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Abstract
With the proliferation of versatile devices and 

data-consuming services, the quest for spectrum 
efficiency has led to the merging of three disrup-
tive technologies: millimeter-wave (mmWave) 
communications, massive MIMO (maMIMO), and 
non-orthogonal multiple access (NOMA). Emerg-
ing wireless networks move toward ultra-dense 
deployment of massive devices with diverse service 
demands, which call for efficient spectrum sharing 
even on mmWave bands. This article studies some 
key techniques that account for the unique angular 
selectivity of mmWave maMIMO channels and 
thus enable re-engineering the spectrum sharing 
paradigm of NOMA. An overview is provided on 
research challenges and opportunities related to 
spectrum and energy efficiency of spectrum-shared 
NOMA-mmWave systems with maMIMO, with 
focus on high-performance and low-complexity 
channel sensing, optimal sensing resource alloca-
tion, security and privacy provisioning, and learn-
ing-aided real-time system optimization.

Introduction
The gamut of wireless services for various appli-
cations over valuable radio frequency (RF) spec-
trum has deeply penetrated our modern society. 
The quest for spectrum efficiency has led to the 
merging of three disruptive technologies: milli-
meter-wave (mmWave) communications, mas-
sive multiple-input multiple-output (maMIMO), 
and non-orthogonal multiple access (NOMA). 
Recent advances in integrated circuit technolo-
gies make mmWave systems cost-effective for 
practical deployment, tapping into a large amount 
of underutilized bandwidth in the over-30 GHz 
bands to support multi-gigabit-per-second wire-
less access. Given the abundant bandwidth, cur-
rent efforts on mmWave focus on making use of 
maMIMO for reliable and energy-efficient trans-
mission in the unique propagation environments, 
without much concern for spectrum efficiency.

Future wireless networks move toward ultra-
dense deployments of massive devices with diverse 
service types, which will inevitably add spec-
trum efficiency as a major consideration. Indeed, 
mmWave communications are envisioned to sup-
port low-power high-density applications including 
machine-to-machine and the Internet of Things, 
where a large number of devices within a small 

area need to be connected seamlessly. As such, 
needs for spectrum sharing arise even on mmWave 
bands in order to connect massive devices. 
NOMA, via power-domain or code-domain mul-
tiplexing, allows devices to share the same spec-
trum and time resources. The combination leads 
to NOMA-mmWave-maMIMO communications 
with high spectrum efficiency, as documented by 
capacity analyses [1]. NOMA-mmWave-maMIMO 
is well motivated to fulfill the requirements of high 
data rate, low latency, and massive connectivity.

For NOMA, the benefits in spectrum efficien-
cy come at potential costs in energy efficiency. 
For instance, random beamforming in mmWave 
NOMA requires increased power margin [2]. To 
improve energy efficiency, great efforts have to 
be spent on user grouping, power allocation, and 
beamforming, suggesting various multi-beam and 
beamspace schemes in the physical layer (PHY). 
Noticeably, the benefits of nearly all these PHY 
solutions in NOMA hinge on accurate chan-
nel knowledge, in the form of either the chan-
nel state information (CSI) or some key channel 
parameters such as angles of arrival/departure 
(AoA/AoD) and path gains. However, high-per-
formance channel sensing entails large energy 
consumption and long sensing time, especially for 
densely deployed and spectrum-sharing mmWave 
NOMA, and such challenges are aggravated for 
maMIMO due to the large antenna size. Either 
a long sensing time or a non-negligible channel 
estimation error adversely affects the effective 
data rates, and hence may offset the spectrum 
efficiency offered by NOMA. Evidently, efficient 
channel sensing plays a key role in unleashing 
the envisioned spectrum and energy efficiency of 
NOMA-mmWave-maMIMO systems.

This article aims to provide an overview on effi-
cient sensing techniques for large-size, multi-dimen-
sional, and directional channels, focusing on those 
with high sample efficiency, estimation accuracy, 
computational efficiency, and applicability to prac-
tical NOMA-mmWave-maMIMO transceiver archi-
tectures. The most recent advances on efficient 
super-resolution channel sensing are investigated, 
followed by discussions on practical implementa-
tions and theoretical guarantees. Further, the trade-
off between channel sensing and data transmission 
is illuminated to suggest optimal resource allo-
cation. Finally, related research issues and future 
directions are highlighted.

