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Communication-Censored Linearized ADMM for
Decentralized Consensus Optimization

Weiyu Li, Yaohua Liu , Zhi Tian , and Qing Ling

Abstract—In this paper, we propose a communication- and
computation-efficient algorithm to solve a convex consensus op-
timization problem defined over a decentralized network. A re-
markable existing algorithm to solve this problem is the alternat-
ing direction method of multipliers (ADMM), in which at every
iteration every node updates its local variable through combin-
ing neighboring variables and solving an optimization subprob-
lem. The proposed algorithm, called as communication-censored
linearized ADMM (COLA), leverages a linearization technique to
reduce the iteration-wise computation cost of ADMM and uses
a communication-censoring strategy to alleviate the communica-
tion cost. To be specific, COLA introduces successive linearization
approximations to the local cost functions such that the resultant
computation is first-order and light-weight. Since the linearization
technique slowsdown the convergence speed,COLAfurther adopts
the communication-censoring strategy to avoid transmissions of
less informative messages. A node is allowed to transmit only if
the distance between the current local variable and its previously
transmitted one is larger than a censoring threshold. COLA is
proven tobe convergentwhen the local cost functionshaveLipschitz
continuous gradients and the censoring threshold is summable.
When the local cost functions are further strongly convex, we
establish the linear (sublinear) convergence rate of COLA, given
that the censoring threshold linearly (sublinearly) decays to 0. Nu-
merical experiments corroborate with the theoretical findings and
demonstrate the satisfactory communication-computation tradeoff
of COLA.

Index Terms—Decentralized network, consensus optimization,
communication-censoring strategy, linearized approximation,
alternating direction method of multipliers.
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I. INTRODUCTION

IN THIS paper, we consider solving a convex consensus
optimization problem

x̃∗ = argmin
x̃

n∑

i=1

fi(x̃), (1)

which is defined over a bidirectionally connected decentralized
network consisting of n nodes. All the nodes cooperate to find
an optimal argument x̃∗ of the common optimization variable
x̃ ∈ Rp, but the convex local cost function fi(x̃) : Rp → R held
by every node i is kept private. We focus on the scenario that the
nodes are unable to afford complicated computation, while the
communication resources are also limited. Our goal is to devise
a communication-efficient decentralized algorithm, which relies
on light-weight computation, to solve (1).
Decentralized consensus optimization has attracted extensive

interest in recent years. Problems in the form of (1) are involved
in a variety of research areas, including wireless sensor net-
works [1]–[3], communication networks [4], [5], multi-robot
networks [6], [7], smart grids [8]–[10], machine learning sys-
tems [11]–[13], to name a few. Popular algorithms to solve (1)
span from the primal domain to the dual domain. The primal
domain algorithms, such as sub-gradient descent [14]–[16],
dual averaging [17]–[19] and network Newton [20], have to
use diminishing step sizes to guarantee exact convergence to
an optimal solution, and thus suffer from slow convergence.
On the other hand, (1) can be reformulated as a constrained
optimization problem and solved by dual domain algorithms,
among which the celebrated alternating direction method of
multipliers (ADMM) is able to achieve fast and exact con-
vergence [2], [21]–[23]. When ADMM is implemented in a
synchronous manner, at every iteration, every node solves an
optimization subproblem dependent on its local cost function,
and then exchanges the calculated local variable with its neigh-
bors. Therefore, if the local cost functions are not in simple
forms, solving the subproblems is computationally demanding.
To alleviate the computation cost, the decentralized linearized
ADMM (DLM) replaces the local cost functions in ADMM by
their linear approximations, and attains a dual domain method
with light-weight computation [24], [25]. Similar techniques
have also been applied to develop other first-order dual domain
algorithms, such as EXTRA [26], NEXT [27], and gradient
tracking methods [28]–[32]. If computing the inverse of a Hes-
sian matrix is affordable at a node, one can replace the local
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cost functions by their quadratic approximations. The resul-
tant second-order algorithms, DQM and ESOM, have faster
convergence than their first-order counterparts [33], [34]. Be-
tween the first- and second-order algorithms, a recent work
in [35] develops a primal-dual quasi-Newton method that ap-
proximates the second-order information with local gradients.
The lower complexity bounds and rate-optimal algorithms of
decentralized optimization are developed in [36]–[38]. Note
that the communication cost in the aforementioned algorithms
is proportional to the number of iterations, since after a given
number of iterations every node needs to communicate with its
neighbors.
In all decentralized algorithms, there is an essential

communication-computation tradeoff [39]–[43]. An algorithm
with light-weight iteration-wise computation generally needs
more number of iterations, and in consequence more communi-
cation cost, to reach a target accuracy. For example, compared
with ADMM, DLM enjoys simple gradient-based computation,
but suffers from relatively slow convergence speed and high
communication cost. In this paper, we aim at achieving a fa-
vorable communication-computation tradeoff in a decentralized
network, where the nodes are only affordable to light-weight
gradient-based computation. The limitation on the computation
power may come from that the nodes are equipped with cheap
computing units in a wireless sensor network, or from that
using higher-order information is prohibitively time-consuming
for finding a high-dimensional solution in a machine learning
system.
Given the constraint on the computation cost, we adopt the

communication-censoring strategy to further save the commu-
nication cost. The basic idea of the communication-censoring
strategy is to only allow transmissions of informative messages
over the network. A simple yet powerful protocol is to prevent a
node from transmitting a variable that is close to its previously
transmitted one, where the “closeness” is determined by com-
paring the Euclidean distance with a predefined time-varying
censoring threshold. The communication-censoring strategy is
tightly related to event-triggered control of continuous-time net-
works [44]–[46], and finds successful applications in discrete-
time decentralized optimization [47]–[50]. It has been combined
with primal domain methods such as sub-gradient descent [47]
and dual averaging [48], as well as dual domain methods such
as dual decomposition [49] and ADMM [50]. However, similar
to their uncensored counterparts, the primal domain methods
in [47], [48] have to use diminishing step sizes to guaran-
tee exact convergence. On the other hand, the dual domain
methods in [49], [50] require the nodes to solve computation-
ally demanding subproblems. Our proposed algorithm, called
as communication-censored linearized ADMM (COLA), com-
bines the communication-censoring strategy with the first-order
dual domain method DLM. Particularly, wemodify the standard
communication-censoring strategy in [47]–[50] to fit for the
special algorithmic structure of DLM so as to attain better
performance. We rigorously establish convergence as well as
sublinear and linear convergence rates of COLA. To the best
of our knowledge, COLA is the first communication-censored

method that only uses gradient information but achieves linear
convergence.
Starting from the derivation of the classical ADMM in

Section II-A, we introduce COLA in Section II-B. COLA mod-
ifies ADMM in two aspects. First, linearizing the local cost
functions enables approximately solving the time-consuming
subproblems in ADMM, and thus saves computation. Second,
the communication-censoring strategy is applied to remedy
the poor communication efficiency caused by the linearization
step. To further demonstrate the design principles of COLA, its
tradeoff between communication and computation is discussed
and compared with those of several existing dual domain al-
gorithms in Section II-C. In Section III-B, we prove that when
the censoring threshold is properly chosen, COLA converges
to an optimal solution of (1) (Theorem 1). Moreover, when the
local cost functions are strongly convex, the linear and sublinear
convergence rates of COLA are established (Theorems 2 and 3).
The analysis provides guidelines for choosing the parameters
of COLA to reduce computation and communication costs.
Section IV presents numerical experiments and demonstrates
the communication-computation tradeoff of COLA. Section V
summarizes our work.

A. Notations

For matrices A ∈ Ra×n and B ∈ Rb×n, [A;B] ∈ R(a+b)×n

stacks the two matrices by rows. Define the inner product of two
vectors v1 and v2 as 〈v1, v2〉 := vT1 v2, which naturally induces
the Euclidean norm ‖v‖ :=

√
〈v, v〉 of a vector v. For a matrix

M , define λmin(M) as the smallest eigenvalue, σmax(M) as
the largest singular value, and σ̃min(M) as the smallest nonzero
singular value. When M is a block matrix, (M)i,j denotes its
(i, j)-th block.
Throughout the paper, we consider a bidirectionally con-

nected network G = {V,A}, whereV = {1, . . . , n} denotes the
set of n nodes and A = {1, . . . ,m} is the set of m directed
arcs. Nodes i and j are called as neighbors if (i, j) ∈ A and
(j, i) ∈ A. We denote the set of node i’s neighbors as Ni with
cardinality dii = |Ni|. Further define the extended block arc
source matrix As ∈ Rmp×np containing m× n square blocks
(As)e,i ∈ Rp×p. The block (As)e,i = Ip if the arc e = (i, j) ∈
A and is null otherwise, where Ip is the p-dimensional iden-
tity matrix. Likewise, define the extended block arc destina-
tion matrix Ad ∈ Rmp×np, whose block (Ad)e,j ∈ Rp×p is not
null but Ip if and only if the arc e = (i, j) ∈ A terminates at
node j. Then, define the extended oriented incidence matrix as
Go = As −Ad and the unoriented one as Gu = As +Ad. The
oriented Laplacian is written as Lo = 1

2G
T
o Go and the unori-

ented Laplacian Lu = 1
2G

T
uGu. The degree matrix is defined as

D = 1
2 (Lo + Lu), which is block diagonal with diagonal blocks

Di,i = diiIp.

II. ALGORITHM DEVELOPMENT

In this section, we propose COLA, the communication-
censored linearizedADMMto solve the decentralized consensus
optimization problem (1). Rooted on ADMM, COLA features
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in two ingredients, linearization to reduce the computation cost
and communication censoring to reduce the communication
cost. We shall first introduce the development of ADMM in
Section II-A, and then combine the linearization and
communication-censoring techniques to devise COLA in
Section II-B. The tradeoff between computation and commu-
nication is discussed in Section II-C.

