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ABSTRACT

With the proliferation of versatile devices and
data-consuming services, the quest for spectrum
efficiency has led to the merging of three disrup-
tive technologies: millimeter-wave (mmWave)
communications, massive MIMO (maMIMO), and
non-orthogonal multiple access (NOMA). Emerg-
ing wireless networks move toward ultra-dense
deployment of massive devices with diverse service
demands, which call for efficient spectrum sharing
even on mmWave bands. This article studies some
key techniques that account for the unique angular
selectivity of mmWave maMIMO channels and
thus enable re-engineering the spectrum sharing
paradigm of NOMA. An overview is provided on
research challenges and opportunities related to
spectrum and energy efficiency of spectrum-shared
NOMA-mmWave systems with maMIMO, with
focus on high-performance and low-complexity
channel sensing, optimal sensing resource alloca-
tion, security and privacy provisioning, and learn-
ing-aided real-time system optimization.

INTRODUCTION

The gamut of wireless services for various appli-
cations over valuable radio frequency (RF) spec-
trum has deeply penetrated our modern society.
The quest for spectrum efficiency has led to the
merging of three disruptive technologies: milli-
meter-wave (mmWave) communications, mas-
sive multiple-input multiple-output (maMIMO),
and non-orthogonal multiple access (NOMA).
Recent advances in integrated circuit technolo-
gies make mmWave systems cost-effective for
practical deployment, tapping into a large amount
of underutilized bandwidth in the over-30 GHz
bands to support multi-gigabit-per-second wire-
less access. Given the abundant bandwidth, cur-
rent efforts on mmWave focus on making use of
maMIMO for reliable and energy-efficient trans-
mission in the unique propagation environments,
without much concern for spectrum efficiency.
Future wireless networks move toward ultra-
dense deployments of massive devices with diverse
service types, which will inevitably add spec-
trum efficiency as a major consideration. Indeed,
mmWave communications are envisioned to sup-
port low-power high-density applications including
machine-to-machine and the Internet of Things,
where a large number of devices within a small

area need to be connected seamlessly. As such,
needs for spectrum sharing arise even on mmWave
bands in order to connect massive devices.
NOMA, via power-domain or code-domain mul-
tiplexing, allows devices to share the same spec-
trum and time resources. The combination leads
to NOMA-mmWave-maMIMO communications
with high spectrum efficiency, as documented by
capacity analyses [1]. NOMA-mmWave-maMIMO
is well motivated to fulfill the requirements of high
data rate, low latency, and massive connectivity.

For NOMA, the benefits in spectrum efficien-
cy come at potential costs in energy efficiency.
For instance, random beamforming in mmWave
NOMA requires increased power margin [2]. To
improve energy efficiency, great efforts have to
be spent on user grouping, power allocation, and
beamforming, suggesting various multi-beam and
beamspace schemes in the physical layer (PHY).
Noticeably, the benefits of nearly all these PHY
solutions in NOMA hinge on accurate chan-
nel knowledge, in the form of either the chan-
nel state information (CSI) or some key channel
parameters such as angles of arrival/departure
(AoA/AoD) and path gains. However, high-per-
formance channel sensing entails large energy
consumption and long sensing time, especially for
densely deployed and spectrum-sharing mmWave
NOMA, and such challenges are aggravated for
maMIMO due to the large antenna size. Either
a long sensing time or a non-negligible channel
estimation error adversely affects the effective
data rates, and hence may offset the spectrum
efficiency offered by NOMA. Evidently, efficient
channel sensing plays a key role in unleashing
the envisioned spectrum and energy efficiency of
NOMA-mmWave-maMIMO systems.

