameworks can be extended to consider these more
complicated cases of balancing selection.

Extending mixture models to account for multi-allelic balancing selection

There exist theoretical models of multi-allelic balancing selection based on the coalescent (Hey, 1991;
Muirhead and Wakeley, 2009). However, possibly due to computational constraints, such models have not
been implemented within a likelihood-ratio framework for detecting the footprints they characterize. Here,
instead of following DeGiorgio et al. (2014) to compute the densities of polymorphisms and substitutions
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or to approximate the SFS using simulations under an explicit coalescent model, our mixture models can
be readily extended to account for multi-allelic balancing selection at a single locus without the extensive
computational burden of coalescent-based approaches that integrate selection. Specifically, we consider
samples with multiple balanced alleles as following multinomial distributions (see Supplementary Note 1),
and henceforth use the mixture models to approximate the SFS at bi-allelic neutral sites that are linked
to a selected locus with m ∈ {2, 3, 4, . . .} balanced allelic classes. This extension is also implemented in
our BalLeRMix software, with the special case of m = 2 reducing to the model introduced in the Model
Description section.

To simulate single-locus multi-allelic balancing selection, we employed SLiM version 3.3, which can
simultaneously incorporate the four standard nucleotides of DNA, and thus allows these distinct nucleotides
to coexist at the same site. We introduced two, three, or four distinct mutations with fitness parameters
s = 0.001 and h = 20 in each simulated replicate 500,000 generations in the past to examine the relative
performances of T , bi-allelic B, and multi-allelic B statistics. Under this fitness scheme, the equilibrium
frequencies when two, three, or four alleles are balanced in the population are approximately (1/2, 1/2),
(1/3, 1/3, 1/3), or (1/4, 1/4, 1/4, 1/4), respectively (see Methods for details). As the number of balanced
alleles assumed by B statistics (i.e., parameter m) increases, the powers of B statistics barely change
when two (Figures S55A-C) overdominant mutations are introduced. When more than two overdomiant
alleles are balanced in the population, it is remarkable that B statistics with m set to three or four
(Figures S55E and F, respectively) outperform those with m = 2 (Figure S55D). Furthermore, we also
observe that the optimal equilibrium minor allele frequencies reported by the B statistics match well with
the true equilibrium frequencies in the simulated replicates (Figure S56).

To further dissect the relative performances of B statistics (with m = 4), we also applied other statistics
with their optimal window sizes on these simulated sequences (Figure S57). As the number of balanced
alleles increases, each statistic demonstrated improvements in their power. Furthermore, the B1, B2 and
B2,MAF statistics outperform their respective T - or summary-statistic analogs under all three scenarios
considered.

Taken together, these results suggest that the multi-allelic B statistics can substantially improve the
detection power for balancing selection with more than two balanced alleles. Moreover, B statistics with
larger m parameters, the presumed number of balanced alleles, are downward compatible with population
samples carrying fewer than m balanced alleles, as the presumed equilibrium minor allele frequencies of
the extra allelic classes would be optimized close to zero (see Figure S56).

Performance of single-locus methods on multi-locus balancing selection

Similar to multi-allelic balancing selection, despite previous theoretical work to model or simulate multi-
locus balancing selection (Navarro and Barton, 2002; Barton and Navarro, 2002; Tennessen, 2018), no
detection approach has yet been developed accordingly. Meanwhile, neither model-based detection frame-
work underlying the T statistics nor the B statistics can address these cases without jointly accounting
for allelic combinations at multiple informative sites as the target of selection. Therefore, without shifting
the paradigm to consider such site-to-site combinations so as to accurately locate the set of neighboring
selected loci, one can still examine the performance of extant balancing selection approaches for locating
genomic regions containing more than one locus under balancing selection.

To this end, we tested the simplest case with two nearby loci carrying independent overdominant
alleles (see Methods). To ensure individuals heterozygous at both loci are as advantageous as in the
single-locus balancing selection simulations with s = 0.001 and h = 20 (Figures S58A and B), we set the
selective coefficients of both overdominant mutations to s = 0.0005. That is, a two-locus genotype that
is heterozygous at each of the loci would have fitness approximately equal to 1 + 2hs = 1.2. Despite this
adjustment, we observed that all statistics show drastic improvements in their powers (Figure S58C and D),
with the lowest power among them of 0.8 (Figure S58D). This result suggests that multi-locus balancing
selection can potentially create more-prominent footprints compared with single-locus balancing selection.
To further gauge the extent to which the additional selected locus can boost detection power, we simulated
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sequences with two nearby loci each evolving under s = 10−5 and h = 20, such that the selective coefficient
s is two orders of magnitude smaller than that of the mutations introduced in the sequences evolving under
single-locus balancing selection (Figures S58A and B). Remarkably, all methods still exhibit substantially
higher powers for sequences with two nearby loci with weakly-advantageous (s = 10−5) alleles undergoing
balancing selection (Figures S58E and F).

