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ABSTRACT: Industrial production of graphene by chemical
vapor deposition (CVD) requires more than the ability to
synthesize large domain, high-quality graphene in a lab reactor.
The integration of graphene in the fabrication process of electronic
devices requires the cost-effective and environmentally friendly
production of graphene on dielectric substrates, but current
approaches can only produce graphene on metal catalysts.
Sustainable manufacturing of graphene should also conserve the
catalyst and reaction gases, but today the metal catalysts are
typically dissolved after synthesis. Progress toward these objectives
is hindered by the hundreds of coupled synthesis parameters that
can strongly affect CVD of low-dimensional materials and poor
communication in the published literature of the rich experimental
data that exists in individual laboratories. We report here on a
platform, “graphene recipes for synthesis of high quality material” (Gr-ResQ: pronounced graphene rescue), which includes powerful
new tools for data-driven graphene synthesis. At the core of Gr-ResQ is a crowd-sourced database of CVD synthesis recipes and
associated experimental results. The database captures ∼300 parameters ranging from synthesis conditions such as a catalyst material
and preparation steps, to ambient lab temperature and reactor details, as well as resulting Raman spectra and microscopy images.
These parameters are carefully selected to unlock the potential of machine-learning models to advance synthesis. A suite of
associated tools enable fast, automated, and standardized processing of Raman spectra and scanning electron microscopy images. To
facilitate community-based efforts, Gr-ResQ provides tools for cyber-physical collaborations among research groups, allowing
experiments to be designed, executed, and analyzed by different teams. Gr-ResQ also allows publication and discovery of recipes via
the Materials Data Facility, which assigns each recipe a unique identifier when published and collects parameters in a search index.
We envision that this holistic approach to data-driven synthesis can accelerate CVD recipe discovery and production control and
open opportunities for advancing not only graphene but also many other 1D and 2D materials.
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■ INTRODUCTION

Owing to its versatile electronic properties and atomic
thinness, graphene has applications spanning electronic
devices, sensors, and transparent electrodes.1−5 Most such
applications require high-throughput, controllable manufacture
to enable industrially relevant use. To meet the requirements
of electronic device fabrication, graphene synthesis needs to be
very tightly controlled, leading to predictable and repeatable
layer count and defect density. For example, synthesis via
chemical vapor deposition (CVD) uses metal catalysts that are
typically dissolved after synthesis, which is not only
uneconomical but also unsustainable because of the acids
used in dissolving. Moreover, the transfer of graphene from the
metal catalyst to dielectric substrates, which is needed for
electronic device functionality, creates many defects, hindering

its use in commercial applications. The ideal synthesis process
should produce high-quality graphene on dielectric substrates,
an outstanding objective notwithstanding the current pro-
gress.6−8

Yet despite focused efforts from the research community,
breakthroughs in synthesis are infrequent. New methods are
needed to accelerate scientific discovery around CVD growth

Received: August 3, 2020
Accepted: August 27, 2020
Published: August 27, 2020

Articlewww.acsanm.org

© 2020 American Chemical Society
10144

https://dx.doi.org/10.1021/acsanm.0c02018
ACS Appl. Nano Mater. 2020, 3, 10144−10155

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

H
IC

A
G

O
 o

n 
Ja

nu
ar

y 
10

, 2
02

1 
at

 2
1:

21
:4

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joshua+A.+Schiller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ricardo+Toro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aagam+Shah"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mitisha+Surana"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kaihao+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+Robertson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kristina+Miller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kristina+Miller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kevin+Cruse"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kevin+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bomsaerah+Seong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chae+Seol"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ian+T.+Foster"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ben+J.+Blaiszik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ben+Galewsky"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ben+Galewsky"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darren+Adams"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+S.+Katz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Placid+Ferreira"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elif+Ertekin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sameh+Tawfick"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsanm.0c02018&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02018?ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02018?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02018?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02018?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02018?fig=abs1&ref=pdf
https://pubs.acs.org/toc/aanmf6/3/10?ref=pdf
https://pubs.acs.org/toc/aanmf6/3/10?ref=pdf
https://pubs.acs.org/toc/aanmf6/3/10?ref=pdf
https://pubs.acs.org/toc/aanmf6/3/10?ref=pdf
www.acsanm.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsanm.0c02018?ref=pdf
https://www.acsanm.org?ref=pdf
https://www.acsanm.org?ref=pdf


