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Abstract
Numerical models of pyroclastic currents are widely used for fundamental research and for hazard and risk modeling that
supports decision-making and crisis management. Because of their potential high impact, the credibility and adequacy of models
and simulations needs to be assessed by means of an established, consensual validation process. To define a general validation
framework for pyroclastic current models, we propose to follow a similar terminology and the same methodology that was put
forward by Oberkampf and Trucano (Prog Aerosp Sci, 38, 2002) for the validation of computational fluid dynamics (CFD) codes
designed to simulate complex engineering systems. In this framework, the term validation is distinguished from verification (i.e.,
the assessment of numerical solution quality), and it is used to indicate a continuous process, in which the credibility of a model
with respect to its intended use(s) is progressively improved by comparisons with a suite of ad hoc experiments. The method-
ology is based on a hierarchical process of comparing computational solutions with experimental datasets at different levels of
complexity, from unit problems (well-known, simple CFD problems), through benchmark cases (complex setups having well
constrained initial and boundary conditions) and subsystems (decoupled processes at the full scale), up to the fully coupled
natural system. Among validation tests, we also further distinguish between confirmation (comparison of model results with a
single, well-constrained dataset) and benchmarking (inter-comparison among different models of complex experimental cases).
The latter is of particular interest in volcanology, where different modeling approaches and approximations can be adopted to
deal with the large epistemic uncertainty of the natural system.
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Introduction and motivation

The main objectives of physical, mathematical, and numerical
models of volcanic processes are interpretation of the avail-
able geological and geophysical data in order to reconstruct
and understand fundamental eruption processes, and predic-
tion of the occurrence and impact of future eruptions. The
latter is required for hazard and risk assessment and for the
design of risk mitigation measures. Among the variety of vol-
canic processes, pyroclastic currents (also called pyroclastic
density currents, pyroclastic flows, and pyroclastic surges) are
particularly challenging to model (Neri et al. 2014; Dufek
et al. 2015; Dufek 2016). Despite significant and continuous
progress, our predictive capability of pyroclastic currents is
indeed still limited by (1) incomplete knowledge of the mul-
tiphase and multiscale processes controlling gas-particle flow
dynamics across a wide range of dynamical regimes (Dufek
et al. 2015; Dufek 2016); (2) constrains on numerical model
resolution and capability of modeling a broad range of spatial/
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temporal scales and turbulent regimes (Esposti Ongaro et al.
2011; Cerminara et al. 2016a); and (3) by aleatory uncertainty
in initial and boundary conditions that are related to incom-
plete data and the inherent randomness of the natural eruptive
phenomena (Sparks and Aspinall 2015; Neri et al. 2014; Neri
et al. 2015).

Based upon detailed field observation, sedimentological
studies of pyroclastic deposits, controlled laboratory experi-
ments, and physical laws, a conceptual model of pyroclastic
currents can be built upon the following elements:

& Continuum approximation. Pyroclastic current trans-
port can be described by the laws of continuum fluid
mechanics, with the flow regime strongly controlled by
particle concentration (Druitt 1998; Freundt and Bursik
1998; Valentine and Fisher 1986, 2000; Freundt et al.
2000; Branney and Kokelaar 2002; Sulpizio et al.
2014). Pyroclastic currents encompass a spectrum of
multiphase flow types and flow regimes ranging from
high-particle-concentration (volume fraction of parti-
cles > 0.1) flows in which particle-particle interactions
and pore-gas pressure dominate clast transport (also
referred to as pyroclastic flows) to dilute (volume frac-
tion < 0.001) flows (also referred to as pyroclastic
surges) within which clast transport is governed by a
combination of turbulent suspension and bed-load pro-
cesses. The granular rheological behavior and turbulent
gas-particle interactions are deeply dependent on volu-
metric particle concentrations, with transition between
dense and dilute flows occurring between solid volume
fractions ϵs ≈ 0.01 and ϵs ≈ 0.1 (Balachandar and Eaton
2010; Weit et al. 2019). Despite the lack of a strong
scale separation (i.e., the separation between the micro-
scopic and macroscopic length and time scales;
Goldhirsh 2008), continuum granular flow models are
able represent the dynamics of such multiphase granu-
lar mixtures down to the scale of flow deposit (Fig. 1).
In the lower portion of a flow, where particle-particle
interactions become important, transitions between
processes captured by the continuum framework and
discrete particle regimes need consideration (Staron
and Phillips 2014).

& Compressibility. Compressible flow phenomena can be
relevant in many processes occurring before and during
flow, when and where the local flow velocity approaches
or exceeds the speed of sound. The speed of sound of gas-
particle mixture is significantly lower than that of the car-
rier gas (Wohletz et al. 1984; Fink and Kieffer 1993;
Esposti Ongaro et al. 2011).

& Buoyancy. Pyroclastic currents are mostly gravity-driven
flows. Negative buoyancy is relevant on steep slopes as a
longitudinal driving force (avalanche dynamics; McEwen
and Malin 1989; Pudasaini and Hutter 2007) but also on

gentle slopes and flat topographies as an effect of the hor-
izontal gradient of hydrostatic pressure (gravity current
dynamics; Huppert et al. 1986; Dade and Huppert 1996).
On the other hand, entrainment of air and deposition of
particles reduces the average density of the current, which
eventually can reverse its buoyancy to positive, lift off,
and stop its horizontal propagation (Sparks et al. 1993).

& Sedimentation/deposition. Gravity also acts as a driver for
particle settling and deposition. Variable gas-particle and
particle-particle coupling regimes lead to density stratifi-
cation of the current and eventually to the deposition of
particles (Branney and Kokelaar 2002). This is one of the
main mechanisms for momentum loss in the currents
(Bursik and Woods 1996).

& Polydispersity. It is well known that pyroclastic currents
transport and deposit particles over a wide range of grain
sizes (Walker 1971; Sparks 1976). The interactions
among grains of different sizes is still not completely un-
derstood, and modeling approaches are still under valida-
tion (Benyahia 2008). However, recent experiments have
highlighted the key role of grain size distribution, and in
particular of fine particles, in the runout distance of gravity
currents (Gladstone et al. 1998), recently recognized as an
effect of modified pore-pressure transport and diffusion
(Roche et al. 2011).