Yue Wang, Zhi Tian, and Xiuzhen Cheng

Enabling Technologies for  
Spectrum and Energy Efficient  

NOMA-MmWave-MaMIMO Systems

SPECTRUM AND ENERGY EFFICIENT WIRELESS COMMUNICATIONS

Yue Wang and Zhi Tian are with George Mason University; Xiuzhen Cheng is with George Washington University.
Digital Object Identifier:

10.1109/MWC.001.2000055

WANG1_LAYOUT.indd   53WANG1_LAYOUT.indd   53 10/20/20   4:12 PM10/20/20   4:12 PM

Authorized licensed use limited to: George Mason University. Downloaded on February 18,2021 at 00:38:07 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Wireless Communications • October 202054

bottLeneck of nomA-mmwAve-mAmImo
NOMA-mmWave-maMIMO systems aim to ful-
fill the increasing demands for spectrum sharing, 
massive connectivity, ultra-dense deployment, 
heterogeneous data traffic, high bandwidth effi-
ciency, and ultra-reliable and ultra-low latency ser-
vices. Therein, each base station (BS) is equipped 
with large-scale antenna arrays to provide various 
services to its physically adjacent users that are 
closely located in a small area. Via NOMA, the BS 
employs user-specifi c beamformers and power lev-
els to send superimposed messages to a group of 
users in the downlink, which involves several func-
tional modules to control the intra-cell interference: 
power allocation, precoding and beamforming, 
user scheduling and grouping, and user ordering 
for successive interference cancellation (SIC) [1, 2].

As shown in Fig. 1, all these intertwined function-
al modules of NOMA-mmWave-maMIMO hinge 
on accurate knowledge of user-specific channels 
to retain the self-term data and remove the inter-
ference terms caused by adjacent users. Due to 
NOMA, users within a group may experience similar 
propagation channels that cannot be distinguished 
unless accompanied by super-resolution sensing 
techniques. The communication viewpoint of chan-
nel estimation is to directly estimate the CSI from 
the received training signal. However, the huge 
antenna number in maMIMO poses formidable 
challenges to channel estimation. Not only do the 
signal acquisition and hardware costs increase drasti-
cally, but also the processing complexity and sample 
costs of conventional channel estimation techniques 
become prohibitively high. Evidently, the paradigm 
of maMIMO-enabled NOMA-mmWave faces 
a severe bottleneck in terms of large energy con-
sumption and long sensing time, and hence urgently 
requires novel effi  cient channel sensing techniques.

Meanwhile, signal propagation over mmWave 
bands is highly directional in the angular domain 
[3]. This directional channel characteristic suggests 
an array processing framework, but has to cope 
with low sample effi  ciency and may cause the pilot 
contamination issue, especially in the presence of 
large antenna arrays. Advances in virtual channel 
modeling and sparse channel sensing reap high 
sample efficiency [4, 5], but suffer from limited 
angular resolution and degraded accuracy due 
to the on-grid assumption of compressed sensing 
(CS). Recent progress on super-resolution channel 
sensing via gridless CS offers high sensing accu-
racy at high sample effi  ciency, but relies on ideal-
ized array geometry with uniform antenna spacing 
[6–8]. In view of these opportunities and obsta-
cles, this article focuses on the critical issues and 
key techniques in enhancing the sensing effi  ciency, 
facilitating the trade-off  in sensing resource alloca-
tion, and promoting real-time system optimization.

In an all-connected future world, an unprec-
edented amount of private and sensitive data is 
transmitted over wireless networks, underpinning 
the importance of security and privacy. Being a 
spectrum-shared paradigm, NOMA-mmWave-ma-
MIMO systems can be more vulnerable to eaves-
droppers and privacy breach than conventional 
non-NOMA wireless networks. Hence, it is essen-
tial to impose requirements on transmission secu-
rity guarantee and data privacy protection in 
NOMA-mmWave-maMIMO systems.

sPArse chAnneL And sensIng modeL
To facilitate accurate user-specifi c beamforming, 
channel sensing for NOMA-mmWave-maMIMO 
focuses on the challenges incurred by large-
scale antenna arrays at the BS. Consider a basic 
setup of fi xed wireless scenarios where the BS is 
equipped with N >> 1 antennas, in the form of 
either 1D uniform linear array (ULA) or 2D uni-
form planar array (UPA). Each user has an M-ele-
ment ULA (MIMO), which can reduce to a single 
antenna with M = 1 (single-input multiple-output, 
SIMO) for low-cost devices. The BS performs 
uplink channel estimation, and the well-recog-
nized channel or angle reciprocity is invoked to 
allow beamforming in downlink transmission [3].