of graphene. Two challenges must be addressed: (i) the
sensitivity of the resulting material to growth parameters and
(ii) the dispersed knowledge available at the level of individual
research groups, combined with a culture of incomplete
communication of synthesis parameters when reporting in the
literature. Figure 1a shows examples of scanning electron
microscopy (SEM) images of graphene growth from a small
number of experiments using approximately the same recipe.
Understanding these images requires deep expertise, not only
to identify features in the images but to establish causality
given the extreme sensitivity of the growth process. To address
these challenges, we have developed the platform “graphene
recipes for the synthesis of high quality materials” (Gr-ResQ,
pronounced graphene rescue)9 to enable community-scale
sharing of recipes for CVD graphene synthesis.
Figure 1b shows a timeline of past milestones and future

goals for graphene synthesis via CVD. After the initial scotch
tape exfoliation and discovery of graphene in 2004,10 research
groups around the world shifted their attention gradually from
carbon nanotubes (CNTs) to this new exciting material.
Fortunately, the reactor designs, growth conditions, and gases
for both are similar. The general idea of the CVD recipe is
similar in graphene to CNTs (Figure 1c). Synthesis of
multilayered graphene on nickel was soon followed by the
synthesis of single layers of graphene on copper in 2009
(Figure 1b). Large amounts of carbon can be dissolved in
nickel, with most growth taking place during cooling in the
form of precipitation and segregation. On the other hand,
copper has low carbon solubility, which results in synthesis that

is governed by surface adsorption. Mixing copper and nickel in
carefully selected ratios within the catalyst, combined with fluid
mechanics engineering in the reactor, which led to the
production of large domain sizes exceeding a square inch of
high-quality graphene in 201611 and 2019.12 Note that it took
around a decade to increase the domain size from microns to
tens of millimeters. As of the beginning of 2020, there are
already more than 12,000 publications per year with the words
“graphene synthesis” in the title, abstracts, or keywords: see
Figure 1d.
The graphene CVD process, illustrated schematically in

Figure 1c, is typically divided into three stages: annealing,
growth, and cooling. During the annealing step, a substrate is
heated in order to prepare it for growth. During the growth
phase, carbon-containing precursors are added, allowing the
carbon atoms to crystallize on the substrate. In the final cooling
step, the material is brought back down to room temperature.
In some CVD processes, growth also occurs in this latter step.
While this procedure may seem straightforward, there are
hundreds of tuning parameters involved, resulting in a hyper-
dimensional recipe phase space. While this can also be true for
other chemical synthesis processes, CVD of atomically thin
materials remains among the most challenging. First, the
volume of material produced is small compared to the reactor
size (ratio of ∼10−9), which makes synthesis sensitive to minor
local variations in the growth chamber. When two chemical
processes are taking placesuch as crystallization and etching,
with the latter often associated with the presence of
uncontrolled amounts of oxygen or hydrogenthe thin nature

Figure 1. (a) Examples of SEM images of graphene synthesized by CVD (images acquired by the authors). (b) Past graphene milestones and
future goals.10−12 (c) Schematic illustration of a typical graphene CVD synthesis recipe. (d) Number of relevant publications since graphene’s
discovery. (e) Percentage of unreported information pertaining to seven phases in the synthesis process, collected from a list of 21 highly cited
publications related to graphene synthesis. (f) Top seven most unreported parameters from same publications as (e).
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of the material can entail greater sensitivity to the deleterious
consequences of the competing process. Second, while wet
chemical synthesis benefits from mixing of the reaction
products, atomically thin materials have limited mobility after
they crystallize on the surface. Third, gas flow mechanics and
heat transfer can affect the kinetics of the monolayer synthesis,
altering the results in unpredictable ways. It is often said that
graphene synthesis is so sensitive that it may be affected “when
a researcher sneezes in the lab”! Unfortunately, the tedious trial
and error needed to develop synthesis recipes is an accepted
reality, and synthesis research benefits only qualitatively from
physical modeling and simulations.
The incomplete nature of synthesis parameters reported in