& Granular flows. In the basal, concentrated flow region,
deposition of particles andmomentum dissipation are con-
trolled by granular flow phenomena and particle-particle
friction, which in turn can be modulated by pore-gas pres-
sure. Of primary importance in modeling pyroclastic cur-
rent dynamics is the involvement of the granular flow
theory (Campbell 1990; Iverson and Vallance 2001;
Dufek 2016) in description of the lower part of the cur-
rents, which is dominated by particle-particle interactions.
Dynamic transitions between granular, gas-fluidized, col-
lisional, and kinetic regimes is one of the key aspects of
pyroclastic current dynamics (Fisher 1983).

& Turbulence. In the upper flow region, at the interface with
ambient atmosphere, fluid turbulence controls the entrain-
ment and heating of atmospheric air. Entrainment contrib-
utes to dilution of the current, and gas-particle heat ex-
change is one of the controlling processes of pyroclastic
current thermodynamics (Bursik and Woods 1996; Neri
et al. 2003a, b; Benage et al. 2016).

& Topography. Interaction with topography can control the
dynamics of pyroclastic currents in different ways, includ-
ing hydraulic effects (associated to changes in slope, cur-
rent height and width), stratified flow effects (blocking
and modification of the vertical flow profile; Valentine
1987), flow diversion and decoupling (Fisher 1990;
Woods et al. 1998; Bursik and Woods 2000; Branney
and Kokelaar 2002), and basal friction through roughness
(Stinton et al. 2004).

   51 Page 2 of 17 Bull Volcanol           (2020) 82:51 



Other processes, usually considered as having second order
relevance, include substrate erosion, water phase transitions,
particle aggregation and secondary fragmentation, chemical
reactions, radiative heat transfer, meteorological conditions
(including wind), and electrostatic phenomena. In principle,
the above phenomenological factors can be incorporated into
mathematical language expressing the conservation of mass,
momentum, and energy in a system of coupled partial differ-
ential equations. This can have varying degrees of complexity
depending upon simplifications that are made for a given ap-
plication or intended use. In practice, however, some of the
processes mentioned above are still poorly understood and the
definition of the appropriate model, and of the initial and
boundary conditions (in particular, current stratification and
flow rate), can be challenging.

In addition to the difficulties related to model formulation,
numerical methods are necessary to solve the systems of equa-
tions. The numerical solution procedure involves
discretization of the equations, usually by means of the subdi-
vision of the spatial and temporal domain into discrete spatial
elements. Fluid dynamics equations are intrinsically nonlinear,
and eruptive processes usually involve coupling of variables
over a broad range of spatial and temporal scales. Since it is
presently not possible to simultaneously solve the equations at
all relevant scales, so-called sub-grid scale (SGS) models
(Mason 1994; Esposti Ongaro et al. 2011; Cerminara et al.
2016a, b) are usually adopted. SGS models, similar to consti-
tutive models describing continuum behaviors, are semi-
empirical models developed from a combination of

experimental and theoretical information. Their formulation
and validation are key steps of the modeling process.

Finally, modeling of pyroclastic currents carries with it
both epistemic and aleatoric uncertainties (Sparks and
Aspinall 2015). Epistemic uncertainty arises from a lack of
perfect knowledge of the physical system, the possibility of
alternative models, and limitations in our ability to pragmati-
cally describe the system. Aleatoric uncertainty is associated
with the difficulty of measurements of the natural phenome-
non, the scarcity of data, the limited repeatability of observa-
tions, and irreducible randomness of volcano behavior. While
we can work to reduce both epistemic and aleatoric uncertain-
ty, they can never be eliminated; thus, it is important to quan-
tify them when conducting pyroclastic current modeling.

The above considerations, together with the global impor-
tance of model predictions to support decisions in the context
of hazard and risk assessment, heighten the need to establish
the limits and constraints on the use of models and to establish
a consensus on the methodology to determine their accuracy
and assess their credibility in different situations. All
geoscientific models are in principle impossible to “verify”
in the sense that their “truth” is impossible to establish
(Oreskes et al. 1994). This is due to the non-repeatability of
the observations, unsteadiness of the system, incomplete
knowledge of data, and the consequent possible non-
uniqueness of the solutions (i.e., different models can poten-
tially explain the same observations). Strict validation, in the
sense of testing whether a model adequately represents a phys-
ical system of interest for the purpose at hand, is a necessarily
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Fig. 1 Dynamic scales in pyroclastic current dynamics. (A) Integral scale
(observations): pyroclastic current atMayon (photo by J Esmeria CCBY-
SA 4.0). (B) Fluid scale: time-averaged mean flow profile. (C) Fluid
scale: large eddy fluctuations. (D) Fluctuations scale: preferential

concentration of particles by fluid turbulence in the dilute ash cloud
(Cerminara et al. 2016a). (E) Fluctuations scale: granular temperature in
the concentrated basal granular flow (sketch by Armanini 2013)
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incomplete process, since a proper metric cannot be accurately
defined; validation should be considered to be never complete
and always evolving.

This paper aims to establish a framework for validation of
pyroclastic currents model by (1) proposing a common termi-
nology on verification, validation, and benchmarking; (2) de-
scribing different approaches to pyroclastic currents models,
and their strengths and weaknesses, to facilitate designing of
appropriate benchmark cases; and (3) proposing a path to-
wards satisfactory pyroclastic model validation. A
community-driven effort will be needed to consensually eval-
uate the accuracy of numerical models in representing pyro-
clastic currents-related phenomena, to establish best practices
to estimate the error and uncertainty associated with numerical
predictions, and to drive future interdisciplinary research
while increasing awareness of the strengths and limitations
of various modeling tools.

Terminology

Before describing the verification, validation, and
benchmarking procedure, we briefly review the related termi-
nology and we report some examples from the scientific liter-
ature on pyroclastic currents.

Verification

Oberkampf and Trucano (2002) define verification as “The
process of determining that a model implementation accu-
rately represents the developer’s conceptual description of
the model and the solution to the model.” A key phrase in
this definition is description of the model, which in this
case is a particular form of the governing equations, the
form of which is determined by the simplifications and
assumptions made. This definition largely overlaps with
Oreskes et al. (1994) definition of model benchmarking:
“The practice of comparing numerical and analytical solu-
tions.” A simple way to put it is that verification checks
that a discrete numerical approximation accurately repre-
sents the system of continuous functions and differential
equations. It is needed as a preliminary step of any valida-
tion procedure in order to quantify the error related to the
numerical solution method. This is different from checking
whether the system of equations adequately represents a
physical system of interest (validation).

