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Communication-Censored Linearized ADMM for
Decentralized Consensus Optimization

Weiyu Li, Yaohua Liu

Abstract—In this paper, we propose a communication- and
computation-efficient algorithm to solve a convex consensus op-
timization problem defined over a decentralized network. A re-
markable existing algorithm to solve this problem is the alternat-
ing direction method of multipliers (ADMM), in which at every
iteration every node updates its local variable through combin-
ing neighboring variables and solving an optimization subprob-
lem. The proposed algorithm, called as communication-censored
linearized ADMM (COLA), leverages a linearization technique to
reduce the iteration-wise computation cost of ADMM and uses
a communication-censoring strategy to alleviate the communica-
tion cost. To be specific, COLA introduces successive linearization
approximations to the local cost functions such that the resultant
computation is first-order and light-weight. Since the linearization
technique slows down the convergence speed, COLA further adopts
the communication-censoring strategy to avoid transmissions of
less informative messages. A node is allowed to transmit only if
the distance between the current local variable and its previously
transmitted one is larger than a censoring threshold. COLA is
proven to be convergent when the local cost functions have Lipschitz
continuous gradients and the censoring threshold is summable.
When the local cost functions are further strongly convex, we
establish the linear (sublinear) convergence rate of COLA, given
that the censoring threshold linearly (sublinearly) decays to 0. Nu-
merical experiments corroborate with the theoretical findings and
demonstrate the satisfactory communication-computation tradeoff
of COLA.

Index Terms—Decentralized network, consensus optimization,
communication-censoring strategy, linearized approximation,
alternating direction method of multipliers.
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1. INTRODUCTION

N THIS paper, we consider solving a convex consensus
optimization problem

= argmin ) _ fi(7), (1)
=1

which is defined over a bidirectionally connected decentralized
network consisting of n nodes. All the nodes cooperate to find
an optimal argument z* of the common optimization variable
Z € RP,but the convex local cost function f;(Z) : R? — R held
by every node i is kept private. We focus on the scenario that the
nodes are unable to afford complicated computation, while the
communication resources are also limited. Our goal is to devise
a communication-efficient decentralized algorithm, which relies
on light-weight computation, to solve (1).

Decentralized consensus optimization has attracted extensive
interest in recent years. Problems in the form of (1) are involved
in a variety of research areas, including wireless sensor net-
works [1]-[3], communication networks [4], [5], multi-robot
networks [6], [7], smart grids [8]-[10], machine learning sys-
tems [11]-[13], to name a few. Popular algorithms to solve (1)
span from the primal domain to the dual domain. The primal
domain algorithms, such as sub-gradient descent [14]-[16],
dual averaging [17]-[19] and network Newton [20], have to
use diminishing step sizes to guarantee exact convergence to
an optimal solution, and thus suffer from slow convergence.
On the other hand, (1) can be reformulated as a constrained
optimization problem and solved by dual domain algorithms,
among which the celebrated alternating direction method of
multipliers (ADMM) is able to achieve fast and exact con-
vergence [2], [21]-[23]. When ADMM is implemented in a
synchronous manner, at every iteration, every node solves an
optimization subproblem dependent on its local cost function,
and then exchanges the calculated local variable with its neigh-
bors. Therefore, if the local cost functions are not in simple
forms, solving the subproblems is computationally demanding.
To alleviate the computation cost, the decentralized linearized
ADMM (DLM) replaces the local cost functions in ADMM by
their linear approximations, and attains a dual domain method
with light-weight computation [24], [25]. Similar techniques
have also been applied to develop other first-order dual domain
algorithms, such as EXTRA [26], NEXT [27], and gradient
tracking methods [28]—[32]. If computing the inverse of a Hes-
sian matrix is affordable at a node, one can replace the local
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cost functions by their quadratic approximations. The resul-
tant second-order algorithms, DQM and ESOM, have faster
convergence than their first-order counterparts [33], [34]. Be-
tween the first- and second-order algorithms, a recent work
in [35] develops a primal-dual quasi-Newton method that ap-
proximates the second-order information with local gradients.
The lower complexity bounds and rate-optimal algorithms of
decentralized optimization are developed in [36]-[38]. Note
that the communication cost in the aforementioned algorithms
is proportional to the number of iterations, since after a given
number of iterations every node needs to communicate with its
neighbors.

In all decentralized algorithms, there is an essential
communication-computation tradeoff [39]-[43]. An algorithm
with light-weight iteration-wise computation generally needs
more number of iterations, and in consequence more communi-
cation cost, to reach a target accuracy. For example, compared
with ADMM, DLM enjoys simple gradient-based computation,
but suffers from relatively slow convergence speed and high
communication cost. In this paper, we aim at achieving a fa-
vorable communication-computation tradeoff in a decentralized
network, where the nodes are only affordable to light-weight
gradient-based computation. The limitation on the computation
power may come from that the nodes are equipped with cheap
computing units in a wireless sensor network, or from that
using higher-order information is prohibitively time-consuming
for finding a high-dimensional solution in a machine learning
system.

Given the constraint on the computation cost, we adopt the
communication-censoring strategy to further save the commu-
nication cost. The basic idea of the communication-censoring
strategy is to only allow transmissions of informative messages
over the network. A simple yet powerful protocol is to prevent a
node from transmitting a variable that is close to its previously
transmitted one, where the “closeness” is determined by com-
paring the Euclidean distance with a predefined time-varying
censoring threshold. The communication-censoring strategy is
tightly related to event-triggered control of continuous-time net-
works [44]-[46], and finds successful applications in discrete-
time decentralized optimization [47]-[50]. It has been combined
with primal domain methods such as sub-gradient descent [47]
and dual averaging [48], as well as dual domain methods such
as dual decomposition [49] and ADMM [50]. However, similar
to their uncensored counterparts, the primal domain methods
in [47], [48] have to use diminishing step sizes to guaran-
tee exact convergence. On the other hand, the dual domain
methods in [49], [50] require the nodes to solve computation-
ally demanding subproblems. Our proposed algorithm, called
as communication-censored linearized ADMM (COLA), com-
bines the communication-censoring strategy with the first-order
dual domain method DLM. Particularly, we modify the standard
communication-censoring strategy in [47]-[50] to fit for the
special algorithmic structure of DLM so as to attain better
performance. We rigorously establish convergence as well as
sublinear and linear convergence rates of COLA. To the best
of our knowledge, COLA is the first communication-censored

method that only uses gradient information but achieves linear
convergence.

Starting from the derivation of the classical ADMM in
Section II-A, we introduce COLA in Section II-B. COLA mod-
ifies ADMM in two aspects. First, linearizing the local cost
functions enables approximately solving the time-consuming
subproblems in ADMM, and thus saves computation. Second,
the communication-censoring strategy is applied to remedy
the poor communication efficiency caused by the linearization
step. To further demonstrate the design principles of COLA, its
tradeoff between communication and computation is discussed
and compared with those of several existing dual domain al-
gorithms in Section II-C. In Section III-B, we prove that when
the censoring threshold is properly chosen, COLA converges
to an optimal solution of (1) (Theorem 1). Moreover, when the
local cost functions are strongly convex, the linear and sublinear
convergence rates of COLA are established (Theorems 2 and 3).
The analysis provides guidelines for choosing the parameters
of COLA to reduce computation and communication costs.
Section IV presents numerical experiments and demonstrates
the communication-computation tradeoff of COLA. Section V
summarizes our work.

A. Notations

For matrices A € R**™ and B € R"*", [A; B] € Rletb)xn
stacks the two matrices by rows. Define the inner product of two
vectors v1 and vs as (v, vs) := v{ vy, which naturally induces
the Euclidean norm |[|v|| := 4/ (v, v) of a vector v. For a matrix
M, define Apin(M) as the smallest eigenvalue, o,y (M) as
the largest singular value, and &,,i, (M) as the smallest nonzero
singular value. When M is a block matrix, (M ); ; denotes its
(4, j)-th block.

