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Abstract— This paper revisits the multi-agent average con-
sensus problem on weight-balanced directed graphs. In order
to reduce communication among the agents, many recent works
have considered event-triggered communication and control
as a method to reduce communication while still ensuring
that the entire network converges to the desired state. One
common way to do this is to design events such that a
specifically chosen Lyapunov function is monotonically decreas-
ing; however, depending on the chosen Lyapunov function
the transient behaviors can be very different. Consequently,
we are instead interested in considering a class of Lyapunov
functions such that each Lyapunov function produces a different
event-triggered coordination algorithm to solve the multi-agent
average consensus problem. The proposed class of algorithms
all guarantee exponential convergence of the resulting network
and exclusion of Zeno behavior. This allows us to easily consider
the implementation of different algorithms that all guarantee
correctness to be able to meet varying performance needs.
Simulations are provided to illustrate our findings.

I. INTRODUCTION

The distributed coordination problem of dynamic multi-
agent systems has been widely studied due to their broad
applications in areas such as unmanned vehicles, mobile
robots, and wireless communication networks [1]–[3]. In
many of these applications, groups of agents are required to
agree upon certain quantities of interest, or in other words,
to achieve a consensus state; typical results can be found
in [4]–[9]. When considering implementation of these ideas,
some of these algorithms require agents to communicate and
update control signals continuously or with a fixed sampling
period [4]–[6], which are inefficient and generally result
in excessive consumption of on-board energy resources. To
reduce the amount of communications and controller updates
while maintaining the desired performance of the network,
event-triggered algorithms have recently been gaining popu-
larity [7]–[9].

The main idea behind event-triggered algorithms is to
take actions only when necessary so that some desired
property of the system can still be maintained efficiently.
There are many recent works on distributed event-triggered
control over multi-agent systems for both undirected and
directed graphs [9]–[20]. Among them, [9] proposes an
algorithm using a triggering function whose threshold is
time-dependent with predefined constant parameters. In gen-
eral, these time-dependent thresholds are easy to design to
guarantee deadlocks (or Zeno behaviors, meaning an infinite
number of events triggered in a finite number of time period)
do not occur, but require global information to guarantee
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convergence to exactly a consensus state. Instead, some
event-triggered algorithms use state-dependent thresholds to
determine when actions should be taken [10], [11]; however,
these triggers might be risky to implement as Zeno behaviors
are harder to exclude. A combination of time-dependent and
state-dependent algorithms are given in [12], [13], either
by introducing a time-dependent internal dynamic variable
or a bounded convergent function to the state-dependent
threshold to rule out Zeno behaviors. As Zeno behaviors are
impossible in a given physical implementation, it is necessary
and essential to exclude it in the event-triggered algorithm
design to guarantee its correctness.

The event-triggered algorithms we propose in this pa-
per are state-dependent and Lyapunov function-based. More
specifically, given a Lyapunov function for a certain system,
an event-triggered controller can generally be developed to
maintain stability of the system while reducing sampling
or communication, using the given Lyapunov function as
a certificate of correctness. In other words, all events are
triggered based on how we want the given Lyapunov function
to evolve in time. However, it is known that a Lyapunov
function is not unique for a given system, and each indi-
vidual function may result in a totally different, but equally
valid/correct triggering law. Consequently, there are many
works that propose one such algorithm based on one function
that all have the same guarantee: asymptotic convergence to
a consensus state. Simulations then show that these ideas are
promising when compared against periodic implementations
in reducing communication while maintaining stability, but
there are no formal guarantees on the gained efficiency.
Moreover, this means there is no established way to compare
the performance of two different event-triggered algorithms
that solve the same problem. In particular, given two different
event-triggered algorithms that both guarantee convergence,
their trajectories and communication schedules may be
wildly different before ultimately converging to the desired
set of states. There are some new works that are addressing
exactly this topic [21]–[23], which set the basis for this paper.
More specifically, once established methods of comparing
the performance of event-triggered algorithms against one
another are developed, currently available algorithms will
likely be revisited to optimize different types of performance
metrics. In particular, we notice that different algorithms are
better than others in different scenarios when considering
metrics such as convergence speed or total energy consump-
tion. Therefore, instead of trying to design only one event-
triggered algorithm that simply guarantees convergence, we
design an entire class of event-triggered algorithms that can
be easily tuned to meet varying performance needs.
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Statement of contributions: The main contribution of this
paper is that we propose an entire class of event-triggered
coordination algorithms that all guarantee exponential sta-
bility while excluding Zeno behaviors. One such algorithm
that solves the exact problem we consider here is given
in [11], which is named as Algorithm 1 for simplicity.
For our work, we first design a distributed event-triggered
algorithm based on an alternative Lyapunov function and
name it as Algorithm 2. Using these two algorithms, we
then parameterize an entire class of Lyapunov functions and
show how each individual function can be used to develop
a Combined Algorithm. More specifically, choosing any
parameter λ ∈ [0, 1] yields an event-triggered algorithm that
guarantees convergence while using a different Lyapunov
function as a certificate for correctness. Changing λ can
then help achieve varying performance goals while always
guaranteeing stability. With the asymptotic convergence and
exclusion of Zeno behavior for both Algorithm 1 and
Algorithm 2, we establish that the Combined Algorithm
also excludes Zeno behavior and guarantees convergence of
the system. Various simulations illustrate the correctness and
performance of different algorithms we propose.