A. ADMM: Alternating Direction Method of Multipliers

ADMM is a powerful tool to solve a structured optimization
problem with two blocks of variables, which are separable in
the cost function and subject to a linear equality constraint.
To rewrite (1) into the standard bivariate form, we introduce
local variables xi ∈ Rp as copies of x̃ at nodes i, and auxiliary
variables zij ∈ Rp at arcs (i, j) ∈ A. Since the network is
connected, (1) is equivalent to

min
{xi},{zij}

n∑

i=1

fi(xi),

s.t. xi = zij , xj = zij , ∀(i, j) ∈ A. (2)

An optimal solution of (2) satisfies x∗
i = x̃∗ and z∗ij = x̃∗, where

x̃∗ is an optimal solution of (1).
Concatenate the variables as x = [x1; . . . ;xn] ∈ Rnp and

z = [z1; . . . ; zm] ∈ Rmp, introduce the aggregate function
f(x) :=

∑n
i=1 fi(xi), and denote A := [As;Ad] ∈ R2mp×np

and B := [−Imp;−Imp]. The matrix form of (2) is

min
x,z

f(x), s.t. Ax+Bz = 0, (3)

which is the standard bivariate form handled by ADMM, except
that the variable z is absent in the cost function.
Introduce the augmented Lagrangian of (3) as

L(x, z, λ) = f(x) + 〈λ, Ax+Bz〉+ c

2
‖Ax+Bz‖2,

where the penalty parameter c > 0 is an arbitrary positive con-
stant and the Lagrange multiplier λ := [φ;ψ] ∈ R2mp. The two
vectors φ, ψ ∈ Rmp are the Lagrangian multipliers associated
with the two constraintsAsx− z = 0 andAdx− z = 0 respec-
tively. At time k, the ADMM update follows

xk+1 = argmin
x

L(x, zk, λk),

zk+1 = argmin
z

L(xk+1, z, λk),

λk+1 = λk + c(Axk+1 +Bzk+1).

According to [23], if the variables are initialized with φ0 =
−ψ0 and Gux0 = 2z0, then we can eliminate zk+1 and replace
λk+1 by a lower-dimensional dual variable, such that the update
is reduced to

xk+1 = argmin
x

f(x) + 〈µk − cLux
k, x〉+ cxTDx, (4)

µk+1 = µk + cLox
k+1, (5)

where µk := GT
o φ

k ∈ Rnp. By splitting µk = [µk
1 , . . . , µ

k
n],

µk
i ∈ Rp denotes the local dual variable of node i.

Using the definitions of f(x),D,Lu andLo, we describe how
the decentralized ADMM is implemented. At time k, every node
i updates its local primal variable xk+1

i using its xk
i and µk

i , as
well as xk

j from all neighbors j via

xk+1
i =argmin

xi

fi(xi)+

〈
µk
i − c

∑

j∈Ni

(xk
i +xk

j ), xi

〉
+cdiix

2
i .

(6)

Then node i broadcasts its xk+1
i to all neighbors. Finally, node

i updates its local dual variable µk+1
i using its xk+1

i and µk
i , as

well as xk+1
j from all neighbors j via

µk+1
i = µk

i + c
∑

j∈Ni

(xk+1
i − xk+1

j ). (7)

The costs of implementing ADMM are two-fold. The first is
in computing the local primal and dual variables xk

i and µk
i , in

which the update of xk
i in (6) is particularly demanding when

the local cost function fi(xi) is complicated. The second is in
transmitting the local primal variables xk+1

i , which is expensive
when the bandwidth resource is limited.

B. COLA: Communication-Censored Linearized ADMM

COLA adopts two strategies to improve the computation and
communication efficiency of ADMM: linearization and com-
munication censoring. The linearization technique has been used
in [24], [25] to deviseDLM, a gradient-based variant of ADMM.
DLM effectively reduces the computation cost of solving sub-
problems inADMM,but sacrifices on the convergence speed and
thus results in high communication cost. Therefore, we use the
communication-censoring strategy to prevent transmissions of
less informativemessages.Note that though the communication-
censoring strategy has been applied to improve the communi-
cation efficiency of sub-gradient descent, dual averaging, dual
decomposition andADMM[47]–[50], we customize it in COLA
so as to achieve a satisfactory balance between communication
and computation, as we shall explain below.
Linearization: Notice that the update of the primal variable

xk+1
i in (6), which usually has no explicit solution, dominates

the computation cost of ADMM. Therefore, a computationally
demanding inner loop should be used to solve xk+1

i . To address
this issue, [24], [25] linearizes the local cost functions at every
iteration. To be specific, at time k, the function fi(xi) in (6) is re-
placed by its quadratic approximation fi(xk

i ) + 〈∇fi(xk
i ), xi −

xk
i 〉+

ρ
2‖xi − xk

i ‖2 at xi = xk
i , where ρ > 0 is a positive

linearization parameter. Therefore, the primal variable is
updated via

xk+1
i =xk

i − 1

2cdii + ρ



∇fi(x
k
i ) + c

∑

j∈Ni

(xk
i − xk

j ) + µk
i



 .

(8)

Note that the main computation cost of (8) is in calculating the
gradient ∇fi(xk

i ), which is light-weight. The update of dual
variable remains the same as (7) in ADMM.
Communication censoring: The linearization technique sig-

nificantly reduces the computation cost of ADMM, but slows
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Algorithm 1: COLA Run by Node i.

Require: Initialize local variables to x0
i = 0, µ0

i = 0,
x̂0
i = 0 and x̂0

j = 0 for all j ∈ Ni.
1: for times k = 0, 1, · · · do
2: Compute local primal variable xk+1

i by

xk+1
i =xk

i −
1

2cdii + ρ



∇fi(x
k
i )+c

∑

j∈Ni

(x̂k
i −x̂k

j )+µk
i



 .

3: Compute ξk+1
i = ‖x̂k

i − xk+1
i ‖.

4: If ξk+1
i ≥ τk+1, transmit xk+1

i to neighbors and let
x̂k+1
i = xk+1

i ; else do not transmit and let
x̂k+1
i = x̂k

i .
5: If receive xk+1

j from any neighbor j, let
x̂k+1
j = xk+1

j ; else let x̂k+1
j = x̂k

j .
6: Update local dual variable µk+1

i as

µk+1
i = µk

i + c
∑

j∈Ni

(x̂k+1
i − x̂k+1

j ).

7: end for

down the convergence speed, and hence results in high com-
munication cost. Hence, we introduce the communication-
censoring strategy to further reduce the communication cost.
Intuitively, when xk+1

i is close to xk
i , it is not necessary for node

i to transmit both of them to neighbors. Motivated by this fact,
the communication-censoring strategy prevents transmissions
of less informative messages so as to reduce the communication
cost.
To rigorously explain the communication-censoring strategy,

define a state variable x̂k
i ∈ Rp as the latest value that node

i has transmitted to neighbors before time k. At time k, after
calculating xk+1

i , node i evaluates the difference between x̂k
i

and xk+1
i by their Euclidean distance ξk+1

i = ‖x̂k
i − xk+1

i ‖,
and then compares the difference with a predefined censoring
threshold τk+1 ≥ 0. Node i is allowed to transmit xk+1

i to
neighbors and update x̂k+1

i = xk+1
i , if and only if ξk+1

i ≥ τk+1.
Otherwise, the transmission is censored and x̂k+1

i = x̂k
i . With

the state variable x̂k
i , COLA changes the DLM updates in (8)

and (7) to

xk+1
i = xk

i − 1

2cdii + ρ



∇fi(x
k
i )+c

∑

j∈Ni

(x̂k
i − x̂k

j ) + µk
i



 ,

(9)

µk+1
i = µk

i + c
∑

j∈Ni

(x̂k+1
i − x̂k+1

j ). (10)

Stacking the state variables in x̂ = [x̂1; . . . ; x̂n] ∈ Rnp, we can
write (9) and (10) in the matrix form of

xk+1 = xk − (2cD + ρI)−1
(
∇f(xk) + cLox̂

k + µk
)
, (11)

µk+1 = µk + cLox̂
k+1. (12)

COLA run by node i is outlined in Algorithm 1. At time 0,
node i initializes its local variables to x0

i = 0, µ0
i = 0, x̂0

i = 0

and x̂0
j = 0 for all j ∈ Ni. For all times k, node i first computes

its local primal variable xk+1
i by (9). The computation of xk+1

i
at node i is based on its latest local primal-dual variables xk

i and
µk
i , the latest broadcast information x̂k

i of itself and x̂k
j from its

neighbors j, as well as the gradient of the local cost function
fi(xi) at xi = xk

i . Then ξki , the difference between the newly
computed primal variable xk+1

i and the previously transmitted
x̂k
i is calculated and denoted by ξ

k+1
i . If ξk+1

i ≥ τk+1, meaning
that the difference exceeds the threshold to communicate, node i
transmits xk+1

i to neighbors and lets x̂k+1
i = xk+1

i . Otherwise,
node i does not transmit and lets x̂k+1

i = x̂k
i . On the other

hand, if node i receives xk+1
j from any neighbor j, then it lets

x̂k+1
j = xk+1

j . Otherwise, it lets x̂k+1
j = x̂k

j . Observe that this
communication protocol guarantees that node i and its neighbors
store the same state variable x̂k+1

i . Finally, the local dual variable
µk+1
i is updated by (10).
Remark 1: Comparing (8) and (7) with (9) and (10), we ob-