Throughout the paper, we consider a bidirectionally con-
nected network G = {V, A}, where V = {1, ..., n} denotes the
set of n nodes and A = {1,...,m} is the set of m directed
arcs. Nodes ¢ and j are called as neighbors if (7,j) € A and
(7,1) € A. We denote the set of node ¢’s neighbors as \; with
cardinality d;; = |\;|. Further define the extended block arc
source matrix Ay € R™P*"P containing m x n square blocks
(As)ei € RP*P. The block (As)e,; = I, if the arc e = (4, j) €
A and is null otherwise, where I, is the p-dimensional iden-
tity matrix. Likewise, define the extended block arc destina-
tion matrix Ag € R™P*"P, whose block (Ag)e,; € RP*? is not
null but 7, if and only if the arc e = (4, j) € A terminates at
node j. Then, define the extended oriented incidence matrix as
G, = A, — A, and the unoriented one as G, = A + A,. The
oriented Laplacian is written as L, = G2 G, and the unori-
ented Laplacian L,, = $GT G,,. The degree matrix is defined as
D= %(LO + L, ), which is block diagonal with diagonal blocks
Di,i = d“Ip

II. ALGORITHM DEVELOPMENT

In this section, we propose COLA, the communication-
censored linearized ADMM to solve the decentralized consensus
optimization problem (1). Rooted on ADMM, COLA features
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in two ingredients, linearization to reduce the computation cost
and communication censoring to reduce the communication
cost. We shall first introduce the development of ADMM in
Section II-A, and then combine the linearization and
communication-censoring techniques to devise COLA in
Section II-B. The tradeoff between computation and commu-
nication is discussed in Section II-C.

A. ADMM: Alternating Direction Method of Multipliers

ADMM is a powerful tool to solve a structured optimization
problem with two blocks of variables, which are separable in
the cost function and subject to a linear equality constraint.
To rewrite (1) into the standard bivariate form, we introduce
local variables x; € R” as copies of Z at nodes 4, and auxiliary
variables z;; € RP at arcs (i,j) € A. Since the network is
connected, (1) is equivalent to

mm Z filxq),
bz} i—1
S.t. Tj = Zij, Tj = Zij, V(Z,]) S A (2)
An optimal solution of (2) satisfies 27 = 2" and z;; = z*, where
Z* is an optimal solution of (1).

Concatenate the variables as x = [z1;...;2,] € R™ and
z=|z1;...;2m] € R™P, introduce the aggregate function
f(z) =31, fi(x;), and denote A := [A,; Ay4] € R¥mP*nP
and B := [—1L,,; —I,,p). The matrix form of (2) is

min f(x),s.t. Az + Bz =0, 3)

which is the standard bivariate form handled by ADMM, except
that the variable z is absent in the cost function.
Introduce the augmented Lagrangian of (3) as

fz) +

where the penalty parameter ¢ > 0 is an arbitrary positive con-
stant and the Lagrange multiplier A := [¢;1)] € R*™P. The two
vectors ¢, 1) € R™P are the Lagrangian multipliers associated
with the two constraints A;z — z = 0 and Agx — z = 0 respec-
tively. At time k, the ADMM update follows

Lz, 2,1) = <A,AI+B2>+§||A:E+BZ||2,

2F T = argmin L(z, 2, 1%),
x

2P = arg mzin L(zF Y 2 0%,
AL = Ak o e(AxR T 4 B2RTY),

According to [23], if the variables are initialized with o0 =
—% and G, 2° = 229, then we can eliminate z**! and replace
Al by a lower-dimensional dual variable, such that the update
is reduced to

" = argmin f(z) + (u* — cL,a", ) + e’ Dz, (4)
x

Mk+1 _ ﬂk + CLOCUkJrl, (5)

where 1* := GT¢* € R". By splitting u* = [u
p¥ € RP denotes the local dual variable of node 1.

-

Using the definitions of f(z), D, L,, and L,, we describe how
the decentralized ADMM is implemented. At time k, every node
1 updates its local primal variable ka using its #¥ and p¥, as
well as x? from all neighbors j via

7 > + Cdii,%? .

k41 . k_ ko ok
z;" =argmin fz(xl)—|—<ul ¢ E (zi +x7),
(6)

JEN;
Then node 7 broadcasts its .’Lk+ to all neighbors. Finally, node

1 updates its local dual variable 1 1 using its x; L and uk, as
well as x?“ from all neighbors j via
pitt = ey (@t =l ™

JEN;

The costs of implementing ADMM are two-fold. The first is
in computing the local primal and dual variables =¥ and p¥, in
which the update of z¥ in (6) is particularly demanding when
the local cost function f;(x;) is complicated. The second is in
transmitting the local primal variables xk +1 which is expensive
when the bandwidth resource is hmlted.

B. COLA: Communication-Censored Linearized ADMM

COLA adopts two strategies to improve the computation and
communication efficiency of ADMM: linearization and com-
munication censoring. The linearization technique has been used
in [24], [25] to devise DLM, a gradient-based variant of ADMM.
DLM effectively reduces the computation cost of solving sub-
problems in ADMM, but sacrifices on the convergence speed and
thus results in high communication cost. Therefore, we use the
communication-censoring strategy to prevent transmissions of
less informative messages. Note that though the communication-
censoring strategy has been applied to improve the communi-
cation efficiency of sub-gradient descent, dual averaging, dual
decomposition and ADMM [47]-[50], we customize itin COLA
S0 as to achieve a satisfactory balance between communication
and computation, as we shall explain below.

Linearization: Notice that the update of the primal variable

k+1 in (6), which usually has no explicit solution, dominates
the computation cost of ADMM. Therefore, a computationally
demanding inner loop should be used to solve xf *1. To address
this issue, [24], [25] linearizes the local cost functions at every
iteration. To be specific, at time k, the function f;(z;) in (6) is re-
placed by its quadratic approximation f;(z¥) + (V f;(z¥), z; —
o¥) + 2||x; — 2F|? at z; = z¥, where p >0 is a positive
linearization parameter. Therefore, the primal variable is
updated via

k1 k 1

R — VA
v v 2cdi; + p 4

z )+ b

+CZ

JEN;
®)
Note that the mam computation cost of (8) is in calculating the
gradient V f;(z¥), which is light-weight. The update of dual
variable remains the same as (7) in ADMM.
Communication censoring: The linearization technique sig-
nificantly reduces the computation cost of ADMM, but slows
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Algorithm 1: COLA Run by Node .
Require: Initialize local variables to x? =0, u? =0,
&) = 0and 2} = 0 for all j € ;.
1: fortimesk=0,1,--- do

2: Compute local primal variable azf“ by
zhtl= S Vfi(x —|—CZ ik —J: )+ p
i — B 7
2cdi; + p el

3:  Compute EFF! = |2k — 2h+1)|.

4: IfEFTY > 7R ransmit ¥ to neighbors and let
Ak“ k“ ; else do not transmit and let
A?c-i-l Ak

5: If receive x; *+1 from any neighbor j, let
Ak+1 k1. k+1 Ak

T =x ; else letxj zy.

6: Update local dual variable ;/’”1
W = gl e Y @ - ),
JEN;

7: end for

down the convergence speed, and hence results in high com-
munication cost. Hence, we introduce the communication-
censoring strategy to further reduce the communication cost.
Intuitively, when a:’”l is close to z¥, it is not necessary for node
7 to transmit both of them to nelghbors. Motivated by this fact,
the communication-censoring strategy prevents transmissions
of less informative messages so as to reduce the communication
cost.

To rigorously explain the communication-censoring strategy,
define a state variable ¥ € RP as the latest value that node
¢ has transmitted to neighbors before time k. At time k, after
calculating 27, node i evaluates the difference between ¥
and x 1! by their Euclidean distance £F = |2 — 251,
and then compares the difference with a predefined censoring
threshold 7#*+1 > 0. Node i is allowed to transmit =" to
neighbors and update ka = xk'H if and only 1f§kJrl > Tkt
Otherwise, the transrmssmn is censored and Ik+1 &k, With
the state variable #¥, COLA changes the DLM updates in (8)

and (7) to
1
k+1 k
;" =z — 5 —— | Vfilz +CZ DAl
2cdi; + p jen,
)
pith =k e Y (@ - ek, (10)

JEN;

Stacking the state variables in & = [Z1;...;
write (9) and (10) in the matrix form of

(2¢D + pI) " (Vf(2*) + cL,a* + p*), (11)
(12)

] € R™, we can

K+l _ gk

x
,U;k+1 —_ Mk + CLoaf::k—‘rl.