This article aims to provide an overview on effi-
cient sensing techniques for large-size, multi-dimen-
sional, and directional channels, focusing on those
with high sample efficiency, estimation accuracy,
computational efficiency, and applicability to prac-
tical NOMA-mmWave-maMIMO transceiver archi-
tectures. The most recent advances on efficient
super-resolution channel sensing are investigated,
followed by discussions on practical implementa-
tions and theoretical guarantees. Further, the trade-
off between channel sensing and data transmission
is illuminated to suggest optimal resource allo-
cation. Finally, related research issues and future
directions are highlighted.
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The intertwined func-
tional modules of
NOMA-mmWave-ma-
MIMO hinge on
accurate knowledge of
user-specific channels,
where users within a
group may experience
similar propagation
channels that can-

not be distinguished
unless accompanied
by super-resolution
sensing techniques.
The paradigm of
maMIMO-enabled
NOMA-mmWave faces
a severe bottleneck in
terms of large energy
consumption and

long sensing time, and
hence urgently requires
novel efficient channel
sensing techniques.

BomrLENECK OF NOMA-MMWAVE-MAMIMO

NOMA-mmWave-maMIMO systems aim to ful-
fill the increasing demands for spectrum sharing,
massive connectivity, ultra-dense deployment,
heterogeneous data traffic, high bandwidth effi-
ciency, and ultra-reliable and ultra-low latency ser-
vices. Therein, each base station (BS) is equipped
with large-scale antenna arrays to provide various
services to its physically adjacent users that are
closely located in a small area. Via NOMA, the BS
employs user-specific beamformers and power lev-
els to send superimposed messages to a group of
users in the downlink, which involves several func-
tional modules to control the intra-cell interference:
power allocation, precoding and beamforming,
user scheduling and grouping, and user ordering
for successive interference cancellation (SIC) [1, 2].
As shown in Fig. 1, all these intertwined function-
al modules of NOMA-mmWave-maMIMO hinge
on accurate knowledge of user-specific channels
to retain the self-term data and remove the inter-
ference terms caused by adjacent users. Due to
NOMA, users within a group may experience similar
propagation channels that cannot be distinguished
unless accompanied by super-resolution sensing
techniques. The communication viewpoint of chan-
nel estimation is to directly estimate the CSI from
the received training signal. However, the huge
antenna number in maMIMO poses formidable
challenges to channel estimation. Not only do the
signal acquisition and hardware costs increase drasti-
cally, but also the processing complexity and sample
costs of conventional channel estimation techniques
become prohibitively high. Evidently, the paradigm
of maMIMO-enabled NOMA-mmWave faces
a severe bottleneck in terms of large energy con-
sumption and long sensing time, and hence urgently
requires novel efficient channel sensing techniques.
Meanwhile, signal propagation over mmWave
bands is highly directional in the angular domain
[3]. This directional channel characteristic suggests
an array processing framework, but has to cope
with low sample efficiency and may cause the pilot
contamination issue, especially in the presence of
large antenna arrays. Advances in virtual channel
modeling and sparse channel sensing reap high
sample efficiency [4, 5], but suffer from limited
angular resolution and degraded accuracy due
to the on-grid assumption of compressed sensing
(CS). Recent progress on super-resolution channel
sensing via gridless CS offers high sensing accu-
racy at high sample efficiency, but relies on ideal-
ized array geometry with uniform antenna spacing
[6-8]. In view of these opportunities and obsta-
cles, this article focuses on the critical issues and
key techniques in enhancing the sensing efficiency,
facilitating the trade-off in sensing resource alloca-
tion, and promoting realtime system optimization.
In an all-connected future world, an unprec-
edented amount of private and sensitive data is
transmitted over wireless networks, underpinning
the importance of security and privacy. Being a
spectrum-shared paradigm, NOMA-mmWave-ma-
MIMO systems can be more vulnerable to eaves-
droppers and privacy breach than conventional
non-NOMA wireless networks. Hence, it is essen-
tial to impose requirements on transmission secu-
rity guarantee and data privacy protection in
NOMA-mmWave-maMIMO systems.

| resource allocation |

| channel sensing

FIGURE 1. Intertwined functional modules of
NOMA-mmWave-maMIMO where channel
sensing serves as the prerequisite and founda-
tion.