serve that the only differencebetweenDLMandCOLAis replac-
ing c

∑
j∈Ni

(xk
i − xk

j ) by c
∑

j∈Ni
(x̂k

i − x̂k
j ) in the primal-dual

updates. This is not the standard strategy used in the other
communication-censored algorithms [47]–[50], where all the
local primal variables xi are replaced by the state variables x̂i.
We customize the communication censoring strategy for COLA
and keep the local primal variablexk

i inx
k
i − 1

2cdii+ρ∇fi(xk
i ) as

it is, becausexk
i has alreadybeen available for node i, and ismore

up-to-date than x̂k
i . Recall that the term xk

i − 1
2cdii+ρ∇fi(xk

i )

comes from the linearization of fi(xi). Intuitively, linearization
around xi = xk

i leads to faster convergence than linearization
around xi = x̂k

i , which has been validated in our preliminary
numerical experiments. On the other hand, we do not change the
state variables x̂k

i by the corresponding local primal variables
xk
i in the term c

∑
j∈Ni

(x̂k
i − x̂k

j ) in both primal and dual
updates. Note that xk

i and x̂
k
i are not equal when communication

censoring happens and the error between them is determined by
the censoring threshold τk, while the dual update (10) accu-
mulates all the previous differences between the neighboring
state variables x̂k

i and x̂k
j . Thus, replacing the state variables

x̂k
i therein by the corresponding local primal variables xk

i shall
accumulate the errors, and result in instability or even divergence
of the recursion.
The censoring threshold τk is a critical factor that influences

the communication-computation tradeoff of COLA. Setting a
large τk prevents less-informative transmissions, and thus re-
duces the iteration-wise communication cost, though the recur-
sion needs more number of iterations and hence more compu-
tation cost to reach a target accuracy. However, a too large τk

slows down the convergence speed, which in turn increases both
the overall computation and communication costs. Since τk sets
an upper bound for the distance between xk

i and x̂k
i , a small

improvement of the local primal variable xk
i cannot be accepted

to the state variable x̂k
i and diffused to the network. In this sense,

the primal variable cannot converge faster than τk. We shall give
rigorous analysis on this issue in the theoretical analysis.
If we expect to obtain a linear rate of convergence, a choice

for the censoring threshold will be

τk = α · (β)k, (13)
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whereβ ∈ (0, 1) andα > 0 are constants. If τk is set asα · (k)−r

with r > 1, a sublinear rate depending on r will be derived. A
special case is τk = 0 for all times k, meaning that there is no
censoring and COLA degenerates to DLM.

C. Tradeoff Between Communication and Computation

Here we discuss the communication-computation tradeoff
in ADMM, DLM, as well as their communication-censored
versions, COCA and COLA.
Generally speaking, among the four algorithms, ADMM

needs the least number of iterations to reach a target accuracy,
but the computation cost of solving subproblems is often re-
markable. DLM alleviates the iteration-wise computation cost
through linearization, but requires more number of iterations
and higher overall communication cost than ADMM.
The communication-censoring strategy in COCA and COLA

adjusts the communication-computation tradeoff through tun-
ing the censoring threshold τk. As we have discussed in Sec-
tion II-B, a larger τk leads to more iterations and thus higher
computation cost, but lower iteration-wise communication cost.
Regarding the overall communication cost required to reach
a target accuracy, there is a phase transition in tuning τk.
When τk is too large, communication censoring is too often
and much more number of iterations is necessary to compen-
sate the information loss, which would deteriorate the overall
communication cost.
Though COCA and COLA both adopt the communication-

censoring strategy, their application scenarios are different.
COCA fits for applications where computation of solving com-
plicated subproblems is not an issue, but communication is
the main bottleneck. Examples include distributed resource
allocation in a data center network and collaborative target
tracking in a radar network. On the contrary, COLA inherits
the advantage of light-weight computation from DLM, and
further reduces the communication cost on top of it. In this
sense, COLA fits for applications where nodes are unable to
afford solving complicated subproblems due to hardware or time
constraints, such as an IoT network equipped with cheap com-
putation units and a drone network cruising in a fast changing
environment.
An illustration of the tradeoff between computation efficiency

and communication efficiency in ADMM, DLM, COCA and
COLA is given by Fig. 1.

III. CONVERGENCE AND RATES OF CONVERGENCE

In this section, we prove that COLA converges to an optimal
solution of the convex consensus optimization problem (1) under
mild conditions. Further, if the local cost functions are strongly
convex, COLA converges to the unique optimal solution of (1)
at a linear or sublinear rate, depending on the choice of the
censoring threshold. Section III-A provides assumptions and
lemmas for the proofs. Section III-B analyzes the convergence
of COLA, while linear and sublinear rates are established in
Section III-C.

Fig. 1. Illustration of the tradeoff between computation efficiency and com-
munication efficiency in ADMM, DLM, COCA, and COLA.

A. Preliminaries

We make the following assumptions for the analysis.
Assumptions 1–4 are sufficient for proving the convergence of
COLA to an optimal solution of (1). Further with Assumption 5,
COLA is guaranteed to converge to the unique optimal solution
of (1) at a linear (sublinear) rate when the censoring threshold
is linearly (sublinearly) decaying to 0.

Assumption 1 (Network connectivity): The communication
graph G = {V,A} is bidirectionally connected.

Assumption 2 (Convexity and differentiability): The local
cost functions fi are convex and differentiable.

Assumption 3 (Lipschitz continuous gradients): The gradi-
ents of the local cost functions ∇fi are Lipschitz continuous
with constantM > 0. That is, given any x̃, ỹ ∈ Rp, ‖∇fi(x̃)−
∇fi(ỹ)‖ ≤ M‖x̃− ỹ‖ for any i.

Assumption 4 (Initialization): The dual variable µ of COLA
is initialized in the column space of GT

o . That is, there exists a
vector φ0 ∈ Rmp such that µ0 = GT

o φ
0.

Assumption 5 (Strong convexity): The local cost functions fi
are strongly convex with constant m > 0. That is, given any
x̃, ỹ ∈ Rp, 〈∇fi(x̃)−∇fi(ỹ), x̃− ỹ〉 ≥ m‖x̃− ỹ‖2 for any i.
Assumptions 1, 2, 3 and 5 are standard in analysis of decen-

tralized algorithms. The initial condition in Assumption 4 can
be easily satisfied, with the simplest choice µ0 = 0.

COLA involves a primal sequence {xk} and a dual sequence
{µk}. In the theoretical analysis, we shall construct a triple
(xk, zk,φk) from the pair (xk, µk), and prove its convergence to
(x∗, z∗,φ∗), which is optimal to (3). Here zk, z∗,φk,φ∗ ∈ Rmp.
The next lemma gives the properties of (x∗, z∗,φ∗).

Lemma 1 (Lemma 1, [24]): Given a primal optimal solu-
tion x∗ of (3) and z∗ := 1

2Gux∗, there exist multiple optimal
dual variables [φ∗;−φ∗] such that every (x∗, z∗, [φ∗;−φ∗]) is a
primal-dual optimal solution of (3). Among all these optimal
dual variables, there exists a unique [φ∗;−φ∗] in which φ∗ lies
in the column space of Go. Moreover, any primal-dual optimal
solution (x∗, z∗, [φ∗;−φ∗]) satisfies the KKT conditions

∇f(x∗) +GT
o φ

∗ = 0, (14)

Gox
∗ = 0, (15)

1

2
Gux

∗ = z∗. (16)
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According to Lemma 1, it is natural to construct zk :=
1
2Guxk ∈ Rmp. To construct φk, note that under Assumption
4, µ0 lies in the column space of GT

o , and by the definition of
Lo = 1

2G
T
o Go, every µk+1 in the dual update (12) also lies in

the column space of GT
o . Thus, there exists a vector φ

k ∈ Rmp

satisfying µk = GT
o φ

k for any k ≥ 0, such that the recursion of
COLA can be rewritten as

xk+1 = xk − (2cD + ρI)−1
(
∇f(xk) + cLox̂

k +GT
o φ

k
)
,

(17)

φk+1 = φk +
c

2
Gox̂

k+1. (18)

Combining (17) and (18) with the KKT conditions (14)–
(16), the next lemma gives two equations that are cornerstones
of the theoretical analysis. To emphasize the error caused by
the communication-censoring strategy, we define an error term
Ek := xk − x̂k therein.

Lemma 2: Let x∗ and φ∗ be a primal-dual optimal pair of (3),
with φ∗ lying in the column space of Go. Then, for all k ≥ 0,
the recursion of COLA satisfies

∇f(xk)−∇f(x∗) = (cLu + ρI)(xk − xk+1) (19)

−GT
o (φ

k+1 − φ∗)+cLo(E
k − Ek+1),

c

2
Go(x

k+1 − x∗) = φk+1 − φk +
c

2
GoE

k+1. (20)

Proof: See Appendix A. !
The convergence analysis of COLA relies on the following

energy function

V k :=
ρ

2
‖xk − x∗‖2 + c‖zk − z∗‖2 + 1

c
‖φk − φ∗‖2, (21)

where the auxiliary variables zk and φk as well as their op-
timal values z∗ and φ∗ are defined above. This energy func-
tion also appears in the analysis of DLM, the uncensored
version of COLA [24]. However, due to the existence of the
communication-censoring strategy which introduces an error
term in the recursion, the analysis of COLA is significantly
different to that of DLM.

B. Convergence

The convergence of COLA is established as follows.
Theorem 1: Under Assumptions 1–4, in COLA we choose

the penalty parameter c > 0 and the linearization parameter ρ >
0 such that cλmin(Lu) + ρ > M

2 , and set the censoring threshold
{τk} as a non-increasing non-negative summable sequence such
that

∑∞
k=0 τ

k < ∞. Then the primal variable xk converges to
an optimal solution x∗ of (3).