Organization: The rest of the paper is organized as fol-
lows. Section II introduces the preliminaries and Section III
formulates the problem of interest. Section IV first summa-
rizes the related work in [11] and then proposes a novel
strategy based on a new Lyapunov function. The combined
algorithm that based on the combined Lyapunov function is
proposed in Section V. Section VI presents the simulation
results, followed by the conclusions given in Section VII.

Notations: R denotes the set of real numbers. 1N ∈ RN
denotes the column vector with each components being one
and dimension N . ‖·‖ denotes the Euclidean norm for vectors
or induced 2-norm for matrices.

II. PRELIMINARIES

Let G = {V, E ,W} denote a weighted digraph of N agents
with a vertices set V = {1, . . . , N}, directed edges E ⊂ V×V
and a weighted adjacency matrix W ∈ RN×N≥0 . Given an
edge (i, j) ∈ E , we refer to j as an out-neighbor of i and i
as an in-neighbor of j. The sets of out- and in-neighbors of a
given node i are N out

i and N in
i , respectively. The elements

in W satisfies wij > 0 if (i, j) ∈ E and wij = 0 otherwise.
A path from vertex i to j is an ordered sequence of vertices
such that each intermediate pair of vertices is an edge. A
digraph G is strongly connected if there exists a path from
all i ∈ V to all j ∈ V . The out- and in-degree matrices Dout

and Din are diagonal matrices where

douti =
∑

j∈N out
i

wij , dini =
∑
j∈N in

i

wji,

respectively. A digraph is weight-balanced if Dout = Din

and the weighed Laplacian matrix is L = Dout −W .
Young’s inequality [24] states that given x, y ∈ R, for any

ε ∈ R>0,

xy ≤ x2

2ε
+
εy2

2
, (1)

which shall be used in the theoretical analysis of this paper.

For a strongly connected and weight-balanced digraph,
zero is a simple eigenvalue of L, therefore, we order its
eigenvalues as λ1 = 0 < λ2 ≤ . . . λN . The following
property will also be used:

λ2(L)xTLTx ≤ xTLTLx ≤ λN (L)xTLTx. (2)

III. PROBLEM STATEMENT

Consider the multi-agent average consensus problem for
a network of N agents over a weight-balanced and strongly
connected digraph. Let G denote the communication topol-
ogy of this network. Without loss of generality, we say that
an agent i is able to receive information from neighbors in
N out
i and send information to neighbors in N in

i . Assume
that all inter-agent communications are instantaneous and
of infinite precision. Let xi denote the state of agent i ∈
{1, 2, ..., N} and consider the single-integrator dynamics

ẋi(t) = ui(t). (3)

As is well known, the distributed continuous control law

ui(t) = −
∑

j∈N out
i

wij(xi(t)− xj(t)) (4)

drives the states of all agents in the system asymptotically
converge to the average of the initial conditions [25].