SPARSE CHANNEL AND SENSING MODEL

To facilitate accurate user-specific beamforming,
channel sensing for NOMA-mmWave-maMIMO
focuses on the challenges incurred by large-
scale antenna arrays at the BS. Consider a basic
setup of fixed wireless scenarios where the BS is
equipped with N > 1 antennas, in the form of
either 1D uniform linear array (ULA) or 2D uni-
form planar array (UPA). Each user has an M-ele-
ment ULA (MIMO), which can reduce to a single
antenna with M = 1 (single-input multiple-output,
SIMO) for low-cost devices. The BS performs
uplink channel estimation, and the well-recog-
nized channel or angle reciprocity is invoked to
allow beamforming in downlink transmission [31.

MmWave propagation experiences limited scat-
tering with sparse multipath, which induces unique
angular directionality of mmWave maMIMO chan-
nels [3]. Specifically, the channel can be modeled
asH = Z,L:1a,a,\,(6,)a,&’(w,), which consists of a small
number of L channel paths, each parameterized by
a path gain o; and path angles (6, v)) indicating AoA
and AoD. The manifold vectors ax(0)) and ay,(v))
reflect the array geometry. This 2D model subsumes
either the MIMO case or SIMO with a UPA of size
(N x M) at the BS. When the BS employs ULA and
the user has a single antenna, the channel reduces
to the simplest 1D case, h = L_0an(6)).

When such mmWave channel structures are
ignored, conventional channel estimators turn out
to be ineffective for maMIMO in terms of both
energy and sample efficiency. A remedy is to take
an angle-based viewpoint to reshape and enhance
the transceiver design of NOMA-mmWave-maMI-
MO systems. Given the sparse parametric chan-
nel modeling, the task of channel sensing boils
down to estimating the channel path parameters
{6}, vj, oyl The perplexing channel estimation task
is accordingly broken down into intertwined sub-
tasks that can be solved with high sample and
computing efficiency.

ANGLE ESTIMATION VIA SUBSPACE METHODS

The traditional array processing viewpoint suggests
acquiring users” angular directions using super-res-
olution angle estimators including multiple signal
classification (MUSIC), estimation of signal parame-
ters via rational invariance techniques (ESPRIT), max-
imum likelihood (ML), and so on. These techniques
work effectively provided that an adequate number
of snapshots are available to well approximate the
signal covariance via sample averaging. Unfortunate-
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FIGURE 2. Motivation and basic ideas of gridless CS: a) grid mismatch and power leakage issues in tradi-
tional on-grid CS due to the finite grid size; b) extending on-grid CS to gridless CS in both 1D and 2D
cases; ¢) decoupling high-dimensional ANM problem into lower dimensions, as reflected in the struc-

ture of the p.s.d. constraints of V-ANM vs. D-ANM.

ly, such a requirement causes low energy efficiency
for maMIMO with large antenna arrays.

To solve this problem, smoothing techniques
can be incorporated into subspace methods, but
at the cost of reduced aperture size and hence
degraded resolution, which is counterproductive.
Besides, subspace methods usually rely on certain
prior knowledge of the underlying signal, such as
the number of paths, which is unknown or hard to
anticipate accurately in practice.

CHANNEL SENSING VIA CS

Capitalizing on the multipath sparsity of mmWave
channels, recent developments seek to reduce
the sampling burden and training overhead
by sensing a sparse channel from compressive
observations over a small number of snapshots,
through virtual MIMO channel representation and
CS techniques [4, 5]. The basic idea is to take the
discrete Fourier transform matrix as the sparsifying
dictionary and apply the CS principle for sparse
channel recovery. It amounts to assuming that the
AoAs/AoDs reside exactly on some fixed virtual
grids in the angular domain [5], which simplifies
angle estimation and yields high sample efficiency.

However, this on-grid CS channel sensing
approach offers limited angular resolution due to
the finite grid size. When signals arrive off-grid, the
grid mismatch issue arises, which causes power
leakage, as shown in Fig. 2a, and results in an error
floor even in the high signal-to-noise ratio (SNR)
region. It is inadequate to meet the high-accuracy
requirements for channel or angle estimation, and
hence cannot fulfill the needs for highly directional
beamforming and effective interference mitigation
in NOMA-mmWave-maMIMO spectrum sharing.

Channel angular directionality can also be cal-
ibrated by CS-based beam training techniques.
However, beam training takes time to cover a
wide angular region and is user-specific with syn-
chronized beaming. Hence, the training overhead
scales linearly with the number of users, which is
too high for NOMA-based dense networks. These
practical issues limit applicability of beam training
for NOMA-mmWave spectrum sharing.