the published literature hinders progress toward manufacturing
goals in several ways. First, it makes replicating a given growth
experiment challenging because all parameters needed to
precisely repeat the recipe are not available. For instance, the
furnace setup itself affects the graphene crystal size and
nucleation density by influencing the fluid flow, heat transfer,
and growth kinetics. However, the total flow rate is often not
reported (typically, only ratios between reaction gas flow rates
are); nor are the tube dimensions, heated zone length, or flow
resistance across the tube. Other important yet often ignored
parameters are the reactor dew point and oxygen content. The
dew point in particular is typically an “uncontrolled”
parameter, and usually not measured despite its critical role.
Its role has first been discovered for CNTs: within a narrow
range, varying dew points can produce single-walled or multi-
walled CNTs, or even completely inhibit CNT growth.13 For
graphene, water vapor and oxygen in the furnace or reaction
gas affect nucleation, defect density, and growth rate.14−17

Minute oxygen content can be present in the form of
impurities/surface oxides in the catalyst, or neighboring oxides
in the reactor. While measuring local variations in oxygen or
hydrogen content on the catalyst surface during the reaction is
currently not tenable, dew point can be measured upstream or
in the ambient lab environment itself. Yet not only are recipe
parameters such as dew point or oxygen content often ignored
in the scientific literature, so too are characterizations of the
products of recipes such as graphene coverage area, nucleation
density or domains per area, and growth rate. Even those
growth conditions that are reported are scattered within
articles and their supporting online information, making it easy
to miss important parameters. These incomplete data in the
scientific literature also prevent the use of data-driven or
machine-learning tools across consolidated sets of growth
experiments. Almost without exception, only the conditions
that successfully yielded graphene growth are reported.
Negative results are important, because there are narrow
windows of synthesis conditions that give rise to the best
results, with deviations from these windows dramatically
affecting the products.
To quantitatively illustrate the dearth of CVD parameters in

published articles, we tabulated 29 parameters of synthesis and
characterization from 21 of the most cited publications. These
articles were identified via query from the ISI Web of
Knowledge for “graphene synthesis using CVD”,18−38 and
analyzed to quantify missing data for each of the 29 parameters
(analysis presented in Supporting Information). Figure 1e
displays the top seven parameters crucial to reproducibility that
were most frequently unreported. Figure 1f groups the missing
data into seven categories of parameters affecting graphene
synthesis:

• experimental setup (e.g., furnace design details and
ambient conditions)

• growth results (description of graphene produced
including sample coverage, domain size, nucleation
density)

• cooling parameters (flow rates, cooling rates)
• sample information (catalyst preparation, oxygen con-

tent)
• annealing parameters (exact flow rates vs time, temper-

ature and pressure)
• growth parameters (exact flow rate vs time, temperature

and pressure)
• characterization (details about growth uniformity and

sample morphology based on imaging and Raman
spectra)

The most missing data appear in the experimental setup
category and include parameters such as the furnace design,
whose characteristics are known to have an effect on flow
velocities, heat transfer, and ambient humidity.
The Gr-ResQ platform introduced here has been designed

to overcome several of these challenges. The platform is
accessible online through nanoHUB,39 and consists of several
features: (i) a repository containing recipes and their
associated experimental results that users can search and
query, visualize, analyze, and submit to, in order to learn from
the aggregate knowledge of the community; (ii) a set of tools
for analysis of Raman spectra (to determine graphene quality)
and SEM images (to estimate growth coverage and domain
orientation); (iii) the capability to apply machine learning
methods to the aggregate data; (iv) an interface with the
“Operating System for Cyberphysical Manufacturing” (OSCM,
pronounced awesome), which allows users to make requests
for collaborators to run user-generated experiments and
characterize results; and (v) full Gr-ResQ datasets that are
published periodically to the Materials Data Facility
(MDF)40,41 where they are archived and assigned a digital
object identifier (DOI), and where collected parameters are
logged in a search index to promote discovery. As a whole, the
platform enables community networking and facilitates an
iterative, community-driven learning procedure. Similar plat-
forms for disseminating materials data have already seen
success in other fields. In the area of polymer nanocomposites,
NanoMine has been established as a platform for documenting
and analyzing material properties.42 In the theoretical space,
Materials Project43 and OQMD44 provide access to large
troves of material properties derived from high-throughput
density functional theory simulations. Within an individual
research group, Gr-ResQ can be used to track and document
synthesis conditions and results. Across the community, it can
augment the collective talent and resources of researchers
across the world.
Gr-ResQ also adheres to the FAIR data principles.45 For

