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Abstract— In distributed learning and optimization, a network
of multiple computing units coordinates to solve a large-scale
problem. This article focuses on dynamic optimization over a
decentralized network. We develop a communication-efficient
algorithm based on the alternating direction method of multi-
pliers (ADMM) with quantized and censored communications,
termed DQC-ADMM. At each time of the algorithm, the nodes
collaborate to minimize the summation of their time-varying,
local objective functions. Through local iterative computation and
communication, DQC-ADMM is able to track the time-varying
optimal solution. Different from traditional approaches requiring
transmissions of the exact local iterates among the neighbors at
every time, we propose to quantize the transmitted information,
as well as adopt a communication-censoring strategy for the sake
of reducing the communication cost in the optimization process.
To be specific, a node transmits the quantized version of the local
information to its neighbors, if and only if the value sufficiently
deviates from the one previously transmitted. We theoretically
justify that the proposed DQC-ADMM is capable of tracking the
time-varying optimal solution, subject to a bounded error caused
by the quantized and censored communications, as well as the
system dynamics. Through numerical experiments, we evaluate
the tracking performance and communication savings of the
proposed DQC-ADMM.

Index Terms— Alternating direction method of multipliers
(ADMM), communication censoring, decentralized network,
dynamic optimization, quantization.

I. INTRODUCTION

THIS article considers the following decentralized dynamic
consensus optimization problem over a bidirectionally

connected network with n nodes, which is given by

x̃∗(k) = arg min
x̃(k)

n∑
i=1

f ki (x̃(k)) (1)
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where x̃(k) ∈ Rp is the global optimization variable at time k
and f ki : Rp → R is the time-varying local objective function
private to node i at time k. The goal is to keep tracking the
optimal and consensual solution trajectory x̃∗(k) ∈ Rp that
minimizes the summation of the time-varying local objective
functions f ki (x̃(k)). Such a problem arises in wireless sensor
networks [2], control systems [3], power systems [4]–[6], and
economics [7], [8]. It is also popular in distributed computing
systems for large-scale machine learning and in the presence
of streaming data [9], including federated learning for training
deep neural networks [10].

For the case that the local objective functions on the
nodes are time-invariant, (1) is known as the decentral-
ized static consensus optimization problem, which has been
intensively investigated in prior works. Many algorithms,
such as (sub)gradient methods [11], [12], diffusion methods
[13], [14], dual averaging [15], [16], second-order algorithms
[17], [18], and alternating direction method of multipliers
(ADMM) [19]–[22], have been proposed. In these algorithms,
the local objective functions and local data are kept private.
At each iteration, the nodes only exchange their local iterates
(namely, estimates of the optimization variable) with their
neighbors.

When the local objective functions on the nodes are time-
varying, one approach to addressing (1) is to treat it as a
sequence of static problems. Accordingly, these static prob-
lems can be solved one by one with the aforementioned iter-
ative decentralized static consensus optimization algorithms.
This approach, however, is two timescales. The nodes have to
communicate multiple rounds for solving each static problem,
leading to poor communication efficiency. In addition, many
applications, such as real-time tracking, are delay-sensitive
and cannot afford the time of solving all the static prob-
lems exactly. Hence, a natural way is approximately solving
each static problem and then using its output as the initial
value for the static problem at the next time. Intuitively
speaking, if the local objective functions vary sufficiently
slowly over time, achieving satisfactory tracking performance
is still possible. Prior works have combined this idea with
ADMM [23], [24] and the gradient/subgradient methods [25]
to solve (1). The slow variation of the local objective functions
also enables the prediction–correction method, which utilizes
the second-order information to predict the trajectory of the
optimal solution and corrects the prediction by incorporating
descent steps [26], [27]. A decentralized implementation of the
prediction–correction technique is introduced in [28], while
Simonetto and Dall’Anese [29] extended the application to
constrained optimization. It should be emphasized that the
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decentralized dynamic consensus optimization problem can be
solved in a continuous-time manner as well [30]–[32], but
the focus of this article is on the discrete-time regime. One
feature of the aforementioned algorithms is that, at every time,
the accurate local estimates of the nodes must be exchanged
with their neighbors. The resulting communication cost is
large and undesirable for applications whose bottleneck is
communication bandwidth and/or power (for example, drone
networks and wireless sensor networks).

The aim of this article is to solve the decentral-
ized dynamic consensus optimization problem (1) with a
communication-efficient ADMM. We resort to two strate-
gies, quantization and communication censoring, to achieve
favorable communication efficiency. Quantization requires the
nodes in the decentralized network to transmit quantized mes-
sages rather than raw ones when they decide to communicate
with their neighbors. With communication censoring, every
node estimates the states of itself and its neighbors and
utilizes the state variables, rather than the exact local iter-
ates, to perform local computation. The transmission between
neighbors is allowed if and only if the new local iterate is
sufficiently different from the current state variable. These
are two complementary strategies—quantization reduces the
number of bits of every transmission, whereas communication
censoring reduces the total number of transmissions.

Quantization has demonstrated significant performance gain
in reducing communication cost in decentralized static opti-
mization. However, due to the inexact information exchange
in the optimization process, existing quantized algorithms,
including [33]–[35], cannot guarantee exact convergence to
the optimal solution. The work of [36] derives an upper
bound of the convergence error of a quantized decentralized
ADMM. Recently, adaptive quantization approaches have been
proposed in [37]–[40] to improve the convergence accuracy.
However, the diminishing step sizes required in such adaptive
quantization approaches compromise the tracking performance
and are not suitable for tracking the time-varying optimal
solution of (1). The adaptive quantizer proposed in [41]
addresses this issue, but its focus is on limiting the amount of
bits for each communication, not on reducing the total number
of transmissions.

Meanwhile, communication censoring, as a useful tool to
reduce unnecessary transmissions, has also attracted inten-
sive interests in decentralized static consensus optimization
[42]–[46]. Under mild conditions, Liu et al. [45] proved
the linear convergence rate of the communication-censored
ADMM for the decentralized static consensus optimization
problem. The work of [46] combines the communication-
censoring strategy with linearized ADMM to further reduce
the computation cost. Nevertheless, to the best of our knowl-
edge, there is no work adopting the communication-censoring
strategy in the dynamic scenario of our interest. As we
will discuss in Section III, the censoring threshold is a key
parameter that needs to be set differently for the dynamic and
static scenarios, and it is essential to do so with convergence
guarantee in an autonomous network. The communication-
censoring strategy is also related to event-triggered con-
trol of continuous-time systems [31], [47]–[52], which

differs from the discrete-time systems studied in this article.
The recent work of [53] also combines quantization and
communication-censoring strategies but focuses on decentral-
ized stochastic consensus optimization, which is different from
the discussed dynamic case.

Our main contributions are summarized as follows.

1) To solve the decentralized dynamic consensus opti-
mization problem (1), we develop a quantized and
communication-censored ADMM (DQC-ADMM), with
emphasis on reducing the communication cost during the
optimization process. To the best of our knowledge, our
work is the first on designing communication-efficient
strategies for decentralized dynamic consensus opti-
mization with provable convergence. In DQC-ADMM,
information exchange is not necessarily allowed at every
iteration but subject to a communication-censoring strat-
egy. In addition, for necessary transmissions, the nodes
transmit quantized values, not the raw ones, which
further reduces the communication cost.

2) Under mild conditions (to be specified in Section IV),
we theoretically justify the capability of the proposed
DQC-ADMM to track the dynamic optimal solution
with bounded error. This bounded, steady-state error is
affected by the quantization error, the communication-
censoring error, and the variation of the local objective
functions. Our proof demonstrates the fundamental dif-
ference in the choices of the censoring threshold for
the dynamic and static scenarios, in order to guaran-
tee convergence in an autonomous network. Extensive
numerical experiments are conducted, illustrating the
tradeoff between the tracking performance and the com-
munication efficiency.

The rest of this article is organized as follows. We first
review the traditional ADMM to solve the decentralized
dynamic consensus optimization problem in Section II. Then,
we introduce the quantization and communication-censoring
strategies to improve the communication efficiency of ADMM
and propose DQC-ADMM in Section III. Next, we assess
the performance of DQC-ADMM by theoretical analysis and
numerical experiments in Sections IV and V, respectively.
Section VI finally concludes this article.