Proof: See Appendix B. !
Theorem 1 asserts that COLA converges to an optimal solu-

tion of (1) under mild conditions and provides guidelines for
setting parameters. It is interesting to see that the requirement
cλmin(Lu) + ρ > M

2 is the same as that in DLM [24]. Fixing ρ,
a network with better connectedness (namely, larger λmin(Lu))
allows us to choose a smaller penalty constant c. Fixing c and
λmin(Lu), the linearization parameter ρmust be large enough to

Fig. 2. An illustration of choosing different approximation parameters ρ. In
this situation, at the top-right point, we approximate the original cost function (in
blue) by the dashed lines (in cyan, green, and red). When ρ = 2 and ρ = 5 that
are both larger than the accurate second derivative, the updates are conservative
and go to the green and red points, respectively. When ρ = 0.8 that is smaller
than the accurate second derivative, the update is aggressive and goes to the
cyan point.

guarantee convergence.Note thatρIp approximates theHessians
of the local cost functions fi(xi). A large ρ over-approximates
the curvature and forces xk+1

i to be close to xk
i , which stabilizes

the recursion. On the contrary, a small ρ under-approximates
the curvature and allows the local variables to change quickly,
at the cost of possible divergence. Fig. 2 illustrates the impact
of ρ. Regarding the censoring threshold τk, we require it to be
summable. Intuitively, τk determines the maximal error intro-
duced to the primal update. When this error is controllable, the
convergence of COLA is guaranteed

C. Rates of Convergence

In Section III-B, we have shown that COLA requires {τk}
to be summable so as to guarantee convergence. Below, we
shall prove that convergence rate of COLA also depends on
convergence rate of {τk}. In addition to Assumptions 1–4, we
need the local cost functions to be strongly convex, as stated
in Assumption 5. In this circumstance, COLA converges to the
unique optimal solution of (1) at a linear (sublinear) rate when
{τk} is linearly (sublinearly) decaying.

Theorem 2: Under Assumptions 1–5, in COLA we choose
the penalty parameter c > 0 and the linearization parameter ρ >
M2

2m , and set the censoring threshold τk = α · (β)k with α >
0 and β ∈ (0, 1). Then there exists a positive constant δ > 0
such that the primal variable xk converges to the unique optimal
solution x∗ of (3) at a global linear rate O((1 + δ)−

k
2 ).

Proof: See Appendix C. !
As shown in (60) in the proof of Theorem 2, the constant δ

depends on the algorithm parameters c, ρ and β, the network
topology parameterized by σ̃min(Go) and σmax(Gu), and the
properties of the local cost functions parameterized by M and
m. Define the condition numbers of cost functions and graph
as κf = M

m and κG = σmax(Gu)
σ̃min(Go)

, respectively. The following
corollary shows clearer that, by properly setting c and ρ, how
the constant δ is determined by κf , κG and β.

Corollary 1: Under Assumptions 1–5, in COLA we choose
c = 8M

σmax(Gu)σ̃min(Go)
and ρ = Mκf . Then the global linear rate
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O((1 + δ)−
k
2 ) satisfies

δ ≤ min

{
1

8κ2
G

,
1

2κ2
f + 16κfκG

,
κf

12κG + 6κ2
fκG

,
1

β2
− 1

}
.

(22)

In (22), the terms 1
8κ2

G
, 1

2κ2
f+16κfκG

and κf

12κG+6κ2
fκG

are monotonically decreasing when either κf or κG in-
creases, meaning that the convergence is slower when the cost
functions are worse-conditioned and/or the network is less-
connected. In addition, δ is bounded by 1

β2 − 1. Therefore,
(22) shows that among all β that do not affect the convergence
rate, the one satisfying min { 1

8κ2
G
, 1
2κ2

f+16κfκG
, κf

12κG+6κ2
fκG

}
= 1

β2 − 1 achieves largest communication reduction per
iteration.

Theorem 3: Under Assumptions 1–5, in COLA we choose
the penalty parameter c > 0 and the linearization parameter ρ >
M2

2m , and set the censoring threshold τk = α · (k)−r with α > 0
and r > 1. Then there exists a finite time index k0 such that the
distance between the primal variable xk and the unique optimal
solution x∗ of (3) is upper-bounded by a sequence decaying
sublinearly to 0 at a rate of O((k)−

q
2 ), where q ∈ (0, 2r − 1),

when k ≥ k0.
Proof: See Appendix D. !
Theorems 2 and 3 indicate that, to achieve linear (sublinear)

convergence, we have to impose stronger requirements on the
parameters. The sequence of censoring threshold should be not
only summable, but also linearly (sublinearly) decaying. The pa-
rameters c andρ shouldbe larger, too.Note that becauseM ≥ m,
ρ > M2

2m ≥ M
2 and consequently cλmin(Lu) + ρ > M

2 , which is
required in Theorem 1.
According to the upper bound of δ given in (60), the linear

rate of xk reaching x∗ (namely,O((1 + δ)−k/2)) must be slower
than the linear rate of τk decaying to 0 (namely, O(βk)). From
Theorem 3, one can also see that the sublinear rate of xk

reaching x∗ (namely, O((k)−
q
2 ) where q ∈ (0, 2r − 1)) must

be slower than the sublinear rate of τk decaying to 0 (namely,
O((k)−r)). Therefore, in both the linear and the sublinear cases,
the sequence of censoring threshold τk bounds the convergence
rate ofxk tox∗. Thismakes sense because τk means themaximal
error allowed to enter the recursion of xk due to communication
censoring.

Remark 2: Though COLA is devised from DLM, the error
caused by the communication-censoring strategymakes its anal-
ysis different to that of DLM. The analysis of COLA is also
different to that of COCA, the censored version of ADMM. The
reason is that COLA updates xk by gradient descent steps, while
COCA updates xk by solving optimization subproblems. This is
analogous to the difference in the proofs of DLM and ADMM.
In addition to the difference in the proof techniques, we also
establish the sublinear convergence of COLA, which is absent
in the analysis of DLM and COCA.

Remark 3: When the censoring threshold τk is set to 0,
COLA degenerates to DLM. Intuitively, the convergence rate of
COLA is no faster than that ofDLMdue to the introduction of the
communication-censoring strategy. This is also observed from,

for example, the linear convergence constant δ in Corollary 1.
Nevertheless, the slower convergence in terms of the number
of iterations is acceptable, since COLA effectively reduces
the iteration-wise communication cost. We shall demonstrate
with numerical experiments that COLA can reduce the overall
communication cost comparing to DLM.

IV. NUMERICAL EXPERIMENTS

This section provides numerical experiments to demonstrate
the satisfactory communication-computation tradeoff of COLA.
In particular, we shall show that COLA inherits the advan-
tage of cheap computation from its uncensored counterpart
DLM [24], [25], but significantly reduces the overall com-
munication cost. Beyond DLM, we compare COLA with the
classical ADMM [23] and its censored version COCA [50],
both of which do not use the linearization technique and are not
computation-efficient.We also comparewith the event-triggered
sub-gradient descent (ETSD) algorithm [47], which is a primal
domain first-order method but much slower than COLA in terms
of convergence speed.We consider two decentralized consensus
optimization problems, least squares in IV-A and logistic regres-
sion in IV-B. The cost functions are both smooth, but the latter
is not strongly convex. For ADMM and COCA, subproblems
in least squares have explicit solutions, while those in logistic
regression needs computationally demanding inner loops. We
use the accuracy of the primal variable as the performance
metric, defined by ‖xk − x∗‖2/‖x0 − x∗‖2. Logistic regression
may have multiple optimal solutions, among which we choose
the one closest to the limit of iterate as x∗. The computation cost
is evaluated by time spent to reach a target accuracy, and the
communication cost is defined as the accumulated number of
broadcast messages. The simulations are carried out on a laptop
with an Intel I7 processor and 8 GB memory, programmed with
Matlab R2017a in macOS Sierra.

A. Decentralized Least Squares

The local cost function in the decentralized least squares
problem is fi(x̃) =

1
2‖A(i)x̃− y(i)‖22, with A(i) ∈ Rp×p and

y(i) ∈ Rp being private for node i. Thus, the primal update of
node i at time k in COLA is

xk+1
i =xk

i − (2cdii + ρ)−1

[
AT

(i)(A(i)x
k
i − y(i))

+ c
∑

j∈Ni

(x̂k
i − x̂k

j ) + µk
i

]
.

Note that node i can compute (2cdii + ρ)−1 in advance to
accelerate the computation. In the experiments, entries of A(i)

and b(i) are independently and identically sampled from the
uniform distribution within [0,1]. Then we let y(i) = A(i)b(i).
We set the network size as n = 50 and the dimension of the
local variables as p = 3.
First, we compare four algorithms, COLA, DLM, COCA

and ADMM, over four network topologies: line, random, star
and complete, as shown in Figs. 3–6. In the random network,
10% of all possible bidirectional edges are randomly chosen
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Fig. 3. Performance over line network for decentralized least squares.

Fig. 4. Performance over random network for decentralized least squares.

Fig. 5. Performance over star network for decentralized least squares.

to be connected. The accuracies are compared with respect to
the number of iterations and the cumulative communication
cost. The parameters c and ρ are tuned to be the best for the
uncensored algorithms DLM and ADMM, and kept the same
in their censored counterparts, respectively. We use the linear

Fig. 6. Performance over complete network for decentralized least squares.