data to be considered FAIR, they should be findable,
accessible, interoperable, and reproducible. In this work, the
individual data and complete data sets are both findable and
accessible for free to the public through the Gr-ResQ interface
as well as via MDF web and programmatic interfaces. We have
also worked to make the data interoperable, reproducible, and
indeed extendable by defining MDF schemas that describe and
represent key elements of the processing, structure, and
property results captured by the experiments. These schemas
are openly available for reuse, and we also reuse schemas where
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possible (e.g., DataCite to represent general author informa-
tion, descriptions, and literature linkages and NIST material-
specific schemas to represent high level aspects of the
experiments). We see the work here as critical to achieving
fully reproducible work, across labs, in the graphene synthesis
community.

■ OVERVIEW
Figure 2 illustrates the components of Gr-ResQ. It consists of
the database (shown on the right) connected to the various

tools (on the left). Users can launch these tools directly from
nanoHUB to upload, analyze, and post-process their own
graphene data. As illustrated in Figure 3a, we divide the data
into six categories: (1) provenance (author, institution, etc.
\enleadertwodots), (2) recipe (annealing, growth, and cooling
parameters), (3) other synthesis conditions (furnace setup,
catalyst sample details, preparation steps, known contami-
nation, ambient conditions), (4) growth results (user-reported
graphene domain size, nucleation density, and coverage), (5)
characterization data (raw images, Raman spectra), and (5)
analyses (useful information extracted using the image and
Raman analysis tools such as the in-plane orientation of
graphene domains, Raman peak locations, and intensity ratio).
The database currently contains both data from the authors as
well as data from the literature.20,22,24,27,28,30,32

The submit tool handles data ingestion into the database,
uploading recipes, raw images (png, tiff, formats), and Raman
spectra (txt). The query tool allows users to search and
visualize existing data. Query functionality is designed to be
more effective compared to a typical literature search engine. It
allows users to search for recipes directly by specifying
parameter filters, such as a growth temperature higher than a
specific value, or graphene with a specific Raman peak (G′/G)
ratio. This query functionality can eliminate the arduous
process of combing the literature. To establish a consistent
analysis of growth results, users can post-process the graphene
SEM images and Raman files, using the custom developed
analysis tools. The analysis tool set includes an application that
can fit Raman spectra in order to determine graphene quality
and layer count. It also includes an image tool that can apply

masks and image processing algorithms to separate graphene
from the substrate.
Gr-ResQ uses the MDF, a set of general materials data

publication and discovery services, and the OSCM. MDF
provides a stable data archive platform on which to publish
periodic releases of Gr-ResQ data and through which users can
query and find the Gr-ResQ data. Each data release is a static
snapshot of the entire Gr-ResQ database tagged with a DOI.
OSCM allows users to crowdsource their experiments by
providing instructions to participating scientists, who then
manufacture the material and return the associated data. The
Gr-ResQ interface allows users to build a step-by-step
procedure and submit it to one or more participating labs as
an OSCM transaction. An OSCM transaction is completed
when the associated experimental data have been uploaded.
The Gr-ResQ platform is developed in Python using the

cross-platform PyQt library built on the popular Qt framework
to generate graphical user interfaces. PyQt combined with the
pyqtgraph plotting package provide the flexibility to develop a
host of widgets and tools for data manipulation. On the
backend (as of version 1.3.0), we use a MySQL database and
the SQLAlchemy toolkit are used to manage recipe data.
Finally, our tools are hosted on nanoHUB,39 a platform for
both students and researchers, providing learning materials,
software tools, and tools for collaboration. nanoHUB provides
a single access point for Gr-ResQ with the computing
resources and support to host the tools as well as functionality
to manage member access and privileges. Users can run the Gr-

Figure 2. Gr-ResQ platform has three main components: the
submission tool, the query tool, and the analysis tools. Raw data
are fed into the database with the submission tool and derived data
are added using the analysis tools. These data are then validated and
the resulting data set is published to MDF. The submission tool is also
compatible with OSCM to allow users to generate and test new
recipes.