Compared to the conference version [1], this article has
two novel features. First, we quantize the differences of the
state variables, rather than the iterates as in [1]. Conse-
quently, the range of the transmitted messages can now be
estimated, which significantly facilitates the implementation
of the quantizer (see Lemma 4). New theoretical analysis on
the tracking behavior is provided accordingly. Second, in the
numerical experiments, we investigate how the variations
of local objective functions influence the tracking accuracy
(see Section V-C). We also demonstrate the performance of
DQC-ADMM in handling streaming data (see Section V-D).
Notations: In this article, we use lowercases to denote

scalars and vectors and uppercases to denote matrices unless
specifically stated. ‖·‖ represents the Euclidean norm. For a
vector v, ‖v‖2 represents its l2 norm, and for a matrix G, ‖G‖F

represents its Frobenius norm. When matrix G is semidefinite,
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the G-norm of vector v is ‖v‖G = (vT Gv)1/2. The maximum
singular value and the minimum nonzero singular value of the
matrix G are σmax(G) and σ̃min(G), respectively. For any two
matrices X and Y of the same dimension, 〈X,Y 〉 represents
their inner product.

II. PROBLEM STATEMENT

In this section, we describe the network and communication
models. We also briefly review the classical ADMM, as a
benchmark algorithm, for solving (1).

A. Network and Communication Models

1) Network Model: Suppose that throughout this article,
the underlying communication graph with n nodes and r edges
(2r directed arcs) is undirected and connected. Define the
underlying communication graph as G = {V,A}, where V
with cardinality |V | = n and A with cardinality |A| = 2r
are sets of nodes and directed arcs, respectively. Two nodes
i and j are neighbors if (i, j) ∈ A, ∀i, j ∈ V , and the
neighborhood of node i is denoted as Ni with cardinality
|Ni | = dii . The symmetric adjacency matrix associated with
the communication graph is denoted as W ∈ Rn×n, whose
(i, j)th entry is 1 when i and j are neighbors or 0 otherwise.
The communication graph has a degree matrix of D ∈ Rn×n

that is diagonal, and the i th diagonal element is exactly dii ,
the degree of node i . Let M+ and M− ∈ Rn×2r be the
unsigned incidence matrix and the signed incidence matrix
of the communication graph, respectively. For an arc l from
i to j , the (i, l)th and ( j, l)th entries of M+ are both 1,
whereas the (i, l)th entry of M− is 1 and the ( j, l)th entry
of M− is −1. According to [54], we have the following
equalities:

D + W = 1

2
M+MT

+

D − W = 1

2
M−MT

− .

2) Communication Model: Our focus in this article is on
the synchronous algorithm, whose iterative process involves
three distinct stages: communication, observation, and com-
putation. In the communication stage, the nodes broadcast
to and also receive from their neighbors according to a
communication-censoring strategy, which shall be explained
in Section III. It should be noted that one can also consider
the unicast mode, in which every node communicates with
its neighbors one by one. After communicating with their
neighbors, each node observes its own time-varying local
objective function. In the computation stage, the nodes esti-
mate the state variables of itself and its neighbors based on
the messages it has received. The state variables are different
from the exact local iterates since the messages are quantized
and possibly censored. The local update is then carried out
by using the observed functions and the state variables. The
state variables are also used in the next communication stage
since the transmitted messages are the quantized differences
between the local iterates and the state variables.

B. Decentralized Dynamic ADMM

Here, we introduce the classical ADMM developed in [23]
to solve the decentralized dynamic consensus optimization.
To solve (1) with ADMM in a decentralized manner, we define
a local copy xi ∈ Rp for the optimization variable x̃ at node i
and an auxiliary variable zi j associated with the arc (i, j) ∈ A.
When the network is connected, (1) is equivalent to

min
{xi },{zi j}

n∑
i=1

f ki (xi)

s.t. xi = zi j , x j = zi j ∀(i, j) ∈ A. (2)

For notational clarity, we collect the local copies xi into
a matrix X = [xT1 ; · · · ; xTn ] ∈ Rn×p and also collect the
auxiliary variables zi j into a matrix Z = [· · · ; zTi j; · · · ] ∈
R2r×p in the order of arcs. Accordingly, we can rewrite (2) in
the matrix form

min
X,Z

f k(X) :=
n∑

i=1

f ki (xi)

s.t.
1

2

(
MT+ + MT−
MT+ − MT−

)
X =

(
I2r
I2r

)
Z (3)

where I2r ∈ R2r×2r is an identity matrix. The unsigned
and signed incidence matrices M+ and M− are defined in
Section II-A. In the following, we define A = 1/2[MT+ +
MT−; MT+ − MT−] and B = [I2r ; I2r ] to write the constraint
in (3) as AX = BZ .

The augmented Lagrangian of (3) is

Lk(X, Z ,�) = f k(X) + 〈�, AX − BZ〉 + c

2
‖AX − BZ‖2

where c > 0 is the penalty parameter. The Lagrange multiplier
� ∈ R4r×p := [�; �] consists of two matrices �,� ∈ R2r×p

associated with the constraints 1/2(MT+ + MT−)X = Z and
1/2(MT+ −MT−)X = Z , respectively. At time k, after observing
the function f k , the ADMM algorithm updates the primal and
dual variables as

X(k) = arg min
X

Lk(X, Z(k − 1),�(k − 1))

Z(k) = arg min
Z

Lk(X(k), Z ,�(k − 1))

�(k) = �(k − 1) + c(AX(k) + BZ(k)).

Note that given f k , the updates are only carried out for one
round in the dynamic setting.

It is proved in [23] that with initializations �(0) = −�(0)
and Z(0) = (1/2)MT+X (0), the auxiliary variable Z can be
eliminated and the Lagrange multiplier � can be replaced by
a lower dimensional variable � := [λT

1 ; · · · ; λT
n ] = M−� ∈

Rn×p. The algorithm is given by

X(k) = arg min
X

f k(X) + 〈X, cDX〉
+ 〈X,�(k − 1) − c(D + W )X(k − 1)〉 (4)

�(k) = �(k − 1) + c(D − W )X(k). (5)
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Specifically, for every node i , it only needs to update a primal
variable xi and a dual variable λi ∈ Rp as

xi(k) = arg min
xi

f ki (xi) + cdii‖xi‖2
2

+ 〈xi , λi (k − 1) − c
∑
j∈Ni

(
xi(k − 1) + x j(k − 1)

)〉 (6)

λi (k) = λi (k − 1) + c
∑
j∈Ni

(
xi(k) − x j(k)

)
. (7)

In summary, the ADMM algorithm for decentralized
dynamic consensus optimization works as follows. At every
time k, node i first observes its time-varying local objective
function f ki and then computes the primal variable xi(k)
by (6). Next, node i sends the updated primal variable xi(k)
to and receives the updated primal variable x j(k) from its
neighbors. After receiving x j(k) from all neighbors j ∈ Ni ,
node i finally computes the dual variable λi (k) by (7). Note
that during the optimization process, the nodes in the network
have to communicate with all neighbors every time. This is
unfavorable given limited communication bandwidth and/or
power. In Section III, we will improve the communication effi-
ciency by designing a quantized and communication-censored
ADMM algorithm.

III. ALGORITHM DEVELOPMENT

In this section, we introduce two strategies: quantization and
communication censoring, to make the ADMM algorithms (6)
and (7) more communication-efficient. The quantization strat-
egy limits the number of bits in every transmission, whereas
the communication-censoring strategy reduces the total num-
ber of transmissions. The resulting algorithm is called
decentralized dynamic quantized and communication-censored
ADMM, abbreviated as DQC-ADMM and described as
follows.
Quantization. In the quantization algorithms, messages are

quantized before being transmitted. Here, we implement an
elementwise rounding quantizer Q(·) defined as follows. Con-
sider a scalar y within the range of [l, u) that can be evenly
divided into q = 2b intervals of equal length � = (u − l)/q
and define τt ’s as the midpoints of the intervals with τt =
l + (t + 1/2)�, t = 0, 1, . . . , q − 1. Then, the output of the
quantizer is given by

Q(y) = τt , if τt − �

2
≤ y < τt + �

2
. (8)

In practice, it is not necessary to transmit Q(y) = τt
since transmitting the integer t is more efficient. Because
the number of intervals is q = 2b, only b bits need to be
transmitted.

With the rounding quantizer, one natural way to reduce the
communication cost in ADMM is to transmit the quantized
local iterates Q(xi(k)), rather than the raw vectors xi(k). This
effective quantization strategy has already been implemented
in the static case [36]. However, different from the static case
in which the upper and lower bounds of the iterates could
be roughly estimated, the dynamic case is more complicated.
The optimal solution evolves over time, not mentioning the
iterates. Therefore, it is difficult to estimate the upper and

lower bounds u and l. To adapt to the large range of iterates
and guarantee the quantization resolution, more bits are needed
in the dynamic case.