However, implementing this protocol requires all agents
to continuously access their neighbors’ state information and
keep updating their own control signals, which is unrealistic
in practice in terms of both communication and control.
Therefore, here we consider the situation where neighbors
of a given agent receive information from it only when
this agent decides to broadcast, and with the information
received, neighbors can update their states accordingly.
Let x̂i(t) denote the last broadcast state of agent i ∈
{1, ..., N} at time t ∈ R≥0 and assume that all agents have
continuous access to their own states, then the distributed
event-triggered control law (4) is modified into [7]

ui(t) = −
∑

j∈N out
i

wij(x̂i(t)− x̂j(t)). (5)

With the above controller (5), each agent i is equipped
with a triggering function fi(·) that takes values in R and
depends on local information only, i.e., on the true state xi(t)
and the broadcast state x̂i(t). An event for agent i is triggered
as soon as the triggering condition

fi(t, xi(t), x̂i(t)) > 0 (6)

is fulfilled. The triggered event drives agent i to broadcast its
state so that the neighbors of agent i can update their states.
Therefore our purpose of this paper is to identify event-based
triggers that work efficiently under the Lyapunov function-
based triggering law with state-dependent thresholds.

IV. DISTRIBUTED TRIGGER DESIGN

A. Related work

The distributed event-triggered coordination problem for
multi-agent systems over weight-balanced digraphs has been
studied in [11]. As we study the same problem and their
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results are essential for us to develop our algorithms, we
summarize their results first and name their algorithm as
Algorithm 1.

The event-triggered law proposed in [11] is Lyapunov
function-based, with candidate Lyapunov function be

V1(x(t)) =
1

2
(x(t)− x̄)T (x(t)− x̄), (7)

where x(t) = (x1(t), ..., xN (t))T , x̄ = 1
N (1TNx(0))1N is the

agreement at the average of the states of all agents.
The derivative of V1(x(t)) is upper bounded by

V̇1(x(t)) ≤ −1

2

N∑
i=1

∑
j∈N out

i

wij

[
(1−ai)(x̂i(t)−x̂j(t))2−

e2i (t)

ai

]
,

(8)
where ai are arbitrary positive constants and ei(t) = x̂i(t)−
xi(t) is the measurement error between agent i’s last broad-
cast state and its current state at time t.

The condition to ensure that the candidate Lyapunov
function V1(x(t)) is monotonically decreasing is to maintain∑

j∈N out
i

wij

[
(1− ai)(x̂i(t)− x̂j(t))2 −

e2i (t)

ai

]
≥ 0,

for all agents i ∈ {1, . . . , N} at all times, which can be
accomplished by ensuring

e2i (t) ≤
ai(1− ai)
douti

∑
j∈N out

i

wij(x̂i(t)− x̂j(t))2. (9)

As the trigger design is optimal when ai = 0.5 for all
agents i ∈ {1, . . . , N} [11], their triggering function is
defined as

fi(ei(t)) = e2i (t)−
σi

4douti

∑
j∈N out

i

wij(x̂i(t)− x̂j(t))2, (10)

where σi ∈ (0, 1) is a design parameter that affects how flex-
ible the trigger is. According to the triggering function, the
event is triggered when fi(ei(t)) > 0 or when fi(ei(t)) = 0
and φi =

∑
j∈N out

i
wij(x̂i(t)− x̂j(t))2 6= 0.

Basically, the trigger above makes sure that V̇1(x(t)) is
always negative as long as the system has not converged,
therefore, Algorithm 1 guarantees all agents to converge to
the average of the initial states, i.e. limt→∞ x(t) = x̄ =
1
N (1TNx(0))1N , interested readers can refer to [11, Theorem
5.3] for more details.

B. Proposed new algorithm
As we know, the Lyapunov function is not unique for the

stability studying of the same system and each individual
function may result a totally different triggering law. There-
fore, we propose a novel triggering strategy based on an
alternative Lyapunov function

V2(x(t)) =
1

2
x(t)TLTx(t), (11)

and name our algorithm as Algorithm 2.
Proposition 4.1: For i ∈ {1, ..., N}, let bi, ci, cj > 0 for

all i, j ∈ {1, . . . , N} and ei(t) = x̂i(t) − xi(t), then the

derivative of V2(x(t)) is upper bounded by

V̇2(x(t)) ≤ −
N∑
i=1

(
δiu

2
i (t)−

(
douti

2bi
+
douti

2ci

)
e2i (t)

)
,

(12)
where

δi , 1− douti bi
2
−

∑
j∈N out

i

wijcj
2

, (13)

and ui(t) is what defined in (5).
The proof to Proposition 4.1 is omitted due to space limit.