Verification of multiphase models for pyroclastic currents
can be challenging. Most previous efforts to do so in volca-
nology have focused on the comparison with one-dimensional
discontinuous solutions (see Table 1). Although this is a good
test for numerical fluid solvers, it is limited by the availability
of analytical solutions. A viable alternative that complex vol-
canological models might benefit of is to use so-called

manufactured solutions. This method allows testing of numer-
ical implementations by imposing a source term to the model
(generally, in simplified configurations) in such a way as to
obtain a prescribed analytical solution (Roache 2002). The
method also gives an empirical estimate of the numerical
scheme accuracy (Jacobs et al. 2012).

Validation

In general terms, we define validation as the process of dem-
onstrating that a system of equations and their numerical ap-
proximation reasonably represents the researcher’s physical
conceptual model for a process. In other words, does the sys-
tem of equations adequately represent the physics at hand
(where adequately depends upon the intended use of the mod-
el and upon the desired level of accuracy)? Validation as-
sumes some level of prior verification (previous section).
Validation normally involves comparison of a model with a
suite of experiments that are meant to represent, as much as
possible, the physical processes described in the conceptual
model. Our usage of the term is consistent with Oberkampf
and Trucano (2002) terminology that defines validation as
“The process of determining the degree to which a model is
an accurate representation of the real world from the perspec-
tive of the intended uses of the model.” Validation of pyro-
clastic models is, in this framework, a continuous process, in
which empirical datasets are systematically compared with
model results. The greater the number and diversity of
confirming observations, the more probable will be that the
conceptualization embodied in the model is not flawed
(Oreskes et al. 1994).

In practice, though, it is difficult, if not impossible, to de-
vise experiments that capture the full range of processes that
can occur in pyroclastic currents, even in large-scale experi-
ments (Dellino et al. 2007; Lube et al. 2015). In rare cases, an
example of a natural pyroclastic current might have adequate
constraints and observational data to also be used for
validation.

As explained in the next section, when comparing a model
with a specific experimental or field dataset we thus suggest
avoiding statements such as “model A has been validated,”
and instead propose using the term confirmation or confirmed
for a specific problem. The level of accuracy at which the
model has been confirmed should be also specified, by
reporting the confidence interval obtained for key
observables.

Confirmation

Confirmation, according to Oreskes et al. (1994), is the
matching of “the distribution of the dependent data in a
numerical model with observational data.” Confirmations
only “support the probability of the veracity of a model,”
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but “… no matter how much data we have there will
always be the possibility that more than one theory can
explain the available observations.” In this sense, confir-
mation can be seen as the constituent part of a more
structured validation process. As stated above, we propose
therefore to use the term confirmation instead of valida-
tion for single, successful comparisons between model
results and experimental/observational data.

For example, Valentine and Sweeney (2018) compared
their model results on a type of impinging jet to a specific
experimental dataset on impinging jets, which confirmed
the applicability of MFIX (a multiphase flow numerical
code) for the problem they were addressing. Breard et al.
(2019a, b) confirmed the same code’s ability to reasonably
reproduce results of experiments with concentrated, fluid-
ized flows (Roche et al. 2010). Similar confirmation efforts
have been carried out using depth-averaged models and
inverse modeling on well-constrained natural case studies
of past pyroclastic current events at Merapi and Soufriere
Hills (Charbonnier and Gertisser 2012; Ogburn and Calder
2017; Gueugneau et al. 2019). These studies include the
different processing steps required to reduce uncertainties
in objectively defining the different input parameters and
to correctly evaluate the output variables of such models
(Sheridan et al., 2005). Confirmation of results has been
based on a rigorously defined metrics based on the com-
parison of the areas inundated (Charbonnier et al. 2018). A
more complete list of confirmation examples for pyroclas-
tic current models is reported in Tables 2 and 3.

Calibration

Calibration, quoting Oreskes et al. (1994), is the process of
“manipulating the independent variables (and parameters) to
obtain a match between the observed and simulated distribu-
tion of dependent variables.” Calibration establishes some
“empirical model adequacy.” However, “even if a model re-
sult is consistent with present and past observational data,
there is no guarantee that the model will perform at an equal
level when used to predict the future” (and in different condi-
tions) (Oreskes et al. 1994).

Calibration of scaling parameters, empirical constants, trans-
port coefficients, and other constitutive equations is usually
implicit in many fluid dynamics models used in volcanology.
Calibration plays a key role especially for reduced order or low-
dimensionality models, usually involving a priori undetermined
empirical coefficients. For example, the determination of the air
entrainment coefficient in one-dimensional models of turbulent
pyroclastic currents (Bursik and Woods 1996) or the front
Froude number (Esposti Ongaro et al. 2016) are examples of
model calibration studies (see also Table 4). Another significant
case is that of granular friction parameter for depth-averaged
flows: for a Coulomb rheology, calibration studies indicate a
range of bed friction angles between 2° and 15° and internal
friction angle of 30° (Kelfoun 2011). If a model is not capable
of predicting an outcome within this calibration range, it is
failing at interpolation, which is a serious issue (Charbonnier
and Gertisser 2012). This calls for extending the calibration
range or assume that the model is flawed.

Table 2 Some examples of pyroclastic current model confirmation (subsystems)

Subsystem

Blast unit (Soufrière Hills, 1997) Esposti Ongaro et al. (2008)

Blast unit (Mount St. Helens, May 18, 1980) Esposti Ongaro et al. (2012)

Individual pyroclastic current unit (Vulcano, Breccia di Commenda) Rosi et al. (2018)

Plinian column collapse unit (Vesuvius, AD79) Neri et al. (2003a)

Sub-Plinian column collapse unit (Tungurahua, 2006) Bernard et al. (2014); Benage et al. (2016)

Individual dome collapse (Merapi, June 2006)
Individual dome collapse (Soufrière Hills, 25 June 1997)

Charbonnier and Gertisser (2012)
Widiwijayanti et al. (2004); Gueugneau et al. (2019)

Individual dome collapse (Merapi, November 2010) Kelfoun et al. (2017)

Individual dome collapse (Unzen, 1991) Ishimine (2004)

Table 1 Some examples of
model verification in volcanology Verification case References

Analytical 1D shock tube Carcano et al. (2014); Esposti Ongaro et al. (2007);
Dartevelle (2007, 2011); Cerminara et al. (2016a, 2016b)

Dam-break analytical solution Galas (2008); Shimizu et al. (2017)

1D Riemann problem de’ Michieli Vitturi et al. (2019)

Manufactured solution Jacobs et al. (2012)
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Benchmarking

We use the term benchmarking specifically for comparison of
computational models with each other. Such comparisons nor-
mally use a defined problem that is either based upon an
experimental (Table 5) or natural dataset. Model approxima-
tions, asymptotic regimes, numerical resolution effects, and
error propagation are often difficult to evaluate for
benchmarking purposes. Therefore, a key goal is to integrate
well-constrained experimental data in such process to correct-
ly assess the “empirical adequacy” of the different numerical
models (Oreskes et al. 1994). Although this overlaps in some
ways with confirmation, the aim is different. Rather than test-
ing the ability of a specific model to represent physical pro-
cesses of interest, benchmarking is intended to elucidate the
relative strengths and weaknesses of models with respect to
each other, and the different degrees of approximations and
related uncertainties. These strengths and weaknesses depend
upon the desired application. Thus, benchmarking is not
intended to pick “winners” and “losers.”