To narrow the quantization range, we adopt a
difference-based quantization scheme. For each node i ,
state variables x̂i and x̂ j , initialized as x̂i(0) = Q(xi(0))
and x̂ j(0) = Q(x j(0)), are introduced to estimate iterates of
itself and its neighbors j . At time k, after finishing the local
update, node i calculates the difference between the exact
local iterate xi(k) and the state variable x̂i(k − 1) as

hi(k) = xi(k) − x̂i(k − 1). (9)

If the transmission is not censored, node i transmits the quan-
tized difference Q(hi(k)) using only pb bits to its neighbors
and updates its state variable as x̂i (k) = x̂i(k − 1)+Q(hi(k)).
Similarly, upon receiving the quantized difference Q(h j (k))
from neighbors j , node i also updates the state variables of
its neighbors as x̂ j(k) = x̂ j(k−1)+Q(h j (k)). The elementwise
rounding quantizer requires the upper and the lower bounds of
the difference, and Section IV provides an approach to roughly
estimating the bounds.

Note that decentralized static optimization algorithms with
quantization strategies have already been studied in prior
works [33]–[36]. However, most of these works can only
converge to a neighborhood of the optimal solution due to
the quantization errors. To further reduce the quantization
errors, adaptive approaches have been proposed recently in
[37]–[40]. Nevertheless, the diminishing step sizes required
in such adaptive approaches compromise the tracking per-
formance and make these methods not suitable for tracking
the dynamic optimal solution of (1). As we will show in
the theoretical analysis in Section IV, for the decentralized
dynamic optimization problem of our interest, a constant
tracking error caused by quantization is often acceptable.
Also, note that for simplicity, here we only consider using
the above-mentioned rounding quantizer. Other quantization
approaches [55] can be applied to the proposed DQC-ADMM
as well.
1) Communication Censoring: To further improve the

communication efficiency, DQC-ADMM censors unnecessary
transmissions during the optimization process. The rationale is
that if the calculated local iterate is not sufficiently different
from the current state variable, then this local iterate makes
little impact on state updating, and hence, its transmission
is not allowed. In this way, the overall communication cost
can be reduced. Specifically, only if the difference ‖hi (k)‖2

exceeds a nonnegative threshold α, then node i transmits
Q(hi(k)) to its neighbors. Otherwise, the transmission is
censored, and the state variable of node i remains the same,
as x̂i(k) = x̂i(k − 1). Accordingly, the primal update in (6)
and the dual update in (7) can be modified to

xi(k) = arg min
xi

f ki (xi) + 〈xi , λi (k − 1)

− c
∑
j∈Ni

(
x̂i(k − 1) + x̂ j(k − 1)

)〉 + cdii‖xi‖2
2 (10)

λi (k) = λi(k − 1) + c
∑
j∈Ni

(
x̂i(k) − x̂ j(k)

)
. (11)
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Algorithm 1 DQC-ADMM
Require: Predefine the threshold α. Each node i initializes

variables xi(0) = 0, λi (0) = 0, x̂i(0) = 0, and x̂ j(0) =
0 for all j ∈ Ni . Then, it observes the initialized local
objective function f 0

i .
1: for iterations k = 1, 2, . . . do
2: Observe local objective function f ki .
3: Calculate local primal variable xi(k) via

xi(k) = arg min
xi

f ki (xi) + 〈xi , λi (k − 1)

− c
∑
j∈Ni

(
x̂i(k − 1) + x̂ j(k − 1)

)〉 + cdii‖xi‖2
2.

4: Calculate the difference hi (k) = xi(k) − x̂i(k − 1), and
quantize it as Q(hi (k)).

5: If ‖hi (k)‖2 ≥ α, set x̂i(k) = x̂i(k − 1) + Q(hi(k))
and transmit Q(hi(k)) to neighbors. Else, set x̂i(k) =
x̂i(k − 1) and do not transmit.

6: If receiving Q(h j (k)) from neighboring node j , update
x̂ j(k) = x̂ j(k − 1) + Q(h j (k)). Else, set x̂ j(k) =
x̂ j(k − 1).

7: Calculate local dual variable λi (k) via

λi (k) = λi (k − 1) + c
∑
j∈Ni

(
x̂i(k) − x̂ j(k)

)
.

8: end for

Communication censoring has been proved as a powerful
strategy to improve communication efficiency in decentralized
static consensus optimization [42]–[45] and continuous-time
control [31], [47]–[52]. The proposed DQC-ADMM is the
first algorithm that applies the communication-censoring
strategy in decentralized dynamic consensus optimization.
In this dynamic setting, the communication-censoring strategy
requires to use a constant threshold α, instead of a diminishing
one in the static setting. Otherwise, since xi (k) is tracking the
dynamic optimal solution x̃∗(k), the difference ‖hi (k)‖2 could
be eventually larger than the diminishing threshold such that
no communication is censored. We shall analyze the impact
of the threshold α in Section IV.

The proposed DQC-ADMM is presented in Algorithm 1.
After observing the time-varying local objective function f ki
at time k, node i computes the primal variable xi(k) via (10).
Then, hi (k), the difference between the exact local iterate
xi(k) and the current state variable x̂i(k − 1) is calculated
by (9). When ‖hi (k)‖2 ≥ α, where α is a predefined
threshold, the difference hi (k) is quantized and Q(hi (k)) is
transmitted to neighbors, and the state variable of node i
becomes x̂i(k) = x̂i(k − 1) + Q(hi (k)). Otherwise, when
‖hi (k)‖2 < α, no transmission occurs and the state variable
of node i remains the same as x̂i(k) = x̂i(k − 1). Similarly,
if node i receives Q(h j (k)) from any neighbor j , it sets
x̂ j(k) = x̂ j(k − 1) +Q(h j(k)). Otherwise, x̂ j(k) = x̂ j(k − 1).
Finally, the dual variable λi (k) is updated on node i by (11).

For the ease of presentation, in Algorithm 1, we assume that
every node maintains a state variable for each of its neighbors.
To reduce the storage cost, in practice, every node i can only

maintain the summation of the neighboring state variables,
denoted by �i . After receiving Q(h j (k)) from all neighbors
j , node i calculates �i (k) = �i (k−1)+∑

j∈Ni
Q(h j(k)) and

uses this value in the updates of (10) and (11).

IV. THEORETICAL ANALYSIS

This section provides a theoretical analysis on the perfor-
mance of DQC-ADMM for the dynamic decentralized consen-
sus optimization problem (1). The analysis serves to justify
the capability of DQC-ADMM in tracking the time-varying
optimal solution of (1). The tracking error is bounded and
affected by the network topology, the variation of local
objective functions, the quantization resolution, as well as the
censoring threshold.

Before starting the analysis, we make the following com-
monly used assumptions.
Assumption 1: The local objective functions f ki are sup-

posed to be strongly convex with constants m f ki
> 0. Given

any x̃, ỹ ∈ Rp, 〈∇ f ki (x̃) − ∇ f ki (ỹ), x̃ − ỹ〉 ≥ m f ki
‖x̃ − ỹ‖2

2
for any i and k. The strong convexity constants are lower
bounded by m f := inf i,k m f ki

. The gradients of the local cost
functions are Lipschitz continuous with constants M f ki

> 0.
Given any x̃, ỹ ∈ Rp, ‖∇ f ki (x̃) − ∇ f ki (ỹ)‖2 ≤ M f ki

‖x̃ − ỹ‖2

for any i and k. The Lipschitz constants are upper bounded
by M f := supi,k M f ki

.
With Assumption 1, the aggregated objective functions f k

are strongly convex with constant m f and have Lipschitz
continuous gradients with constant M f . With the assump-
tion of strong convexity, we know that there is a unique
optimal solution x̃∗(k) at every time k. Define X∗(k) :=
[· · · ; (x̃∗(k))T ; · · · ] ∈ Rn×p as the stack of n copies of
(x̃∗(k))T , in a row-by-row manner. To guarantee bounded
tracking error, we further assume that the variation of the
decentralized dynamic consensus optimization problem (1) is
sufficiently slow, as in Assumption 2.
Assumption 2: The time-varying optimal solution X∗(k)

and the corresponding gradients ∇ f k(X∗(k)) have bounded
variations, that is, ‖X∗(k) − X∗(k − 1)‖F ≤ ε1 and
‖∇ f k(X∗(k))−∇ f k−1(X∗(k−1))‖F ≤ ε2 with finite positive
constants ε1 and ε2 for all times k.