Fig. 7. Censoring pattern of the first 200 iterations of COLA over random
network for decentralized least squares. The horizontal axis is the number of
iterations, and the vertical axis is the index of node. A dark dot represents that
the node is censored at that time.

censoring threshold in the form of τk = α · (β)k, where the
parameters α and β are hand-tuned in COLA and COCA so as
to achieve the best communication efficiency. Taking the random
network as an example, we choose c = 0.45, ρ = 1.1 in DLM
andα = 0.7, β = 0.94 in COLA,while c = 0.35 in ADMMand
α = 0.9, β = 0.92 in COCA.
In all the networks, the two censored methods COLA and

COCA require more iterations to reach the target accuracy than
their uncensored counterparts due to the error caused by censor-
ing, but the saving in communication is remarkable. Compared
to DLM and given a target accuracy of 10−8, COLA saves∼1/2
communication costs in the line and random networks, and
∼ 1/3 in the star and complete networks. The required number
of iterations in the line network is much more than those in the
other networks, since the connectedness of the line network is the
worst. In better connected networks such as star and complete,
variable updating is often informative, such that the deterioration
of convergence speed causedby skipping transmissions becomes
more noticeable, yet communication per iteration is still saved
by censoring.
We study the influence of communication censoring over the

random network. The censoring pattern of the first 200 iterations
is shown in Fig. 7. The horizontal axis is the number of iterations,
and the vertical axis is the node index. A white dot means
that the node broadcasts at the time, while a black dot means
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Fig. 8. Performance of DLM, ETSD, and COLA with different censoring
thresholds over random network for decentralized least squares. In COLA,
with the linear censoring thresholds τk = α · (β)k , we fix α = 0.7 and choose
different β. With the sublinear censoring threshold τk = α(k)−r , we choose
α = 1000 and r = 2.5.

that the node is silent. Observe that communication censoring
happens uniformly, namely, the frequency of communication
censoring does not change too much along the optimization
process. In addition, the nodes have similar communication
costs eventually. On average, every node broadcasts 0.35 ∼ 0.45
message per time.
Next, we compare the choice of the censoring threshold in

COLA over the random network. We compare four censoring
thresholds, the linear sequences τk = α · (β)k with α = 0.7
while β = 0.93, 0.95 and 0.97, as well as the sublinear sequence
τk = α · (k)−r with α = 1000 and r = 2.5. The parameters c
and ρ remain the same. As shown in Fig. 8, the linear censoring
thresholds outperforms the sublinear censoring threshold, in
terms of both communication and computation. The reason is
that the sublinear rate of the threshold limits the convergence rate
of COLA, as we have theoretically analyzed in Section III-B.
Regarding the different choices of the linear rate, we observe
that a smaller β needs less number of iterations to reach a target
accuracy, since it leads to faster decay of the censoring threshold,
and thus less communication censoring per iteration. In contrast,
with a larger β, we need more number of iterations and less
communication cost per iteration. Therefore, a moderate β, such
as β = 0.95 in this case, is preferred.
In Fig. 8, we also compare COLA with ETSD, a

communication-censored primal domain first-order method.
ETSD adopts the Metropolis-Hastings rule to design its mixing
matrix. It uses a linear censoring thresholdα · (β)k and a sublin-
ear step sizeO((k)−

2
3 ), where the parameters are all hand-tuned

to achieve the best communication efficiency. From Fig. 8, we
observe that ETSD requires much more number of iterations
and communication cost to reach a target accuracy comparing
to COLA. The main reason of the unsatisfactory performance of
ETSD is the diminishing step size, which is used to guarantee
exact convergence. Similar performance gap can be observed in
comparing the uncensored algorithms, sub-gradient descent and
DLM.

Fig. 9. Performance over random network with 50 nodes for decentralized
logistic regression.

B. Decentralized Logistic Regression

In the decentralized logistic regression problem, the local cost
function of node i is

fi(x̃) =
1

li

li∑

l=1

ln

(
1 + exp(−y(i)lq

T
(i)lx̃)

)
,

where q(i)l ∈ Rp is the lth column of a matrix Q(i) ∈ Rp×li ,
y(i)l ∈ {−1,+1} is the lth element of a binary vector y(i) ∈ Rli ,
and li is the number of samples held by node i. The primal update
of node i at time k in COLA is

xk+1
i = xk

i − 1

2cdii + ρ

[
− 1

li

li∑

l=1

y(i)l exp(−y(i)lq
T
(i)lx

k
i )q(i)l

1 + exp(−y(i)lqT(i)lx
k
i )

+ c
∑

j∈Ni

(x̂k
i − x̂k

j ) + µk
i

]
,

while the primal updates of ADMM and COCA have no explicit
solutions. Therefore, we solve the subproblems therein by a
gradient descent inner loop, which terminates when the +2 norm
of the gradient is less than 10−8.
We conduct simulations over two random networks with

n = 50 and n = 100 nodes, in both of which 10% of all possible
bidirectional edges are randomly chosen to be connected. The
dimension of local variables is p = 3. The numbers of samples
held by the nodes are i.i.d. and uniformly chosen from integers
within [1, 10]. Entries of the first two rows ofQ(i) follow the i.i.d.
discrete uniform distribution on the set {0.1w}, w = 1, . . . , 10,
while entries of the last row are all set as 1. Entries of y(i) are
i.i.d. and follow the uniform distribution on {−1, 1}. Aswe have
done in Section IV-A, c in ADMM is tuned to achieve the fastest
convergence, and is also used for COCA; c and ρ in DLM are
tuned to achieve the fastest convergence, and are also used for
COLA. The censoring threshold in both COCA and COLA is set
as τk = α · (β)k, with parameters α and β hand-tuned to obtain
the best communication efficiency.
As depicted in Figs. 9 and 10, the four algorithms behave

similarly to those in the least squares problem (Figs. 3–6).COLA
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Fig. 10. Performance over random network with 100 nodes for decentralized
logistic regression.

TABLE I
THE TIME SPENT OF THE FOUR ALGORITHMS IN TWO NETWORKS WITH

DIFFERENT NUMBERS OF NODES n AND TARGET ACCURACIES

saves nearly 2/3 communication cost with few more iterations
compared to DLM. To demonstrate its computation efficiency,
we also show the CPU time for the four algorithms to reach
target accuracies 10−4 and 10−5 in Table I. Notice that the
two linearized algorithms, COLA and DLM, compute much
faster than COCA and ADMM. The time spent by COLA in
both networks is slightly more than that of DLM due to the
communication censoring operations.

V. CONCLUSION

In this paper, we propose COLA, a communication- and
computation-efficient decentralized consensus optimization al-
gorithm. Compared to the classical ADMM, COLA uses the
linearization technique to reduce the iteration-wise computation
cost, and fits for networks where only light-weight computation
is affordable. To compensate the sacrifice in the convergence
speed, which is caused by the linearization step and results
in low communication efficiency, COLA further introduces
the communication-censoring strategy to prevent a node from
transmitting its “less-informative” local variable to neighbors.
We establish convergence and rates of convergence for COLA,
and demonstrate the computation-communication tradeoff with
numerical experiments. Our futurework is to apply the lineariza-
tion and communication censoring techniques to decentralized
optimization applications in dynamic, online and stochastic
environments.

APPENDIX A
PROOF OF LEMMA 2

Proof: From (18), it holds that

φk+1 − φk =
c

2
Gox̂

k+1 (15)
=

c

2
Go(x̂

k+1 − x∗)

=
c

2
Go(x

k+1 − Ek+1 − x∗), (23)

where the last equality uses the definition Ek+1 = xk+1 −
x̂k+1. Rearranging terms in (23) yields (19).
Also rearranging terms in (17) to place ∇f(xk) at the left

side, we have

∇f(xk) = (2cD + ρI)(xk − xk+1)− cLox̂
k −GT

o φ
k. (24)

Subtracting (24) with (14) and noticing the definitions of D =
1
2 (Lo + Lu) and Lo = 1

2G
T
o Go, we have

∇f(xk)−∇f(x∗)

= (2cD + ρI)(xk − xk+1)− cLox̂
k −GT

o (φ
k − φ∗)

= (cLu + ρI)(xk − xk+1) + cLo(x
k − xk+1)− cLox̂

k

−GT
o (φ

k+1 − φ∗) +GT
o (φ

k+1 − φk)

(23)
= (cLu + ρI)(xk − xk+1) + cLo(x

k − xk+1)− cLox̂
k

−GT
o (φ

k+1 − φ∗) + cLo(x
k+1 − Ek+1 − x∗)

(15)
= (cLu + ρI)(xk − xk+1)−GT

o (φ
k+1 − φ∗)

+ cLo(E
k − Ek+1),

which completes the proof. !

APPENDIX B
PROOF OF THEOREM 1

Proof: Throughout the proof,we assume τ0 > 0.When τ0 =
0 such that all τk = 0 and COLA degenerates to DLM, since the
value of τ0 does not affect the operation ofCOLA,we can simply
set τ0 as any positive constant.
Step 1: The proof in this step is analogous to the proof of

Lemma 3 in [24], but more complicated due to the existence of
censoring error. From Assumptions 2 and 3, the gradients of the
convex local cost functions ∇fi are Lipschitz continuous with
constant M > 0. Thus, we have

1

M
‖∇f(xk)−∇f(x∗)‖2

≤ 〈∇f(xk)−∇f(x∗), xk − x∗〉

= 〈∇f(xk)−∇f(x∗), xk+1 − x∗〉

+ 〈∇f(xk)−∇f(x∗), xk − xk+1〉. (25)

For the second term at the right-hand side of (25), we choose
an upper bound

〈∇f(xk)−∇f(x∗), xk − xk+1〉

≤ 1

M
‖∇f(xk)−∇f(x∗)‖2 + M

4
‖xk − xk+1‖2. (26)
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To establish an upper bound for the first term at the right-hand
side of (25), we use (19) in Lemma 2 to rewrite it as

〈∇f(xk)−∇f(x∗), xk+1 − x∗〉

= 〈(cLu + ρI)(xk − xk+1), xk+1 − x∗〉

− 〈GT
o (φ

k+1 − φ∗), xk+1 − x∗〉

+ 〈cLo(E
k − Ek+1), xk+1 − x∗〉. (27)