Figure 3. (a) Types of data contained within Gr-ResQ. (b) Recipe
submission interface. Users input recipe procedure step-by-step.
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ResQ application directly from nanoHUB with no need to
install software locally.
We anticipate four types of Gr-ResQ users:

• Querier/analyzer: in the basic use case, this user has
open access to the tools and database and has privileges
that permit read-only access. This user can search the
database for relevant data and visualize the results to
facilitate future synthesis experiments. They can also
make use of the analysis tool suite to post-process their
own data.

• Submitter: a user with writing privileges, who can add
new recipes to the database.

• Validator: a core administrator who can verify and
validate submitted recipes to ensure data integrity.

• OSCM user: a user who can request experiments
through the OSCM interface.

Submit Tool. The submit tool enables users to contribute
recipes to the Gr-ResQ database. It uses multi-tab organization
for users to sequentially add their data. The tool contains tabs
for preparation, properties, file upload, and provenance. The
preparation tab, as pictured in Figure 3b, allows users to input
the experimental conditions for their recipe and add any
number of annealing, growing, or cooling steps. To ease
workflow, desired input units can be selected for each
parameter. The submit interface also permits users to directly
construct recipes for OSCM submission. A user simply inputs
their desired recipe and the tool will construct and submit the
recipe to OSCM (described further in integration with
OSCM). Analysis information, such as coverage and number
of layers, can be entered in the properties tab. The file upload
tab allows users to upload associated SEM images and Raman
spectroscopy data. Uploaded Raman data are automatically
scanned and G, G′, and D peak positions and amplitudes are
calculated. These peaks provide information for users to
measure the graphene’s quality. For instance, the ratio G′/G is
correlated to the number of layers. Users also correlate the
uploaded Raman spectra with the sample uniformity by
specifying the fraction of the sample which is represented by
the uploaded spectrum. This allows our database to determine
average values of Raman metrics derived from the peak
amplitudes for each sample. Lastly, users can provide their
name and affiliation in the provenance tab, so that each recipe
can be associated with its author. The data are then reviewed
by the user and submitted to the database.
Upon submission, the tool automatically checks for invalid

entries. The checks include:

• Checking for author name and institution
• Checking for preparation input
• Checking for a base pressure
• Ensuring all preparation steps have a corresponding

temperature, pressure, and duration
• Ensuring all growth steps have a carbon source and flow

rate
• Checking for proper Raman spectroscopy format and

corresponding characteristic percentage

Should any of these tests fail, the user is notified so that they
can correct their input. Should the submission be valid, any
other user with validation privileges need only provide a final
validation for the recipe to be visible to all users.
Query Tool. The query tool is the access point to the Gr-

ResQ database, providing search and visualization capability.
With the query tool, users can perform searches on attributes

related to the synthesis recipes (temperature, catalyst, etc.), the
growth results (number of layers, coverage, etc.), or graphene
properties (Raman peaks characteristics). An example search is
illustrated in Figure 4a: the rows under “results” become

populated with all database recipes that match the query (in
this case, all recipes that use copper foil film as a catalyst), a
given recipe can be previewed in the preview pane (Figure 4b)
by clicking the entry in the results table. The preview pane is
split into six tabs: details, SEM, Raman, recipe, provenance,
and admin. The details tab shows information regarding the
properties that were entered with the recipe and general
information about the experimental conditions (tube size,
catalyst, etc.). SEM images and associated masks correspond-
ing to regions of the image classified as graphene or substrate
can be found in the SEM tab, while the Raman tab shows plots
of associated Raman data. The recipe tab allows users to
visualize the synthesis parameters such as temperature,
pressures, or gas flow rates versus time. An example recipe
visualization is illustrated in Figure 4b. Finally, the provenance
tab contains the name and affiliation of the recipe contributor.

Analysis and Plotting. To enable statistical analysis and
machine learning of Gr-ResQ data, the “plotting” and “t-
distributed stochastic neighbor embedding (t-SNE)” tabs
within the Query Tool allows users to visualize correlations
between parameters in the recipe data. In Figure 5, two
methods of visualization are illustrated. The “plotting” tab
allows users to construct XY scatter plots from data. For
instance, Figure 5a shows how the G′ to G Raman peak
correlates to the carbon flow rate across the queried data.
The t-SNE tab allows search for clusters of data that

correlate to a selected metric. A schematic representation of
this can be seen in 5b. t-SNE is a dimensionality reduction
algorithm that seeks to preserve, in a low dimensional space,
the relative similarity between points in a high dimensional