For example, a complex, multiphase, three-dimensional
model might provide a better match to a benchmarking dataset
related to a volcano that is experiencing unrest than does a
simplified depth-averaged model. However, the former model
might take days or even weeks to set up and run individual
scenarios, whereas the simpler model can be quickly run over

a wide range of scenarios and produce a probabilistic forecast
that is useful on an urgent time scale. In this case, the latter
model might be selected for the application of obtaining
quicker forecasts, but the benchmarking exercise would pro-
vide a basis for quantifying its uncertainties and limits. On the
other hand, the multiphase model might be selected for a study
of fundamental pyroclastic current processes that is not time
constrained and will only involve subject matter experts; simi-
larly, though, the benchmarking exercise would have provided
insight into the limitations and uncertainties in the complex
model, and sensitivity to empirical input parameters. An emerg-
ing added value of benchmarking studies is also the possibility
of calibrating such empirical laws of low-dimensional models
via three-dimensional numerical simulations (e.g., Costa et al.
2016). Therefore, to design a benchmark for pyroclastic cur-
rents, the variety of available models, existing approaches, and
their main applications should be considered.

Benchmarking of pyroclastic current fluid
dynamic models

In this section, we summarize the features and major ap-
proaches to pyroclastic current modeling, and recall the main
mathematical operations that allow the inter-comparison of
results in a benchmark study. The development of

Table 3 Some examples of pyroclastic current model confirmation (unit problems)

Unit problem References

Compressible flows Dartevelle (2007), Carcano et al. (2014)

Turbulent forced plumes Dartevelle (2007); Cerminara et al. (2016a, 2016b)

Kinematics of a homogeneous gravity current over a flat surface Dufek and Bergantz (2007a, 2007b); Esposti Ongaro et al. (2016)

Particle settling in still water Jacobs et al. (2012)

Homogeneous/isotropic and multiphase/isotropic turbulence Cerminara et al. (2016a, 2016b)

Heat transfer Cerminara et al. (2016a, 2016b)

Granular lock-exchange flow
Supersonic impinging jets
Dam-break granular flows

Roche et al. (2011); Meruane et al. (2010)
Valentine and Sweeney (2018)
Breard et al. (2019a, 2019b); Webb and Bursik (2016)

Fluidization experiments Neri and Gidaspow (2000), Breard et al. (2019a, 2019b)

Table 4 Some examples of pyroclastic current model calibration

Calibration parameter References

Air entrainment coefficient (depth-averaged models) Bursik and Woods (1996)

Non-dimensional parameters (integral box model) Neri et al. (2015); Esposti Ongaro et al. (2016)

Granular friction parameters (depth-averaged models) Ogburn and Calder (2017); de’ Michieli Vitturi et al. (2019); Kelfoun (2011)

Kinematic front conditions Takahashi and Tsujimoto (2000); Widiwijayanti et al. (2009); Wadge et al. (1998)

Sedimentation rate Druitt et al. (2007); Girolami et al. (2010)
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computational fluid dynamic (CFD) models for pyroclastic
currents has traditionally followed two main approaches.
The first one has aimed at developing transient three-dimen-
sional, multiphase flow models, built upon a physical descrip-
tion of the microphysics of gas-pyroclast mixtures (referred to
here as the multiphase flow approach). The second approach
has focused on the development and application of low-
dimensional models, typically depth-averaged homogeneous
models, either transient or steady-state (referred to here as the
depth-averaged approach). Note that in our discussion about
different pyroclastic current CFD approaches (and their vali-
dation), we do not include models based on empirical or sta-
tistical correlations such as H/L (e.g., Calder et al. 1999;
Widiwijayanti et al. 2009), energy-line models (Sheridan
and Malin 1983; Tierz et al. 2016; Ogburn and Calder
2017), or kinematic models for the pyroclastic flow front
(McEwen and Malin 1989; Wadge et al. 1998; Rossano
et al. 2004; Saucedo et al. 2005), as well as more sophisticated
mechanical models (Takahashi and Tsujimoto 2000). Such
models cannot be derived from mass, momentum, and energy
conservation laws by some formalized mathematical opera-
tion, or filter (such as averaging or integration). They are es-
sentially data fits, and they can only be calibrated, not rigor-
ously validated.

It is not the purpose of this section to review or criticize
either of the two main approaches, since there are very good
reasons to adopt each of them for different purposes and in
different contexts and applications (see Table 6). Instead, we
aim to demonstrate that the use and comparison of the differ-
ent modeling approaches in the framework of a rigorous
benchmarking process enhances them as complementary tools
for improving our understanding of pyroclastic current dy-
namics and for improving our capabilities in hazard assess-
ment. Because it is extremely difficult to evaluate a priori the
advantages of the use of different approximations, assessing
the sensitivity of model results to uncertain initial conditions
should be one of the steps of the validation process.

Here, we present the different pyroclastic current modeling
approaches in a hierarchical scheme, highlighting the formal
mathematical assumptions and the hypotheses at the base of
their different approximations (Fig. 2). Benchmark cases

proposed in this validation framework should be applicable
to models at any level of approximation.

Eulerian and Lagrangian approaches

Most models of pyroclastic currents are based on continuum
approximations (Eulerian approach) that describe solid parti-
cles as fluid fields (Gidaspow 1994; Armanini 2013,
Goldhirsh 2008). This approach involves some general as-
sumptions that are worth recalling here:

& At the microscopic scale, particle-particle collisions are
uncorrelated, isotropic, and homogeneous.