Note that the coefficient of e2i is always positive. To ensure
the coefficient of u2i is also positive, we require bi, cj < 1

dout
i

.
From Proposition 4.1, a sufficient condition to guarantee

that the proposed candidate Lyapunov function V2(x(t)) is
monotonically decreasing is to ensure that

δi

( ∑
j∈N out

i

wij(x̂i(t)− x̂j(t))
)2
−
(douti

2bi
+
douti

2ci

)
e2i (t) ≥ 0

for all agents i ∈ {1, ..., N} at all times, meaning that

e2i (t) ≤
2δibici

(bi + ci)douti

( ∑
j∈N out

i

wij(x̂i(t)− x̂j(t))
)2
. (14)

The triggering function for Algorithm 2 is therefore
defined as

fi(ei(t)) = e2i (t)−
2σiδibici

(bi + ci)douti

( ∑
j∈N out

i

wij(x̂i(t)−x̂j(t))
)2
,

(15)
where σi as before is a design parameter that affects how
flexible the trigger is and controls the trade-off between
communication and performance. Setting σi close to 0 is
generally greedy, meaning that the trigger is enabled more
frequently and the network requires more communications,
which makes agent i contribute more to the decrease of
the Lyapunov function V2(x(t)) and therefore the network
converges faster while setting the value of σi close to 1
achieves the opposite results.

Corollary 4.2: For each agent i ∈ {1, ..., N} with the
triggering function defined in (15), if each agent i enforces
the condition fi(ei) ≤ 0 at all times, then

V̇2(x(t)) ≤ −
N∑
i=1

(1− σi)δi(
∑

j∈N out
i

wij(x̂i(t)− x̂j(t)))2.

Similar as [11], to avoid the possibility that agent i may
miss any triggers, we define an event either by

fi(ei(t)) > 0 or (16)

fi(ei(t)) = 0 and φi 6= 0 (17)

where φi = (
∑
j∈N out

i
wij(x̂i(t)− x̂j(t)))2.

We also prescribe the following additional trigger as in
[11] to address the non-Zeno behavior. Let tilast be the
last time at which agent i broadcasts its information to its
neighbors. If at some time t ≥ tilast, agent i receives infor-
mation from a neighbor j ∈ N out

i , then agent i immediately
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Algorithm 1
fi(ei) , e2i − σi

4dout
i

∑
j∈N out

i
wij(x̂i − x̂j)2,

εi <
√

σi

4dout
i wmax

i |N out
i |

Algorithm 2

fi(ei) , e2i − 2σiδibici
(bi+ci)dout

i

(∑
j∈N out

i
wij(x̂i − x̂j)

)2
εi <

√
2σiδibici

(bi+ci)dout
i

TABLE I
DIFFERENCE BETWEEN ALGORITHM 1 AND ALGORITHM 2

broadcasts its state if

t ∈ (tilast, t
i
last + εi), (18)

where

εi <

√
2σiδibici

(bi + ci)douti

(19)

is a design parameter selected to ensure the exclusion of
Zeno. The reasoning is similar as that in [11] .

We summarize the differences between Algorithm 1 pro-
posed in [11] and Algorithm 2 proposed here in Table I.
Once the triggering function and parameters εi are chosen
for each agent, either algorithm can be implemented using
the coordination algorithm provided in Table II.

At all times t agent i ∈ {1, . . . , N} performs:
1: if fi(ei(t)) > 0 or (fi(ei(t)) = 0 and φi 6= 0)

then
2: broadcast state information xi(t) and update

control signal ui(t)
3: end if
4: if new information xj(t) is received from some

neighbor(s) j ∈ N out
i then

5: if agent i has broadcast its state at any time
t′ ∈ [t− εi, t) then

6: broadcast state information xi(t)
7: end if
8: update control signal ui(t)
9: end if

TABLE II
EVENT-TRIGGERED COORDINATION ALGORITHM.

For Algorithm 2, we have the following proposition and
theorem specify its non-zeno behavior and convergence.
Proof is omitted due to space limit.

Proposition 4.3: (No Zeno Behavior) Consider the sys-
tem (3) executing control law (5) with the triggering function
given by (15). For the weight-balanced, strongly connected
digraph with any initial conditions, when executing Table II,
the system will not exhibit Zeno behavior.