SUPER-RESOLUTION CHANNEL SENSING VIA
GRIDLESS CS

To overcome the grid mismatch issue of conven-
tional grid-based CS, gridless CS techniques are
proposed as sparse signal processing using a spar-

sifying dictionary of infinite size [6-8], extending
the concept of on-grid CS to allow continuous
signal locations, as illustrated in Fig. 2b.

1D Case

Let us start from a simple 1D channel h, which is
composed of a few components from a known
atom set A = {an(0), VO € [-1/2, n/2]} of infinite
size, but the composition is unknown. In fact, for
a given vector h, its decomposition over A is not
unique. It is asserted that under certain conditions
on source separation, the sparsest atomic decom-
position of h over A yielding the atomic norm
Ih| 4is indeed the true decomposition of h [6].
The sought atomic norm minimization (ANM)
offers super-resolution, since 0 is off-grid in A.

ANM involves infinite programming, but can
be reformulated into a tractable form if the atom
set obeys some desired geometric structures, such
as the Vandermonde structure in an(0) of ULA. In
that case, ANM can be reformulated via semidef-
inite programming (SDP), based on the fact that
any low-rank, positive semidefinite (p.s.d.) Toeplitz
matrix allows unique Vandermonde decomposition
[6]. Given received y and pilot symbol s, an ANM-
based channel estimator arises [7]:

min ||y - hs| |§ + A (trace (T(w))+u)
h,u,u 2

w b
h T

s.t. =0,

where u is the first row of a Toeplitz matrix T to be
optimized. At the optimal u*, the Vandermonde
decomposition of T(u*) yields the desired angles
that form h. It estimates both the channel h and
angles {0} at super-resolution, from a single mea-
surement vector y. Such salient features are desired
to circumvent the power leakage and pilot contam-
ination issues in maMIMO. On the other hand, the
computational complexity of SDP-based ANM is
O((N + K)35D) [8], where K is the number of snap-
shots dictating the sensing time, and D is the dimen-
sionality, provided that the Vandermonde structure
is present in all dimensions. The benefits of gridless
CS appear to be limited to small K'and D = 1.

2D CasE

For a 2D channel H with D = 2, a straightforward
extension from the 1D case is to vectorize H into a
long vector of length NM corresponding to a vec-

To overcome the grid
mismatch issue of con-
ventional grid-based
CS, gridless CS tech-
niques via ANM are
proposed as sparse sig-
nal processing using a
sparsifying dictionary of
infinite size, extending
the concept of on-grid
CS to allow continuous
signal locations. To
overcome the compu-
tational challenge of
vectorized-ANM in 2D
cases, most recently
advances have been
made in developing
efficient 2D gridless

CS that retains all the
benefits of ANM while
remarkably reducing
the compurational
complexity through
efficient reformulation
of 2D ANM.
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While ANM-based
gridless CS offers
evident performance
benefits to maMIMO
channel sensing, it is of
practical significance to
develop low-complex-
ity implementations

in order to further
reduce the energy
consumption in com-
putation. To this end,
a fast algorithm named
iterative Vandermonde
decomposition and
shrinkage-thresholding
(IVDST) is developed
by using the acceler-
ated proximal gradient
technique, which sig-
nificantly reduces the
overall computational
complexity compared
to SDP-based ANM.
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FIGURE 3. Gridless CS for N x N channel sensing: a) estimate accuracy; b) spectral efficiency; c) runtime

complexity.

tor-form atom set A, = {a}/(v) ® axn(0), V(6, v) €
[-n/2, =/21}, and then formulate a similar SDP via
a two-level Toeplitz structured matrix T,p(u) [7].
However, the computational order of this vector-
ized-ANM (V-ANM) reaches O(N3-5M3-5) mostly
because of the increased size of the p.s.d. constraint
in the SDP, which becomes computationally infeasi-
ble for large N and/or M and in turn causes imprac-
tical energy consumption and hardware costs.