& The mean free path λ is much larger than the particle size,
λ ≫ ds.

The mean free path is much smaller than the macroscopic
scale of interest, λ ≪ L (in particular, of the scale L of variation

of an average quantity ψ, L∼ ψ
dψ=dx ).

Eulerian multiphase flow models have been used for the
study of pyroclastic current dynamics for at least 30 years
(e.g., Dobran et al. 1993; Neri et al. 2003; Dartevelle and
Valentine 2007; Dufek and Bergantz 2007a, b; Esposti
Ongaro et al. 2008, 2012; Carcano et al. 2013; Sweeney and
Valentine 2017; Valentine and Sweeney 2018) and their ap-
plicability to the transport regime of pyroclastic currents is
generally accepted (Dufek 2016). Opposite to Eulerian ones,
Lagrangian methods (such as the Discrete Elements Method;
Guo and Curtis 2015) solve the Newton’s equations for a
number of interacting particles.While attractive for describing
granular flows, especially in the depositional regimes, where
particle concentration increases and the mean free path de-
creases (Staron and Phillips 2014), Lagrangian methods are
still computationally unmanageable to represent the actual
number of particles at the geophysical scale and are therefore
not widely used in volcanology. Mesh-free discrete numerical
solution methods for continuous models, such as smoothed
particle hydrodynamics (SPH; Monaghan 2012) or
multiphase-particle-in-cell (MP-PIC; Andrews and
O’Rourke 1996), can also possibly be considered, although

Table 5 Some examples of experimental configurations suited for pyroclastic current model benchmarking

Experimental benchmark cases References

Large-scale, dilute, turbulent, polydisperse gravity current over an incline Breard et al. (2016); Breard and Lube (2017)

Large-scale axisymmetric polydisperse gravity current from jet collapse Dellino et al. (2010)

Concentrated, fluidized/non-fluidized granular current over an incline Lube et al. (2011); Chédeville and Roche (2015);
Rodriguez-Sedano et al. (2016); Chedeville and Roche
(2018)

Turbulent gas-particles flows with buoyancy reversal Andrews and Manga (2011)

Interaction of stratified gas-particle gravity currents with obstacles; sedimentation rate. Andrews and Manga (2012); Woods et al. (1998)
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their use is presently very limited in volcanology (Cao et al.
2018).

An effective approach is to couple Eulerian and Lagrangian
models to describe different particle classes in the same solver
(Dufek and Bergantz 2007b; Breard et al. 2018). In such
cases, inter-comparison between numerical results from
Eulerian and Eulerian-Lagrangian models can always be per-
formed in the framework of benchmark studies by using the
method for particle averaging over fixed control volumes
(Goldschmidt et al. 2002). In the following, we will consider
only Eulerian models.

Dimensionality: symmetry and depth-averaging

Eulerian fluid models are in general formulated in three di-
mensions, with appropriate boundary conditions representing
the interaction with the topography, the volcanic source, and
the atmosphere. Because of the higher computational cost of
3Dmodels, reduction of model dimensionality can be done by
assuming Cartesian or radial symmetry, or invariance. Inter-
comparison between 3D and symmetric models can be done

by averaging 3D models along the direction(s) where invari-
ance is assumed.

Here, we put more emphasis on the depth-averaged ap-
proach, in which reduction of model dimensionality is ob-
tained by formally integrating the fluid dynamics equations
along the vertical dimension: the resulting equations are
solved for the depth-averaged physical variables. For ex-
ample, for a three-dimensional model where the vertical
axis is oriented along z, the volume concentration of a
given particle class ϵs(x, y, z, t) will be replaced by its
depth-averaged value 〈ϵs〉(x, y, t), thus reducing the prob-
lem to a transient, two-dimensional one. Analogously, for a
two-dimensional model (for example, in cylindrical coor-
dinates), the depth-averaging procedure leads to a one-
dimensional transient problem. At the same time, the ver-
tical component of the velocity is set to zero, significantly
reducing the computational complexity. The depth-
averaged equations are valid under the assumption that
the horizontal length scale of the flow is much greater than
the vertical length scale, i.e., the fluid flow develops as a
thin layer spreading horizontally over distances that are

3D Direct Numerical 
Simula�on (DNS)

3D Large-Eddy 
Simula�on (LES)

Spa�al low-pass Filtering

3D Reynolds-Averaged 
(RANS)

Temporal low-pass filtering

2D Cartesian
2D Axysimmetric

2D Saint-Venant

symmetry

depth-
averaging

1D Saint-Venant

symmetry

depth-
averaging

Box-models

integra�on

Fig. 2 Schematic representation of the different pyroclastic current
modeling approaches, with the mathematical operations leading to
simplification of the governing equations or reduction of model
dimensionality. Benchmarking of different models should be done by

applying the same operations to inter-compare model results. Notice
that low-pass spatial or temporal filtering, leading to LES or RANS
models, introduces SGS models, requiring validation (see “Constitutive
models” section)

Table 6 Physical processes and
key phenomena in pyroclastic
current dynamics and minimum
dimensionality required to model
them (asterisk indicates
parameters directly relevant for
pyroclastic current hazard
assessment)

Key phenomena Minimum dimensionality

Energy/mass balance, front kinematics, runout* 0D + time (integral or kinematic models)

Effect of slopes, radial distribution of flow variables*,
distance of buoyancy reversal*

1D (steady-state depth-averaged models)

Waves and perturbations, front dynamics, unsteady
boundary conditions

1D + time (transient, depth-averaged models)

Sedimentation, stratification, erosion, flow decoupling*,
interaction with obstacles*

1D multilayer + time (transient, depth-averaged
multilayer models)

2D + time (2D transient models with Cartesian
or cylindrical symmetry)

Turbulence, 3D topographic effects*, acoustic
emission, generation mechanism

3D + time
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one or more orders of magnitude greater than its depth and
that heterogeneities along the vertical direction are much
smaller than those along the horizontal one. For this rea-
son, this approach is widely used to simulate pyroclastic
currents.

The depth-averaging procedure also often assumes an
incompressible fluid, uniform horizontal and negligible
vertical velocities, and a hydrostatic pressure distribution
(Saint-Venant or shallow-water model: Benqué et al.
1982; Peakall et al. 2001). Bursik and Woods (1996) have
posed the basis for the depth-averaged modeling of pyro-
clastic currents with an accurate description of the mixture
thermodynamics, in steady-state conditions. Models used
for the simulation of unsteady pyroclastic currents in con-
centrated regime include Titan2D (e.g., Patra et al. 2005),
VolcFlow (e.g., Kelfoun and Druitt 2005), Shimizu et al.
(2017) model, and IMEX_Sflow2D (de’ Michieli Vitturi
et al. 2019).