COLA run by node i is outlined in Algorithm 1. At time 0,
node i initializes its local variables to #¥ = 0, u? = 0, 29 =0

and 33"0 = ( forall j € N;. For all times k, node i first computes
its local primal variable xkﬂ by (9). The computation of .Z‘k+1
at node ¢ is based on its latest local pnmal -dual variables =¥ and
/% , the latest broadcast information 7 :c of itself and xk from its
neighbors 7, as well as the gradient of the local cost function
fi(z;) at x; = :c . Then 5 the difference between the newly
computed prlmal variable ka and the previously transmitted
2% is calculated and denoted by §f+1. It ff“ > 7F+1 meaning
that the difference exceeds the threshold to communicate, node ¢
transmits 1]‘“ to neighbors and lets :ckH = xf“. Otherwise,
node i does not transmit and lets xk“ #%. On the other
hand, if node 7 receives mkH from any neighbor j, then it lets

Bt = xf“ Otherwise, it lets &5 ! = %. Observe that this
communication protocol guarantees that node ¢ and its neighbors
store the same state variable i‘f +1, Finally, the local dual variable
,LL;H_I is updated by (10).

Remark 1: Comparing (8) and (7) with (9) and (10), we ob-
serve that the only difference between DLM and COLA is replac-
ing Yoy (@F — )by e Yo\ (&F — &%) in the primal-dual
updates. This is not the standard strategy used in the other
communication-censored algorithms [47]-[50], where all the
local primal variables x; are replaced by the state variables ;.
We customize the communication censoring strategy for COLA

and keep the local primal variable f in 2} — 57—V f;(af) as

itis, because xf has already been available for node ¢ z and is more
up-to-date than 2¥. Recall that the term 2% — d — V fi(a; k)
comes from the linearization of f;(z;). Intuitively, linearization
around z; = x¥ leads to faster convergence than linearization
around x; = #¥, which has been validated in our preliminary
numerical experiments. On the other hand, we do not change the
state variables &% by the corresponding local primal variables

z¥ in the term Cdien; (#% — #%) in both primal and dual

i J
updates. Note that z¥ and #¥ are not equal when communication
censoring happens and the error between them is determined by
the censoring threshold 7%, while the dual update (10) accu-
mulates all the previous differences between the neighboring

state variables £¥ and if Thus, replacing the state variables

#¥ therein by the corresponding local primal variables =¥ shall
accumulate the errors, and result in instability or even divergence
of the recursion.

The censoring threshold 7% is a critical factor that influences
the communication-computation tradeoff of COLA. Setting a
large 7% prevents less-informative transmissions, and thus re-
duces the iteration-wise communication cost, though the recur-
sion needs more number of iterations and hence more compu-
tation cost to reach a target accuracy. However, a too large 7"
slows down the convergence speed, which in turn increases both
the overall computation and communication costs. Since 7% sets
an upper bound for the distance between z¥ and 2%, a small
improvement of the local primal variable =¥ cannot be accepted
to the state variable ﬁf”‘ and diffused to the network. In this sense,
the primal variable cannot converge faster than 7%. We shall give
rigorous analysis on this issue in the theoretical analysis.

If we expect to obtain a linear rate of convergence, a choice
for the censoring threshold will be

(13)
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where 3 € (0,1)and v > Oare constants. If 7* issetasa - (k)"
with 7 > 1, a sublinear rate depending on 7 will be derived. A
special case is 7% = 0 for all times &, meaning that there is no
censoring and COLA degenerates to DLM.

C. Tradeoff Between Communication and Computation

Here we discuss the communication-computation tradeoff
in ADMM, DLM, as well as their communication-censored
versions, COCA and COLA.

Generally speaking, among the four algorithms, ADMM
needs the least number of iterations to reach a target accuracy,
but the computation cost of solving subproblems is often re-
markable. DLM alleviates the iteration-wise computation cost
through linearization, but requires more number of iterations
and higher overall communication cost than ADMM.

The communication-censoring strategy in COCA and COLA
adjusts the communication-computation tradeoff through tun-
ing the censoring threshold 7%. As we have discussed in Sec-
tion II-B, a larger 7% leads to more iterations and thus higher
computation cost, but lower iteration-wise communication cost.
Regarding the overall communication cost required to reach
a target accuracy, there is a phase transition in tuning 7%.
When 7% is too large, communication censoring is too often
and much more number of iterations is necessary to compen-
sate the information loss, which would deteriorate the overall
communication cost.

Though COCA and COLA both adopt the communication-
censoring strategy, their application scenarios are different.
COCA fits for applications where computation of solving com-
plicated subproblems is not an issue, but communication is
the main bottleneck. Examples include distributed resource
allocation in a data center network and collaborative target
tracking in a radar network. On the contrary, COLA inherits
the advantage of light-weight computation from DLM, and
further reduces the communication cost on top of it. In this
sense, COLA fits for applications where nodes are unable to
afford solving complicated subproblems due to hardware or time
constraints, such as an IoT network equipped with cheap com-
putation units and a drone network cruising in a fast changing
environment.

An illustration of the tradeoff between computation efficiency
and communication efficiency in ADMM, DLM, COCA and
COLA is given by Fig. 1.

III. CONVERGENCE AND RATES OF CONVERGENCE

In this section, we prove that COLA converges to an optimal
solution of the convex consensus optimization problem (1) under
mild conditions. Further, if the local cost functions are strongly
convex, COLA converges to the unique optimal solution of (1)
at a linear or sublinear rate, depending on the choice of the
censoring threshold. Section III-A provides assumptions and
lemmas for the proofs. Section III-B analyzes the convergence
of COLA, while linear and sublinear rates are established in
Section III-C.

high - DLM
5 COLA
2
2
i
5
5 ADMM
3
£
o
o
low - COCA
Io;/v hiéh

Communication Efficiency

Fig. 1. Tllustration of the tradeoff between computation efficiency and com-
munication efficiency in ADMM, DLM, COCA, and COLA.

A. Preliminaries

We make the following assumptions for the analysis.
Assumptions 1-4 are sufficient for proving the convergence of
COLA to an optimal solution of (1). Further with Assumption 5,
COLA is guaranteed to converge to the unique optimal solution
of (1) at a linear (sublinear) rate when the censoring threshold
is linearly (sublinearly) decaying to 0.

Assumption I (Network connectivity): The communication
graph G = {V, A} is bidirectionally connected.

Assumption 2 (Convexity and differentiability): The
cost functions f; are convex and differentiable.

Assumption 3 (Lipschitz continuous gradients): The gradi-
ents of the local cost functions V f; are Lipschitz continuous
with constant M > 0. That is, given any Z,§ € R?, |V f:(Z) —
V£i(§)]| < M|z — ]| for any .

Assumption 4 (Initialization): The dual variable ;1 of COLA
is initialized in the column space of GZ. That is, there exists a
vector ¢° € R™P such that ¥ = G ¢°.

Assumption 5 (Strong convexity): Thelocal cost functions f;
are strongly convex with constant m > 0. That is, given any
7,5 € RP, (V,(3) — V(7). & — §) > m||& — j|]* for any i.

Assumptions 1, 2, 3 and 5 are standard in analysis of decen-
tralized algorithms. The initial condition in Assumption 4 can
be easily satisfied, with the simplest choice 1 = 0.

COLA involves a primal sequence {2*} and a dual sequence
{i*}. In the theoretical analysis, we shall construct a triple
(zF, 2% ¢*) from the pair (z*, 4*), and prove its convergence to
(z*, 2*, ¢*), which is optimal to (3). Here ¥, 2*, ¢* ¢* € R™P.
The next lemma gives the properties of (x*, z*, ¢*).

Lemma 1 (Lemma I, [24]): Given a primal optimal solu-
tion z* of (3) and z* := %Gux*, there exist multiple optimal
dual variables [¢*; —¢*] such that every (z*, 2%, [¢*; —¢*]) is a
primal-dual optimal solution of (3). Among all these optimal
dual variables, there exists a unique [¢*; —¢*| in which ¢* lies
in the column space of GG,. Moreover, any primal-dual optimal
solution (x*, z*, [¢*; —¢"]) satisfies the KKT conditions

local

Vi) +Gle =0, (14)
Gor" =0, (15)
%Gux* = z" (16)
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According to Lemma 1, it is natural to construct 2k =
%Guzk € R™P, To construct cbk, note that under Assumption
4, u° lies in the column space of G, and by the definition of
L, = 3GTG,, every ! in the dual update (12) also lies in
the column space of GZ. Thus, there exists a vector qbk € R™
satisfying ¥ = GT ¢* for any k > 0, such that the recursion of

COLA can be rewritten as
e = 2% — (2¢D + pI) 7t (Vf(2*) + cLod® + GL¢") ,
(17)

(18)

Combining (17) and (18) with the KKT conditions (14)—
(16), the next lemma gives two equations that are cornerstones
of the theoretical analysis. To emphasize the error caused by
the communication-censoring strategy, we define an error term
EF := 2% — ¥ therein.