The higher powers observed for simulated multi-locus balancing selection scenarios is understandable, as
Tennessen (2018) demonstrated that two non-interacting neighboring loci tend to reinforce the maintenance
of polymorphisms when both are independently subjected to balancing selection. However, multi-locus
balancing selection can also be achieved by epistasis (Barton and Navarro, 2002; Navarro and Barton,
2002), whereby the fitness effect of one locus is contingent on the allelic state of another locus, and has
been shown by a growing body of empirical studies to be pervasive in the genome (as reviewed by Shao
et al., 2008; Lehner, 2011; Mackay, 2014). Though we did not simulate such scenarios in this study,
because two interacting loci would better maintain polymorphisms at the selected loci than would two
non-interacting ones (Barton and Navarro, 2002; Navarro and Barton, 2002; Tennessen, 2018), it would
not be surprising that they would produce even stronger footprints than what we observe here.

Furthermore, genomic sequences with multiple nearby balanced loci will have more extended footprints
of balancing selection. With the capability to optimize over window sizes, B statistics should be more
sensitive to such regions than other approaches applied with small fixed windows. Indeed, B2 substantially
outperforms T2 (applied with 12 informative sites on either side of a test site) when the two neighboring
loci under selection are weakly advantageous themselves (Figures S58E and F). The margins between their
powers still persist even when T statistics adopt windows with 122 informative sites on either side of the
test site (Figures S59E and F), despite the marginal increases in their powers for two-locus balancing
selection.

Our exploratory results not only imply that extant approaches for detecting balancing selection have
high power when applied to genomic regions carrying multiple balanced loci, but that such power are also
likely much higher than they would have for single-locus regions. For B statistics in particular, because
they optimize over window sizes, the gap between their sensitivity for multi-locus balancing selection and
that for single-locus settings may be more profound than other methods when applied with small windows.
Our results also support the speculation that top candidates identified in previous scans for balancing
selection may be more likely to carry more than one functional polymorphic site, as is the case for the
MHC locus, considering all methods we evaluated show higher powers for multi-locus balancing selection
than for the single-locus process.

Application of B2 to empirical data

In this study, we applied the B2 statistic on both human and bonobo genomic data, and identified sensible
candidate targets in each species. We first re-examined the CEU and YRI human populations in the
1000 Genomes Project dataset (The 1000 Genomes Project Consortium, 2015) with B2, which have been
previously probed for long-term balancing selection in multiple studies (DeGiorgio et al., 2014; Siewert
and Voight, 2017; Bitarello et al., 2018). We found that top candidates reported by B2 overlap largely
with previous scans, lending confidence in the power of B statistics to make replicable discoveries. Next,
we performed the first model-based scan for footprints of balancing selection on bonobo polymorphism
data. In addition to the genomic regions previously reported to be under ancient balancing selection in
humans and chimpanzees (e.g., the MHC-DQ genes at the MHC locus; Leffler et al., 2013; Teixeira et al.,
2015; Cheng and DeGiorgio, 2019), we have also uncovered novel candidates such as KLRD1 and SCN9A,
which play roles in pathogen defense and pain perception, respectively. Our results may correspond to
the unique features and evolutionary history of bonobos, as suggested by accumulating evidence (de Waal,
1990; Hare et al., 2012; de Groot et al., 2017; Wroblewski et al., 2017; Maibach and Vigilant, 2019) on
bonobo behavior and physiology.

18

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

saa134/5848012 by Florida Atlantic U
niversity user on 28 August 2020



Potential balancing selection on gamete-associated genes in humans

In the scans of human populations, we recovered previously reported candidates STPG2 (formerly C4orf13 )
and CCDC169 (formerly C13orf38 ), in addition to the HLA-D locus and ERAP2. Neither of the two former
genes was discussed in previous studies after reporting them as top candidates, probably due to their late
characterization. Intriguingly, both genes are related to gametogenesis, with recent association and clinical
studies underscoring their functional importance. In particular, the expression of STPG2 has been detected
in male tissues, endocrine tissues, as well as the brain (Uhlén et al., 2015). Structural mutations deleting
this gene have been linked to azoospermia (Yakut et al., 2013) and velocardiofacial syndrome (Wu et al.,
2019), and association studies of SNPs in this have correlated it with autism (Connolly et al., 2017) and
preclampsia (Johnson et al., 2012). A recent study even reported footprints of ongoing positive selection
on a segregating preclampsia-associated SNP in this gene (Arthur, 2018). Note that these authors only
analyzed the disease-associating variants and applied haplotype-based selection tests, which tend to reveal
regions with at least one dominant haplotype. The footprints reported by Arthur (2018) can result from
either recent partial sweeps or balancing selection, with only the latter matching the kilobase-scale size of
the increased diversity surrounding the region (Figures S31 and S32).