We shall handle the terms at the right-hand side of (27) one by
one. The first one satisfies

〈(cLu + ρI)(xk − xk+1), xk+1 − x∗〉

=
c

2
〈Gu(x

k − xk+1), Gu(x
k+1 − x∗)〉

+ ρ〈xk − xk+1, xk+1 − x∗〉

= 2c〈zk − zk+1, zk+1 − z∗〉

+ ρ〈xk − xk+1, xk+1 − x∗〉, (28)

which uses the definitions Lu = 1
2G

T
uGu, zk = 1

2Guxk and
z∗ = 1

2Gux∗. The second one satisfies

− 〈GT
o (φ

k+1 − φ∗), xk+1 − x∗〉

= −〈φk+1 − φ∗, Go(x
k+1 − x∗)〉

(20)
=

2

c
〈φk+1 − φ∗,φk − φk+1〉 − 〈φk+1 − φ∗, GoE

k+1〉.
(29)

The third one satisfies

〈cLo(E
k − Ek+1), xk+1 − x∗〉

=
c

2
〈Go(E

k − Ek+1), Go(x
k+1 − x∗)〉

(20)
= 〈Go(E

k − Ek+1),φk+1 − φk〉

+
c

2
〈Go(E

k − Ek+1), GoE
k+1〉, (30)

which uses the definitionLo = 1
2G

T
o Go. Summing up (28), (29)

and (30), applying the equality 2〈va − vb, vb − vc〉 = ‖va −
vc‖2 − ‖va − vb‖2 − ‖vb − vc‖2 that holds for any vectors va,
vb and vc to 〈zk − zk+1, zk+1 − z∗〉, 〈xk − xk+1, xk+1 − x∗〉
and 〈φk+1 − φ∗,φk+1 − φk〉, and then reorganizing terms, we
can rewrite (27) as

〈∇f(xk)−∇f(x∗), xk+1 − x∗〉

= c(‖zk − z∗‖2 − ‖zk − zk+1‖2 − ‖zk+1 − z∗‖2)

+
ρ

2
(‖xk − x∗‖2 − ‖xk − xk+1‖2 − ‖xk+1 − x∗‖2)

+
1

c
(‖φk − φ∗‖2 − ‖φk − φk+1‖2 − ‖φk+1 − φ∗‖2)

− 〈φk+1 − φ∗, GoE
k+1〉+ 〈Go(E

k − Ek+1),φk+1 − φk〉

+
c

2
〈Go(E

k − Ek+1), GoE
k+1〉

(21)
= V k − V k+1

− c‖zk − zk+1‖2 − ρ

2
‖xk − xk+1‖2 − 1

c
‖φk − φk+1‖2

− 〈GoE
k+1,φk − φ∗〉+ 〈Go(E

k − 2Ek+1),φk+1 − φk〉

+
c

2
〈Go(E

k − Ek+1), GoE
k+1〉. (31)

For the term −〈GoEk+1,φk − φ∗〉, we observe that

− 〈GoE
k+1,φk − φ∗〉

≤ c1
2
‖GoE

k+1‖‖φk − φ∗‖2 + 1

2c1
‖GoE

k+1‖

≤ c1σmax(Go)‖Ek+1‖
2

‖φk − φ∗‖2 + σmax(Go)

2c1
‖Ek+1‖,

(32)

where c1 > 0 is any positive constant. Similarly, for 〈Go(Ek −
2Ek+1),φk+1 − φk〉, it holds

〈Go(E
k − 2Ek+1),φk+1 − φk〉

≤ c2
2
‖Go(E

k − 2Ek+1)‖‖φk+1 − φk‖2

+
1

2c2
‖Go(E

k − 2Ek+1)‖

≤ c2σmax(Go)(‖Ek‖+ 2‖Ek+1‖)
2

‖φk+1 − φk‖2

+
σmax(Go)

2c2
(‖Ek‖+ 2‖Ek+1‖), (33)

where c2 > 0 is any positive constant. For c
2 〈Go(Ek −

Ek+1), GoEk+1〉, we have
c

2
〈Go(E

k − Ek+1), GoE
k+1〉

≤ c

2
〈GoE

k, GoE
k+1〉

≤ c

4
‖GoE

k‖2 + ‖GoE
k+1‖2

≤ c

4
σ2
max(Go)‖Ek‖2 + c

4
σ2
max(Go)‖Ek+1‖2. (34)

Using (32), (33) and (34) to rewrite (31) followed by substituting
the result and (26) into (25), we obtain

V k − V k+1 − c‖zk − zk+1‖2

−
(
ρ

2
− M

4

)
‖xk − xk+1‖2 − 1

c
‖φk − φk+1‖2

+
c1σmax(Go)‖Ek+1‖

2
‖φk − φ∗‖2 + σmax(Go)

2c1
‖Ek+1‖

+
c2σmax(Go)(‖Ek‖+ 2‖Ek+1‖)

2
‖φk+1 − φk‖2

+
σmax(Go)

2c2
(‖Ek‖+ 2‖Ek+1‖)

+
c

4
σ2
max(Go)‖Ek‖2 + c

4
σ2
max(Go)‖Ek+1‖2 ≥ 0. (35)

Step 2: Now we characterize the upper bound of ‖Ek‖.
According to the censoring strategy, x̂k

i − xk
i , the ith block
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of Ek, becomes 0 if ‖x̂k−1
i − xk

i ‖ ≥ τk or equals x̂k−1
i − xk

i

otherwise. In both cases, it holds ‖x̂k
i − xk

i ‖ ≤ τk. Therefore,
we know ‖Ek‖ ≤

√
nτk. Since τk is non-increasing, it also

holds ‖Ek+1‖ ≤
√
nτk+1 ≤

√
nτk. Thus, (35) becomes

c‖zk − zk+1‖2 +
(
ρ

2
− M

4

)
‖xk − xk+1‖2

+

(
1

c
− 3c2σmax(Go)

√
nτk

2

)
‖φk − φk+1‖2

≤ V k − V k+1 +
c1σmax(Go)

√
nτk

2
‖φk − φ∗‖2

+

(
1

2c1
+

3

2c2

)
σmax(Go)

√
nτk +

cnσ2
max(Go)

2
(τk)2.

(36)

Setting the constants c1 and c2 in (36) as

c1 = 3c2 =
1

cσmax(Go)
√
nτ0

,

we rewrite (36) to

c‖zk − zk+1‖2 +
(
ρ

2
− M

4

)
‖xk − xk+1‖2

+

(
1

c
− τk

2cτ0

)
‖φk − φk+1‖2

≤ V k − V k+1 +
τk

2cτ0
‖φk − φ∗‖2

+ 5cnσ2
max(Go)τ

0τk +
cnσ2

max(Go)(τk)2

2
. (37)

Since τk is non-decreasing, 1
c − τk

2cτ0 ≥ 1
2c . Meanwhile, by

the definition of the energy function, V k ≥ 1
c‖φ

k − φ∗‖2. By
the definitions of zk = 1

2Guxk and Lu = 1
2G

T
uGu, ‖zk −

zk+1‖2 = 1
4‖Gu(xk − xk+1)‖2 ≥ 1

2λmin(Lu)‖xk − xk+1‖2.
Applying these three facts to (37) yields

1

2

(
cλmin(Lu) + ρ− M

2

)
‖xk − xk+1‖2 + 1

2c
‖φk − φk+1‖2

≤
(
1 +

τk

2τ0

)
V k − V k+1

+ 5cnσ2
max(Go)τ

0τk +
cnσ2

max(Go)(τk)2

2
. (38)

Step 3: Define

θk := 5cnσ2
max(Go)τ

0τk +
cnσ2

max(Go)(τk)2

2
,

which is a non-increasing non-negative summable summable
sequence as τk is. The left-hand side of (38) is non-negative
because cλmin(Lu) + ρ ≥ M

2 . Thus, (38) leads to
(
1 +

τk

2τ0

)
V k − V k+1 + θk ≥ 0. (39)

We use this inequality to show that V k has a finite upper bound.
From (39) we have

V k+1 ≤
(
1 +

τk

2τ0

)
V k + θk

≤
(
1 +

τk

2τ0

)((
1 +

τk−1

2τ0

)
V k−1 + θk−1

)
+ θk

≤ . . .

≤ V 0
k∏

k′=0

(
1+

τk
′

2τ0

)
+

k−1∑

k′′=0

(
θk

′′
k∏

k′=k′′+1

(
1 +

τk
′

2τ0

))
+θk

≤ V 0
k∏

k′=0

(
1 +

τk
′

2τ0

)
+

k∑

k′′=0

θk
′′

k∏

k′=0

(
1 +

τk
′

2τ0

)

≤
(
V 0 +

∞∑

k′′=0

θk
′′

) ∞∏

k′=0

(
1 +

τk
′

2τ0

)

≤
(
V 0 +

∞∑

k′′=0

θk
′′

)
exp

{ ∞∑

k′=0

τk
′

2τ0

}
< ∞, (40)

where we use the inequality 1 + a ≤ exp{a} that holds for all
a ∈ R, and the fact that τk and θk are both non-negative and
summable. Thus, we conclude that V k has a finite upper bound,
denoted as V̄ .
Step 4:Nowwe begin to prove the convergence. Summing up

(38) from k = 0 to k = ∞ yields
∞∑

k=0

[
1

2

(
cλmin(Lu) + ρ− M

2

)
‖xk − xk+1‖2

+
1

2c
‖φk − φk+1‖2

]

≤ V 0 +
∞∑

k=0

τk

2τ0
V k +

∞∑

k=0

θk

≤ V 0 +
V̄

2τ0

∞∑

k=0

τk +
∞∑

k=0

θk < ∞. (41)

Thus, we conclude that limk→∞(xk − xk+1) = 0 and
limk→∞(φk − φk+1) = 0. Following these limiting properties,
when k → ∞, the dual update (18) leads to Gox̂k → 0, which
implies that

Gox
k = Gox̂

k +GoE
k → 0. (42)

Also, we have Lox̂k → 0 as Lo = 1
2G

T
o Go. Consequently, in

the limit (17) becomes

∇f(xk) +GT
o φ

k → 0. (43)

Meanwhile, by definition

1

2
Gux

k − zk = 0. (44)

Comparing (43), (42) and (44) with the KKT conditions (14),
(15) and (16), we conclude that the triple (xk, zk,φk) satisfies
the KKT conditions when k goes to infinity.
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Next, we show that {(xk, zk,φk)} converges when k → ∞.
Since the sequence V k is bounded, ‖xk − x∗‖ and ‖φk − φ∗‖
are also bounded. Thus, there exists a subsequence {(xkt ,φkt)}
which converges to a cluster point (x∞,φ∞) of {(xk,φk)} and
(x∞,φ∞) is optimal to (3).