Lemma 2: Letz* and ¢* be a primal-dual optimal pair of (3),
with ¢* lying in the column space of GG,. Then, for all £ > 0,
the recursion of COLA satisfies

Vf(*) = Vf(a*) = (cLy + pI) (2" — 2*) (19)
= G (" = @) teLo(BF — BFHY),

¢k+l — ¢k + gGojk+1~

gao(:ck“ Cat) = gt gk 4 gGoEk“. (20)
Proof: See Appendix A. |
The convergence analysis of COLA relies on the following

energy function

14 * * 1 *
VE = Lk — 22 ello - 2+ gt - I @D

where the auxiliary variables z* and ¢* as well as their op-
timal values z* and ¢* are defined above. This energy func-
tion also appears in the analysis of DLM, the uncensored
version of COLA [24]. However, due to the existence of the
communication-censoring strategy which introduces an error
term in the recursion, the analysis of COLA is significantly
different to that of DLM.

B. Convergence

The convergence of COLA is established as follows.

Theorem 1: Under Assumptions 14, in COLA we choose
the penalty parameter ¢ > 0 and the linearization parameter p >
0such that cAmin (L) + p > %, and set the censoring threshold
{7*1 as a non-increasing non-negative summable sequence such
that > ;- , 7% < co. Then the primal variable z* converges to
an optimal solution z* of (3).

Proof: See Appendix B. |

Theorem 1 asserts that COLA converges to an optimal solu-
tion of (1) under mild conditions and provides guidelines for
setting parameters. It is interesting to see that the requirement
CAmin(Ly) + p > % is the same as that in DLM [24]. Fixing p,
a network with better connectedness (namely, larger Ain (Ly,))
allows us to choose a smaller penalty constant c. Fixing ¢ and
Jmin (L, ), the linearization parameter p must be large enough to

- p=
__P=5

Fig. 2. An illustration of choosing different approximation parameters p. In
this situation, at the top-right point, we approximate the original cost function (in
blue) by the dashed lines (in cyan, green, and red). When p = 2 and p = 5 that
are both larger than the accurate second derivative, the updates are conservative
and go to the green and red points, respectively. When p = 0.8 that is smaller
than the accurate second derivative, the update is aggressive and goes to the
cyan point.

guarantee convergence. Note that pJ,, approximates the Hessians
of the local cost functions f;(z;). A large p over-approximates
the curvature and forces ¥ to be close to ¥, which stabilizes
the recursion. On the contrary, a small p under-approximates
the curvature and allows the local variables to change quickly,
at the cost of possible divergence. Fig. 2 illustrates the impact
of p. Regarding the censoring threshold 7%, we require it to be
summable. Intuitively, 7% determines the maximal error intro-
duced to the primal update. When this error is controllable, the
convergence of COLA is guaranteed

C. Rates of Convergence

In Section III-B, we have shown that COLA requires {7%}
to be summable so as to guarantee convergence. Below, we
shall prove that convergence rate of COLA also depends on
convergence rate of {7%}. In addition to Assumptions 1-4, we
need the local cost functions to be strongly convex, as stated
in Assumption 5. In this circumstance, COLA converges to the
unique optimal solution of (1) at a linear (sublinear) rate when
{7%} is linearly (sublinearly) decaying.

Theorem 2: Under Assumptions 1-5, in COLA we choose
the penalty parameter ¢ > 0 and the linearization parameter p >
M2 "and set the censoring threshold 7% = o - (8)* with o >
0 and 5 € (0,1). Then there exists a positive constant § > 0
such that the primal variable 2* converges to the unique optimal
solution z* of (3) at a global linear rate O((1 4 §)~%).

Proof: See Appendix C. |

As shown in (60) in the proof of Theorem 2, the constant §
depends on the algorithm parameters ¢, p and (3, the network
topology parameterized by Gmin(Go) and omax(Gy), and the
properties of the local cost functions parameterized by M and
m. Define the condition numbers of cost functions and graph
as Ky =Y and ke = ?‘“—Eg;)), respectively. The following
corollary shows clearer that, by properly setting ¢ and p, how
the constant 0 is determined by #» kg and 3.

Corollary 1: Under Assumptions 1-5, in COLA we choose

c= % and p = M~ ;. Then the global linear rate
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O((1 + 6)" ) satisfies

5 < min{ —s - iy 1
- 8KZ,’ 2/{? + 16Kk 1266 + 6/{?/@@’ 32 '
(22)

1 1 Kf
In (22), the terms ST T I0nmG and Dot onng

are monotonically decreasing when either ky or kg in-
creases, meaning that the convergence is slower when the cost
functions are worse-conditioned and/or the network is less-
connected. In addition, § is bounded by -5 — 1. Therefore,
(22) shows that among all 3 that do not affect the convergence
rate, the one satisfying min { = s

T . e}
’ 2nf+16nfnc7 12&@-&-6;@ [ el
= ﬂQ — 1 achieves largest communication reduction per

iteration.

Theorem 3: Under Assumptions 1-5, in COLA we choose
the penalty parameter ¢ > 0 and the linearization parameter p >
é” and set the censoring threshold 7% = - (k)" with & > 0
and r > 1. Then there exists a finite time index kg such that the
distance between the primal variable z* and the unique optimal
solution z* of (3) is upper-bounded by a sequence decaying
sublinearly to 0 at a rate of O((k)~%), where ¢ € (0,2r — 1),
when k > k.

Proof: See Appendix D. |

Theorems 2 and 3 indicate that, to achieve linear (sublinear)
convergence, we have to impose stronger requirements on the
parameters. The sequence of censoring threshold should be not
only summable, but also linearly (sublinearly) decaying. The pa-
rameters c and p should be larger, too. Note that because M > m,
p > A > M and consequently cAmin (Ly) + p > 2, whichis
requlred in Theorem 1.

According to the upper bound of ¢ given in (60), the linear
rate of z* reaching 2* (namely, O((1 + §)~*/2)) must be slower
than the linear rate of 7% decaying to 0 (namely, O(3¥)). From
Theorem 3, one can also see that the sublinear rate of z*
reaching z* (namely, O((k)~%) where ¢ € (0,2r — 1)) must
be slower than the sublinear rate of 7% decaying to 0 (namely,
O((k)~")). Therefore, in both the linear and the sublinear cases,
the sequence of censoring threshold 7% bounds the convergence
rate of 2* to z*. This makes sense because 7% means the maximal
error allowed to enter the recursion of ¥ due to communication
censoring.

Remark 2: Though COLA is devised from DLM, the error
caused by the communication-censoring strategy makes its anal-
ysis different to that of DLM. The analysis of COLA is also
different to that of COCA, the censored version of ADMM. The
reason is that COLA updates x* by gradient descent steps, while
COCA updates z* by solving optimization subproblems. This is
analogous to the difference in the proofs of DLM and ADMM.
In addition to the difference in the proof techniques, we also
establish the sublinear convergence of COLA, which is absent
in the analysis of DLM and COCA.

Remark 3: When the censoring threshold 7% is set to 0,
COLA degenerates to DLM. Intuitively, the convergence rate of
COLA is no faster than that of DLM due to the introduction of the
communication-censoring strategy. This is also observed from,

for example, the linear convergence constant § in Corollary 1.
Nevertheless, the slower convergence in terms of the number
of iterations is acceptable, since COLA effectively reduces
the iteration-wise communication cost. We shall demonstrate
with numerical experiments that COLA can reduce the overall
communication cost comparing to DLM.

IV. NUMERICAL EXPERIMENTS

This section provides numerical experiments to demonstrate
the satisfactory communication-computation tradeoff of COLA.
In particular, we shall show that COLA inherits the advan-
tage of cheap computation from its uncensored counterpart
DLM [24], [25], but significantly reduces the overall com-
munication cost. Beyond DLM, we compare COLA with the
classical ADMM [23] and its censored version COCA [50],
both of which do not use the linearization technique and are not
computation-efficient. We also compare with the event-triggered
sub-gradient descent (ETSD) algorithm [47], which is a primal
domain first-order method but much slower than COLA in terms
of convergence speed. We consider two decentralized consensus
optimization problems, least squares in IV-A and logistic regres-
sion in I'V-B. The cost functions are both smooth, but the latter
is not strongly convex. For ADMM and COCA, subproblems
in least squares have explicit solutions, while those in logistic
regression needs computationally demanding inner loops. We
use the accuracy of the primal variable as the performance
metric, defined by ||x* — *||?/||2® — 2*||?. Logistic regression
may have multiple optimal solutions, among which we choose
the one closest to the limit of iterate as «*. The computation cost
is evaluated by time spent to reach a target accuracy, and the
communication cost is defined as the accumulated number of
broadcast messages. The simulations are carried out on a laptop
with an Intel I7 processor and 8 GB memory, programmed with
Matlab R2017a in macOS Sierra.