The conjoined gene CCDC169 -SOHLH2 encodes a read-through transcript of the gene CCDC169 and
its immediate downstream SOHLH2, a crucial gene for gametogenesis. In addition to its potential to
initiate the transcription of SOHLH2 on occasions of read-through, CCDC169 has also been found to
have specific expression in pre-natal brain tissues (Pletikos et al., 2014). More interestingly, the B2 scores
across this gene do not form a typical peak as seen in many other candidate regions (Figures S33 and S34).
Instead, we observed a plateau of elevated B2 scores above the region joining the two genes. Furthermore,
both the mean pairwise sequence difference (π) and T2 with a 22-informative-site-radius window show two
minor peaks across this region. Considering our results for multi-locus balancing selection (Figure S58),
such footprints may be reflective of multiple loci undergoing balancing selection, probably interactively via
epistasis, which can create footprints of extended tracks of elevated genetic diversity (Barton and Navarro,
2002; Navarro and Barton, 2002).

Lastly, despite the intriguing functional implications behind our candidates, we are aware that some
of our candidate regions show worrying signs for artifacts. For example, STPG2 (also a top candidate
in the scan by DeGiorgio et al., 2014) has low 35-mer sequence uniqueness scores across the whole 40 kb
region examined, despite surviving the 50-mer mappability filter. The peak linking CCDC169 and SOHLH2
shows overall higher sequence uniqueness than STPG2, but the few regions with relatively lower uniqueness
co-localize with the peaks reported by π and T2. This co-localization is also observed in the gene CPE,
where peak regions with a drop in sequence uniqueness also display lower sequencing depths than other
regions. Though not all regions with low mappability necessarily yield outstanding scores for balancing
selection, these signs could still be indicative of erroneous mapping and warrant further investigation and
caution in interpretation.

Footprints of balancing selection in bonobos and their implications

As one of the two sister species to humans, bonobos (initially known as the pygmy chimpanzees; Prüfer
et al., 2012) have been drawing increasing attention from the genomics community (e.g., Prüfer et al., 2012;
Prado-Martinez et al., 2013; de Manuel et al., 2016). However, compared with chimpanzees (the other
sister species), bonobos are relatively understudied, despite their close relationship to humans and unique
social behaviors. For bonobos, one of their most idiosyncratic traits is their high prevalence of sociosexual
activities (de Waal, 1990; Kano, 1992; Wrangham, 1993), which serve important non-reproductive functions
and include frequent same-sex encounters. As a close relative to humans, their female-dominance, low-
aggression, and hypersexual social behaviors contrast fiercely with those of humans and chimpanzees (Kano,
1992; Wrangham, 1993). A growing number of recent studies have also characterized the differences in
physiological responses between bonobos and chimpanzees behind their social behaviors (Heilbronner et al.,
2008; Hohmann et al., 2009; Wobber et al., 2010; Deschner et al., 2012; Surbeck et al., 2012), yet the
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genetic component underlying their unique behaviors, however, remains largely elusive. From the B2 scan
of bonobo genomes, we identified a number of interesting top candidates involved in pathogen defense.
Despite that most of the MHC region was removed by a mappability filter (see Methods), we still observed
extraordinary signals from the remainder of this region. More specifically, the MHC-DQ and MHC-DP
genes harbor the highest peaks across the genome (Figures 4 and 5). These genes encode the component
proteins of MHC-DQ and MHC-DP molecules, which are cell-surface receptors on antigen-presenting cells
(Ball and Stastny, 1984), and has long been known to be highly polymorphic in great apes (Takahata et al.,
1992; Prüfer et al., 2012; Teixeira et al., 2015).

Another immune-related gene, KLRD1, which encodes the cell surfacr antigen CD94, also exhibited
outstanding B2 scores. The interaction between KLRD1 (CD94) and NKG2 family proteins can either
inhibit or activate the cytotoxic activity of NK cells (Pende et al., 1997; Cantoni et al., 1998; Masilamani
et al., 2006), as well as pivot the generation of cell memory in NK cells (Cerwenka and Lanier, 2016).
Furthermore, KLRD1 (CD94) has been shown to play an important role in combating viral infections such
as cytomegalovirus (CMV; Cerwenka and Lanier, 2016) and influenza (Bongen et al., 2018) in humans, as
well as the mousepox virus in mice (Fang et al., 2011). In humans and chimpanzees, KLRD1 is highly
conserved (Khakoo et al., 2000; Shum et al., 2002). Here, the involvement in viral defense of KLRD1
presents an especially intriguing case for bonobos. Bonobos have been recently shown to harbor reduced
levels of polymorphism in MHC class I genes (Maibach et al., 2017; Wroblewski et al., 2017), which
were further predicted to have lower ability to bind with viral peptides when compared with chimpanzees
(Maibach and Vigilant, 2019). The genes encoding another regulator of MHC class I molecules, the
Killer cell Immunoglobin-like Receptors (KIR), were also found to have contracted haplotypes in bonobos
(Rajalingam et al., 2001; Walter, 2014; Wroblewski et al., 2019), with the lineage III KIR genes serving
reduced functions (Wroblewski et al., 2019). In fact, many studies have pointed out that these reduced
features are unlikely the natural consequences of demographic factors—even after considering the harsher
bottlenecks bonobos have undergone compared with chimpanzees—and speculate that selective sweeps in
bonobos on these regions (Prüfer et al., 2012; Walter, 2014; Maibach et al., 2017; Wroblewski et al., 2017,
2019) may have eliminated the diversity in these critical immunity genes. In this light, the polymorphisms
on KLRD1 may be compensating the reduced diversity in their binding partners in bonobos.