Construct another energy function V k
∞ := ρ

2‖x
k − x∞‖2 +

c‖zk − z∞‖2 + 1
c‖φ

k − φ∞‖2, where z∞ := 1
2Gux∞. The

analysis for V k can be applied to V k
∞. In particular, analogous

to (40), given any fixed kt, we have

V k
∞ ≤

(
V kt
∞ +

∞∑

k′′=kt

θk
′′
)
exp

{ ∞∑

k′=kt

τk
′

τkt

}

≤
(
V kt
∞ +

∞∑

k′′=kt

θk
′′
)
exp

{ ∞∑

k′=kt

τk
′

τ0

}
, (45)

for any k ≥ kt. Observe that (xkt ,φkt) → (x∞,φ∞) leads to
V kt
∞ → 0. In addition, the sequences θk and τk

∑∞
k′′=0 θ

k′′
< ∞

and
∑∞

k′=0 τ
k′
< ∞, respectively. Therefore, for any ε > 0 there

exists an integer t0 such that

V
kt0∞ <

ε

4
,

∞∑

k′′=kt0

θk
′′
<

ε

4
, and

∞∑

k′=kt0

τk
′
< τ0 log 2.

Then according to (45) we have V k
∞ < ε for all k ≥ kt0 .

Therefore, V k
∞ → 0 as k → ∞. From the definition of V k

∞, we
conclude that {(xk, zk,φk)} converges to (x∞, z∞,φ∞), which
is optimal to (3). !

APPENDIX C
PROOF OF THEOREM 2

Proof. Step 1: From Assumption 5, the local cost functions
fi are strongly convex with constantm > 0. Thus, we have

m‖xk+1 − x∗‖2

≤ 〈∇f(xk+1)−∇f(x∗), xk+1 − x∗〉

= 〈∇f(xk)−∇f(x∗), xk+1 − x∗〉

+ 〈∇f(xk+1)−∇f(xk), xk+1 − x∗〉. (46)

Observe that 〈∇f(xk)−∇f(x∗), xk+1 − x∗〉, the first term
at the right-hand side of (46), also appears in (25) in the proof
of Theorem 1. We follow the derivation to obtain (31), but
then look for new upper bounds of 〈GoEk+1,φk − φ∗〉 and
〈GoEk,φk+1 − φk〉, which are different to those in (32) and
(33). For the term 〈GoEk+1,φk − φ∗〉, we observe that

〈GoE
k+1,φk − φ∗〉

= 〈GoE
k+1,φk+1 − φ∗〉+ 〈GoE

k+1,φk − φk+1〉

≤ c1
2
‖GoE

k+1‖2 + 1

2c1
‖φk+1 − φ∗‖2

+
c1
2
‖GoE

k+1‖2 + 1

2c1
‖φk − φk+1‖2

≤ c1σ
2
max(Go)‖Ek+1‖2

+
1

2c1
‖φk+1 − φ∗‖2 + 1

2c1
‖φk − φk+1‖2, (47)

where c1 > 0 is any positive constant. For 〈GoEk,φk+1 − φk〉,
it holds

〈GoE
k,φk+1 − φk〉

≤ c2
2
‖GoE

k‖2 + 1

2c2
‖φk+1 − φk‖2

≤ c2σ2
max(Go)‖Ek‖2

2
+

1

2c2
‖φk+1 − φk‖2, (48)

where c2 > 0 is any positive constant.
For the second term at the right-hand side of (46), we have

〈∇f(xk+1)−∇f(xk), xk+1 − x∗〉

≤ c3
2
‖∇f(xk+1)−∇f(xk)‖2 + 1

2c3
‖xk+1 − x∗‖2

≤ c3 M2

2
‖xk+1 − xk‖2 + 1

2c3
‖xk+1 − x∗‖2, (49)

where c3 > 0 is any positive constant. The last inequality uses
the fact that the gradients of the local cost functions ∇fi
are Lipschitz continuous with constant M > 0 according to
Assumption 3.
Using (47), (48) and (34) to rewrite (31) followed by substi-

tuting the result and (49) into (46), we obtain

V k+1 ≤ V k − c‖zk − zk+1‖2

−
(
ρ

2
− c3 M2

2

)
‖xk − xk+1‖2

−
(
1

c
− 1

2c1
− 1

2c2

)
‖φk − φk+1‖2

−
(
m− 1

2c3

)
‖xk+1 − x∗‖2 + 1

2c1
‖φk+1 − φ∗‖2

+
(c2
2

+
c

4

)
σ2
max(Go)‖Ek‖2

+
(
c1 +

c

4

)
σ2
max(Go)‖Ek+1‖2. (50)

By the same reasoning in the proof ofTheorem1,‖Ek‖ ≤
√
nτk

and ‖Ek+1‖ ≤
√
nτk. Thus, (50) becomes

V k+1 ≤ V k − c‖zk − zk+1‖2

−
(
ρ

2
− c3 M2

2

)
‖xk − xk+1‖2

−
(
1

c
− 1

2c1
− 1

2c2

)
‖φk − φk+1‖2

−
(
m− 1

2c3

)
‖xk+1 − x∗‖2 + 1

2c1
‖φk+1 − φ∗‖2

+ sn(τk)2. (51)

where

s :=
(
c1 +

c2
2

+
c

2

)
σ2
max(Go) > 0.

Step 2: Now we are going to find constants δ > 0 and γ ≥ 0
such that

(1 + δ)V k+1 ≤ V k + γn(τk)2. (52)
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Given any δ, using the definition of the energy function V k+1

to rewrite (51) as

(1 + δ)V k+1 ≤ V k − c‖zk − zk+1‖2

−
(
ρ

2
− c3 M2

2

)
‖xk − xk+1‖2

−
(
1

c
− 1

2c1
− 1

2c2

)
‖φk − φk+1‖2

−
(
m− 1

2c3
− ρδ

2

)
‖xk+1 − x∗‖2

+

(
1

2c1
+

δ

c

)
‖φk+1 − φ∗‖2 + cδ‖zk+1 − z∗‖2

+ sn(τk)2. (53)

We shall replace the terms ‖zk+1 − z∗‖2 and ‖φk+1 − φ∗‖2 in
(53) with terms ‖zk − zk+1‖2, ‖zk+1 − z∗‖2, ‖xk − xk+1‖2,
‖xk+1 − x∗‖2 and (τk)2.
For ‖zk+1 − z∗‖2, because zk+1 − z∗ = Gu

2 (xk+1 − x∗),
we have

‖zk+1 − z∗‖2 ≤ σ2
max(Gu)

4
‖xk+1 − x∗‖2. (54)

To handle ‖φk+1 − φ∗‖2, use the fact thatLu = 1
2G

T
uGu and

reorganize (19) to obtain

GT
o (φ

k+1 − φ∗)

= −
(
∇f(xk)−∇f(x∗)

)
+ cGT

u (z
k − zk+1)

+ ρ(xk − xk+1) + cLo(E
k − Ek+1). (55)

Since both φk+1 and φ∗ are in the column space of Go, the
left-hand side of (55) is lower-bounded by

σ̃2
min(Go)‖φk+1 − φ∗‖2 ≤ ‖GT

o (φ
k+1 − φ∗)‖2. (56)

The right-hand side of (55) is upper-bounded by

‖ −
(
∇f(xk)−∇f(x∗)

)
+ cGT

u (z
k − zk+1)

+ ρ(xk − xk+1) + cLo(E
k − Ek+1)‖2

≤ 4‖∇f(xk)−∇f(x∗)‖2 + 4‖cGT
u (z

k − zk+1)‖2

+ 4‖ρ(xk − xk+1)‖2 + 4‖cLo(E
k − Ek+1)‖2

≤ 8‖∇f(xk+1)−∇f(x∗)‖2 + 8‖∇f(xk)−∇f(xk+1)‖2

+ 4‖cGT
u (z

k − zk+1)‖2 + 4‖ρ(xk − xk+1)‖2

+ 8‖cLoE
k‖2 + 8‖cLoE

k+1‖2

≤ 8M2‖xk+1 − x∗‖2 + (8M2 + 4ρ2)‖xk − xk+1‖2

+ 4c2σ2
max(Gu)‖zk − zk+1‖2 + 4c2σ4

max(Go)n(τ
k)2.

(57)

The last inequality uses the fact that∇f is Lipschitz continuous
with constant M > 0 such that

‖∇f(xk+1)−∇f(x∗)‖2 ≤ M2‖xk+1 − x∗‖2,

‖∇f(xk)−∇f(xk+1)‖2 ≤ M2‖xk − xk+1‖2,

and the definition of Lo = 1
2G

T
o Go such that

‖cLoE
k‖2 ≤ c2

4
σ2
max(Go)‖Ek‖2 ≤ c2

4
σ4
max(Go)n(τ

k)2,

‖cLoE
k+1‖2 ≤ c2

4
σ4
max(Go)n(τ

k)2.