Inter-comparison between 3D and depth-averaged fields
can be done by defining the flow thickness h by some appro-
priate criterion (defining the free, upper interface between the
pyroclastic current and the atmosphere), and using the follow-
ing relationships:

P x; y; zð Þ ¼ ρmg h x; yð Þ−zð Þ þ Patm

ψ x; yð Þh i ¼ 1

h
∫h x;yð Þ
0 ψ x; y; zð Þdz

where (x,y,z) are the Cartesian coordinates, P is the flow
pressure, g the gravity acceleration, Patm is the atmospheric
pressure, h is the flow thickness, and ψ can represent any flow
field. However, because depth-averaging is not commutative
with product, i.e., 〈ψς〉 ≠ 〈ψ〉〈ς〉, it is recommended that when
comparing 3D and depth-averaged models, integrals of con-
served quantities (density, momentum, energy) are calculated
instead of individual flow field (density, velocity, tempera-
ture). For instance, adopting a mixture formulation where
ρm, Um, em are the mixture density velocity and internal ener-
gy density:

ρm x; yð Þh i ¼ 1

h
∫h x;yð Þ
0 ρm x; y; zð Þdz

Um x; yð Þh i ¼ 1

h ρmh i ∫
h x;yð Þ
0 ρmUm x; y; zð Þdz

em x; yð Þh i ¼ 1

h ρmh i ∫
h x;yð Þ
0 ρmem x; y; zð Þdz

A key issue for depth-averaged models is the formulation
of the stress tensor. Rather than applying a formal mathemat-
ical integration of the granular stress tensor expressed in
tensorial form, the abovementioned depth-averaged models
for pyroclastic currents adopt empirical rheological laws to
express it. For concentrated pyroclastic currents (e.g.,

Iverson and Denlinger 2001; Patra et al. 2005; Kelfoun et al.
2009), the retarding stress is usually either based on frictional
(Mohr-Coulomb) behavior or other rheological laws including
some plastic, viscous, and velocity-dependent terms (Kelfoun
2011). For dilute currents (with solid concentration ϵs<
0.001), internal friction is generally neglected (e.g., Sparks
et al. 1993; Bursik and Woods 1996; Engwell et al. 2016).
In any case, it is becoming apparent that finding the “right”
rheological model for depth-averaged simulation in all pyro-
clastic current regimes is a challenging aim, not only because
of the complex behavior of dense granular flows (Kelfoun
2011) but also because of the stratified nature of pyroclastic
currents.

To partially overcome this problem, two-layer, depth-
averaged models have more recently allowed to describe the
two-way interaction between a lower, concentrated basal layer
and the upper, dilute turbulent ash cloud (Doyle et al. 2010;
Kelfoun 2017), finally including the complex thermodynam-
ics and thermal expansion of the dilute ash cloud and its
mixing with the atmosphere (Shimizu et al. 2019). Such
two-layer models appear to be an optimal compromise to rep-
resent stratified pyroclastic currents, but involve an increasing
number of empirical relationships to describe the current dy-
namics. These include, in addition to the rheological laws, the
mass/momentum exchange rates between the upper and the
lower layer, the air entrainment coefficient, and the
deposition/erosion rates, that often need specific calibration
studies.

Box models

As the lowest dimensional approach, we recall here the for-
mulation of integral (box) models (Table 6), since their use is
relevant in volcanology especially in the context of probabi-
listic studies (Neri et al. 2015). They basically reduce to a
mass conservation equation (volume conservation for an in-
compressible flow) and a kinematic condition for the front
advancement, the so-called Von Karman’s law:

U f ¼ Fr
ffiffiffiffiffiffi
g0h

p

where the non-dimensional constant Fr is the Froude number,
g’ is the reduced gravity (as a function of the particle concen-
tration), and h is the current thickness. A box model can be
formally obtained by horizontal integration of the depth-
averaged equations by imposing appropriate boundary condi-
tions at the flow front (Benjamin 1968; Hallworth et al. 1998;
Hogg et al. 2000). They are extremely sensitive to a few em-
pirical free parameters (in particular to the Froude number),
that need to be calibrated bymeans of appropriate benchmarks
and calibration studies (Dade and Huppert 1996; Dade 2003;
Neri et al. 2015; Esposti Ongaro et al. 2016; Fauria et al.
2016).

Bull Volcanol           (2020) 82:51 Page 9 of 17    51 



Multiphase VS mixture approaches

When adopting Eulerian models, regardless of dimensionality
of the equations, there are several ways to describe gas-
particle flows. The most common approach is the
discretization of the grain size distribution into a finite number
of bins, representing particle classes defined by the particle
sizes and densities. In volcanology, it is a common practice
to adopt a uniform discretization in the ϕ scale, where

ϕ ¼ −log2 d
d0

� �
, where d is the particle diameter in millime-

ters, and d0 = 1mm. The Eulerian fluid transport equations for
mass, momentum, and energy can be written for the interstitial
gas and for every particle classes, treated as interpenetrating
continua (Harlow and Amsden 1975; Valentine and Wohletz
1989; Dobran et al. 1993 and following works), interacting
with each other by means of interphase momentum (drag)
exchange and heat transfer. An alternative to discretization
of particle sizes into bins can be based on the formulation of
the transport equations for the moments of the particle distri-
bution (method of moments; Fox 2008), but only early appli-
cations exist so far in volcanology (de’ Michieli Vitturi et al.
2015).