Several other genes in high-scoring regions are also found to be involved in immunity. For one, the
highest peak on chromosome 7 encompasses the entire gene GPNMB (Figure S40), with elevated B2

scores particularly on exons. This gene encodes osteoactivin, a transmembrane glycoprotein found on
osteoclast cells, macrophages, and melanoblast (Loftus et al., 2009; Yu et al., 2016), and is shown to regulate
proinflammatory responses (Ripoll et al., 2007). Aside from its heavy involvement in cancer (Zhou et al.,
2012), the protein GPNMB has also been shown to facilitate tissue repair (Li et al., 2010; Rose et al.,
2010; Hu et al., 2013) as well as influence iris pigmentation (Bächner et al., 2002; Maric et al., 2013).
Other potential evidence for balancing selection operating on innate immunity-related genes includes the
high B2 scores observed around the intergenic region between BPIFB4 and BPIFA2 (Figure S42), which
encode two Bacterialcidal Permeability-Increasing Fold-containing (BPIF) family proteins (Levy, 2000).
The BPIFA2 genic region is recently shown to harbor many SNPs significantly associated with enteropathy
(Fujimori et al., 2019), whereas the BPIFB4 gene is better-known by its association with longevity (Villa
et al., 2015b; Spinetti et al., 2017; Villa et al., 2018), speculated to partly result from its protection of
vascular functions (Villa et al., 2015a; Puca et al., 2016; Spinelli et al., 2017).

In addition to pathogen defense, we also found other interesting candidates relating to neurosensory
and neurodevelopment. One such gene is SCN9A (Figure S43), which encodes NaV1.7, a voltage-gated
sodium channel, with mutations on the gene associated with various pain disorders (Yang et al., 2004;
Cox et al., 2006; Reimann et al., 2010). The peak we observe covers the overlapping RNA gene encoding
its anti-sense transcript, SCN1A-AS1, which regulates the expression of SCN9A (Koenig et al., 2015),
suggestive of diversified regulation of pain perception in bonobos. A few other candidate genes are also
involved in neurodevelopment, such as EPHA6 (Das et al., 2016), SUSD2 (Figure S47; Nadjar et al., 2015),
and HPCAL1 (Tam, 2015).
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Lastly, we noticed that some candidate genes carry multiple distinct functions, and may have been
undergoing balancing selection due to potential evolutionary conflicts between some of their functions. For
example, the gene GPNMB plays roles not only in tissue repair (Li et al., 2010), but also in iris pigmentation
(Bächner et al., 2002). Another candidate, PDE1A gene (Figure S45), encodes a phosphodiesterase that is
pivotal to Ca2+- and cyclic nucleotide-signaling (Lefièvre et al., 2002). It is expressed in brain, endocrine
tissues, kidneys, and gonads (Uhlén et al., 2015), and has multiple splicing variants. In fact, the high-
scoring peak we observed on this gene happens to locate around the exons that are spliced out in some
variants (Figure S45). Studies have demonstrated the relation of this gene to brain development (Yan et al.,
1994), mood and cognitive disorders (Xu et al., 2011; Martinez and Gil, 2013; Pekcec et al., 2018; Betolngar
et al., 2019), and hypertension (Kimura et al., 2017). Meanwhile, the PDE1A protein is also a conserved
component of mammalian spermatozoa (Lefièvre et al., 2002; Vasta et al., 2005), and is involved in the
movement of its flagella. Similarly, the gene CAMK4 encodes Ca2+- and calmodulin-dependent kinase
4, which also plays important roles in both immunity (Koga and Kawakami, 2018) and spermatogenesis
(Wu et al., 2000). The cancer-related protein Sushi-domain containing 2, encoded by SUSD2 (Watson
et al., 2013), not only regulates neurite growth in the brain (Nadjar et al., 2015), but can also be used as a
marker molecule for human spermatogonial progenitors (Harichandan et al., 2013). Though it is difficult
to judge for these genes which functions may be subject to selective pressures, they nonetheless indicate
that pleiotropy can be an important driver of balancing selection.