Next, we rewrite the DQC-ADMM updates (10) and (11)
so as to facilitate the convergence analysis. Collecting all the
local copies X (k) = [x1(k)T ; · · · ; xn(k)T ] ∈ Rn×p and the
state variables X̂ (k) = [x̂1(k)T ; · · · ; x̂n(k)T ] ∈ Rn×p, and
letting

E(k) := X̂(k) − X(k). (12)

We show that the introduced error ‖E(k)‖F in DQC-ADMM
is upper bounded by the quantization error and the predefined
censoring threshold.
Lemma 1: For the updates (10) and (11), if the quantized

difference Q(hi(k)) is allowed to be transmitted only when
‖(hi (k))‖2 ≥ α, then for any time k > 0, the overall error
introduced in the DQC-ADMM is upper bounded by

‖E(k)‖F ≤ ς := max

{√
nα,

√
np

�

2

}
(13)

where � is the length of the quantization interval.
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Proof: Define �x̂i(k) = x̂i(k) − x̂i(k − 1), and here,
�x̂i(k) = Q(hi (k)) if transmission is allowed and �x̂i(k) = 0
if no transmission occurs. The introduced error for each node
i is

ei (k) = x̂i(k) − xi(k)

= �x̂i(k) + x̂i(k − 1) − xi(k)

= �x̂i(k) − hi (k).

According to the censoring rule, if ‖hi (k)‖2 ≥ α, we have
�x̂i(k) = Q(hi (k)), meaning that ‖ei (k)‖2 = ‖Q(hi (k)) −
hi (k)‖2 ≤ √

p�/2. Otherwise, if ‖hi (k)‖2 < α, we have
�x̂i(k) = 0, meaning that ‖ei (k)‖2 = ‖hi (k)‖2 ≤ α. In both
cases, ‖ei(k)‖2 = ‖x̂i (k) − xi(k)‖2 < max{α,

√
p�/2}.

Consequently, ‖E(k)‖F ≤ max{√nα,
√
np�/2}.

Then, we rewrite the updates (10) and (11) in the matrix
form

X(k) = arg min
X

f k(X) + 〈X, cDX〉
+ 〈X,�(k − 1) − c(D + W )X̂ (k − 1)〉 (14)

�(k) = �(k − 1) + c(D − W )X̂(k). (15)

Using the equalities D + W = M+MT+/2 and D − W =
M−MT−/2 as well as the definition of E(k) in (12), (14), and
(15) are equivalent to

∇ f k(X(k))+ c

2

(
M+MT

+ +M−MT
−
)
X(k)+�(k − 1)

− c

2
M+MT

+X(k − 1) − c

2
M+MT

+E(k − 1) = 0 (16)

�(k)−�(k − 1)− c

2
M−MT

−X(k)− c

2
M−MT

−E(k) = 0. (17)

Observe from (17) that �(k) stays in the column space
of M−MT− if �(0) is also initialized therein. Therefore, it is
convenient to introduce variables �(k) ∈ R2r×p, which stay
in the column space of MT− , and let �(k) = M−�(k) for any
k ≥ 0. Thus, (17) is equivalent to

�(k) − �(k − 1) − c

2
MT

−X(k) − c

2
MT

−E(k) = 0. (18)

Using (18) and �(k − 1) = M−�(k − 1) to eliminate
�(k − 1), as well as introducing Z := (1/2)MT+X ∈ R2r×p,
we rewrite (16) as

∇ f k(X(k)) + M−�(k) + cM+(Z(k) − Z(k − 1))

− c

2
M−MT

−E(k) − c

2
M+MT

+E(k − 1) = 0. (19)

The following analysis is based on the equivalent form of the
quantized and communication-censored algorithms given by
(18) and (19).

It has been proved in [23] that the Karush–Kuhn–Tucker
(KKT) conditions of (3), which is equivalent to (1), are

∇ f k
(
X∗(k)

) + M−�∗(k) = 0 (20)

MT
−X∗(k) = 0 (21)

1

2
MT

+X∗(k) = Z∗(k) (22)

where (X∗(k), Z∗(k),�∗(k)) is the optimal primal–dual triplet
at time k. Note that multiple optimal dual variables �∗(k)
exist, but we are only interested in the one that lies in the

column space of MT− , whose existence as well as uniqueness
have been proved in [23]. We will prove that the triplet
(X (k), Z(k),�(k)) generated by (18) and (19) always stays
within a neighborhood of (X∗(k), Z∗(k),�∗(k)). To do so,
we define matrices

U :=
(
Z
�

)
and G :=

(
cI2rn, 02rn

02rn,
1
c I2rn

)

and analyze the dynamics of the Lyapunov function∥∥U(k) −U∗(k)
∥∥
G

=
√

1

c
‖�(k) − �∗(k)‖2

F + c‖Z(k) − Z∗(k)‖2
F . (23)

The following lemma characterizes the connection between
‖U(k − 1) −U∗(k)‖G and ‖U(k) −U∗(k)‖G .
Lemma 2: Suppose that Assumption 1 is satisfied and the

dual variable �(0) is initialized in the column space of
M−MT− . For the updates (10) and (11), if we set the penalty
parameter as

c < min

{
(µ − 1)σ̃ 2

min(M−)

µη3σ 2
max(M+)

×
(
η1

4
+ η2σ

2
max(M+)

8

)−1
(
m f −

η3µM2
f

σ̃ 2
min(M−)

)}
(24)

then it follows that:∥∥U(k − 1) −U ∗(k)
∥∥
G

+ φς ≥ √
1 + δ

∥∥U(k) −U∗(k)
∥∥
G
.

(25)

Here

φ :=
√(

η3

2
+ δ

c

)
c2

σ̃ 2
min(M−)

(
σ 4

max(M+)+σ 4
max(M−)

)+s (26)

s := cσ 4
max(M−)

4η1
+ cσ 2

max(M+)

2η2
+ σ 2

max(M−)

2η3
(27)

ς := max

{√
nα,

√
np

�

2

}
(28)

δ ≤ min

{
(µ − 1)σ̃ 2

min(M−)

2µσ 2
max(M+)

− cη3

2

×
(
cσ 2

max(M+)

4
+ 2µM2

f

cσ̃ 2
min(M−)

)−1

×
(
m f − cη1

4
− cη2σ

2
max(M+)

8
− η3µM2

f

σ̃ 2
min(M−)

)}
.

(29)

η1 > 0, η2 > 0, η3 > 0, and µ > 1 are arbitrary constants,
m f is the lower bound of the strong convexity constants
for the local objective functions, M f is the upper bound of
the Lipschitz constants for the local gradients, σmax(M+) is
the maximum singular value of M+ (the unsigned incidence
matrix), and σ̃min(M−) is the minimum nonzero singular value
of M− (the signed incidence matrix).

Proof: See Appendix A.
The following lemma further characterizes the connection

between ‖U(k − 1)−U ∗(k)‖G and ‖U(k − 1)−U∗(k− 1)‖G .

Authorized licensed use limited to: George Mason University. Downloaded on February 18,2021 at 01:38:03 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: DQC-ADMM: DECENTRALIZED DYNAMIC ADMM WITH QUANTIZED AND CENSORED COMMUNICATIONS 7

Note that in the static case, the gap between these two terms
vanishes.
Lemma 3: Suppose that Assumption 2 is satisfied and the

dual variable �(0) is initialized in the column space of
M−MT− . For the updates (10) and (11), it follows that:∥∥U(k − 1)−U∗(k)

∥∥
G

≤∥∥U(k − 1) −U∗(k − 1)
∥∥
G
+g (30)

where

g :=
√
cε1

2
σmax(M+) + ε2√

cσ̃min(M−)
. (31)

Here, ε1 and ε2 are the constants defined in Assumption 2.
Proof: See Appendix B.

Combining Lemmas 2 and 3, we are able to attain an upper
bound for the asymptotic tracking error. We summarize the
result in the following main theorem.
Theorem 1: Suppose that Assumptions 1 and 2 are satisfied

and the dual variable �(0) is initialized in the column space
of M−MT− . For the DQC-ADMM updates (10) and (11), let
the penalty parameter c satisfy

c ∈
(

0, min

{
4m f

η1
,
(µ − 1)σ̃ 2

min(M−)

µη3σ 2
max(M+)

(
η1

4
+ η2σ

2
max(M+)

8

)−1

×
(
m f − η3µM2

f

σ̃ 2
min(M−)

)})
(32)

then we have

lim sup
k→+∞

∥∥X(k) − X∗(k)
∥∥
F

≤
(√

m f − cη1

4

)−1

×
((

1+max

{√
η2

2
,

√
cη3

2

})
g + φς

1 − (√
1 + δ

)−1 +g+√
sς

)

(33)

where φ, s, ς , and δ are defined in (26)–(29), respectively,
while η1 > 0, η2 > 0, η3 > 0, and µ > 1 are arbitrary
constants.