MmWave propagation experiences limited scat-
tering with sparse multipath, which induces unique 
angular directionality of mmWave maMIMO chan-
nels [3]. Specifically, the channel can be modeled 
as H = L

l=1laN(l)aM
H(l), which consists of a small 

number of L channel paths, each parameterized by 
a path gain αl and path angles (l, l) indicating AoA 
and AoD. The manifold vectors aN(l) and aM(l) 
refl ect the array geometry. This 2D model subsumes 
either the MIMO case or SIMO with a UPA of size 
(N  M) at the BS. When the BS employs ULA and 
the user has a single antenna, the channel reduces 
to the simplest 1D case, h = L

l=1laN(l).
When such mmWave channel structures are 

ignored, conventional channel estimators turn out 
to be ineffective for maMIMO in terms of both 
energy and sample effi  ciency. A remedy is to take 
an angle-based viewpoint to reshape and enhance 
the transceiver design of NOMA-mmWave-maMI-
MO systems. Given the sparse parametric chan-
nel modeling, the task of channel sensing boils 
down to estimating the channel path parameters 
{l, l, l}l. The perplexing channel estimation task 
is accordingly broken down into intertwined sub-
tasks that can be solved with high sample and 
computing effi  ciency.

AngLe estImAtIon vIA subsPAce methods
The traditional array processing viewpoint suggests 
acquiring users’ angular directions using super-res-
olution angle estimators including multiple signal 
classifi cation (MUSIC), estimation of signal parame-
ters via rational invariance techniques (ESPRIT), max-
imum likelihood (ML), and so on. These techniques 
work eff ectively provided that an adequate number 
of snapshots are available to well approximate the 
signal covariance via sample averaging. Unfortunate-

Th e intertwined func-
tional modules of 
NOMA-mmWave-ma-
MIMO hinge on 
accurate knowledge of 
user-specifi c chan nels, 
where users within a 
group may experience 
similar propagation 
channels that can-
not be distin guished 
unless accompanied 
by super-resolution 
sensing techniques. 
Th e paradigm of 
maMIMO-enabled 
NOMA-mmWave faces 
a severe bottleneck in 
terms of large energy 
consumption and 
long sensing time, and 
hence urgently requires 
novel effi  cient channel 
sensing techniques.

FIGURE 1. Intertwined functional modules of 
NOMA-mmWave-maMIMO where channel 
sensing serves as the prerequisite and founda-
tion.
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ly, such a requirement causes low energy effi  ciency 
for maMIMO with large antenna arrays.

To solve this problem, smoothing techniques 
can be incorporated into subspace methods, but 
at the cost of reduced aperture size and hence 
degraded resolution, which is counterproductive. 
Besides, subspace methods usually rely on certain 
prior knowledge of the underlying signal, such as 
the number of paths, which is unknown or hard to 
anticipate accurately in practice.

chAnneL sensIng vIA cs
Capitalizing on the multipath sparsity of mmWave 
channels, recent developments seek to reduce 
the sampling burden and training overhead 
by sensing a sparse channel from compressive 
observations over a small number of snapshots, 
through virtual MIMO channel representation and 
CS techniques [4, 5]. The basic idea is to take the 
discrete Fourier transform matrix as the sparsifying 
dictionary and apply the CS principle for sparse 
channel recovery. It amounts to assuming that the 
AoAs/AoDs reside exactly on some fi xed virtual 
grids in the angular domain [5], which simplifi es 
angle estimation and yields high sample effi  ciency.