Concluding remarks

Extant methods for detecting long-term balancing selections are constrained by the pliability of their in-
ferences as a function of genomic window size. In this study, we presented B statistics, a set of composite
likelihood ratio statistics based on nested mixture models. We have comprehensively evaluated their per-
formances through simulations and demonstrated their robust high performances over varying window
sizes in uncovering genomic loci undergoing balancing selection. Moreover, we showed that even when
applied with the least optimal window sizes, the B statistics still exhibit high power comparable to cur-
rent methods, which operated under optimal window sizes, in uncovering balancing selection of varying
age and selection parameters, as well as robust performance under confounding scenarios such as elevated
mutation rates, variable recombination rates, and population size changes. We re-examined the 1000
Genomes Project YRI and CEU populations with B2 statistics, and have recovered well-characterized
genes previously-hypothesized to be undergoing long-term balancing selection in humans, such as the
HLA-D genes, ERAP2, and CSMD2. We also characterized previously-reported top candidates STPG2
and CCDC169-SOHLH2, both of which are related to gametogenesis. We further applied the B2 statis-
tic on the whole-genome polymorphism data of bonobos, and discovered not only the well-established
MHC-DQ and MHC-DP genes, but also novel candidates such as KLRD1, PDE1A, SCN9A, and SUSD2,
with functional implications in pathogen defense, neuro-development, as well as gamete functions. More-
over, we have extended the B statistics to consider multi-allelic balancing selection, with these exten-
sions demonstrating superior properties to all previous methods for detecting selected loci with more
than two balanced alleles. We also extended our bi-allelic modeling framework to better account for po-
tential increases in variability of the allele frequency distribution under balancing selection centered on
particular equilibrium allele frequencies. Further, we show that all current methods tend to have higher
powers for two-locus balancing selection than for single-locus processes. Lastly, we have implemented
these statistics in the open source software BalLeRMix, which, along with other key scripts used in this
study, can be accessed at https://github.com/bioXiaoheng/BalLeRMix/. We have also released the
empirical scan results for balancing selection in both humans and bonobos, which can be downloaded at
http://degiorgiogroup.fau.edu/ballermix.html.
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Methods

In this section, we discuss sets of simulations used to evaluate the performances of the B statistics relative
to previously-published state-of-the-art approaches (Hudson et al., 1987; DeGiorgio et al., 2014; Siewert
and Voight, 2017, 2020; Bitarello et al., 2018). Finally, we describe the application of our B statistics to
an empirical bonobo dataset (Prado-Martinez et al., 2013).

Evaluating methods through simulations

We employed the forward-time genetic simulator SLiM (version 3.2; Haller and Messer, 2019) to generate
sequences of 50 kb in length evolving with or without balancing selection. Based on the respective levels
in humans and other great apes, we assumed a mutation rate of µ = 2.5 × 10−8 per base per generation
(Nachman and Crowell, 2000), and a recombination rate of r = 10−8 per base per generation (Payseur and
Nachman, 2000). In scenarios with constant population sizes, we set the diploid effective population size as
N = 104. To create baseline genetic variation, each replicate simulation was initiated with a burn-in period
of 10N = 105 generations. To speed up simulations, we applied the scaling parameter λ to the number of
simulated generations, population size, mutation rate, recombination rate, and selection coefficient, which
allows for the generation of the same levels of variation with a speed up in computational time by a factor
λ2. For scenarios based on a model of constant population size, we used λ = 100. For the demographic
models of European humans and bonobos, we used λ = 20. We simulated 500 replicates for each scenario
considered, and sampled 50 haploid lineages from the target population and one lineage from the outgroup
in each simulation for downstream analyses.

We simulated data from two other diverged species, under the demographic history inspired by that of
humans, chimpanzees (Kumar et al., 2005), and gorillas (Scally et al., 2012). Specifically, the closer and
farther outgroups diverged 2.5 × 105 and 4 × 105 generations ago, respectively, which correspond to five
million and eight million years ago, assuming a generation time of 20 years.

To evaluate the power of each method to detect balancing selection with varying selective coefficient s,
dominance coefficient h, and age, for each combination of s and h, we considered 15 time points at which
the selected allele was introduced, ranging from 5 × 104 to 6.5 × 105 generations prior to sampling with
time points separated by intervals of 5 × 104 generations. Assuming a generation time of 20 years, these
time points are equivalent to 1, 2, 3, . . . , 15 million years before sampling. In each scenario, a single selected
mutation was introduced at the center of each sequence at the assigned time point, and we only considered
simulations where the introduced allele was not lost.