Theorem 4.4: (Asymptotic Convergence to Average Con-
sensus). Given the system (3) executing Table II over
a weight-balanced, strongly connected digraph, all agents

asymptotically converge to the average of the initial states,
i.e. limt→∞ x(t) = x̄, where x̄ = 1

N (1TNx(0))1N .

V. A CLASS OF EVENT-TRIGGERED ALGORITHMS

As stated in Section I, given a system and a Lyapunov
function, there are many works studying event-triggered
control to reach the goal of maintaining the stability of
the system while increasing the efficiency of the system.
However, there is very little work currently available that
mathematically quantifies these benefits. Recently, some
works began establishing results along this line [21]–[23],
however, this area is still in its infancy. In particular, there
are not yet established ways to compare the performance
of an event-triggered algorithm with another. Consequently,
many different algorithms can be proposed to ultimately
solve the same problem, while each algorithm is slightly
different and can produce different trajectories. Specifically
in our case, Algorithm 1 and Algorithm 2 solve the same
problem, but what we can say about the two algorithms
is only that they both exclude Zeno behavior and ensure
asymptotical convergence of the network. However, we have
found that depending on the initial condition and network
topology, each algorithm may out-perform the other in terms
of different evaluation metrics. In any case, once these
performance metrics become better researched, there will
likely be more standard ways to mathematically compare
the two different algorithms. Therefore, for now, instead of
designing only one event-triggered algorithm for the system
that only works better in one situation, we aim to design an
entire class of algorithms that can easily be tuned to meet
varying performance needs.

We do this by parameterizing a set of Lyapunov functions
rather than studying only a specific one. To the best of our
knowledge, this paper is then a first study of how to design
an entire class of algorithms that use different Lyapunov
functions to guarantee correctness, with the intention of
being able to use the best one at all times.

More specifically, given any λ ∈ [0, 1], we define a
combined candidate Lyapunov function as

Vλ(x(t)) = λV1(x(t)) + (1− λ)V2(x(t)). (20)

Accordingly, the derivative of Vλ(x(t)) takes the form

V̇λ(x(t)) = λV̇1(x(t)) + (1− λ)V̇2(x(t)). (21)

Following the steps of deriving the triggering functions in
Section IV, the triggering function developed based on (20)
is given by

fi(ei(t)) = e2i (t)− σi
[ λ

4douti

∑
j∈N out

i

wij

(
x̂i(t)− x̂j(t)

)2
+

(1− λ)2δibici
(bi + ci)douti

( ∑
j∈N out

i

wij(x̂i(t)− x̂j(t))
)2]
(22)

We refer to this as the Combined Algorithm that is
parameterized by λ ∈ [0, 1]. Similarly, we set a parameter εi
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such that

εi <

√
λσi

4douti wmax
i |N out

i |
+

2(1− λ)σiδibici
(bi + ci)douti

.

Then, with this triggering function (22) and εi, the Com-
bined Algorithm can also be implemented using Table I.
Note that λ = 0 in the Combined Algorithm recovers
Algorithm 2 and λ = 1 recovers Algorithm 1.

Corollary 5.1: Algorithm 1 and Algorithm 2 both ensure
all agents to asymptotically converge to the average of their
initial states through proving that their Lyapunov functions
converge asymptotically. Therefore, as a linear combination
of V1(x(t)) and V2(x(t)), Vλ(x(t)) also converges exponen-
tially, which means that a network executing the Combined
Algorithm shall converge asymptotically to the average of
its initial state.

VI. SIMULATIONS

We demonstrates the performance of the proposed algo-
rithms through several simulations. In particular, we show
how either Algorithm 1 or Algorithm 2 could be argued
to be ‘better’ given different initial conditions and network
topologies, which has set the basis for our introduction of
the Combined Algorithm to easily go between the two.

In all simulations we consider a system of N = 5
agents with dynamics (3) and control law (5). The triggering
functions for Algorithm 1, Algorithm 2 and Combined
Algorithm are defined in (10), (15) and (22), respectively.
Throughout the simulations, we set bi = ci = 0.5 for all
agents i ∈ {1, . . . , N}. We implement the λ = 0.5 version
of the Combined Algorithm.