To overcome this challenge, most recently,
advances have been made in developing effi-
cient 2D gridless CS that retains all the benefits
of ANM while remarkably reducing the computa-
tional complexity through efficient reformulation
of 2D ANM [8]. The key novelty is to introduce
a new matrix-form atom set Ay = {an(0)aff(v),
v(6, v) € [-n/2, n/21}, which naturally decouples
the high-dimensional ANM problem into lower
dimensions and at the same time retains joint 2D
optimality in the formulation [8]:

min ||y - Hs‘ |§ + A (trace (T(u,, )+ trace (T(uy)))
H,u, uy 2

T(u,) HY
H T(uy)

s.t.

This decoupled-ANM (D-ANM) is expressed by
two decoupled one-level Toeplitz matrices T(uy,)
and T(uy) in the SDP, as illustrated in Fig. 2c.
Because of the structural decoupling in D-ANM,
the computation along the two dimensions is
maximally decoupled without loss of joint opti-
mality, which reduces the complexity order to
O((N + M)3:3). This novel solution comes with rig-
orous analysis on its identifiability conditions and
theoretical sample complexity [8].

PRACTICE AND THEORY

In NOMA-mmWave-maMIMQO, channel sens-
ing has to cope with several practical challenges
imposed by the need for fast algorithm implemen-
tation and by various hardware constraints. It is also
crucial to analyze the fundamental limits of channel
sensing under practical constraints in terms of sam-
ple efficiency and performance bounds.

FAST ALGORITHMS
While ANM-based gridless CS offers evident per-
formance benefits to maMIMO channel sensing,
it is of practical significance to develop low-com-
plexity implementations in order to further reduce
the energy consumption in computation. To this
end, a fast algorithm named iterative Vander-
monde decomposition and shrinkage-thresholding

(IVDST) is developed, which reduces the overall
computational complexity to be on the order of
O((N + M)?) by using the accelerated proximal
gradient technique in lieu of SDP [9]. In each iter-
ation of IVDST, a Vandermonde decomposition is
applied to utilize the Toeplitz structure inherent in
the array geometry. Meanwhile, to approximate
the proximal operator, the low-rank property of
the Toeplitz-structured matrix is enforced via a
simple shrinkage-thresholding operation. The
IVDST algorithm offers an explicit way to bridge
the ANM principle with classic super-resolution
angle estimation algorithms [9]. Figure 3 corrobo-
rates that ANM through fast algorithm implemen-
tation achieves high channel sensing accuracy and
high spectral efficiency at low runtime complexity.

HYBRID PRECODING CONSTRAINTS

Practical NOMA-mmWave-maMIMO systems
typically adopt a hybrid analog-digital transceiver
architecture, in order to balance between array
gain and energy consumption. As shown in Fig. 4,
it keeps a large antenna size N at the analog front-
end, but employs only a few digital circuits in the
form of Ngr (<< N) RF chains. During the channel
estimation stage with unknown angles, one can use
a random codebook to form the precoding matrix
W = WgeWgg, where entries of the analog pre-
coder Wiy are typically restricted to have constant
modulus, for instance, via phase shifters. Such hard-
ware limitations directly impact the ANM formu-
lation and the theoretical sample efficiency, both
of which have been addressed in [10]. Essentially,
the least-squares term in the objective needs to be
adjusted in accordance to the specific hybrid struc-
ture, and the p.s.d. constraint needs to be careful-
ly reformulated in order to reflect the geometric
structure of the hybrid beamformer while keeping
the computing cost low.

ARBITRARY OR IMPERFECT ARRAYS
The success of gridless CS via SDP-based ANM
is largely due to its ingenuous use of the special
array geometric structure, namely Vandermonde
manifold, which arises naturally from ULA and
UPA. However, as shown in Fig. 4, practical
NOMA-mmWave-maMIMO systems may encoun-
ter the following non-ideal array geometries that
render SDP inapplicable: ULA or UPA with per-
turbation due to array mismatch, arbitrary array
geometry, and antenna selection (from ULA,
UPA, or an arbitrary array) for reduced complexi-
ty during channel estimation. A remedy in coping
with these practical issues of imperfect array geom-
etries has been developed in [10], which stems
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FIGURE 4. Hybrid precoder hardware with arbi-
trary arrays.

from the array manifold separation techniques in
array processing. It approximates a length-N array
manifold vector of any geometry p and any fre-
quency f by means of ay(6; p, ) = B(p; vg(0),
where B(p; f) is derived from an N-term Bessel or
Fourier approximation given p and f, and vi(0) is a
virtual ULAlike array manifold of length-N and thus
has the Vandermonde structure. Because the trans-
formed new atom set A = {vg(0), ¥0} always pos-
sesses the desired Vandermonde structure, gridless
CS becomes feasible based on.A [10].