A. Decentralized Least Squares

The local cost function in the decentralized least squares
problem is fi(Z) = || A& — y;)l|3, with Ay € RP*P and
Y(i) € RP being private for node 7. Thus, the primal update of
node 7 at time k& in COLA is

x?+1 *:Z? (Qde + p) [A(j;) (‘4(1)1‘z o y(l))

+CZ

]
FEN;

Note that node i can compute (2cd;; + p)~! in advance to

accelerate the computation. In the experiments, entries of A ;)
and b;) are independently and identically sampled from the
uniform distribution within [0,1]. Then we let y¢;y = A;)b).
We set the network size as n = 50 and the dimension of the
local variables as p = 3.

First, we compare four algorithms, COLA, DLM, COCA
and ADMM, over four network topologies: line, random, star
and complete, as shown in Figs. 3-6. In the random network,
10% of all possible bidirectional edges are randomly chosen
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Fig. 5. Performance over star network for decentralized least squares.

to be connected. The accuracies are compared with respect to
the number of iterations and the cumulative communication
cost. The parameters ¢ and p are tuned to be the best for the
uncensored algorithms DLM and ADMM, and kept the same
in their censored counterparts, respectively. We use the linear
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Fig. 6. Performance over complete network for decentralized least squares.

50

50 100 150 200

Fig. 7. Censoring pattern of the first 200 iterations of COLA over random
network for decentralized least squares. The horizontal axis is the number of
iterations, and the vertical axis is the index of node. A dark dot represents that
the node is censored at that time.

censoring threshold in the form of 7% = a - (3)*, where the
parameters o and /3 are hand-tuned in COLA and COCA so as
to achieve the best communication efficiency. Taking the random
network as an example, we choose ¢ = 0.45, p = 1.1 in DLM
and o = 0.7, 8 = 0.94in COLA, while ¢ = 0.35in ADMM and
a=0.9, 8 =0.92in COCA.

In all the networks, the two censored methods COLA and
COCA require more iterations to reach the target accuracy than
their uncensored counterparts due to the error caused by censor-
ing, but the saving in communication is remarkable. Compared
to DLM and given a target accuracy of 10~%, COLA saves ~1/2
communication costs in the line and random networks, and
~ 1/3 in the star and complete networks. The required number
of iterations in the line network is much more than those in the
other networks, since the connectedness of the line network is the
worst. In better connected networks such as star and complete,
variable updating is often informative, such that the deterioration
of convergence speed caused by skipping transmissions becomes
more noticeable, yet communication per iteration is still saved
by censoring.

We study the influence of communication censoring over the
random network. The censoring pattern of the first 200 iterations
is shown in Fig. 7. The horizontal axis is the number of iterations,
and the vertical axis is the node index. A white dot means
that the node broadcasts at the time, while a black dot means
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Fig. 8. Performance of DLM, ETSD, and COLA with different censoring
thresholds over random network for decentralized least squares. In COLA,
with the linear censoring thresholds 7% = o - (8)%, we fix a = 0.7 and choose
different 3. With the sublinear censoring threshold 7% = a/(k)~", we choose
a = 1000 and r = 2.5.

that the node is silent. Observe that communication censoring
happens uniformly, namely, the frequency of communication
censoring does not change too much along the optimization
process. In addition, the nodes have similar communication
costs eventually. On average, every node broadcasts 0.35 ~ 0.45
message per time.

Next, we compare the choice of the censoring threshold in
COLA over the random network. We compare four censoring
thresholds, the linear sequences 7% = o - (8)* with o = 0.7
while 8 = 0.93,0.95 and 0.97, as well as the sublinear sequence
8 = - (k)" with o = 1000 and r = 2.5. The parameters c
and p remain the same. As shown in Fig. 8, the linear censoring
thresholds outperforms the sublinear censoring threshold, in
terms of both communication and computation. The reason is
that the sublinear rate of the threshold limits the convergence rate
of COLA, as we have theoretically analyzed in Section III-B.
Regarding the different choices of the linear rate, we observe
that a smaller 5 needs less number of iterations to reach a target
accuracy, since it leads to faster decay of the censoring threshold,
and thus less communication censoring per iteration. In contrast,
with a larger (3, we need more number of iterations and less
communication cost per iteration. Therefore, a moderate /3, such
as = 0.95 in this case, is preferred.

In Fig. 8, we also compare COLA with ETSD, a
communication-censored primal domain first-order method.
ETSD adopts the Metropolis-Hastings rule to design its mixing
matrix. It uses a linear censoring threshold « - (3)* and a sublin-
ear step size O((k) 3 ), where the parameters are all hand-tuned
to achieve the best communication efficiency. From Fig. 8, we
observe that ETSD requires much more number of iterations
and communication cost to reach a target accuracy comparing
to COLA. The main reason of the unsatisfactory performance of
ETSD is the diminishing step size, which is used to guarantee
exact convergence. Similar performance gap can be observed in
comparing the uncensored algorithms, sub-gradient descent and
DLM.
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Fig. 9. Performance over random network with 50 nodes for decentralized
logistic regression.

B. Decentralized Logistic Regression

In the decentralized logistic regression problem, the local cost
function of node ¢ is
l;

_ 1 _
fi(Z) = T Zln <1 + eXp(—y(i)lq(j;)ﬂ)),
t=1

where q(;); € RP is the Ith column of a matrix Q¢;) € RP¥li
Y@y € {—1,+1} isthelth element of a binary vector y;y € R,
and [, is the number of samples held by node . The primal update
of node ¢ at time k£ in COLA is

Ly exp( y(ﬂq(ﬂm Daci

1
CCk+1 = Ik f

! ! 2Cdm +p i 1+ exp( y(i)lQ(i)lIi )

+cZ(:ﬁf—

JEN;

while the primal updates of ADMM and COCA have no explicit
solutions. Therefore, we solve the subproblems therein by a
gradient descent inner loop, which terminates when the /5 norm
of the gradient is less than 1075,

We conduct simulations over two random networks with
n = 50 and n = 100 nodes, in both of which 10% of all possible
bidirectional edges are randomly chosen to be connected. The
dimension of local variables is p = 3. The numbers of samples
held by the nodes are i.i.d. and uniformly chosen from integers
within [1, 10]. Entries of the first two rows of Q) ; follow thei.i.d.
discrete uniform distribution on the set {0.1w}, w = 1,..., 10,
while entries of the last row are all set as 1. Entries of y; are
i.i.d. and follow the uniform distribution on {—1, 1}. As we have
done in Section IV-A, ¢in ADMM is tuned to achieve the fastest
convergence, and is also used for COCA; ¢ and p in DLM are
tuned to achieve the fastest convergence, and are also used for
COLA. The censoring threshold in both COCA and COLA is set
as 7% = o - (B)*, with parameters o and 3 hand-tuned to obtain
the best communication efficiency.

As depicted in Figs. 9 and 10, the four algorithms behave
similarly to those in the least squares problem (Figs. 3—-6). COLA

)+ uk |,
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Fig. 10.  Performance over random network with 100 nodes for decentralized
logistic regression.

TABLE I
THE TIME SPENT OF THE FOUR ALGORITHMS IN TWO NETWORKS WITH
DIFFERENT NUMBERS OF NODES 72 AND TARGET ACCURACIES

n Accuracy | COLA | DLM COCA | ADMM
50 104 1.076s | 0.971s | 30.119s | 9.629s
50 105 1.126s | 1.055s | 37.198s | 12.467s
100 104 1.466s | 1.320s | 37.488s | 11.175s
100 105 1.879s | 1.721s | 45.302s | 15.797s

saves nearly 2/3 communication cost with few more iterations
compared to DLM. To demonstrate its computation efficiency,
we also show the CPU time for the four algorithms to reach
target accuracies 10~* and 10~ in Table I. Notice that the
two linearized algorithms, COLA and DLM, compute much
faster than COCA and ADMM. The time spent by COLA in
both networks is slightly more than that of DLM due to the
communication censoring operations.