Figure 4. (a) Example search using the query interface to filter recipes
that use copper foil as a catalyst. (b) Example recipe visualization of
the recipe’s furnace temperature.
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space: points that appear close to each other on the plot are
more similar in their attributes. Dimensionality reduction is
accomplished by minimizing the Kullback−Leibler divergence
between a constructed Gaussian joint probability distribution
of high dimensional data and a “Student-t” distribution of
points in low dimensional space.46 The positions of the data
points in reduced dimensional space are optimized to best
represent clusters of similar data in the high dimensional space.
These low dimensional points can then be colorized according
to a desired metric to visualize graphene properties, to look for
areas of the recipe phase space that correlate to a desired
metric. For example, in Figure 5c, each data point
corresponding to a particular recipe has been colorized based

on its maximum pressure. t-SNE enables visual inspection and
search for patterns in recipes that potentially contain tens or
hundreds of attributes.
A challenge to obtaining meaningful information from t-SNE

is that some recipes may be missing input for selected
attributes. Consequently, it can be difficult to know which sets
of features have sufficient support. Gr-ResQ allows users to
first determine the fraction of rows that contain valid data for a
particular set of features. This fraction is referred to as support
and is defined as

F
d D F d

D
supp( ) = |{ ∈ | ⊆ }|

| | (1)

where d represents the set of features that are valid for a
particular row, D is the set of d for all rows, and F is the chosen
set of features. Using the apriori algorithm, the tool determines
the support for all potential feature sets across the selected data
set. Using the t-SNE widget, users can then choose a set of
features according to a desired level of support or choose a set
of features manually. Figure 5c shows a t-SNE plot for 12
parameters with a support of 0.8. The distances between two
points reflect their relative similarities in the 12-dimensional
space. A clustering pattern is observed when the data are
colored according to the maximum pressure. Experiments with
similar maximum pressures tend to be clustered together in a
higher dimensional space, likely due to similar experimental
procedures in each of the clusters.

Image Tool. The Image Tool is an image processing
platform customized for analysis of SEM images of graphene,
with potential applicability to other types of images as well.47

SEM images are typically used to observe the growth results of
a synthesis experiment, such as areal coverage, nucleation
density, and the shape, size, and quality of graphene domains.
While the visual inspection of images can sometimes be
sufficient to determine the quality of graphene, it is desirable to
determine quantitative metrics as well. Quantitative metrics
can provide for easier comparison between experimental
results and are useful as response variables when attempting
to predict optimal recipes. Such metrics include the graphene
coverage, which measures the fraction of the substrate that
contains graphene and average domain size. The image tool
provides the capability to estimate these metrics in an
automated manner.

Image Segmentation. To calculate the areal coverage of
graphene in an image, the pixels need to be classified as
corresponding to graphene or nongraphene. The workflow for
separating graphene from the substrate comprises a three-step
process, as illustrated in Figure 6. A user uploads a grayscale
image to the program, removes unnecessary parts of the image
(frame, scale bar, etc.), and then creates a “mask” for the area
containing graphene. Our tool provides cropping and erasing
functionality to remove parts of the image manually but also
has the ability to automatically remove scale bars from the
image as well. After isolating the relevant part of the image, the
last step is to distinguish pixels corresponding to graphene
from those of the background substrate, which can be
challenging for images with complex features. Within an
SEM image of synthesized graphene, there is typically a mix of
graphene (if present), substrate, and random substrate features
such as contaminant particles. Depending on the microscope
and the synthesis results, SEM images can look quite different.
The shape and color of the graphene might vary, as can the
contrast between the graphene and substrate. Consequently,

Figure 5. Query tool allows users to visualize sets of recipe data as
conventional plots or t-SNE plots (a) example of conventional
plotting allowing direct comparison of synthesis criteria to output. (b)
Schematic representation of a t-SNE calculation. Low dimensional
visualizations can be used to look for clusters of synthesis parameters
that correlate with a desired output. (c) Example of the t-SNE plot for
13 parameters colored according to maximum pressure.
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simply filtering based on pixel intensity does not work in many
instances. Instead, our tool uses a template matching
algorithm, as implemented by OpenCV,48 to do the bulk of
the classification. Because trained scientists can simply look at
images and identify graphene, in the image tool users can select
one or more portions of the image containing graphene to act
as “templates.” These templates exhibit features on the pixel
level that are consistent wherever graphene is present in the
image. The tool scans the image for regions that look like the
template according to a selected similarity metric. The default
similarity metric is