FUNDAMENTAL LIMITS

Parallel to the development of channel and angle
estimators, the associated fundamental limits need to
be delineated in order to assess the sample efficien-
cy and estimation accuracy. Analysis of this nature
has been studied for D-ANM in terms of achiev-
able compression ratio [8]. Extending such results
to practical NOMA-mmWave-maMIMO settings
is quite meaningful. For instance, under the hybrid
maMIMO architecture, the precoding matrix W of
a constrained structure would affect both the feasi-
bility condition and the sample efficiency of ANM,
which informs a trade-off in hardware complexity
and sensing time. When the number of RF chains is
reduced to lower the power cost, the mutual inco-
herence property of W may become less strong,
which may lead to longer sensing time [10]. Mean-
while, in the manifold separation approach for arbi-
trary arrays, the length N of virtual array reflects the
trade-off between approximation errors, spatial reso-
lution, and computational complexity [10]. Further,
the analysis on Cramér-Rao lower bounds has been
performed to understand the impact of key parame-
ters on the sensing errors of gridless CS [8].

Having reviewed the design principles, practical
considerations, and fundamental limits of super-res-
olution sensing based on gridless CS, this section
ends with a comprehensive comparison of various
categories of channel sensing techniques, as sum-
marized in Table 1.

SENSING RESOURCE ALLOCATION

The overall efficiency of NOMA-mmWave-ma-
MIMO transceivers relies critically on judicious
allocation of transmission resources, a portion of
which should be used to ensure successful chan-
nel sensing. Channel estimation accuracy depends
on not only the precoding mechanisms and chan-
nel estimators, but also the sensing time and trans-
mission power. The transmission resources used
for channel sensing have to be balanced with that
for conveying information messages in order to
strike desirable trade-offs between sensing accu-
racy and information rate. To this end, this section
presents a couple of meaningful directions.

First, optimizing the sensing resources boils down
to selecting the power and number of pilot symbols
through a resource allocation optimization problem.
Let us consider block fading channels whose channel
coefficients vary from block to block but stay invari-
ant within each transmission burst of time length Ny.
Each burst includes N; pilot symbols for sensing and
N; = Nr - N; for conveying information messages.
Meanwhile, a fixed total transmission energy per
burst Er = E + E; is allocated to pilot and information
symbols, respectively. Apparently, when Ns and Eg
increase, both the sensing accuracy and the resulting
per-symbol detection accuracy improve, but N; and
E; have to be reduced accordingly, which may offset
the benefits. To maximize the effective information
rate, it is viable to use the average capacity under
CSl errors as the performance metric for resource
allocation optimization [11].

Further, the channel sensing task itself can be
decoupled into two steps, and sensing resources
can be allocated accordingly to improve overall
efficiency. Specifically, among the channel path
parameters (6, v, o), angle parameters (6, v)) vary
slowly and stay invariant over multiple transmission
bursts, whereas the path gains o, fade relatively fast
and need to be updated for every burst. Mean-
while, accurate angle estimation and tracking take
a long sensing time and heavy computing power,
but can be done in a blind mode from informa-
tion-bearing signals as well [4, 10]. As such, a two-
step approach to channel sensing is prudent. The
resource allocation problem involves determining
the number of transmission bursts to be spent on
the first step of angle estimation in the blind mode,
while the training block within each burst can be
made much smaller, only for the second step of
estimating path gains given the estimated angles
[10]. It is quite illuminating to compare the out-
comes of the one-step vs. two-step approaches
to channel sensing. Such results are useful in strik-
ing desirable performance-rate trade-offs in order
to achieve maximum system capacity under total
transmission resource constraints [7].