However, this on-grid CS channel sensing 
approach off ers limited angular resolution due to 
the fi nite grid size. When signals arrive off -grid, the 
grid mismatch issue arises, which causes power 
leakage, as shown in Fig. 2a, and results in an error 
floor even in the high signal-to-noise ratio (SNR) 
region. It is inadequate to meet the high-accuracy 
requirements for channel or angle estimation, and 
hence cannot fulfi ll the needs for highly directional 
beamforming and eff ective interference mitigation 
in NOMA-mmWave-maMIMO spectrum sharing.

Channel angular directionality can also be cal-
ibrated by CS-based beam training techniques. 
However, beam training takes time to cover a 
wide angular region and is user-specific with syn-
chronized beaming. Hence, the training overhead 
scales linearly with the number of users, which is 
too high for NOMA-based dense networks. These 
practical issues limit applicability of beam training 
for NOMA-mmWave spectrum sharing.

suPer-resoLutIon chAnneL sensIng vIA 
grIdLess cs

To overcome the grid mismatch issue of conven-
tional grid-based CS, gridless CS techniques are 
proposed as sparse signal processing using a spar-

sifying dictionary of infi nite size [6–8], extending 
the concept of on-grid CS to allow continuous 
signal locations, as illustrated in Fig. 2b.

1d cAse
Let us start from a simple 1D channel h, which is 
composed of a few components from a known 
atom set  = {aN(), ∀ ∈ [–/2, /2]} of infi nite 
size, but the composition is unknown. In fact, for 
a given vector h, its decomposition over  is not 
unique. It is asserted that under certain conditions 
on source separation, the sparsest atomic decom-
position of h over  yielding the atomic norm 
||h|| is indeed the true decomposition of h [6]. 
The sought atomic norm minimization (ANM) 
off ers super-resolution, since  is off -grid in .

ANM involves infinite programming, but can 
be reformulated into a tractable form if the atom 
set obeys some desired geometric structures, such 
as the Vandermonde structure in aN() of ULA. In 
that case, ANM can be reformulated via semidef-
inite programming (SDP), based on the fact that 
any low-rank, positive semidefi nite (p.s.d.) Toeplitz 
matrix allows unique Vandermonde decomposition 
[6]. Given received y and pilot symbol s, an ANM-
based channel estimator arises [7]:

min
h,u,µ

y−hs 2
2 +

λ
2

(trace (T(u))+µ)

  s.t. µ hH

h T(u)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
≥ 0,

where u is the fi rst row of a Toeplitz matrix T to be 
optimized. At the optimal u, the Vandermonde 
decomposition of T(u) yields the desired angles 
that form h. It estimates both the channel h and 
angles {l} at super-resolution, from a single mea-
surement vector y. Such salient features are desired 
to circumvent the power leakage and pilot contam-
ination issues in maMIMO. On the other hand, the 
computational complexity of SDP-based ANM is 
O((N + K)3.5D) [8], where K is the number of snap-
shots dictating the sensing time, and D is the dimen-
sionality, provided that the Vandermonde structure 
is present in all dimensions. The benefi ts of gridless 
CS appear to be limited to small K and D = 1.

2d cAse
For a 2D channel H with D = 2, a straightforward 
extension from the 1D case is to vectorize H into a 
long vector of length NM corresponding to a vec-

FIGURE 2. Motivation and basic ideas of gridless CS: a) grid mismatch and power leakage issues in tradi-
tional on-grid CS due to the fi nite grid size; b) extending on-grid CS to gridless CS in both 1D and 2D 
cases; c) decoupling high-dimensional ANM problem into lower dimensions, as refl ected in the struc-
ture of the p.s.d. constraints of V-ANM vs. D-ANM.

(a) (b) (c)

V-ANM p.s.d. constraint:
1 large two-level Toeplitz

D-ANM p.s.d. constraint:
2 small one-level Toeplitz
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tor-form atom set v = {a*M() ⊗ aN(), ∀(, ) ∈
[–/2, /2]}, and then formulate a similar SDP via 
a two-level Toeplitz structured matrix T2D(u) [7]. 
However, the computational order of this vector-
ized-ANM (V-ANM) reaches O(N3.5M3.5) mostly 
because of the increased size of the p.s.d. constraint 
in the SDP, which becomes computationally infeasi-
ble for large N and/or M and in turn causes imprac-
tical energy consumption and hardware costs.