The Eulerian multiphase flow approach can be extremely
computationally expensive when the number of particle bins
increases (as for the broad grain size distribution of pyroclastic
currents). More efficient multiphase flow approaches can
therefore be adopted in case of equilibrium or quasi-
equilibrium regimes where particles are very well coupled in
terms velocity and temperature with the carrier gas phase (im-
plying very small particles). These approaches assume, based
on the expected flow regime, some kind of approximation of
the velocity and temperature difference between the phases. In
particular, for particles characterized by low Stokes number
(i.e., the ratio between the characteristic equilibrium time and
the typical flow time; Burgisser and Bergantz 2002;
Balachandar 2009; Cerminara et al. 2016a), the equilibrium
(dusty-gas; Marble 1970) or quasi-equilibrium (equilibrium-
Eulerian; Maxey 1987; Balachandar 2009; Cerminara et al.
2016b) assumptions can provide satisfactory and efficient ap-
proximations of the multiphase flow system (for a discussion,
see e.g., Burgisser and Bergantz 2002; Ishimine 2005; Dufek
and Bergantz 2007a, b; Carcano et al. 2014; Cerminara et al.
2016a). For some applications, a hybrid approach can be use-
ful. For example, by adopting a dusty-gas or equilibrium-
Eulerian approach for the continuous gas phase and the finest
(low Stokes number) particles, while more poorly coupled
particle size classes are modeled with the full Eulerian conser-
vation equations (Carcano et al. 2014), or by a Lagrangian
approach (Dufek and Bergantz 2007b; Doronzo et al. 2010).

Benchmarking of different multiphase flow models (dusty-
gas, equilibrium-Eulerian, Eulerian-Eulerian) in the frame-
work of validation studies is always feasible by comparing

results for the average properties of the mixture (Marble
1970; Cerminara et al. 2016a).

ρm ¼ ϵgρg þ ∑
M

k¼1
ϵskρsk

Um ¼ 1

ρm
ϵgρgUg þ ∑

M

k¼1
ϵskρskU sk

� �

em ¼ 1

ρm
ϵgρgeg þ ∑

M

k¼1
ϵskρskesk

� �

In these equations, ϵ is the volume fraction, ρ is the density,
U is the velocity, and e is the energy density. The subscripts g
and s indicate the gas and solid phases, the subscript m indi-
cates the gas-solid mixture, and M is the number of bins into
which the grain size distribution has been discretized.

Constitutive models

Differently from classical fluid mechanics, there is not an
established general consensus on constitutive equations in
multiphase gas-particle flows. Particularly critical are the con-
stitutive models of the stress tensor of the granular phase and
of the interphase mass (including chemical reactions and
phase transitions), momentum (including drag), and heat cou-
pling (see e.g., Neri et al. 2003; Sweeney and Valentine 2017;
and Dufek 2016 for a review). In general, constitutive models
pertain to the microphysics of the gas-particle mixture and
their accuracy can be constrained by ad-hoc numerical exper-
iments at the lower levels of the validation hierarchy (e.g., unit
problems, see above Table 3 and Breard et al. 2019a, b for
examples), generally aimed at the calibration of free
parameters.

Among constitutive models, turbulence models are needed
to describe the nonlinear effects of the so-called sub-grid
scales (SGS) of fluctuations on the resolved fluid motion.
The need of SGS models derives from the application of spa-
tial (large eddy simulation—LES models) or temporal
(Reynold’s averaged Navier-Stokes—RANS models) low-
pass filters and from the non-linearity of Eulerian transport
equations (Mason 1994). For pyroclastic currents, two aspects
of turbulencemodeling are important: (1) the turbulent mixing
and entrainment of atmospheric air (Bursik and Woods 1996)
and (2) the turbulent regime in the basal layer, including ef-
fects on friction (Valentine 1987), deposition, and erosion
(Bernard et al. 2014). Turbulence SGS models differ from
constitutive models because their formulation is not indepen-
dent from the large-scale flow features, and it is strictly linked
to the numerical discretization scheme (e.g., Özgökmen et al.,
2007). For these reasons, SGS models are subject to the same
verification, validation, and benchmarking procedure as the
governing equations of mass, momentum, and energy
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transport, from unit problems up to the full system scale (Tao
2015).

A general validation hierarchy

To define a general validation framework for pyroclastic cur-
rent models, we propose here to follow the samemethodology
that was put forward by Oberkampf and Trucano (2002) for
the validation of CFD codes designed to simulate complex
industrial and technological systems. The approach is based
on a hierarchical process of comparing numerical models with
experiments and observations (Fig. 3). However, there are
differences between the use of CFD models in volcanology
and in industrial processes, especially in the way of dealing
with large epistemic uncertainty. Thus, we additionally em-
phasize the need to compare models with each other
(benchmarking) in order to provide guidance on the applica-
bility of a given model for a specific intended use and
situation.

The process of validating models involves, in general, sim-
ulation and comparison at the four tiers. Confirmation of nu-
merical results on the natural cases (at the system and subsys-
tem level) is fundamental for assessing the quality of the hy-
potheses, physical models, and numerical implementation, but
this requires a rigorous and quantitative confirmation of the
models at the lower tiers (unit problems and benchmark
cases). Benchmark cases, in particular, should be specifically
conceived to systematically challenge different models at var-
ious levels of complexity, rigorously defining initial and
boundary conditions and providing a common theoretical
framework for comparing their outputs.

Tier 0. Complete system

The complete system is the full representation of the problem
under investigation. It is characterized by the coexistence,
possibly at different temporal and spatial scales, of different
interacting subsystems, possibly related to different spatial
domains. Some of the subsystems might be unknown or not

directly observable. The combination of such processes makes
the phenomenon extremely complex and requires validation
steps at a highest level.

For engineering applications, the complete system can be,
for example, a hypersonic missile (Oberkampf and Trucano
2002), with its propulsion system, airframe, and control ele-
ments. Because this is a built system, its geometry, and initial
and boundary conditions are very well constrained compared
to volcanic problems. For pyroclastic currents, the complete
system is represented by the whole explosive eruption scenar-
io (Fig. 4A). There is no doubt indeed that pyroclastic current
dynamics are in general coupled to atmospheric dynamics,
depend on eruption column (e.g., for Plinian eruptions) or
on dome geometry and volume (for dome-collapsing erup-
tions), and are ultimately related to magma fragmentation
and volcanic conduit, down to the magma chamber. An ex-
ample of numerical modeling of the complete system is given
by Clarke et al.’s (2002) simulation of one of the August 1997
Vulcanian episodes at Soufrière Hills volcano (Montserrat,
West Indies). In that case, conduit, volcanic plume, and pyro-
clastic current dynamics are so tightly linked that they cannot
be modeled independently.

Tier 1. Subsystem

Subsystems can be defined as parts of the system that, under
certain conditions and hypotheses, and in rare cases of excep-
tional documentation, can be analyzed individually.
Subsystems exhibit complex physics and multiscale (up to
the full system scale) properties. Their dynamics are usually
coupled to other subsystems, but the degree of coupling is
limited so that it can be described as a boundary condition.