OPEN ISSUES AND OPPORTUNITIES
This section discusses a few open research issues
in NOMA-mmWave-maMIMO with outlooks on
novel technical approaches and perspectives.

HIGH-DIMENSIONAL WIDEBAND CHANNEL SENSING
Channel sensing for NOMA-mmWave-maMIMO
often becomes a high-dimensional parameter esti-
mation problem. Factors adding to the channel
dimensionality include the expansion to UPA and
possibly cubic arrays at the BS, the deployment of
ULA and even UPA at the user side, as well as pos-
sible frequency selectivity and Doppler frequency.
Such problems, subsuming wideband angle esti-
mation, are formidably challenging for SDP-based
ANM. This is because not only does the complexity
of ANM grow exponentially in the problem dimen-
sion D, but also the required geometric structure
can be missing in some dimensions. To solve these
obstacles, a key idea is to utilize the array mani-
fold separation principle, which can provide dimen-
sionality separation capability as well. Indeed,
the frequency parameters in higher-order Bessel
approximation can include both frequency bins in
wideband processing, and Doppler frequencies.
This idea has not been studied in the literature, and

Practical
NOMA-mmWave-ma-
MIMO systems typ-
ically adopt a hybrid
analog-digital transceiv-
er architecture in order
to balance between
array gain and energy
consumption. Such
hardware limitations
directly impact the
ANM formulation and
the theoretical sample
efficiency. Practical
antenna systems may
encounter the non-ide-
al array geometries
that render SDP inap-
plicable. A remedy is
developed based on
the array manifold sep-
aration techniques for
arbitrary arrays.
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Category
Aspect
Traditional subspace ~ On-grid CS Gridless CS

Estimator applied MUSIC, ESPRIT, ML L-f1orm gondun

minimization minimization
Channel properties Statistical structure Sy Sparsity + structured
used array geometry
Signal acquisition cost ~ High Low Low
Number of snapshots Multiple Single or multiple Single or multiple
Sensing time Long Short Short

Estimation resolution

Computational
complexity

Hybrid precoding

Array perturbation

Super-resolution

Limited resolution

High or low via fast

Super-resolution

High or low via fast

il algorithms algorithms
Inapplicable Applicable Applicable
Applicable or manifold el Manifold separation

separation required

required

TABLE 1. A comparison among different sensing techniques.

requires deep understanding on manifold-based
modeling and processing.

The complexity issue of ANM associated with
problem dimensionality is further compounded
by the presence of multiple measurement vectors.
While the D-ANM [8], by virtue of its decoupling
strategy, effectively reduces the computational
complexity to be comparable to that of a 1D ANM
solution at no loss of optimality, it only applies to
the case of a single measurement vector.

There is still a lack of computationally efficient
gridless high-dimensional channel sensing methods
when multiple measurements are present. To fill
such a gap, it is crucial to exploit the structured
features of channel statistics for efficient high-di-
mensional parameter estimation [12], which leads
to a new regime where statistical signal processing
meets structure-based optimization.

SECURITY AND PRIVACY PROVISIONING

Research on NOMA-mmWave-maMIMO has just
started to seek understanding of the system-level
design and functional module development, but
leaves security and privacy largely unattended.

The transmission security can be measured by
secrecy capacity, defined as the rate difference
between the legitimate transmitter-receiver channel
and the transmitter-eavesdropper channel. There
is barely any work on the secrecy of NOMA for
mmWave maMIMO systems, where the channel
directionality has crucial implications. Cooperative
jamming, as an important way to provide secrecy,
relies on CSI for optimization and demands certain
robustness to CSI errors. A main approach is to
generate artificial noise signal that can be eliminat-
ed at the legitimate receiver but cannot be elimi-
nated at the eavesdroppers so as to degrade the
transmitter-eavesdropper channel. Such noise sig-
nals can be generated by some friendly jammers
other than the information-bearing transmitter,
giving rise to the cooperative jamming approach
that can work jointly with artificial noise [13].
Through NOMA, multi-access transmission can
send information messages and serve the dual role
of cooperative jammers at the same time. The dual
role of cooperative jammers, along with the new

dimension of spatial-domain multiple access for
NOMA in mmWave maMIMO networks, have not
been explicitly treated in the literature, and need
cross-layer design with joint consideration of user
fairness and upper-layer quality of service (QoS).