V. CONCLUSION

In this paper, we propose COLA, a communication- and
computation-efficient decentralized consensus optimization al-
gorithm. Compared to the classical ADMM, COLA uses the
linearization technique to reduce the iteration-wise computation
cost, and fits for networks where only light-weight computation
is affordable. To compensate the sacrifice in the convergence
speed, which is caused by the linearization step and results
in low communication efficiency, COLA further introduces
the communication-censoring strategy to prevent a node from
transmitting its “less-informative” local variable to neighbors.
We establish convergence and rates of convergence for COLA,
and demonstrate the computation-communication tradeoff with
numerical experiments. Our future work is to apply the lineariza-
tion and communication censoring techniques to decentralized
optimization applications in dynamic, online and stochastic
environments.

APPENDIX A
PROOF OF LEMMA 2

Proof: From (18), it holds that

C . 15) ¢ ., . .

PR _ g — QGoﬂﬁkH (15) §GO($I€+1 — ")
_ gGo(xk'H — EFHL g, (23)
k1 _

where the last equality uses the definition EF+! =z
#F+1 Rearranging terms in (23) yields (19).

Also rearranging terms in (17) to place V f(x*) at the left
side, we have

Vf(z*) = (2¢D + pI)(zF — 2" — cL 2% — GT o, (24)
Subtracting (24) with (14) and noticing the definitions of D =
%(LO +L,)and L, = %GZGO, we have

V(") = Vi)

= (2¢D + pI)(2* — 21 — cL, 2" — GT (¢F — ¢*)

= (cLy + pI)(zF — 2" 4 cLy(2® — 2*1) — L, 2"
— GG = ¢") + Go (" — o)

(2%) (cLy + pI)(zF — 2% 4 eL, (2% — 281 — cL 2"

_ Gg’(¢k+1 o Qb*) + CLO(JJk+1 o Ek+1 _ 1‘*)

2 (eLu + pD) (@t —a*) — G (6 = 6)
+cLo(EF — EMTY),

which completes the proof. |

APPENDIX B
PROOF OF THEOREM 1

Proof: Throughout the proof, we assume 70 > 0. When 7% =
0 such that all 7% = 0 and COLA degenerates to DLM, since the
value of 7° does not affect the operation of COLA, we can simply
set 70 as any positive constant.

Step 1: The proof in this step is analogous to the proof of
Lemma 3 in [24], but more complicated due to the existence of
censoring error. From Assumptions 2 and 3, the gradients of the
convex local cost functions V f; are Lipschitz continuous with
constant M > 0. Thus, we have

V) - Vi)

< (V) V)0t - a%)

= (Vf(a") = Vf(a"), 2" —a%)
V) = V), o 25,

For the second term at the right-hand side of (25), we choose
an upper bound

(V") = Vf(a"),a" - 2™

(25)

1 . M
< G IVFED) = V@O + et = 2F .

1 (26)

2
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To establish an upper bound for the first term at the right-hand
side of (25), we use (19) in Lemma 2 to rewrite it as

(Vf(a") = Vf(a®), 2" —a)
= ((cLy + pI)(z* — 2" 1),z
— (G (¢ = ¢7), 2™ — )
+ (cLo(E* — EFF1Y gh 1 gy, (27)

We shall handle the terms at the right-hand side of (27) one by
one. The first one satisfies
((cLy + pI)(2*
c

= §<Gu(:1ck —x

4 p(xk o xk+1,mk+1 _ $*>

k+1

, k+1 I*>

xk—i—l)’ xk+1 o

k-&-l)7 Gu (!L‘k+1

— "))

= 2¢(zF — ZFHL,

+ pla®

which uses the definitions L, = 1GTG,, 2% =
z¥ = %Gux*. The second one satisfies

—(GT(H = ¢, — )
7<¢)k+1 o ¢*’Go(xk+1 o x*»

20 §<¢k+1 - ¢*,¢k - ¢k+1> _

—z'), (28)

%Guxk and

<¢k+l o ¢*’ GoEk+1>.
(29)
The third one satisfies

<CLO(Ek _ Ek+1),$k+1

_ $*>
k _ Ek+1),Go(xk+1 _ 1‘*)>
¢*)

k *Ek+1) GoEk+1>

ko phtly ghtl
(30)

which uses the definition L, = %GOT G,. Summing up (28), (29)
and (30), applying the equality 2(v, — vp, Uy — Ve) = |[va —
vel|? = ||va — vpl|? — ||vp — ve||? that holds for any vectors v,
AL L ey gl kel gl g

— @%), and then reorganizing terms, we

vp and v, to (zF
and <¢k+1 _ ¢*7¢k+1
can rewrite (27) as

(Vf(*) = V[

= c(|le* = =" -

+ Ll —a*|? - |l

*)’karl o JZ*>

k _ Zk—i—lHQ _

Iz [k

- 2%
lz* = 27|1%)

(6 — g7 — 65 — 6P~ g - g P)

k+1
_¢+

k _ xk—i—lHZ _

o (;5*7 GoEk+1> +

—~

<GO(Ek _ Ek+1),¢k+1 _ ¢k>

+ <GO(Ek o Ek+1),GOEk+1>

oo

21 .
@y vk yktl

p 1

—CHZk k+lH2_§”x k+1||2_z||¢k_¢k+1H2

o <G0Ek+1 > < (Ek o 2Ek+1),¢k+1 o ¢k>
+ g<GO(E — BFY), G, EF Y. 31)
For the term — (G, E*T1 ¢* — ¢*), we observe that
- <G0Ek+17 ¢k - ¢*>

a1 k+1 k )2 1 k+1
< 211G, Bt — I + 5 IGo B
¢

C10max(Go) | EFF . Omax(Go
1 ( )H ||H¢k_¢ H2+ ( )||Ek+1||,
2 2¢q

IN

(32)

where ¢; > 0 is any positive constant. Similarly, for (G, (E* —
2EFHL) gk +L — @) it holds

<GO(EI€ _ 2Ek+1),¢k+1 _ ¢k>

C2
< S lIGo(E" = 2B )| — ||

1
- Go Ekszk+1
+ 56 I

< ©20max(Go) (|1 E*| + 2| E**1])

- 2

Jmaux(c"vo)
262

I+t — o2

- (1 E¥|| + 2| E¥1)), (33)

where ¢y >0 is any positive constant. For £(G,(E" —
EF), G,E**1), we have

<G0(Ek - Ek+1)’ GoEk+1>

C
2
§5<

T (Go) [IE* | + Zailax(Go)llEk“IIZ-

G,E", G EF1)
‘la

IN

EkH2+HG Ek+1||2

IN
Bl rlo

(34)

Using (32), (33) and (34) to rewrite (31) followed by substituting
the result and (26) into (25), we obtain

Vk o Vk?+1 o k+1||2

cl|z* — =

_ E_% k _ o k+1 2_1 k k412
(5-5) et =k = Lot - gt

Clo—max(Go)”Ek+1” % Jmaux(cgo)
+ l¢* — &[> + 2= =22|| B* |

2 261
C20max(Go) (I1E¥]| + 2 E* )
+ : g+ — g2
Umax(Go)

+ (IE* ]| + 2 B*)

202

C C
t 70max(Go) | B[ + 700 (Go) B 1| > 0. (35)

Step 2: Now we characterize the upper bound of ||E¥|.
According to the censoring strategy, #¥ — ¥, the ith block
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of E*, becomes 0 if ||#F~! — z¥|| > 7% or equals R

otherwise. In both cases, it holds [|#F — 2F| < 7% Therefore,
we know ||E¥|| < y/n7*. Since 7% is non-increasing, it also
holds || EFHL|| < /nrF+l < /n7*. Thus, (35) becomes

M
C”Zk _ Zk+1H2 + (g . I) ka . xk+1H2

302 O-m&x(

1 . N
+ (_ _ ) ) H(bk ¢k+1||2
c 2
< vEo v Cl"ma’*g"’WTk o — o)
1 3 maX(GO) k\2
(36)
Setting the constants ¢ and co in (36) as
T e COmax(Go)/nT0’
we rewrite (36) to
M
CHZk _ Zk+1||2 + <B o _> ||fEk _xk+1||2
2 4
1 * k k+12
+ (5= o) e -6
A R P
- 2c19
2 G k\2
+ 5eno?, (Go)T0TF + cnamax(Q o)(T°) ) (37)
Since 7% is non- decreasmg, 2:;3 > 2 Meanwhile, by
the definition of the energy functlon vk > 1 Llgh — o712 By
the definitions of z* = 1G,2" and L, 1GTGu, l|2F —
R = 2y (@ — 22 > L (L) — 22

Applying these three facts to (37) yields

1 M 1
o )‘-rnin Lu - — ko k412 . k1 k+12
2(C (L) +p 2)||a: A R A

(1 + Z—k) vk _yhktl

cno—?nax (GO) (Tk)2
2

+ 5eno?, (Go) 07 + (38)

Step 3: Define
2 k\2
CNOmax (GO) (T )
2 )
which is a non-increasing non-negative summable summable

sequence as 7F is. The left-hand side of (38) is non-negative
because cAmin(Ly) + p > % Thus, (38) leads to

k. 2
0% :=5enoy . (

GO)TOTk +

(39)

k
<1+ﬁ> VE— VL 6k > 0.