To overcome this challenge, most recently, 
advances have been made in developing effi-
cient 2D gridless CS that retains all the benefits 
of ANM while remarkably reducing the computa-
tional complexity through effi  cient reformulation 
of 2D ANM [8]. The key novelty is to introduce 
a new matrix-form atom set d = {aN()aM

H(), 
∀(, ) ∈ [–/2, /2]}, which naturally decouples 
the high-dimensional ANM problem into lower 
dimensions and at the same time retains joint 2D 
optimality in the formulation [8]:

min
H,uM ,uN

y−Hs 2
2 +

λ
2

(trace (T(uM ))+ trace (T(uN )))

  s.t. T(uM ) HH

H T(uN )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
≥ 0.

This decoupled-ANM (D-ANM) is expressed by 
two decoupled one-level Toeplitz matrices T(uM) 
and T(uN) in the SDP, as illustrated in Fig. 2c. 
Because of the structural decoupling in D-ANM, 
the computation along the two dimensions is 
maximally decoupled without loss of joint opti-
mality, which reduces the complexity order to 
O((N + M)3.5). This novel solution comes with rig-
orous analysis on its identifi ability conditions and 
theoretical sample complexity [8].

PrActIce And theory
In NOMA-mmWave-maMIMO, channel sens-
ing has to cope with several practical challenges 
imposed by the need for fast algorithm implemen-
tation and by various hardware constraints. It is also 
crucial to analyze the fundamental limits of channel 
sensing under practical constraints in terms of sam-
ple effi  ciency and performance bounds.

fAst ALgorIthms
While ANM-based gridless CS off ers evident per-
formance benefi ts to maMIMO channel sensing, 
it is of practical signifi cance to develop low-com-
plexity implementations in order to further reduce 
the energy consumption in computation. To this 
end, a fast algorithm named iterative Vander-
monde decomposition and shrinkage-thresholding 

(IVDST) is developed, which reduces the overall 
computational complexity to be on the order of 
O((N + M)2) by using the accelerated proximal 
gradient technique in lieu of SDP [9]. In each iter-
ation of IVDST, a Vandermonde decomposition is 
applied to utilize the Toeplitz structure inherent in 
the array geometry. Meanwhile, to approximate 
the proximal operator, the low-rank property of 
the Toeplitz-structured matrix is enforced via a 
simple shrinkage-thresholding operation. The 
IVDST algorithm off ers an explicit way to bridge 
the ANM principle with classic super-resolution 
angle estimation algorithms [9]. Figure 3 corrobo-
rates that ANM through fast algorithm implemen-
tation achieves high channel sensing accuracy and 
high spectral effi  ciency at low runtime complexity.

hybrId PrecodIng constrAInts
Practical NOMA-mmWave-maMIMO systems 
typically adopt a hybrid analog-digital transceiver 
architecture, in order to balance between array 
gain and energy consumption. As shown in Fig. 4, 
it keeps a large antenna size N at the analog front-
end, but employs only a few digital circuits in the 
form of NRF (<< N) RF chains. During the channel 
estimation stage with unknown angles, one can use 
a random codebook to form the precoding matrix 
W = WRFWBB, where entries of the analog pre-
coder WRF are typically restricted to have constant 
modulus, for instance, via phase shifters. Such hard-
ware limitations directly impact the ANM formu-
lation and the theoretical sample efficiency, both 
of which have been addressed in [10]. Essentially, 
the least-squares term in the objective needs to be 
adjusted in accordance to the specifi c hybrid struc-
ture, and the p.s.d. constraint needs to be careful-
ly reformulated in order to reflect the geometric 
structure of the hybrid beamformer while keeping 
the computing cost low.

ArbItrAry or ImPerfect ArrAys
The success of gridless CS via SDP-based ANM 
is largely due to its ingenuous use of the special 
array geometric structure, namely Vandermonde 
manifold, which arises naturally from ULA and 
UPA. However, as shown in Fig. 4, practical 
NOMA-mmWave-maMIMO systems may encoun-
ter the following non-ideal array geometries that 
render SDP inapplicable: ULA or UPA with per-
turbation due to array mismatch, arbitrary array 
geometry, and antenna selection (from ULA, 
UPA, or an arbitrary array) for reduced complexi-
ty during channel estimation. A remedy in coping 
with these practical issues of imperfect array geom-
etries has been developed in [10], which stems 

FIGURE 3. Gridless CS for N  N channel sensing: a) estimate accuracy; b) spectral effi  ciency; c) runtime 
complexity.