Accelerated mutation rate

To evaluate whether the B statistics are robust to high mutation rates, we applied the methods on simulated
sequences evolving neutrally along the same demographic history (Figure S1), but instead with a five-
fold higher mutation rate of 5µ = 1.25 × 10−7 per site per generation. To generate sequences with
regional increases in mutation rate, we simulated 50 kb sequences with a five-fold higher mutation rate of
5µ = 1.25× 10−7 per site per generation at the central 10 kb of the sequence, and the surrounding region
with the original rate µ.

Recombination rate estimation error

For evaluating the robustness to erroneous estimation of recombination rates, we simulated sequences
with uneven recombination maps, and applied the model-based methods with the assumption that the
recombination rate is uniform. In particular, we divided the 50 kb sequence into 50 regions of one kb each,
and in turns inflate or deflate the recombination rate of each region by m fold, such that the recombination
rates of every pair of neighboring regions have a m2-fold difference. We tested m = 10 and m = 100 in
this study.
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Demographic history

To examine the performance of methods under realistic demographic parameters, we considered the demo-
graphic histories of a European human population (CEU; Terhorst et al., 2017) and of bonobos (Prado-
Martinez et al., 2013). For the human population, we adopted the history of population size changes inferred
by SMC++ (Terhorst et al., 2017) that spans 105 generations, assuming a mutation rate of µ = 1.25×10−8

per site per generation (assumed when estimating the CEU demographic history in Terhorst et al., 2017),
a generation time of 20 years, and a scaling effective size of 104 diploids. To account for recombination
rate variation, we allowed each simulated replicate to have a uniform recombination rate drawn uniformly
at random between r = 5 × 10−9 and r = 1.5 × 10−8 per site per generation. We also simulated an
additional population that split from the human population 2.5 × 105 generations ago, which is identical
to the outgroup (named O1) in the demographic model depicted in Figure 3A, with an effective size of
N = 104 diploid individuals.

For the bonobo population history, we scaled the PSMC history inferred from the genome of individual
A917 (Dzeeta; sample SRS396202) by Prado-Martinez et al. (2013) with a mutation rate of µ = 2.5 ×
10−8 per site per generation, identical to the simulations on the three-population demographic history
(Figure 3A). Because the inferred PSMC model provides a specific ratio of the mutation and recombination
rates, we set the recombination rate to r = 2.84× 10−9 per site per generation. To be consistent with the
three-population demographic history, we set the population size prior to 71,640 generations ago, which is
the maximum time covered by the PSMC inference, to N = 104 diploid individuals, and had the outgroup
split 2.5× 105 generations ago with the same diploid population size, identical to the outgroup O1 in the
three-population demographic history (Figure 2A).

To simulate species with distinct mutation rates, we split the simulation into two stages, with the first
stage concerning the sequences in the ancestral species up until the two populations diverge five million
years ago. Upon divergence, two separate SLiM simulations are used to distinguish the mutation rates
in the target and outgroup populations, and samples are output separately before being integrated in
subsequent analyses. We set the target species to mutate at a rate of µ = 1.2×10−8 per site per generation
(Scally and Durbin, 2012) after divergence, and the other species (including the ancestral species) evolving
with the mutation rate of µ = 2.5 × 10−8 per site per generation (Nachman and Crowell, 2000). The
recombination rate across all simulations is r = 10−8 per site per generation (Payseur and Nachman,
2000). For the simulations with constant population sizes, we set the effective size of all populations as
N = 104 diploid individuals, and adopted the scaling parameter λ = 100. For simulations employing
realistic demographic histories, we used λ = 20, set the effective population size of the ancestral and
the outgroup species as N = 104 diploids (Takahata et al., 1995), and the target species following the
demographic history inferred from the CEU human population (Terhorst et al., 2017) for 105 generations
prior to sampling. Additionally, we set the generation time of the target species to be 25 years (akin to
humans; Scally and Durbin, 2012), while for the outgroup and ancestral species we used 20 years (akin
to non-human great apes; Prado-Martinez et al., 2013). Consequently, the species divergence occurred
200,000 generations ago for the target species, and 250,000 generations ago for the outgroup.