We use this inequality to show that V¥ has a finite upper bound.
From (39) we have

k
VL < (1 + —) vk 4ok

(1 LT et i) g
< +ﬁ + — 570 +
<
k k-1 k q
k" k
<V H( 0>+ <9 I1 <1+2 )>+9
: k//:O Iik//+1
k
k”
= H ( T H (1+ 2T0>

”
(VO + Z o*

k"=0
" > Tk’
_<V0+Zt9k>exp{zﬁ}<oo, (40)
k"=0 k'=0

where we use the inequality 1 + a < exp{a} that holds for all
a € R, and the fact that 7% and 6% are both non-negative and
summable. Thus, we conclude that V* has a finite upper bound,
denoted as V.

Step 4: Now we begin to prove the convergence. Summing up
(38) from k = 0 to k = oo yields

[o¢]
1 M
) [5 (Ckmin(Lu) +p- 7) Iz — 2

k=0

1 k k+1)2
+oolok = g

o0 k o0
0 T k k
VS TvEEY s
k=0 k=0

SVO+%ZT]€+ZQIC<OO. 1)
k=0 k=0
Thus, we conclude that lim (2% —2%+1) =0 and
limg o0 (0% — ¢**1) = 0. Following these limiting properties,
when k — oo, the dual update (18) leads to G,2* — 0, which
implies that

Go2" = G,i* + G,EF — 0. (42)

Also, we have L,2* — 0 as L, = %GZG’O. Consequently, in
the limit (17) becomes

V(=) +GTe" — 0. (43)
Meanwhile, by definition
1
§Guxk —ZF=o. (44)

Comparing (43), (42) and (44) with the KKT conditions (14),
(15) and (16), we conclude that the triple (z*, 2*, ¢*) satisfies
the KKT conditions when & goes to infinity.
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Next, we show that {(z*, 2%, #*)} converges when k — oo.
Since the sequence V¥ is bounded, ||z* — x*|| and ||¢* — ¢*||
are also bounded. Thus, there exists a subsequence {(x"t, ¢*)}
which converges to a cluster point (2>, ) of {(z*, $*)} and
(2, ¢>) is optimal to (3).

Construct another energy function V) := &z% — 2|2 +
cllz — 2|2 + L[|¢* — ¢[]%, where 2> := 1G,a>. The
analysis for V¥ can be applied to VX In particular, analogous
to (40), given any fixed k;, we have

Volé < <V£t + Z 0“) exp{

o0 Tk/
Z The

k'=Fk; k'=k¢

00 0 ka
s Y oo ¥ S @

k'=k, k'=k,

for any k > k;. Observe that (xFt, ¢*) — (2, $>) leads to
VEt — 0.1n addition, the sequences 6 and 7% "%, _ 0F" < o0
and) 5 7K < 00, respectively. Therefore, forany e > 0 there
exists an integer ¢ such that

o0

Vao < i, >

00
K € K 0
0 <Z,and E T < 7 log2.
K=k,

K=k,

Then according to (45) we have V¥ < ¢ for all k > ky,.
Therefore, VX — 0 as k — co. From the definition of VX, we
conclude that {(z*, 2* ¢*)} converges to (2, 2, $>), which
is optimal to (3). [ |

APPENDIX C
PROOF OF THEOREM 2

Proof. Step 1: From Assumption 5, the local cost functions
fi are strongly convex with constant m > 0. Thus, we have

[
(V) = Vf(a), 2" —a)
= (V[f(@") = V@), a"" —a%)
AV (M) = V(b)) 2T — 2. (46)

Observe that (V f(2%) — V f(a*), 21 — 2*), the first term
at the right-hand side of (46), also appears in (25) in the proof
of Theorem 1. We follow the derivation to obtain (31), but
then look for new upper bounds of (G,E**1 ¢* — ¢*) and
(G,EF, ¢*+1 — ¢F), which are different to those in (32) and
(33). For the term (G, E**1, ¢F — ¢*), we observe that

<G0Ek+17¢k - ¢*>
_ <G0Ek+1,¢k+1 o ¢*> 4 <G0Ek+1,¢k o ¢k+1>

a1 k-+12 1 k+1 (2
< —||G,E — —
< GG + 5+ — o'
C1 k41112 1 k k412
— |G E el _
+2) I+ 5 ls* = ¢

< 10ma(Go) | B

1 § 1
+ — "t — " )P + — 0" — ¢" %, 47)
2¢; 2¢q

where ¢; > 0 is any positive constant. For (G, E*, pk+1 — ¢F),
it holds

<G0Ek7¢k+1 o ¢k>

IN

C2 k2 1 k+1 k2
—2\G.E — —
5 | [° + 2CZ\\¢ o" |l

2005 (Go) | E* |2
- 2
where ¢y > (0 is any positive constant.
For the second term at the right-hand side of (46), we have

(Vf("th) = V f(a), 2" —2%)

1
+ g lo" =M @)
C2

1
—||$k+1 _ x*HZ

< SUVIEH = VFEN P + 5

2
<@l sl — |,
C3
where c3 > 0 is any positive constant. The last inequality uses
the fact that the gradients of the local cost functions V f;
are Lipschitz continuous with constant A/ > 0 according to
Assumption 3.
Using (47), (48) and (34) to rewrite (31) followed by substi-
tuting the result and (49) into (46), we obtain

Vk+1 S Vk o CHZk o zk+1||2

T — 2F)1? + (49)

M2
(g_c:),Q )ka_kaQ
1 1
(e =5 ) 6 — g
c 201 2cy

R T NP TSR S STy SR
m— o ) e =[P o - |

3 C1

Co &
(5 +7) 2 (G I EFI?

(o1 5) OB GO [ (50)

4

By the same reasoning in the proof of Theorem 1, || E*|| < \/n7*
and || E*+1|| < \/n7*. Thus, (50) becomes

Vk+1 < Vk o CHZk o Zk+1||2

p 3 M?
o <_ . _) ”xk 7Ik+1H2

1 1 1
S G | Al
c  2c1  2co
1 k+1 *1(12 1 k+1 *(12
(= 5 ) = o+t = o)

+ sn(7F)2 (51)

where

C2 C
s = (Cl + 5 + 5) U?nax(GO) > 0.

Step 2: Now we are going to find constants 6 > 0 and v > 0
such that

(L4 0)VFHE < VF 4 yn(rF)2. (52)
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Given any §, using the definition of the energy function V**1  and the definition of L, = %GOT G, such that

to rewrite (51) as 5 2
C
(14 OVFH < VE g2k — 2412 leLo B¥|1* < —omax (Go) | B < Zomax(Go)n(r’“)Q,
M? 2
- (g - T) ot — ot leLo B < T ohac(Goln(rh)
(1 1 1 ) ||¢k ¢k+1 ”2 Combining (55), (56) and (57), we obtain
\e 20 20 - . 1 .
1654 = 6"11 < s (87" =o'
. (m . L . p5> || k41 g ||2 min
2c3 2 + (8 M2 +4p?) 2" — 2" P44t op 1 (Gu) |12 — 25112
" <2L * é) 194 — 7|12 + edl|=F T — 27| + 400 (Go)n(T)?) . (58)
Thus, we can use (54) and (58) to rewrite (53) as
+sn(r")?. (53)