Proof: See Appendix C.
Note that to guarantee c > 0 and δ > 0 in Theorem 1,

we can choose µ to be slightly larger than 1, while η1, η2,
and η3 are to be positive constants of sufficiently small values.
Furthermore, the dual variable �(0) must be initialized in the
column space of M−MT− . This is easy to satisfy since one can
simply let �(0) = 0.
Remark 1: Theorem 1 shows that the asymptotic tracking

error is influenced by the network topology (characterized
by σmax(M+), the maximum singular value of the unsigned
incidence matrix, and σ̃min(M−), the minimum nonzero sin-
gular value of the signed incidence matrix), slopes of the
objective functions (characterized by the Lipschitz continuous
gradient constant M f and the strong convexity constant m f ),
the variation of the objective functions (characterized by ε1 and
ε2), as well as the quantization and communication-censoring
strategies implemented to improve the communication effi-
ciency (characterized by α and �, respectively).

In particular, there is an approximately linear dependence
of the asymptotic tracking error on g given by (31), which
combines ε1 (the variation of the optimal solutions) and ε2

(the variation of the optimal gradients). This is reasonable—
when the objective functions vary fast, tracking the opti-
mal solution is difficult. There is also an approximately
linear dependence of the asymptotic tracking error on ς :=
max{√nα,

√
np�/2} given by (28), which is determined

by the communication-censoring error α and the quantiza-
tion error �. Note that when α <

√
p�/2, the quan-

tization error dominates. Otherwise, when α >
√
p�/2,

the communication-censoring error is more important. In the
analysis, the constants η1, η2, and η3 are introduced to split
the error ‖E(k)‖F from the other terms, where E(k) :=
X̂(k) − X (k) is given in (12) and ‖E(k)‖F ≤ ς , ∀k. When
neither communication censoring nor quantization is used, η1,
η2, and η3 disappear and ς equals 0 such that the upper bound
of the asymptotic tracking error degenerates to that of the
traditional decentralized dynamic ADMM proposed in [23].

Note that the elementwise rounding quantizer requires nodes
to estimate the upper and lower bounds. The following lemma
provides a guideline for roughly estimating the range of the
transmitted messages during the optimization process.
Lemma 4: Suppose that Assumptions 1 and 2 are satisfied

and the dual variable �(0) is initialized in the column space
of M−MT− . For the updates (10) and (11), set the penalty
parameter the same as (32) and allow node i to transmit
the quantized message only when ‖hi (k)‖2 ≥ α. Then, for
any time k > 0, the magnitude of the collected difference,
H (k) := [h1(k)T ; · · · ; hn(k)T ], has an upper bound given by

‖H (k)‖F ≤ 2

(√
m f − cη1

4

)−1

×
((

max

{√
η2

2
,

√
cη3

2

}
+ 1

)

×
(∥∥U(0) −U∗(0)

∥∥
G

+ g + φς

1 − √
1 + δ

−1

)

+ g + √
sς

)
+ ε1 + ς (34)

where φ, s, ς , and δ are defined in (26)–(29), respectively,
while η1 > 0, η2 > 0, and η3 > 0 are arbitrary constants,
‖U(k) − U∗(k)‖G is defined in (23), and ‖U(0) − U∗(0)‖G
is determined by the initial values of the primal and dual
variables.

Proof: See Appendix D.
The derived range depends on U∗(0) that can be solved

from the KKT conditions (20)–(22). This step needs global
coordination of the entire network and can be done offline.
An alternative is to construct a “virtual” optimization problem,
which is easy to solve but satisfies Assumptions 1 and 2,
at time k = 0. For example, if the objective functions
f 0
i (x̃(0)) = (‖x̃(0)‖2

2)/2 for all nodes i , then U ∗(0) = 0.

V. NUMERICAL RESULTS

This section demonstrates the performance of the proposed
DQC-ADMM in tracking the optimal solution trajectory with
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Fig. 1. Trajectory of circle.

Fig. 2. Trajectory of sinusoid.

extensive numerical experiments. A bidirectional network with
n = 50 nodes and r = 123 arcs is randomly generated. Unless
specifically pointed out, node i has the local objective function
f ki given by

f ki (x̃(k)) = 1

2

∥∥Ak
i x̃(k) − bki

∥∥2

2 (35)

where Ak
i ∈ Rp×p and bki ∈ Rp vary with time and

belong to node i . The elements in Ak
i are generated from

the Gaussian distribution N (0, 1). Given x̌(k), the true value
of interest at time k, bki = Ak

i x̌(k) + ζ k
i with ζ k

i following
the Gaussian distribution N (0, 0.001). To clearly show the
tracking trajectories in the figures, we choose the number of
dimensions as p = 2. The resulting decentralized dynamic
least-squares problem is

x̃∗(k) = arg min
x̃(k)

n∑
i=1

1

2

∥∥Ak
i x̃(k) − bki

∥∥2

2.

A. Effect of Quantization

Here, we exclude the communication-censoring strategy
(namely, setting α = 0) and study how quantization affects
the performance of DQC-ADMM. Two different true trajec-
tories, the circle and the sinusoid, as, respectively, shown in
Figs. 1 and 2, are taken into consideration. Both trajectories
have two dimensions and slowly evolve within 100 itera-
tions. We divide each dimension into q = 256 quantization
intervals, and hence, the corresponding number of bits is

Fig. 3. Error of tracking the circle.

Fig. 4. Error of tracking the sinusoid.

b = 8. The estimated range of the circle trajectory is
[−2, 2] for the first dimension and [−1, 3] for the second
dimension, whereas the estimated range of the sinusoid tra-
jectory is [−0.5, 1.5] for the first dimension and [−2, 2]
for the second dimension. DQC-ADMM is compared with
Dyn-ADMM, the decentralized dynamic ADMM algorithm
without quantization proposed in [23]. In the two algorithms,
the penalty parameter is set as c = 0.001. Figs. 1 and 2
show the capability of both DQC-ADMM and Dyn-ADMM
in tracking the true trajectories, subject to slight biases. We
define the tracking error as ‖X (k) − X∗(k)‖/‖X (0) − X∗(0)‖
and quantify how it evolves with the optimization process
in Figs. 3 and 4. For both trajectories, the tracking errors of
DQC-ADMM and Dyn-ADMM are similar, indicating that the
quantized transmissions do not obviously degrade the tracking
performance. Next, we focus on the circle trajectory to study
how different quantization resolutions affect the performance
of DQC-ADMM. Divide each dimension into q = 16, q =
64, and q = 256 quantization intervals, respectively. The
numbers of bits are hence b = 4, b = 6, and b = 8, and
each node transmits 8, 12, and 16 bits at every time. The
corresponding tracking performance and communication cost
of DQC-ADMM is shown in Fig. 5. Tracking errors increase
when the numbers of bits decrease. The linear correlation
between the communication cost and the transmitted bits
encourages a small number of transmitted bits, but the large
tracking error led by the low-resolution quantization, such
as b = 4, suggests the necessity in considering the tradeoff
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Fig. 5. Tracking error and communication cost of DQC-ADMM with
different quantization resolutions.

between the tracking performance and communication cost.
Note that when the number of bits is changed from b = 8
to b = 6, the tracking performance is almost the same,
indicating the unnecessary of a high-resolution quantization.
This result coincides with the analysis in Section IV that the
tracking error is affected by the maximum of quantization and
communication-censoring errors, as well as the variation of
the local objective functions. When the quantization resolution
is sufficiently high, the variation of the local objective func-
tions dominates. In this case, choosing a proper quantization
resolution helps attain reasonable tracking accuracy with low
communication cost.

B. Effect of Communication Censoring

To evaluate how the censoring threshold α affects the
tracking performance, we compare DQC-ADMM with differ-
ent censoring thresholds. In the circle trajectory, we divide
each dimension into q = 64 (b = 6) quantization intervals
and set the communication-censoring thresholds as α = 0,
α = 0.044, and α = 0.1. Fig. 6 shows the tradeoff between
tracking error and communication cost of DQC-ADMM
with different communication-censoring thresholds. When the
communication-censoring threshold is changed from α = 0 to
α = 0.044, the communication cost is reduced, but the track-
ing errors are almost the same. This result corroborates the
analysis in Section IV that the quantization error dominates the
communication-censoring error when α <

√
p�/2 � 0.044.

If we keep increasing the communication-censoring threshold
to α = 0.1, the slight degradation of the tracking performance
can be compensated by the reduced communication cost.