(a) (b) (c)
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from the array manifold separation techniques in 
array processing. It approximates a length-N array 
manifold vector of any geometry p and any fre-
quency f by means of aN(; p, f) = B(p; f)vÑ(), 
where B(p; f) is derived from an Ñ-term Bessel or 
Fourier approximation given p and f, and vÑ() is a 
virtual ULA-like array manifold of length-Ñ and thus 
has the Vandermonde structure. Because the trans-
formed new atom set  ~ = {vÑ(), ∀} always pos-
sesses the desired Vandermonde structure, gridless 
CS becomes feasible based on  ~ [10].

fundAmentAL LImIts
Parallel to the development of channel and angle 
estimators, the associated fundamental limits need to 
be delineated in order to assess the sample effi  cien-
cy and estimation accuracy. Analysis of this nature 
has been studied for D-ANM in terms of achiev-
able compression ratio [8]. Extending such results 
to practical NOMA-mmWave-maMIMO settings 
is quite meaningful. For instance, under the hybrid 
maMIMO architecture, the precoding matrix WRF of 
a constrained structure would aff ect both the feasi-
bility condition and the sample effi  ciency of ANM, 
which informs a trade-off in hardware complexity 
and sensing time. When the number of RF chains is 
reduced to lower the power cost, the mutual inco-
herence property of W may become less strong, 
which may lead to longer sensing time [10]. Mean-
while, in the manifold separation approach for arbi-
trary arrays, the length Ñ of virtual array refl ects the 
trade-off  between approximation errors, spatial reso-
lution, and computational complexity [10]. Further, 
the analysis on Cramér-Rao lower bounds has been 
performed to understand the impact of key parame-
ters on the sensing errors of gridless CS [8].

Having reviewed the design principles, practical 
considerations, and fundamental limits of super-res-
olution sensing based on gridless CS, this section 
ends with a comprehensive comparison of various 
categories of channel sensing techniques, as sum-
marized in Table 1.

sensIng resource ALLocAtIon
The overall efficiency of NOMA-mmWave-ma-
MIMO transceivers relies critically on judicious 
allocation of transmission resources, a portion of 
which should be used to ensure successful chan-
nel sensing. Channel estimation accuracy depends 
on not only the precoding mechanisms and chan-
nel estimators, but also the sensing time and trans-
mission power. The transmission resources used 
for channel sensing have to be balanced with that 
for conveying information messages in order to 
strike desirable trade-off s between sensing accu-
racy and information rate. To this end, this section 
presents a couple of meaningful directions.

First, optimizing the sensing resources boils down 
to selecting the power and number of pilot symbols 
through a resource allocation optimization problem. 
Let us consider block fading channels whose channel 
coeffi  cients vary from block to block but stay invari-
ant within each transmission burst of time length NT. 
Each burst includes Ns pilot symbols for sensing and 
Ni = NT – Ns for conveying information messages. 
Meanwhile, a fixed total transmission energy per 
burst ET = Es + Ei is allocated to pilot and information 
symbols, respectively. Apparently, when Ns and Es
increase, both the sensing accuracy and the resulting 
per-symbol detection accuracy improve, but Ni and 
Ei have to be reduced accordingly, which may off set 
the benefi ts. To maximize the eff ective information 
rate, it is viable to use the average capacity under 
CSI errors as the performance metric for resource 
allocation optimization [11].

Further, the channel sensing task itself can be 
decoupled into two steps, and sensing resources 
can be allocated accordingly to improve overall 
efficiency. Specifically, among the channel path 
parameters (l, l, l)l, angle parameters (l, l) vary 
slowly and stay invariant over multiple transmission 
bursts, whereas the path gains l fade relatively fast 
and need to be updated for every burst. Mean-
while, accurate angle estimation and tracking take 
a long sensing time and heavy computing power, 
but can be done in a blind mode from informa-
tion-bearing signals as well [4, 10]. As such, a two-
step approach to channel sensing is prudent. The 
resource allocation problem involves determining 
the number of transmission bursts to be spent on 
the fi rst step of angle estimation in the blind mode, 
while the training block within each burst can be 
made much smaller, only for the second step of 
estimating path gains given the estimated angles 
[10]. It is quite illuminating to compare the out-
comes of the one-step vs. two-step approaches 
to channel sensing. Such results are useful in strik-
ing desirable performance-rate trade-off s in order 
to achieve maximum system capacity under total 
transmission resource constraints [7].