(L+8)VHtt

We shall replace the terms [|zF+1 — 2*||2 and ||¢**! — ¢*||? in 1 s\ 4 (G

(53) with terms [|2% — 2FF1|[2, A4 22 (lak — 2R T2, < vk (1 - (_ ) —‘i"zma?G : ) |2 — Zh )2
O mi o

||Ik+1 - $*||2 and (Tk)2_ 2c1 ¢ i

For |25l — 2*||2, because 2FF1 — 2" = Su(zF+! — o), (p M (1 8\ (8M*+4p?)
we have 2 2 2c;  ¢) 7%,,(Go)
2 1 1 1
k+17*2<o—max(Gu) B+l )2 ko kg2 _ (L ko k+1y2
R s PR N Cae e R EE e
To handle [|¢* ™! — ¢*||%, use the fact that L,, = 3GL G, and 1 pé oo, (Gy)
reorganize (19) to obtain —|\m- E T 9 4
T/ 1 k+1 *
Go (¢ - ¢ ) ( 1 5) 8M2
—(Vf(2") = Vf(a") + Gy (=" = 2") 21 ¢ Ghin(Go)
2 4
+ p({Ek — SEkJrl) + CLO(EIc - Ek+1). (55) Hl,k+l _ ‘T*Hz + (s + (L + é) 4c Um?X(G;O)> n(Tk)2.
2c1 ¢ Ohin
Since both ¢**! and ¢* are in the column space of G, the (59)

left-hand side of (55) is lower-bounded by

For convenience, set the constants as
Tonin(Go) |67 = &7 < [|GZ (¢ = 9" (56)

c 1
. . : - ° 4 M?(2 M?
The right-hand side of (55) is upper-bounded by =35t m(2mp — M2)52, (Cy) ( (2mp + M7)
(v k v * GT k _ _k+1
I =(V/) = V16D +eGule” — 2 ISR 4 )+ 2002 (Gum(2inp — 117 ).
er(l‘k _ xk+1) + CLO(Ek _ Ek+1)||2 e
co = ,
<4V F(¥) = V@ + 4lleGy (2 = )2 T 20—
1/2m + p/M?  2mp+ M? 1 p
4 k _ L k+1y(2 4 Lo Ek _Ek+1 2 — — -
+dlp(at — 2P+ Lol ) s : (L)
< 8| V(@ ) — V()| + 8[|V f(z¥) — V(| )
<8Vl ) F@l IV U )l where the range of cg is from the hypothesis that p > éw—m.Then
+ 4)|cGL (28 — 2HTH|12 + 4| p(z® — 2| (52) is achieved with constants
+8[lcLo B* || + 8[| cLo EM |2 2
. 2. (G, ¢ 2. (G,)(2mp—M? c

402, (G,) 2¢1°  32m(p® +2M2)  2¢;’

max

< 8 M2 ||z — 272 + (8 M2 + 4p%)||2* —

k k k
=+ 4CQUI2IIB,X( u) ||Z i H2 + 4C2amax(G0)n(T )2' Tﬂ(?'mp—MZ) 4 M?

57 2mp+M?— a157,,(Go)
The last inequality uses the fact that V f is Lipschitz continuous (2 + Shax(Gu) + - 8 M2 ) '
. 2 4 G in(Go)
with constant M > 0 such that -
. i 0 1\ 4oy, (Go)
IVHGH) = V@) < M2k = o, —o+ (B am) SR
IV f(@*) = VP < M2 |la® — 1%, Note that § > 0 and v > 0.
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Step 3: Now we prove the linear convergence of V¥ to From (61), in which kg, ¢ and 1* will be determined later, we
0, which implies the linear convergence of z* to x*. Using have
the censoring threshold rule 7% = o - (3)*, we further rewrite

(52) as (k + 1) (Vk+1 + nk+1)
(14+0)VFE < VE 4 yna? . (B3
Analogous to the technique used in handling (40), it holds
VERL < (146)7H (VP + yna? - (BH)F)
(1+6) (1 +6) " (VF +yna - (52)47)

+ona? - (5%)"]

= (k)W 4 [(k+1)7 — (k)] <§||m’““ e

* 1 *
el = 2Pl - ||2>+(k+1)‘177’““

N

(51)
(R)IV — c(k)7]| % — 2412

; 2
5 5 ) H:L'k—l'k+1||2

IN
I
=
S—
2
7N
()
I
(o)
w

k
(14 6)" kY0 4 Cna? Z

IN

1 1 1
- AT ko k412
=t O ) L
((1+6)7(k+17k’)(62)k’> 1
p
_ q S 19— (a2 L.
k {r (m = 50 = e 27 = )5}
k/
(1+5) (k+1) VO +’YTLO¢2MZ:O((1+5)62) ] ||xk+1 71,*”2
k *
< (1+8)" D (Vo 4 ama’ ) +ef(k+1)7 = (k)7 25 — 2|
1—(140)p? N [(k‘)q N (k+1)1— (k:)q] 16T g
. . 2c c
where the last inequality holds when (1 + §)3% < 1. !
In summary, for any positive § > 0 that satisfies + (k)7sn (%)% + (k 4 1)~ H1
2. (G,) ¢ 32, (G,)2mp— M?) ¢ (54),(58) 1 (k+1)7— (k)
0 < mi min\*0) 7 minl =0 _ < ayk _ () e - —
= i { 402 (Gy) 2c¢1”  32m(p? + 2 M?) 2’ = WV (k)] e 2¢1 (k)e
2mp—M? 2
ménz;iM2 ! - 4M(G ) 1 deotx(Gu) k k412
AT IRY 2. (G Iz I
(’§ S m c&;"nm(Go)) o
M2 k4 1)9 — (k)
the energy function V¥ converges to 0 at a linear rate of O((1 + - (k)q{g -8 5 2i + ( ) T (k) >
5)""). Moreover, by the definition of V¥, it holds that V% > &
£]|x*¥ — 2*||?. Thus, the primal variable x’ converges to the 8 M2 + 42
unique optimal solution z* at O((1 + §)~2). [ | c&z—(G)}”xk — ghHL)2
Remark 4: If we set ¢ = W]\l{mm(g) and p = Mlif min °
and further set 37— = 2, s = 1 — oL and ¢ = 52 in (59), Ly 1 4 M2 (k+1)7 — (k)
then following the proof of Theorem 2 we can derlve another — (k) |m — 2_03 T 162, (G,) - (k)a '

upper bound of § as shown in (22) of Corollary 1.

p CO—?naX(GU) 8 M2
APPENDIX D 5" 4 T 2. (G,)
PROOF OF THEOREM 3
1 1 1
Proof. Step 1: As in Step 1 of the proof of Theorem 2, we o =2 || = (k)7 | = — =— — =— | [|[¢" =" T1|?
. . . c 2 2¢o
obtain the inequality (51).
Step 2: Now our aim is different to that in Step 2 of the proof of 4 (k)qtkn(q-k)z + (k+ 1)an+1 ,

Theorem 2, as we are going to find constants ¢ > 0 and n* > 0
as well as a time index kq such that

k4 1) (VEFL bty < (k)2 (VE +9F) (61
ERT V) S WO et (G) | (1) = (1) ook (Go)
for all & > k. et c162:.(Go) * (k)4 720 (Go)

min(

> 0.
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Set the constants ¢, ¢o and c3 the same values as those in the
proof of Theorem 2. Notice that w =(1+ %)q —-1—
0 as k goes to infinity. Then, there exists a time index kg such

that for any k& > ky, it holds

(k+1)7— (k)7 _ . f 62.(G) 1
RSt A WA __minl —9/ -
=M 102, G O 26 )0

(k)
¢52,(Go) (p  csM?  2(p*+2M?)
4(p2 + 2M2) 2 2 cl&?nin(GO) ’
1 4 M? ~
m- E B cl&rnin(GO) Urznin(GO) (62)
TR (Gu) sM2 1 J
g + 4 + C&?nin D) 4camax(G0)

where the right-hand side is larger than 0. In this situation,

k o 22010, (Go) ; :
th <t:=s+ E I (eN + 1. Further, using the censoring
threshold 7% = i ,f‘) , we have
t 2
(k+1)7 (VFH4phtt) < (k)qv’“+(k;;—0:7q+(k + 1)apk+L,
(63)

Now we determine the values of ¢ and 7F. Since
S (k,)%,q < oo for any time index k when 2r —q > 1,

tna?

setting (k)Ink == >"0_, Tye—e in (63) leads to an equivalent
form
(k + 1)q (Vk+1 + nk-‘rl) S (k)q (Vk + nk) ,
which is exactly what we want in (61). Therefore, forany k > k),
it holds
(ko) (V40 + 1)
(k)

VE<vF 4k <

That is, the energy function V* converges to 0 at a sublin-
ear rate of O((k)~9). Moreover, by the definition of V%, it
holds that V¥ > £2||z% — 2*||2. Thus, the primal variable z*
converges to the unique optimal solution x* at a sublinear rate of

O((k)3). o
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