C. Effect of Variation

Another factor influencing the tracking accuracy is the
variation of local objective functions. To investigate how the
variation affects the performance of DQC-ADMM, we still
consider the circle trajectory, but let the true values evolve
at different speeds. Within 100 iterations, the true values
traverse 100%, 50%, and 20% of the circle. In DQC-ADMM,
we divide each dimension into q = 64 (b = 6) quantization
intervals and let the communication-censoring threshold α =
0.044. As shown in Fig. 7, the tracking error is the largest

Fig. 6. Tracking error and communication cost of DQC-ADMM with
different censoring thresholds.

Fig. 7. Tracking error of DQC-ADMM with different time-varying objective
functions.

when tracking the 100% circle (namely, the variation is the
largest). When tracking the 50% or 20% circle, the variation
becomes smaller and is no longer dominating comparing to the
errors caused by quantization and communication censoring.
Therefore, the tracking errors are much smaller than that of
tracking the 100% circle.

D. Performance in Handling Streaming Data

Now, we evaluate the performance of DQC-ADMM for
decentralized online consensus optimization, in which online
data streams are separately collected by the nodes. The decen-
tralized online consensus optimization problem [56], [57] is
given by

x̃∗ = arg min
x̃

n∑
i=1

T∑
t=1

gti (x̃) (36)

which can be looked as a special case of the decentralized
dynamic consensus optimization problem (1). For each node
i , the dynamic local objective function at time k is a sum-
mation of instantaneous cost functions gti , namely, f ki (x) =∑t=k

t=1 g
t
i (x). When k → T , the dynamic optimal solution x̃∗(k)

eventually approaches x̃∗. The corresponding decentralized
least squares problem is

x̃∗(k) = arg min
x̃(k)

n∑
i=1

k∑
t=1

1

2

∥∥At
i x̃(k) − bti

∥∥2
2.
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Fig. 8. Average loss and communication cost of DQC-ADMM for streaming
data.

The average loss L is introduced to evaluate the performance
of DQC-ADMM for the decentralized online optimization as

L = max
j

1

nT

n∑
i=1

T∑
t=1

(
gti

(
xkj

) − gti
(
x̃∗)). (37)

It calculates the difference between the estimate of an arbitrary
agent j and the final optimal solution x̃∗ on all instantaneous
cost functions over time 1 to T . We divide each dimension
into q = 64 (b = 6) quantization intervals and choose
p = 2. We compare three values of the threshold α, from
0 and 0.2 to 0.5. Fig. 8 shows that with a proper threshold
α = 0.2, the average losses of DQC-ADMM with and without
censoring are almost the same, but DQC-ADMM with censor-
ing significantly reduces the communication cost. When the
threshold α is set larger, e.g., α = 0.5, the communication cost
could further decrease, but the average loss of DQC-ADMM
deteriorates.

VI. CONCLUSION

This article proposes the DQC-ADMM algorithm, aiming at
tracking the optimal solution trajectory of a dynamic optimiza-
tion problem over a decentralized network. DQC-ADMM is
a communication-efficient algorithm, due to the applications
of the quantization and communication-censoring strategies.
Specifically, unnecessary information exchanges are censored
in DQC-ADMM. Furthermore, when communication happens,
DQC-ADMM only transmits a limited number of bits by
invoking quantization. We theoretically justify the capability
of DQC-ADMM in tracking the optimal solution trajectory.
The tracking error is bounded and affected by the quantization
error, the communication-censoring error, and the variation
of the local objective functions. With extensive numerical
experiments, we validate the communication efficiency and
tracking performance, for both batch and streaming data. In
the future work, we will extend the communication-saving
strategies and the analytical tools to the training of neural
networks, where the objective functions are nonconvex.

APPENDIX A
PROOF OF LEMMA 2

Proof: The proof is organized as four steps.

Step 1: We first characterize the relationship between the
iterates and the dynamic optimal solutions. Subtracting (19)
by the KKT condition (20) gives

∇ f k(X(k)) − ∇ f k
(
X∗(k)

)
= c

2
M−MT

−E(k) + c

2
M+MT

+ E(k − 1)

− M−
(
�(k) − �∗(k)

) − cM+(Z(k) − Z(k − 1)). (38)

For both sides of (38), taking inner product with X (k)−X∗(k)
yields

〈∇ f k(X(k)) − ∇ f k
(
X∗(k)

)
, X(k) − X∗(k)〉

(a)= −〈�(k) − �∗(k), MT
−
(
X(k) − X∗(k)

)〉
− 2c〈Z(k) − Z(k − 1), Z(k) − Z∗(k)〉
+ c

2
〈MT

−E(k), MT
−
(
X(k) − X∗(k)

)〉
+ c〈MT

+E(k − 1), Z(k) − Z∗(k)〉
(b)= −2

c
〈�(k) − �∗(k),�(k) − �(k − 1)〉

+ 〈�(k) − �∗(k), MT
− E(k)〉

− 2c〈Z(k) − Z(k − 1), Z(k) − Z∗(k)〉
+ c

2
〈MT

−E(k), MT
−
(
X(k) − X∗(k)

)〉
+ c〈MT

+E(k − 1), Z(k) − Z∗(k)〉. (39)

In (a), we use the fact that Z(k) − Z∗(k) =
(1/2)MT+(X (k) − X∗(k)), which comes from the definition
of Z(k) = (1/2)MT+X (k) and the KKT condition
Z∗(k) = (1/2)MT+X∗(k) given by (22). In (b), we use the dual
update �(k)−�(k−1)− (c/2)MT−X (k)− (c/2)MT−E(k) = 0
given by (18) and the KKT condition MT−X∗(k) = 0 given by
(21) to split the term −〈�(k) − �∗(k), MT− (X (k) − X∗(k))〉.
Step 2: The inner products in (39) couple the variables.

In this step, we manipulate the inner products to characterize
the connection between ‖U(k) − U ∗(k)‖2

G and ‖U(k − 1) −
U∗(k)‖2

G .
By Assumption 1, f k is strongly convex with constant m f .

Thus, the left-hand side of (39) has a lower bound

〈∇ f k(X(k)) − ∇ f k
(
X∗(k)

)
, X(k) − X∗(k)〉

≥ m f

∥∥X(k) − X∗(k)
∥∥2
F
. (40)

In the folloiwng, we consider the right-hand side of (39) and
derive an upper bound. From the equality 2〈a, b〉 = ‖a‖2 +
‖b‖2 −‖a−b‖2 that hold for any vectors a and b of the same
size, we know that the terms without the introduced error E(k)
equal to

−2

c
〈�(k) − �∗(k),�(k) − �(k − 1)〉
− 2c〈Z(k) − Z(k − 1), Z(k) − Z∗(k)〉

= 1

c

∥∥�(k − 1) − �∗(k)
∥∥2
F

− 1

c
‖�(k) − �(k − 1)‖2

F

− 1

c

∥∥�(k) − �∗(k)
∥∥2
F

+ c
∥∥Z(k − 1) − Z∗(k)

∥∥2
F

− c‖Z(k) − Z(k − 1)‖2
F − c

∥∥Z(k) − Z∗(k)
∥∥2
F
. (41)

Notice that for any matrices A and B of the same size,
〈A, B〉 ≤ (η/2)‖A‖2

F + (1/2η)‖B‖2
F for any η > 0, as well
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as ‖AB‖F ≤ σmax(A)‖B‖F , where σmax(A) denotes the
maximum singular value of the matrix A. The rest of the
right-hand side of (39) hence has an upper bound

c

2
〈MT

− E(k), MT
−
(
X(k) − X∗(k)

)〉
+ c〈MT

+E(k − 1), Z(k) − Z∗(k)〉
+ 〈�(k) − �∗(k), MT

− Ek〉
≤ cη1

4

∥∥X(k) − X∗(k)
∥∥2
F

+ cσ 4
max(M−)

4η1
‖E(k)‖2

F

+ cη2

2

∥∥Z(k) − Z∗(k)
∥∥2
F

+ cσ 2
max(M+)

2η2
‖E(k − 1)‖2

F

+ η3

2

∥∥�(k) − �∗(k)
∥∥2
F

+ σ 2
max(M−)

2η3
‖E(k)‖2

F (42)

where η1, η2, and η3 are positive constants. According to
the censoring rule of DQC-ADMM, we know that the quan-
tized difference Q(hi (k)) is allowed to transmit only when
‖hi (k)‖2 ≥ α, and Lemma 1 shows the introduced error
‖E(k)‖F ≤ ς := max{√nα,

√
np�/2}, and so is ‖E(k−1)‖F .