oPen Issues And oPPortunItIes
This section discusses a few open research issues 
in NOMA-mmWave-maMIMO with outlooks on 
novel technical approaches and perspectives.

hIgh-dImensIonAL wIdebAnd chAnneL sensIng
Channel sensing for NOMA-mmWave-maMIMO 
often becomes a high-dimensional parameter esti-
mation problem. Factors adding to the channel 
dimensionality include the expansion to UPA and 
possibly cubic arrays at the BS, the deployment of 
ULA and even UPA at the user side, as well as pos-
sible frequency selectivity and Doppler frequency. 
Such problems, subsuming wideband angle esti-
mation, are formidably challenging for SDP-based 
ANM. This is because not only does the complexity 
of ANM grow exponentially in the problem dimen-
sion D, but also the required geometric structure 
can be missing in some dimensions. To solve these 
obstacles, a key idea is to utilize the array mani-
fold separation principle, which can provide dimen-
sionality separation capability as well. Indeed, 
the frequency parameters in higher-order Bessel 
approximation can include both frequency bins in 
wideband processing, and Doppler frequencies. 
This idea has not been studied in the literature, and 

FIGURE 4. Hybrid precoder hardware with arbi-
trary arrays.
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requires deep understanding on manifold-based 
modeling and processing.

The complexity issue of ANM associated with 
problem dimensionality is further compounded 
by the presence of multiple measurement vectors. 
While the D-ANM [8], by virtue of its decoupling 
strategy, effectively reduces the computational 
complexity to be comparable to that of a 1D ANM 
solution at no loss of optimality, it only applies to 
the case of a single measurement vector.

There is still a lack of computationally efficient 
gridless high-dimensional channel sensing methods 
when multiple measurements are present. To fill 
such a gap, it is crucial to exploit the structured 
features of channel statistics for efficient high-di-
mensional parameter estimation [12], which leads 
to a new regime where statistical signal processing 
meets structure-based optimization.

Security and Privacy Provisioning
Research on NOMA-mmWave-maMIMO has just 
started to seek understanding of the system-level 
design and functional module development, but 
leaves security and privacy largely unattended.

The transmission security can be measured by 
secrecy capacity, defined as the rate difference 
between the legitimate transmitter-receiver channel 
and the transmitter-eavesdropper channel. There 
is barely any work on the secrecy of NOMA for 
mmWave maMIMO systems, where the channel 
directionality has crucial implications. Cooperative 
jamming, as an important way to provide secrecy, 
relies on CSI for optimization and demands certain 
robustness to CSI errors. A main approach is to 
generate artificial noise signal that can be eliminat-
ed at the legitimate receiver but cannot be elimi-
nated at the eavesdroppers so as to degrade the 
transmitter-eavesdropper channel. Such noise sig-
nals can be generated by some friendly jammers 
other than the information-bearing transmitter, 
giving rise to the cooperative jamming approach 
that can work jointly with artificial noise [13]. 
Through NOMA, multi-access transmission can 
send information messages and serve the dual role 
of cooperative jammers at the same time. The dual 
role of cooperative jammers, along with the new 

dimension of spatial-domain multiple access for 
NOMA in mmWave maMIMO networks, have not 
been explicitly treated in the literature, and need 
cross-layer design with joint consideration of user 
fairness and upper-layer quality of service (QoS).