Three- and four-allelic balancing selection at a single site

To simulate balancing selection on a single site with more than two balanced alleles, we used SLiM3.3
(Haller and Messer, 2019) so that all four nucleotides, instead of binary representations of 0s and 1s,
can be incorporated into the simulations. We adopted the same three-species demographic history as
illustrated in Figure S1, and simulated sequences of length 50 kb consisting of randomly-generated strings
of four nucleotides at the beginning of each replicate, with equal chance of occurrence for each nucleotide.
We considered the Jukes-Cantor substitution model and set the between-nucleotide mutation rate as µ =
8.3 × 10−9 per site per generation, such that the total mutation rate (three times the between-nucleotide
mutation rate) is µ = 2.49 × 10−8 per site per generation—roughly the same as adopted in the bi-allelic
balancing selection simulations. We also assumed a uniform recombination rate of r = 10−8 per site per
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generation (Payseur and Nachman, 2000). At 500,000 generations before sampling, we introduced two,
three, or four mutations of distinct nucleotides that have selective coefficient s = 0.001 and dominance
coefficient h = 20. Note that SLiM considers co-localized mutations of distinct types as if they were at
different positions, and computes fitness for the individual by multiplying fitness values of each mutation.
That is, a diploid individual who is heterozygous at a site harboring two distinct selectively advantageous
mutant alleles with parameters s = 0.001 and h = 20 would have fitness (1 + hs)(1 + hs) = 1.44, whereas
a homozygote for either selectively advantageous mutation would have fitness 1 + s = 1.001. At the
completion of the simulation, we sampled 25 diploid individuals uniformly at random from each of the
sister species (P and O1), and one diploid individual was sampled uniformly at random from species O2,
with only one haplotype of this individual being considered as the reference sequence. Only bi-allelic sites
were considered in the downstream analysis.

Application to empirical data

Human genomic data from the 1000 Genomes Project

We obtained variant calls from the 1000 Genomes Project dataset (The 1000 Genomes Project Consortium,
2015), which were mapped to human reference genome hg19, and extracted the haplotypes for the CEU and
YRI populations. We used the chimpanzee reference genome panTro5 downloaded from the UCSC Genome
Browser (Kent et al., 2002; Haeussler et al., 2018) to call ancestral alleles, and only retained mappable
monomorphic or bi-allelic polymorphic sites based on the variation in the CEU (or YRI) population together
with the chimpanzee reference genome. For mappable sites not included in the variant call dataset, we
assumed the site is monomorphic for the hg19 reference genome, and called substitutions accordingly.

To avoid making inference on potentially problematic regions, we applied the RepeatMasker filter and
removed segmental duplications, both of which were downloaded from the UCSC Genome Browser (Kent
et al., 2002; Haeussler et al., 2018). Genomic regions with mappability 50-mer score (Derrien et al.,
2012) lower than 0.9 were discarded as well. Moreover, we performed one-tailed Fisher’s exact tests for
Hardy-Weinberg equilibrium (Wigginton et al., 2005) on each polymorphic site and removed those with a
significant (p < 10−4) excess of heterozygous genotypes.

We applied B2 to each CEU and YRI dataset separately, assuming the human recombination map of
the hg19 reference genome (International HapMap Consortium, 2007). We did not fix the window size of
these scans, and instead permitted B2 to optimize over both free parameters A and x. To better compare
our results with previous studies, we also applied the T2 statistic (DeGiorgio et al., 2014) to the same input
datasets, adopting window sizes of 22 or 100 informative sites on either side of a test informative site. We
also computed sequence diversity π averaged across each five kb window as a reference.

For downstream examination of the mappability of candidate regions, we consulted the 35-mer unique-
ness score (UCSC hg19 database; Kent et al., 2002; Haeussler et al., 2018) averaged across each one kb
region. Furthermore, we also downloaded the BAM files for each individual in the CEU or YRI population
and generated per-base read depths with BEDTools 2.26 (Quinlan, 2014). We then computed sample-wide
mean read depths, their standard deviations, and the number of individuals without coverage for each pop-
ulation after merging read depths of all samples with BEDTools. These references further aided in flagging
potentially problematic regions that survived initial filters, as they typically feature lower mappability
(mean 35-mer uniqueness) or abnormally low or high read depths.

Bonobo genomic data from the Great Ape Project

We obtained the genotype calls of 13 bonobos from the Great Ape Project (Prado-Martinez et al., 2013),
which were originally mapped to human genome assembly NCBI36/hg18. We lifted over the variant calls
to human genome assembly GRCh38/hg38, so that the bonobo genome assembly panPan2 can be used
for polarizing the allele frequencies, with the sequence in hg38 considered as the ancestral allele. Only
genomic regions mappable across hg38 and panPan2 were considered for further analyses. For mappable
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polymorphic sites, we only considered bi-allelic SNPs. For mappable sites without variant calls in bonobo,
we assumed these sites were monomorphic for the panPan2 reference genome sequence, and called substi-
tutions based on whether the panPan2 reference allele was different from the hg38 reference allele.