We adopt two different networks with different initial
conditions for comparision. The initial state of Network 1
is x1(0) = [1, 1, 0, 2, 0]T and its weighted adjacency matrix
is

W1 =


1/4 1/4 0 1/3 1/6
0 0 1/2 1/6 1/3

1/2 1/3 1/6 0 0
1/4 1/6 0 1/3 1/4
0 1/4 1/3 1/6 1/4

 .
The initial state of Network 2 is x2(0) = [0, 1, 1, 1, 1]T , with
an weighted adjacency matrix W2 whose diagonal elements
are 0 and the rest of the entries are 1/4.

Figure 1 shows the evolutions of the three Lyapunov
functions for the two networks with σi = 0.9 for all
agents, which corroborates our analysis that the proposed
Algorithm 2 and Combined Algorithm ensure convergence
for the resulting systems. In addition, Figure 1(a) shows that
Network 1 converges fastest when executing Algorithm 2
while Figure 1(b) shows that Network 2 converges fastest
when executing Algorithm 1. A more direct comparison is
given in Figure 2, on which we have Tcon denote the time
needed for the two networks to reach a 99% convergence of
the Lyapunov function when executing all algorithms with
respect to varying σ. It is clear that for Algorithm 1 and
Algorithm 2, there exist situations when one outperforms
the other in terms of convergence time.

In addition to convergence time, other important metrics
may include power consumption and total energy expen-
diture. To compare these we use a simulation step size
of h = 0.001 second and we adopt the following power
calculation model in units of dBmW [26] :

P = 10 log 10
N∑
i=1

 ∑
j∈{1,...,N},j 6=i

β100.1Pi→j+α‖xi−xj‖

 ,
where α > 0 and β > 0 depend on the characteristics of
the wireless medium and Pi→j is the power of the signal
transmitted from agent i to agent j in units of dBmW. Similar
as [27], we set α, β and Pi→j to be 1. The total energy
needed can be calculated by multiplying the power in units
of milliwatt (mW) with the number of steps for convergence,
which is Tcon/h, which in decibels (dB) is

E = P + 10 log10

Tcov
h

.

Figures 3(a) and 3(b) compare the average power consump-
tion for each algorithm and Figures 4(a) and 4(b) show
the total communication energy required to reach a 99%
consensus state. These figures show that in Network 1,
Algorithm 2 can always reach consensus using less total
communication energy for varying σi. On the other hand,
in Network 2, Algorithm 1 can complete the same task
using less total communication energy. Therefore, depending
on different network topologies and initial conditions and
depending on what performance metrics are most important
for the application at hand, it may be desirable to implement
different types of event-triggered algorithms. Note that the
Combined Algorithm can easily be tuned to approach either
Algorithm 1 or Algorithm 2 or anything in between to
meet varying system needs by setting values for λ. This also
motivates our future work of adapting λ online to further
improve performance.

0 1 2 3 4 5
0

0.5

1

Algorithm1 (IV.A)
Algorithm2 (IV.B)
Combined Algorithm (V)

V

t
(a) Network 1

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5
Algorithm1 (IV.A)
Algorithm2 (IV.B)
Combined Algorithm (V)

V

t
(b) Network 2

Fig. 1. The evolution of the Lyapunov functions.

VII. CONCLUSION

This paper first proposes a novel distributed event-
triggered communication and control law based on a new
Lyapunov function that achieves consensus and excludes
the possibility of Zeno behavior for multi-agent systems on
weight-balanced digraphs. We then show how the algorithm
design can easily be extended by considering a class of Lya-
punov functions parameterized by λ ∈ [0, 1] such that each λ
defines a new Lyapunov function coupled with a new event-
triggered coordination algorithm which uses that particular
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Fig. 2. Time needed to reach 99% convergence.
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Fig. 3. Average communication power consumption.

function to guarantee correctness. Although any λ ∈ [0, 1]
produces an algorithm that guarantees Zeno-free asymptotic
convergence to the desired state, the trajectories (or perfor-
mance) can be very different. Consequently, this gives us an
easy way to consider many event-triggered algorithms that
all have the minimum requirement of guaranteed asymptotic
stability. Future work will be devoted to studying how
to adapt λ online to take full advantage of this class of
algorithms to meet varying performance needs.
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