To enable cooperation and improve the net-
work level spectrum and energy efficiency, the 
NOMA-mmWave-maMIMO systems depend on 
network awareness among legitimate BSs and 
users. As such, sensitive messages need to be 
exchanged among the network entities. To pro-
tect the privacy of these messages, it may prove 
effective to employ differentially private message 
exchange schemes. The idea is to add proper noise 
terms to the public signals by tailoring the differ-
ential privacy principle to NOMA-mmWave-ma-
MIMO design with consideration of the following 
two key factors. First, not all exposed messages 
result in the same level of security vulnerability. 
For energy efficiency, it is important to identify and 
protect those valuable messages in the network. 
Second, the added noise may degrade the net-
work performance, resembling the channel uncer-
tainty effect. The stronger the privacy is, the more 
impactful it can be on the network optimization 
outcomes. A recent work on differentially private 
alternating direction method of multipliers for dis-
tributed network optimization sheds light on this 
important trade-off issue [14]. The trade-off analysis 
and resulting robust design will help to determine 
the operating regimes in which secure cooperation 
truly results in performance gains.

Learning-Aided Real-Time System Optimization
Since NOMA-mmWave-maMIMO systems con-
front several optimization problems for param-
eter/feature extraction and resource allocation, 
they typically require considerable computing 
time in order to converge to the optimal solu-
tions. Thus, they face considerable challenges in 
real-time computing, which is worsened by the 
complexity and diversity of future networks to 
which NOMA-mmWave-maMIMO responds.

Recently, deep learning (DL) has attracted great 
attention for enhancing the performance and func-
tionalities of wireless communications in the big 
data era [15]. DL provides important capabilities 
in implementing real-time system optimization by 
developing and testing a learning-aided framework 
for enhancing the optimization efficiency. Along 
this direction, a deep neural network (DNN) can 
be adopted to mimic an optimizer of interest in 
an optimization-guided DL framework, as depict-
ed in Fig. 5. It is well appreciated that DNN offers 
a highly competitive solution to approximate an 
unknown nonlinear functional mapping between 
the input and output, given a sufficient set of 
labeled input-output data for training. For a DNN 
of moderate size, once it is well trained, it can pro-
cess the input data quickly to yield the desired out-
put, making it suitable for real-time processing.

The key question is how to obtain the training 
dataset. Domain knowledge in NOMA-mmWave-ma-
MIMO can be used to generate the training dataset 
for a DNN. Further, a network simulator can be used 
to generate the network conditions and input data 
for training. In addition, to improve the learning accu-
racy with high sample efficiency, a hybrid-DNN that 
combines model-driven optimization and data-driven 
learning can be designed by redefining certain layers 

TABLE 1. A comparison among different sensing techniques.

Aspect
Category

Traditional subspace On-grid CS Gridless CS

Estimator applied MUSIC, ESPRIT, ML
L1-norm 
minimization

Atomic norm 
minimization

Channel properties 
used

Statistical structure Sparsity
Sparsity + structured 
array geometry

Signal acquisition cost High Low Low

Number of snapshots Multiple Single or multiple Single or multiple

Sensing time Long Short Short

Estimation resolution Super-resolution Limited resolution Super-resolution

Computational 
complexity

Low
High or low via fast 
algorithms

High or low via fast 
algorithms

Hybrid precoding Inapplicable Applicable Applicable

Array perturbation
Applicable or manifold 
separation required

Applicable
Manifold separation 
required
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of the DNN as signal processing layers; for instance, 
a noise-suppressing matched filter with tunable filter 
parameters can be embedded at the first layer of 
a DNN to autonomously enhance signal and data 
cleansing. Last but not least, when DL is introduced 
to NOMA-mmWave-maMIMO systems, there is a 
need to perform joint resource allocation to both 
learning and communication modules in order to 
enhance the overall spectrum and energy efficiency. 
This intricate trade-off is unique to learning-aided sys-
tem optimization for wireless communications and 
has not been well investigated in the literature to the 
best of our knowledge.

Summary
NOMA-mmWave-maMIMO epitomizes an import-
ant multi-technology aggregation for spectrum- and 
energy-efficient wireless communications. This 
article reviews several key enabling techniques, 
and discusses the challenges and opportunities 
in NOMA-mmWave-maMIMO. Inspired by the 
unique propagation characteristics, sparse para-
metric modeling for channel sensing is provided, 
followed by highlights on various techniques for 
accurate and efficient channel sensing as well as 
directions for optimal sensing resource allocation. 
Future topics and potential research trends are also 
envisioned, related to high-dimensional wideband 
channel sensing, security and privacy provisioning, 
and learning-aided real-time system optimization 
for NOMA-mmWave-maMIMO.
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FIGURE 5. Optimization-guided deep learning.
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