Combining (55), (56) and (57), we obtain

‖φk+1 − φ∗‖2 ≤ 1

σ̃2
min(Go)

(
8M2‖xk+1 − x∗‖2

+ (8M2+4ρ2)‖xk − xk+1‖2+4c2σ2
max(Gu)‖zk−zk+1‖2

+ 4c2σ4
max(Go)n(τ

k)2
)
. (58)

Thus, we can use (54) and (58) to rewrite (53) as

(1 + δ)V k+1

≤ V k − c

(
1−

(
1

2c1
+

δ

c

)
4cσ2

max(Gu)

σ̃2
min(Go)

)
‖zk − zk+1‖2

−
(
ρ

2
− c3 M2

2
−
(

1

2c1
+

δ

c

)
(8M2 + 4ρ2)

σ̃2
min(Go)

)

‖xk − xk+1‖2 −
(
1

c
− 1

2c1
− 1

2c2

)
‖φk − φk+1‖2

−
(
m− 1

2c3
− ρδ

2
− cδσ2

max(Gu)

4

−
(

1

2c1
+

δ

c

)
8M2

σ̃2
min(Go)

)
·

‖xk+1 − x∗‖2 +
(
s+

(
1

2c1
+

δ

c

)
4c2σ4

max(Go)

σ̃2
min(Go)

)
n(τk)2.

(59)

For convenience, set the constants as

c1 =
c

2
+

1

m(2mρ−M2)σ̃2
min(Go)

(
4M2(2mρ+M2)

+ 16m2(2M2 + ρ2) + 2cσ2
max(Gu)m(2mρ−M2)

)
,

c2 =
c1c

2c1 − c
,

c3 =
1/2m+ ρ/M2

2
=

2mρ+M2

4mM2
∈
(

1

2m
,

ρ

M2

)
,

where the range of c3 is from the hypothesis that ρ > M2

2m . Then
(52) is achieved with constants

δ ≤ min





σ̃2
min(Go)

4σ2
max(Gu)

− c

2c1
,
cσ̃2

min(Go)(2mρ−M2)

32m(ρ2 + 2M2)
− c

2c1
,

m(2mρ−M2)
2mρ+M2 − 4M2

c1σ̃2
min(Go)(

ρ
2 + cσ2

max(Gu)
4 + 8M2

cσ̃2
min(Go)

)





,

γ = s+

(
δ

c
+

1

2c1

)
4c2σ4

max(Go)

σ̃2
min(Go)

.

Note that δ > 0 and γ > 0.
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Step 3: Now we prove the linear convergence of V k to
0, which implies the linear convergence of xk to x∗. Using
the censoring threshold rule τk = α · (β)k, we further rewrite
(52) as

(1 + δ)V k+1 ≤ V k + γnα2 · (β2)k.

Analogous to the technique used in handling (40), it holds

V k+1 ≤ (1 + δ)−1
(
V k + γnα2 · (β2)k

)

≤ (1 + δ)−1[(1 + δ)−1
(
V k−1 + γnα2 · (β2)k−1

)

+ γnα2 · (β2)k]

≤ . . .

≤ (1 + δ)−(k+1)V 0 + Cnα2
k∑

k′=0
(
(1 + δ)−(k+1−k′)(β2)k

′
)

= (1 + δ)−(k+1)

[
V 0 + γnα2

k∑

k′=0

(
(1 + δ)β2

)k′

]

≤ (1 + δ)−(k+1)

(
V 0 +

γnα2

1− (1 + δ)β2

)
,

where the last inequality holds when (1 + δ)β2 < 1.
In summary, for any positive δ > 0 that satisfies

δ ≤ min

{
σ̃2
min(Go)

4σ2
max(Gu)

− c

2c1
,
cσ̃2

min(Go)(2mρ−M2)

32m(ρ2 + 2M2)
− c

2c1
,

m(2mρ−M2)
2mρ+M2 − 4M2

c1σ̃2
min(Go)(

ρ
2 + cσ2

max(Gu)
4 + 8M2

cσ̃2
min(Go)

) , 1

β2
− 1

}
, (60)

the energy function V k converges to 0 at a linear rate ofO((1 +
δ)−k). Moreover, by the definition of V k, it holds that V k ≥
ρ
2‖x

k − x∗‖2. Thus, the primal variable xk converges to the
unique optimal solution x∗ at O((1 + δ)−

k
2 ). !

Remark 4: If we set c = 8M
σmax(Gu)σ̃min(Go)

and ρ = Mκf

and further set 1
2c1

= δ
c ,

1
2c2

= 1
c − 1

2c1
and c3 = 2

3m in (59),
then following the proof of Theorem 2, we can derive another
upper bound of δ as shown in (22) of Corollary 1.

APPENDIX D
PROOF OF THEOREM 3

Proof. Step 1: As in Step 1 of the proof of Theorem 2, we
obtain the inequality (51).
Step 2:Nowour aim is different to that in Step 2 of the proof of

Theorem 2, as we are going to find constants q > 0 and ηk ≥ 0
as well as a time index k0 such that

(k + 1)q
(
V k+1 + ηk+1

)
≤ (k)q

(
V k + ηk

)
, (61)

for all k ≥ k0.

From (61), in which k0, q and ηk will be determined later, we
have

(k + 1)q
(
V k+1 + ηk+1

)

= (k)qV k+1 + [(k + 1)q − (k)q]

(
ρ

2
‖xk+1 − x∗‖2

+ c‖zk+1 − z∗‖2+1

c
‖φk+1−φ∗‖2

)
+(k + 1)qηk+1

(51)
≤ (k)qV k − c(k)q‖zk − zk+1‖2

− (k)q
(
ρ

2
− c3 M2

2

)
‖xk − xk+1‖2

− (k)q
(
1

c
− 1

2c1
− 1

2c2

)
‖φk − φk+1‖2

−
{
(k)q

(
m− 1

2c3

)
−
[
(k + 1)q − (k)q

]ρ
2

}
·

‖xk+1 − x∗‖2

+ c [(k + 1)q − (k)q] ‖zk+1 − z∗‖2

+

[
(k)q

2c1
+

(k + 1)q − (k)q

c

]
‖φk+1 − φ∗‖2

+ (k)qsn(τk)2 + (k + 1)qηk+1

(54),(58)
≤ (k)qV k − (k)q

[
c− 1

2c1
− (k + 1)q − (k)q

(k)q
·

4cσ2
max(Gu)

σ̃2
min(Go)

]
‖zk − zk+1‖2

− (k)q
{
ρ

2
− c3 M2

2
−
(

c

2c1
+

(k + 1)q − (k)q

(k)q

)
·

8M2 + 4ρ2

cσ̃2
min(Go)

}
‖xk − xk+1‖2

− (k)q
[
m− 1

2c3
− 4M2

c1σ̃2
min(Go)

− (k + 1)q − (k)q

(k)q
·

(
ρ

2
+

cσ2
max(Gu)

4
+

8M2

cσ̃2
min(Go)

)]

‖xk+1−x∗‖2−(k)q
(
1

c
− 1

2c1
− 1

2c2

)
‖φk−φk+1‖2

+ (k)qtkn(τk)2 + (k + 1)qηk+1,

where

tk := s+
2c2σ4

max(Go)

c1σ̃2
min(Go)

+
(k + 1)q − (k)q

(k)q
4cσ4

max(Go)

σ̃2
min(Go)

> 0.
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Set the constants c1, c2 and c3 the same values as those in the
proof of Theorem2.Notice that (k+1)q−(k)q

(k)q = (1 + 1
k )

q − 1 →
0 as k goes to infinity. Then, there exists a time index k0 such
that for any k ≥ k0, it holds

(k + 1)q − (k)q

(k)q
≤ min

{
σ̃2
min(Go)

4σ2
max(Gu)

(
c− 1

2c1

)
,

cσ̃2
min(Go)

4(ρ2 + 2M2)

(
ρ

2
− c3 M2

2
− 2(ρ2 + 2M2)

c1σ̃2
min(Go)

)
,

m− 1
2c3

− 4M2

c1σ̃2
min(Go)

ρ
2 + cσ2

max(Gu)
4 + 8M2

cσ̃2
min(Go)

,
σ̃2
min(Go)

4cσ4
max(Go)

}
, (62)

where the right-hand side is larger than 0. In this situation,
tk ≤ t := s+ 2c2σ4

max(Go)
c1σ̃2

min(Go)
+ 1. Further, using the censoring

threshold τk = α
(k)r , we have

(k+1)q
(
V k+1+ηk+1

)
≤ (k)qV k+

tnα2

(k)2r−q
+(k + 1)qηk+1.

(63)
Now we determine the values of q and ηk. Since∑∞
k′=k

1
(k′)2r−q < ∞ for any time index k when 2r − q > 1,

setting (k)qηk :=
∑∞

k′=k
tnα2

(k′)2r−q in (63) leads to an equivalent
form

(k + 1)q
(
V k+1 + ηk+1

)
≤ (k)q

(
V k + ηk

)
,

which is exactlywhatwewant in (61). Therefore, for anyk ≥ k0,
it holds

V k ≤ V k + ηk ≤
(k0)q

(
V k0 + ηk0

)

(k)q
.

That is, the energy function V k converges to 0 at a sublin-
ear rate of O((k)−q). Moreover, by the definition of V k, it
holds that V k ≥ ρ

2‖x
k − x∗‖2. Thus, the primal variable xk

converges to the unique optimal solution x∗ at a sublinear rate of
O((k)−

q
2 ). !
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