Oberkampf and Trucano (2002) exemplify it for the hyper-
sonic missile as the aero/thermal protection subsystem (requir-
ing modeling of laminar/turbulent/boundary layer airflow) or
the structural subsystem (requiring to model, e.g., the heat
transfer to the metal structure). For subsystems in nature, there
are usually limited but some observational datasets. Indirect
measurements include geophysical signals, imaging, and the
sedimentological record. The definition of validation metrics
and quantification/representation of uncertainty are usually
problematic at this Tier. For pyroclastic currents, a subsystem
(Fig. 4B) can be represented by individual stratified pyroclas-
tic current units in a composite sequence (e.g., at Merapi vol-
cano, Indonesia, in 2006 and 2010; Charbonnier and Gertisser
2012; Kelfoun et al. 2017), or by episodes of flow transfor-
mation in response to the interaction with the topography
(e.g., at Unzen volcano, Japan, in 1991; Yamamoto et al.
1993; Fujii and Nakada 1999), where the interaction with
the dynamics in the other subsystems (e.g., the magma ascent
in the conduit) can be neglected or described in a simplified
way through an appropriate boundary condition (e.g., a con-
stant mass flow rate or initial collapse). In their numerical

Fig. 3 Pyroclastic model validation hierarchy (adapted from Oberkampf
and Trucano 2002)
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model of theMay 18 blast phase of theMount St. Helens 1980
eruption, Esposti Ongaro et al. (2012) did not model the land-
slide preceding the pyroclastic current, but just considered its
effect as a modified topographic boundary condition. Some
further examples are reported in Table 2.

Tier 2. Benchmark cases

In Oberkampf and Trucano (2002), a benchmark case is the
further level of decomposition of a subsystem. It is a somehow
standard problem having some degree of complexity, mainly
concerning geometrical and scaling complications. In general,
validation at this level should be based upon comparison to
appropriate, standardized laboratory experiments. In bench-
mark cases, a measure of accuracy, or error, is expected to
be available and should be explicitly reported, both for the
dataset and for the model outputs.

In the case of the hypersonic missile CFD problem
(Oberkampf and Trucano 2002), benchmark cases can be rep-
resented by laminar, hypersonic flows with ablation, or heat
transfer to metal substructure. For pyroclastic currents, because

of the extreme conditions and wide range of physical scales
involved, benchmark experiments might require special hard-
ware and sensors, and large-scale experimental setups (Fig.
4C) that incorporate as many of the scales as possible are
especially important (Dellino et al. 2007; Lube et al. 2015).
In cases where experimental data are not available, synthetic
benchmarks (they have also been called inter-comparison
studies, for example Costa et al. 2016) can be conceived to
define the differences/similarities of the numerical models,
possibly providing the metrics for a quantitative comparison.
Table 5 reports some recent experimental investigations that
can be seen as benchmark case for pyroclastic current models.
They are potentially suited for inter-comparison of different
modeling approaches. While most of them focus on either
dilute (Breard et al. 2016; Breard and Lube 2017; Andrews
and Manga 2011) or concentrated (e.g., Lube et al. 2011,
Chédeville and Roche 2015) end-member regimes, their sim-
ulation is still a challenge for numerical models. One key issue
for benchmark studies concerns the standardization of data
formats and the availability of datasets and metadata, either
from laboratory experiments or numerical simulations.

Fig. 4 Example of a hierarchy of
validation tiers for pyroclastic
currents. (A) Complete system
(public domain photo courtesy of
B. Voight, Penn State
University). (B) Subsystem
(public domain photo courtesy of
Jonathan Stone). (C) Benchmark
case (photo courtesy of G. Lube,
Massey University, NZ). (D) Unit
problem (picture modified after
Hallworth et al. 1993)
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Tier 3. Unit problems

Unit problems are well-understood processes, well-
constrained by accurate experimental data and supported by
a theoretical framework. Unit problems may be in some cases
difficult to solve numerically, but the quality of the results can
always be rigorously assessed. These problems should be a
first tier in the overall validation procedure because they can
pose some unexpected difficulties to the modeler, such as
those related to the accuracy and stability of the solutions
(for instance, in the description of discontinuous solutions
and nonlinear instabilities), the dimensionality (the assumed
invariances under symmetry or the steady-state regime), and
sub-grid scale (SGS) models (e.g., for the microphysics, con-
stitutive equations, and turbulence). Calibration of some semi-
empirical parameters (e.g., coefficients of turbulence SGS
models) could be needed at this Tier, and should always be
explicitly specified.

For the hypersonic missile, unit problems can be constitut-
ed by laminar hypersonic flow over a simple body, boundary
layer interaction, or heat conduction (Oberkampf and Trucano
2002). For pyroclastic currents, unit problems of interest in-
clude the settling of a polydisperse particulate mixture (Jacobs
et al. 2012), a gravity current inertial flow over a flat surface
(Fig. 4D; Dufek and Bergantz 2007a, b), collapse of a granular
pile (Meruane et al. 2010; Breard et al. 2019a, b), thermal
convective instabilities (Cerminara et al. 2016a, b), and super-
sonic phenomena in multiphase mixtures (Dartevelle 2007;
Carcano et al. 2014; Valentine and Sweeney 2018). Other
examples from the recent volcanological literature are report-
ed in Table 3.

Conclusions and future directions

We have proposed a terminology for verification, confirma-
tion, and benchmarking, and a general framework suited for
validation of pyroclastic current models. We have also de-
scribed the main types and the different levels of approxima-
tions of pyroclastic current models. From the analysis of the
existing literature and the variety of the existing models, it is
apparent that there is a need for systematic model
benchmarking initiatives able to elucidate the potential and
weaknesses of different approaches, especially in the context
of hazard studies. Most pyroclastic currents propagate as
strongly stratified currents, simultaneously displaying the fea-
tures of dilute and concentrated granular flows, and potentially
undergoing (rapid) transitions from one prevailing regime to
the other. Nonetheless, we suggest that a pyroclastic current
benchmarking initiative should initially focus on experimental
datasets that relate specifically to the two end-members (dilute
turbulent and concentrated frictional regimes) separately, in
simplified but challenging conditions. They should provide

initial and boundary conditions for the different models and
the recipe for a coherent inter-comparison of numerical model
results. It is also important for the volcanological community
to develop some well-documented natural events to be taken
as subsystem cases. Or, ideally, to start designing in-natura
experiments at some active volcano to provide, in the near
future, well constrained initial and boundary conditions to
challenge numerical models at the full, natural scale.
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