To enable cooperation and improve the net-
work level spectrum and energy efficiency, the
NOMA-mmWave-maMIMO systems depend on
network awareness among legitimate BSs and
users. As such, sensitive messages need to be
exchanged among the network entities. To pro-
tect the privacy of these messages, it may prove
effective to employ differentially private message
exchange schemes. The idea is to add proper noise
terms to the public signals by tailoring the differ-
ential privacy principle to NOMA-mmWave-ma-
MIMO design with consideration of the following
two key factors. First, not all exposed messages
result in the same level of security vulnerability.
For energy efficiency, it is important to identify and
protect those valuable messages in the network.
Second, the added noise may degrade the net-
work performance, resembling the channel uncer-
tainty effect. The stronger the privacy is, the more
impactful it can be on the network optimization
outcomes. A recent work on differentially private
alternating direction method of multipliers for dis-
tributed network optimization sheds light on this
important trade-off issue [14]. The trade-off analysis
and resulting robust design will help to determine
the operating regimes in which secure cooperation
truly results in performance gains.

LEARNING-AIDED REAL-TIME SYSTEM QPTIMIZATION
Since NOMA-mmWave-maMIMO systems con-
front several optimization problems for param-
eter/feature extraction and resource allocation,
they typically require considerable computing
time in order to converge to the optimal solu-
tions. Thus, they face considerable challenges in
real-time computing, which is worsened by the
complexity and diversity of future networks to
which NOMA-mmWave-maMIMO responds.

Recently, deep learning (DL) has attracted great
attention for enhancing the performance and func-
tionalities of wireless communications in the big
data era [15]. DL provides important capabilities
in implementing real-time system optimization by
developing and testing a learning-aided framework
for enhancing the optimization efficiency. Along
this direction, a deep neural network (DNN) can
be adopted to mimic an optimizer of interest in
an optimization-guided DL framework, as depict-
ed in Fig. 5. It is well appreciated that DNN offers
a highly competitive solution to approximate an
unknown nonlinear functional mapping between
the input and output, given a sufficient set of
labeled input-output data for training. For a DNN
of moderate size, once it is well trained, it can pro-
cess the input data quickly to yield the desired out-
put, making it suitable for realtime processing.

The key question is how to obtain the training
dataset. Domain knowledge in NOMA-mmWave-ma-
MIMO can be used to generate the training dataset
for a DNN. Further, a network simulator can be used
to generate the network conditions and input data
for training. In addition, to improve the learning accu-
racy with high sample efficiency, a hybrid-DNN that
combines model-driven optimization and data-driven
learning can be designed by redefining certain layers
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of the DNN as signal processing layers; for instance,
a noise-suppressing matched filter with tunable filter
parameters can be embedded at the first layer of
a DNN to autonomously enhance signal and data
cleansing. Last but not least, when DL is introduced
to NOMA-mmWave-maMIMO systems, there is a
need to perform joint resource allocation to both
learning and communication modules in order to
enhance the overall spectrum and energy efficiency.
This intricate trade-off is unique to learning-aided sys-
tem optimization for wireless communications and
has not been well investigated in the literature to the
best of our knowledge.

SUMMARY

NOMA-mmWave-maMIMO epitomizes an import-
ant multi-technology aggregation for spectrum- and
energy-efficient wireless communications. This
article reviews several key enabling techniques,
and discusses the challenges and opportunities
in NOMA-mmWave-maMIMO. Inspired by the
unique propagation characteristics, sparse para-
metric modeling for channel sensing is provided,
followed by highlights on various techniques for
accurate and efficient channel sensing as well as
directions for optimal sensing resource allocation.
Future topics and potential research trends are also
envisioned, related to high-dimensional wideband
channel sensing, security and privacy provisioning,
and learning-aided real-time system optimization
for NOMA-mmWave-maMIMO.
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