To circumvent potential artifacts, we performed one-tailed Hardy-Weinberg equilibrium tests on each
site and removed sites with an excess of heterozygotes (p < 0.01). This p-value was determined by the
distribution of the p-values of all polymorphic sites across the genome, such that 0.035% of such sites
are outliers. We also applied the RepeatMasker, segmental duplication, simple repeat, and interrupted
repeat filters (all downloaded from UCSC Genome Browser) to remove repetitive regions. To assess the
mappability of each genomic region, we employed the mappability scores (obtained by setting the maximum
mismatches tolerated to zero; Derrien et al., 2012) of 50-mers. Regions with 50-mer mappability scores
lower than 0.9 were removed. Because BalLeRMix employs a pre-specified grid of A values to accompany
the distances d in centi-Morgans (cM), when applying the method, we assumed a uniform recombination
rate of 10−6 cM per site, which is the approximate recombination rate in humans (Payseur and Nachman,
2000).
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L. Lefièvre, E. de Lamirande, and C. Gagnon. Presence of cyclic nucleotide phosphodiesterases pde1a,
existing as a stable complex with calmodulin, and pde3a in human spermatozoa. Biology of Reproduction,
67(2):423–430, 2002.
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Figure 1: Schematic of the mixture model underlying the B statistics. (A) The model for the alternative
hypothesis is a mixture of the distribution of allele frequencies under balancing selection at proportion
αA(d), modeled by a binomial distribution, and the distribution under neutrality at proportion 1−αA(d),
modeled by the genome-wide site frequency spectrum. Here, αA(d) decays as a function of recombination
distance d, and so sites close to (i.e, small d) the putative selected site will be modeled mostly by the
distribution expected under balancing selection, whereas sites far from (i.e., large d) the selected site will
be modeled mostly by the distribution expected under neutrality. (B) Distributions of allele frequencies
at neutral sites (black dots) under the mixture model at varying distances d from the putative selected
site (yellow star). (C) Distributions of allele frequencies from the center 10 kb (0.01 centiMorgan) of the
simulated sequences when balancing selection maintains the equilibrium frequency of x = 0.2, 0.3, 0.4, or
0.5.
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Figure 2: Partial area under the curve (AUC) conditioned on false positive rates (FPRs) less than or equal
to 5% (defined such that the maximal value is 1) as a function of window size measured in kilobases (kb)
for B statistics (varying shades of blue), β statistics (dotted line with varying shades of blue), T2 (orange),
T1 (green), HKA (purple), and NCD2(0.5) (pink), under a scenario in which a mutation undergoing ancient
balancing selection (selective coefficient s = 0.01 and dominance coefficient h = 20) arose 15 million years
ago (assuming a generation time of 20 years). Statistics that consider the same input type share the same
point shape. The dark red dashed line marks the level of partial AUC expected at the y=x line, or the
baseline of randomly choosing between balancing selection and neutrality. (B) The amount of partial AUC
lost, and (C) the proportion of the AUC loss as compared with the optimal value for each statistic when
the window size increased from the optimum to 25 kb (e.g., largest evaluated).
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Figure 3: Ability to detect balancing selection for different heterozygote advantage scenarios. (A) Demo-
graphic model relating the ingroup (P) and outgroup (O2) populations, with one sample from O2 used as
the outgroup sequence. (B-F) Powers at a 1% false positive rate (FPR) for each statistic as a function of
age of the allele undergoing balancing selection for different selection (s) and dominance (h) coefficients.
The scenarios considered are (B) s = 0.01 with h = 20, (C) s = 0.001 with h = 20, (D) s = 0.01 with
h = 3, (E) s = 0.01 with h = 1.75, and (F) s = 0.01 with h = 1.33. Note that the equilibrium frequencies
for panels D, E, and F are 0.4, 0.3, and 0.2, respectively.
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Figure 4: Manhattan plot displaying B2 scores across the 22 human autosomes for which the bonobo
genomic data were mapped, with the candidates scoring in the top 0.05 percent annotated. RNA genes
are annotated with smaller fonts. Horizontal dotted lines represent cutoff scores for the top 0.1, 0.05, and
0.01 percent across the genome. Peaks higher than 0.05 percent cutoff but without annotations do not
have neighboring protein-coding regions within a 250 kb radius.
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Figure 5: Evidence for balancing selection on MHC-DQ and MHC-DP genes in bonobos. Note that the
plotted gene names are based on the annotations of human hg38 reference genome. (A) B2 scores across
the genomic region on chromosome 6 surrounding the MHC-DQ and MHC-DP genes. The gray bars
directly under the B2 scores represent the masked regions, as well as the features in these regions. The
darker the shade, the greater number of types of repetitive sequences (e.g., RepeatMasker mask, segmental
duplication, simple repeats, or interrupted repeats) overlapping the region. Vertical gray bars below display
the estimated equilibrium minor allele frequency x̂ for each maximum likelihood ratio B2, and the black
line traces the value for the respective inferred footprint size log10(Â). (B) Proportion of informative sites
that are polymorphic in the 800 kb region centered on the peak compared with the whole-genome average.
(C) Minor allele frequency distribution in the 500 kb region centered on the peak compared with the
whole-genome average.
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