Then, (42) can be further bounded by

c

2
〈MT

−E(k), MT
−
(
X(k) − X∗(k)

)〉
+ c〈MT

+E(k − 1), Z(k) − Z∗(k)〉
+ 〈�(k) − �∗(k), MT

− Ek〉
≤ cη1

4

∥∥X(k) − X∗(k)
∥∥2
F

+ cη2

2

∥∥Z(k) − Z∗(k)
∥∥2
F

+ η3

2

∥∥�(k) − �∗(k)
∥∥2
F

+ sς2 (43)

where

s := cσ 4
max(M−)

4η1
+ cσ 2

max(M+)

2η2
+ σ 2

max(M−)

2η3
> 0.

Substituting (40), (41), and (43) into (39) yields

c
∥∥Z(k) − Z∗(k)

∥∥2
F

+ 1

c

∥∥�(k) − �∗(k)
∥∥2
F

≤ c
∥∥Z(k − 1) − Z∗(k)

∥∥2
F

+ 1

c

∥∥�(k − 1) − �∗(k)
∥∥2
F

− c‖Z(k) − Z(k − 1)‖2
F − 1

c
‖�(k) − �(k − 1)‖2

F

+
(cη1

4
− m f

)∥∥X(k) − X∗(k)
∥∥2
F

+ cη2

2

∥∥Z(k) − Z∗(k)
∥∥2
F

+ η3

2

∥∥�(k) − �∗(k)
∥∥2
F

+ sς2 (44)

or equivalently

(1 + δ)c
∥∥Z(k) − Z∗(k)

∥∥2
F

+ (1 + δ)
1

c

∥∥�(k) − �∗(k)
∥∥2
F

≤ c
∥∥Z(k − 1) − Z∗(k)

∥∥2
F

+ 1

c

∥∥�(k − 1) − �∗(k)
∥∥2
F

− c‖Z(k) − Z(k − 1)‖2
F − 1

c
‖�(k) − �(k − 1)‖2

F

+
(cη1

4
− m f

)
‖X (k) − X∗(k)‖2

F

+
(cη2

2
+ cδ

)
‖Z(k) − Z∗(k)‖2

F

+
(

η3

2
+ δ

c

)∥∥�(k) − �∗(k)
∥∥2
F

+ sς2 (45)

for any constant δ. According to the definition of ‖·‖G , (45)
translates to the connection between ‖U(k) − U∗(k)‖2

G and
‖U(k − 1) −U∗(k)‖2

G as

(1 + δ)
∥∥U(k) −U∗(k)

∥∥2
G

≤ ∥∥U(k − 1) −U∗(k)
∥∥2
G

− c‖Z(k) − Z(k − 1)‖2
F − 1

c
‖�(k) − �(k − 1)‖2

F

+
(cη1

4
− m f

)∥∥X(k) − X∗(k)
∥∥2
F

+
(cη2

2
+ cδ

)∥∥Z(k) − Z∗(k)
∥∥2
F

+
(

η3

2
+ δ

c

)∥∥�(k) − �∗(k)
∥∥2
F

+ sς2. (46)

Step 3: Note that in analyzing the classical dynamic ADMM
[23], a key inequality also appears, in the similar form of (46).
However, therein, the last four terms at the right-hand side of
(46) are absent. In this step, we proceed to manipulate (46)
through establishing upper bounds for ‖Z(k) − Z∗(k)‖2

F and
‖�(k) − �∗(k)‖2

F .

1) For ‖Z(k) − Z∗(k)‖2
F , from Z(k) := (1/2)MT+X (k)

and Z∗(k) := (1/2)MT+X∗(k), we can bound ‖Z(k) −
Z∗(k)‖2

F with ‖X (k) − X∗(k)‖2
F as

∥∥Z(k) − Z∗(k)
∥∥2
F

= 1

4

∥∥MT
+
(
X(k) − X∗(k)

)∥∥2

F

≤ σ 2
max(M+)

4

∥∥X(k)−X∗(k)
∥∥2
F
. (47)

2) For ‖�(k) − �∗(k)‖2
F , recall (38) to write

∥∥M−
(
�(k) − �∗(k)

)∥∥2
F

=
∥∥∥∇ f k(X(k))−∇ f k

(
X∗(k)

)+cM+(Z(k)−Z(k−1))

− c

2
M−MT

−E(k) − c

2
M+MT

+ E(k − 1)
∥∥∥2

F
. (48)

From the inequality ‖A + B‖2
F ≤ µ‖A‖2

F + µ/(µ − 1)‖B‖2
F

that holds for any matrices A and B of the same size and for
all µ > 1, we know that (48) has an upper bound of

∥∥M−
(
�(k) − �∗(k)

)∥∥2
F

≤ 2

(
µ

∥∥∇ f k(X(k)) − ∇ f k
(
X∗(k)

)∥∥2

F

+ µ

µ − 1
‖cM+(Z(k) − Z(k − 1))‖2

F

)

+ 2

(
2
∥∥∥c

2
M−MT

− E(k)
∥∥∥2

F

+ 2
∥∥∥c

2
M+MT

+E(k − 1)
∥∥∥2

F

)
(49)

with all µ > 1. Furthermore, by Assumption 1, f k has
Lipschitz continuous gradients with constant M f , which yields∥∥∇ f k(X(k)) − ∇ f k

(
X∗(k)

)∥∥
F

≤ M f

∥∥X(k) − X∗(k)
∥∥
F
.

(50)
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Using (50), ‖E(k)‖F ≤ ς and ‖E(k − 1)‖F ≤ ς such that we
can bound (49) as∥∥M−

(
�(k) − �∗(k)

)∥∥2
F

≤ 2
(
µ

∥∥∇ f k(X(k)) − ∇ f k
(
X∗(k)

)∥∥2

F

+ µ

µ − 1
‖cM+(Z(k) − Z(k − 1))‖2

F

)
+ ∥∥cM−MT

− E(k)
∥∥2

F
+ ∥∥cM+MT

+E(k − 1)
∥∥2

F

≤ 2µM2
f

∥∥X(k) − X∗(k)
∥∥2
F

+ 2µc2σ 2
max(M+)

µ − 1
‖Z(k) − Z(k − 1)‖2

F

+ c2ς2(σ 4
max(M+) + σ 4

max(M−)
)
. (51)

By initializing the dual variable �(0) in the column space
of M−MT− , we can guarantee the existence of �(0) ∈ R2r×p

in the column space of MT− , i.e., �(0) = M−�(0). Then, �(k)
lies in the column space of MT− for all the times k due to the
dual update (18). Next, combining with the finite optimal dual
variable �∗(k) lying in the column space of MT− according to
[23], we lower bound the left-hand side of (51) as∥∥M−

(
�(k) − �∗(k)

)∥∥2
F

≥ σ̃ 2
min(M−)

∥∥�(k) − �∗(k)
∥∥2
F

(52)

where σ̃min(M−) is the lower bound of the nonzero singular
values of M−. Given the inequalities (51) and (52), we have

∥∥�(k)−�∗(k)
∥∥2
F

≤ 2µM2
f

σ̃ 2
min(M−)

∥∥X(k) − X∗(k)
∥∥2
F

+ 2µc2σ 2
max(M+)

(µ − 1)σ̃ 2
min(M−)

‖Z(k) − Z(k − 1)‖2
F

+ c2ς2

σ̃ 2
min(M−)

(
σ 4

max(M+) + σ 4
max(M−)

)
.

(53)

Substituting (47) and (53) into (46), we have(
m f − cη1

4
−

(cη2

2
+ cδ

)σ 2
max(M+)

4

−
(

η3

2
+ δ

c

)
2µM2

f

σ̃ 2
min(M−)

)∥∥X(k) − X∗(k)
∥∥2
F

+
(
c−

(
η3

2
+ δ

c

)
2µc2σ 2

max(M+)

(µ − 1)σ̃ 2
min(M−)

)
‖Z(k)−Z(k − 1)‖2

F

+ 1

c
‖�(k) − �(k − 1)‖2

F

≤ ∥∥U(k − 1) −U∗(k)
∥∥2
G − (1 + δ)

∥∥U(k) −U∗(k)
∥∥2
G

+
(

η3

2
+ δ

c

)
c2ς2

σ̃ 2
min(M−)

(
σ 4

max(M+)+σ 4
max(M−)

)+sς2 (54)

in which we recall that η1, η2, and η3 are arbitrary positive
constant, µ is an arbitrary constant larger than 1, and δ is an
arbitrary constant.
Step 4: In this step, we complete the proof by discarding

the left-hand side of (54). To this end, the coefficients of the
left-hand side terms must be nonnegative. Fixing η1, η2, η3,

and µ, δ must satisfy

δ ≤ min

{
(µ − 1)σ̃ 2

min(M−)

2µσ 2
max(M+)

− cη3

2

×
(
cσ 2

max(M+)

4
+ 2µM2

f

cσ̃ 2
min(M−)

)−1

×
(
m f − cη1

4
− cη2σ

2
max(M+)

8
− η3µM2

f

σ̃ 2
min(M−)

)}
. (55)

Also, δ > 0 is required in the later analysis. To this end,
the step size c should satisfy the condition

c < min

{
(µ − 1)σ̃ 2

min(M−)

µη3σ 2
max(M+)

,

(
η1

4
+ η2σ

2
max(M+)

8

)−1

×
(
m f − η3µM2

f

σ̃ 2
min(M−)

)}
. (56)

Thus, discarding the terms at the left-hand side of (54),
it holds

(1 + δ)
∥∥U(k) −U∗(k)

∥∥2
G

− φ2ς2 ≤ ∥∥U(k − 1) − U∗(k)
∥∥2
G

(57)

where

φ :=
√(

η3

2
+ δ

c

)
c2

σ̃ 2
min(M−)

(
σ 4

max(M+) + σ 4
max(M−)

) + s.

From (57), we have (25). This completes the proof.

APPENDIX B
PROOF OF LEMMA 3

Proof: According to the triangle inequality ‖U(k − 1) −
U∗(k)‖G −‖U(k−1)−U ∗(k−1)‖G ≤ ‖U∗(k)−U ∗(k−1)‖G
and the definition of ‖U‖G , we have∥∥U(k − 1) − U∗(k)

∥∥
G

− ∥∥U(k − 1) −U∗(k − 1)
∥∥
G

≤
√
c‖Z∗(k) − Z∗(k − 1)‖2

F + 1

c
‖�∗(k) − �∗(k − 1)‖2

F

≤ √
c
∥∥Z∗(k) − Z∗(k − 1)

∥∥
F

+ 1√
c

∥∥�∗(k) − �∗(k − 1)
∥∥
F
.

(58)

Recalling the KKT condition Z∗(k) = (1/2)MT+X∗(k) given
by (22), for any k ≥ 1, we have

∥∥Z∗(k) − Z∗(k − 1)
∥∥
F ≤ σmax(M+)

2

∥∥X∗(k) − X∗(k − 1)
∥∥
F

≤ σmax(M+)ε1

2
. (59)

Since we initialize that �(0) is in the column space of M−MT− ,
according to �(k) = M−�(k) for any k ≥ 0, we know that
�(k) always stays in the column space of MT− . Therefore, for
any k ≥ 1, we have∥∥M−

(
�∗(k) − �∗(k − 1)

)∥∥2
F

≥ (σ̃min(M−))2
∥∥�∗(k) − �∗(k − 1)

∥∥2
F
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which further leads to∥∥�∗(k) − �∗(k − 1)
∥∥
F

≤ 1

σ̃min(M−)

∥∥M−
(
�∗(k) − �∗(k − 1)

)∥∥
F

(c)≤ 1

σ̃min(M−)

∥∥∇ f k
(
X∗(k)

) − ∇ f k−1
(
X∗(k − 1)

)∥∥
F

≤ ε2

σ̃min(M−)
. (60)

The inequality (c) is from the KKT condition M−�∗(k) =
−∇ f k(X∗(k)) given by (20).

Combining (58)–(60) yields (30). This completes the proof.

APPENDIX C
PROOF OF THEOREM 1

Proof: Combining (25) and (30), we have
√

1 + δ
∥∥U(k) −U∗(k)

∥∥
G

≤ ∥∥U(k − 1) −U∗(k − 1)
∥∥
G

+ g + φς. (61)

Expanding (61) from time 0 to time k yields∥∥U(k) −U∗(k)
∥∥
G

≤ √
1 + δ

−1(∥∥U(k − 1) −U∗(k − 1)
∥∥
G

+ g + φς
)

≤ √
1 + δ

−k∥∥U(0) −U∗(0)
∥∥
G

+
k−1∑
k′=0

√
1 + δ

k′−k
(g + φς)

≤ √
1 + δ

−k∥∥U(0) −U∗(0)
∥∥
G

+ 1 − √
1 + δ

−k

1 − √
1 + δ

−1 (g + φς).

(62)

Taking limit superior for the two sides of (62) yields

lim sup
k→∞

∥∥U(k) −U∗(k)
∥∥
G

≤ g + φς

1 − √
1 + δ

−1 . (63)

Now, throwing away several terms in (44), we are able to
obtain(

m f − cη1

4

)∥∥X(k) − X∗(k)
∥∥2
F

≤ c
∥∥Z(k − 1) − Z∗(k)

∥∥2
F

+ 1

c

∥∥�(k − 1) − �∗(k)
∥∥2
F

+ cη2

2

∥∥Z(k) − Z∗(k)
∥∥2
F

+ η3

2

∥∥�(k) − �∗(k)
∥∥2
F

+ sς2

≤ ∥∥U(k − 1) −U∗(k)
∥∥2
G

+ max
{η2

2
,
cη3

2

}∥∥U(k) −U∗(k)
∥∥2
G

+ sς2. (64)

Thus, we have√
m f − cη1

4

∥∥X(k) − X∗(k)
∥∥
F

≤ ∥∥U(k − 1) −U∗(k)
∥∥
G

+ max

{√
η2

2
,

√
cη3

2

}∥∥U(k) −U ∗(k)
∥∥
G

+ √
sς

(d)≤ ∥∥U(k − 1) −U∗(k − 1)
∥∥
G

+ g

+ max

{√
η2

2
,

√
cη3

2

}∥∥U(k) −U ∗(k)
∥∥
G

+ √
sς (65)

where (d) uses ‖U(k − 1) −U∗(k)‖G ≤ ‖U(k − 1) −U∗(k −
1)‖G + g in (30). Therefore, when

c <
4m f

η1

using (63), we obtain (33). This completes the proof.

APPENDIX D
PROOF OF LEMMA 4

Proof: According to the definition of the difference,
we have

‖H (k)‖F = ∥∥X(k) − X̂(k − 1)
∥∥
F

= ‖X(k) − X(k − 1) − E(k − 1)‖F

≤ ‖X(k) − X(k − 1)‖F + ‖E(k)‖F . (66)

Therein, the second term ‖E(k)‖F at the right-hand side of
(66) is upper bounded by ς := max{√nα,

√
np�

2 } according
to Lemma 1.

For the first term ‖X (k) − X (k − 1)‖F , it holds

‖X(k) − X(k − 1)‖F ≤ ∥∥X(k) − X∗(k)
∥∥
F

+ ∥∥X(k − 1) − X∗(k − 1)
∥∥
F

+ ∥∥X∗(k) − X∗(k − 1)
∥∥
F

(67)

where ‖X∗(k) − X∗(k − 1)‖F ≤ ε1 if Assumption 2 holds.
From (65), we know∥∥X(k) − X∗(k)

∥∥
F

≤
(√

m f − cη1

4

)−1

(∥∥U(k − 1) −U∗(k − 1)
∥∥
G

+ max

{√
η2

2
,

√
cη3

2

}∥∥U(k) −U ∗(k)
∥∥
G

+ g + √
sς

)
.

(68)

Recalling the upper bound of ‖U(k)−U ∗(k)‖G given by (62),
we have∥∥U(k) −U ∗(k)

∥∥
G

≤ √
1 + δ

−k∥∥U(0) −U∗(0)
∥∥
G

+ 1 − √
1 + δ

−k

1 − √
1 + δ

−1 (g + φς)

≤ ∥∥U(0) −U∗(0)
∥∥
G

+ 1

1 − √
1 + δ

−1 (g + φς). (69)

This upper bound also holds for ‖U(k − 1) − U∗(k − 1)‖G .
Therefore, (68) becomes∥∥X(k) − X∗(k)

∥∥
F

≤
(√

m f − cη1

4

)−1

×
((

max

{√
η2

2
,

√
cη3

2

}
+ 1

)

×
(∥∥U(0) −U∗(0)

∥∥
G

+ g + φς

1 − √
1 + δ

−1

)
+g+√

sς

)
.

(70)
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This upper bound also holds for ‖X (k − 1) − X∗(k − 1)‖F .
Combining (66), (67), and (70), for any time k > 0, we have

‖H (k)‖F ≤ 2

(√
m f − cη1

4

)−1

×
((

max

{√
η2

2
,

√
cη3

2

}
+ 1

)

×
(∥∥U(0) −U∗(0)

∥∥
G

+ g + φς

1 − √
1 + δ

−1

)

+ g + √
sς

)
+ ε1 + ς (71)

which completes the proof.
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