R x y T x y I x x y y( , ) ( ( , ) ( , ))
x y,

2∑= ′ ′ − + ′ + ′
′ ′ (2)

where T is a template selected by the user from the image and I
is the image. Each pixel is thus assigned a value corresponding
to this measure. The user can use a sliding bar to select a cutoff
threshold to determine the maximum value for determining
whether a pixel matches the template (i.e., corresponds to
graphene).
Because the synthesis of aligned graphene crystals (single

crystal-like) is often desired, we have added the capability to
measure the angular alignment of graphene domains. For
instance, many experiments use relatively short synthesis times
to obtain large domains of “unstitched” single-crystal graphene
domains, which would appear close to hexagonal in shape. For
short synthesis times yielding isolated domains of graphene
that are not joined, angular alignment measurement allows the
observation of distinct domain edges. The domains are often
not perfectly hexagonal in shape because of dislocations or
other types of defects in their structure. The image tool
includes a Sobel filter, which generates a histogram of the
distribution of edge angles in the image. This approach is
based on convolving the grayscale image with Sobel kernels,
which approximate the derivatives of the pixel intensities Gx
and Gy in the x-direction and y-direction, respectively. The
magnitude and direction of the gradient at each pixel is
approximated as
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where G is the gradient magnitude and θ is the gradient
direction. The distribution of the alignment of the domains can
be obtained by binning the gradient directions weighted by
their magnitudes in a histogram. Perfectly aligned domains will
show a comb function, with a periodicity of 60° in the

Figure 6. Workflow of a typical user of the image tool to isolate the
graphene from the substrate in an SEM image and then generate a
corresponding mask for further use. The user first uploads the SEM
image and crops the image to remove the scale and then uses the
masking tool to isolate the graphene from substrate.

Figure 7. Edge alignment analyses of artificially constructed SEM data for (a) a single set of aligned hexagons, (b) three sets of hexagons with
different orientations, and (c) two sets of hexagons with different orientations that are located in separate domains. All hexagons have noise added
to their angular orientation. The top row shows the original images, whose length scale is arbitrary for this analysis. The edge orientation histogram
illustrates the distribution of edges and the convolution plot is the result of the histogram plot convolved with the comb function. The periodic
peaks in the orientation histogram demonstrate alignment of the domains. Histograms are normalized.
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histogram. Figure 7 illustrates an artificially constructed
example to demonstrate. In Figure 7a, the hexagons are
oriented about the central angle with noise added. After
applying the Sobel filter and binning the angles θ weighted by
their magnitude G, a periodic pattern of peaks emerge in the
resulting histogram. These peaks correspond to the average
orientation of the edges of the hexagons, with the variance of
the peaks arising from the distribution of orientations as well as
error induced by aliasing. (By contrast, randomly oriented
graphene would have no clearly discernible peaks as the edges
would be uniformly distributed). We can then convolve this
histogram with a comb with a periodicity of 60° and re-center
the resulting convolution so that its center of mass is situated
at 30°. The variance of the convolution indicates the quality of
graphene, where lower variances correspond to a greater
domain alignment. Figure 7b illustrates the process for
hexagons with three different respective orientations scattered
about the image. Correspondingly, there are three peaks in the
convolution. Lastly, Figure 7c shows this procedure for an
image representing growth on two different grains of a
polycrystalline substrate. Again, the histogram shows the
differently aligned groups and the resulting convolution
displays a peak for each set of hexagons.
In summary, the SEM image tool provides the following

functionality:

• Binary masking: converts all nonwhite pixels to black
• Blur: adds Gaussian blur to the image
• Canny edge detector: detects edges in the image
• Color mask: mask a portion of the grayscale spectrum
• Crop: crop the image
• Dilate: thicken edges in the image
• Domain centers: mark centers of graphene domain
• Draw scale: used to determine the number of pixels per

unit length
• Erase: erases part of the image
• Erode: thins edges in the image
• Filter pattern: masks part of the image using template

matching
• Remove scale: removes certain types of scales found on

SEM images
• Sobel filter: applies a Sobel filter to the image

Raman Tool. The Raman tool analyzes Raman spectra of
graphene but can potentially be used for other materials as
well. Raman spectroscopy is commonly used to check the
presence, quality, and the thickness of graphene. Typically,
these spectra are analyzed manually, which can be difficult if
the spectra are noisy. The Raman tool quantitatively assesses
the Raman spectrum of graphene and returns relevant
information. A user first uploads their raw Raman data as a
.txt or .csv file. The tool applies a baseline correction by fitting
the baseline to a quadratic using the method of least squares. It
then uses the method of least squares to fit each of the three
peaksD, G and G′to a Lorentzian function
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where I is the peak height, x0 is the peak location, and γ is the
half-width at half-maximum. The tool outputs the fitted
parameters and curves, the number of layers and the quality of
graphene (ratio of the peaks in the D and G bands). Figure 8
shows two examples, one of which represents a noisy spectrum.

Integration with the MDF and DOI Minting. The MDF
is a set of data services designed to simplify data publication,
automate metadata extraction, and discover heterogeneous
materials science data sets. Its data publications service enables
publication of data sets on distributed storage endpoints,
access to the data sets using Globus49,50 or standard HTTPs,
invocation of custom extraction scripts to collect metadata to
promote discoverability (e.g., experimental parameters, derived
analysis results) from published files, and generation of citable
DOIs. The MDF Discover service serves as a cloud-hosted
metadata catalogue of the data set contents and the extracted
metadata, enabling researchers to perform complex and
granular queries against the published data set contents (e.g.,
match all data sets with furnace temperatures between two
values or match all data sets published by a given author) and
retrieve the matching metadata and data set contents. These
publications and discovery capabilities are accessible through
both web and programmatic (REST and Python) interfaces
allowing integration with the other services needed to build
Gr-ResQ. Specifically, the Gr-ResQ platform leverages the
MDF services to publish data including recipes, spectrographs,
electron micrographs, as well as derived analysis results and to
catalogue the associated parameters and other extracted
metadata. Dependency graphs are maintained in the metadata
between the submitted data sets and derived analyses to make
attribution of work clear and easily reportable.
In Gr-ResQ, each recipe is represented as an MDF dataset.

Data sets are comprised folders that contain files including the
recipe parameters in a custom JSON format, individual images,
and raw Raman spectra. Upon publication, custom extractions
are performed automatically on the contents of these folders,
and the resulting metadata are dispatched to the MDF
Discover search index. We append additional data for the
Raman analysis, for which a new searchable schema was
developed to support meaningful queries of the results.
Platform users can use the MDF Forge Python client51 to
search the repository and find recipes based on many criteria,
including these derived features of the Raman analysis.
Releases of newly acquired Gr-ResQ data are periodically
uploaded to MDF from the Gr-ResQ database. As an incentive
to users, system administrators collect related recipes into an
omnibus data set, and once published a DOI is assigned to the
new version of the collection of recipes. This DOI minting
mechanism enables tracking citations and other metrics related
to the users’ contributions to the database. To do so, Gr-ResQ

Figure 8. Examples of the use of the Raman tool.
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will periodically mint a DOI associated with all recipes
provided by a particular research group or to a sub-collection
of recipes considered to be a “research study” by the group. In
this way, the DOIs will reference contributions on a collection
basis as opposed to a unique DOI-per-recipe, limiting the cost
and tedium that stems from having to mint or cite potentially
thousands of DOIs. These group DOIs will be updated as
contributing groups add more data to the database. For
example, this can be done in preparation for a publication,
where new recipes which are part of a specific research project,
can have a single DOI. The current collection of Gr-ResQ
datas ets in the MDF can be viewed using the service’s search
page52 or using the MDF Forge Python client.
Integration with OSCM. The OSCM is a full-stack

operating system to manage manufacturing hardware (ma-
chines), manufacturing data (databases), and manufacturing
software (applications), in networks of cloud manufacturing.53

We have integrated Gr-ResQ with OSCM to enable
collaboration among users. Through OSCM, Gr-ResQ users
can request specific experiments from their collaborators
within the same research team or across research teams. This
platform can enable collaborative experimentation and
community-wide design of experiments. The OSCM platform
is designed to make manufacturing “transactions” automated,
safe, and verifiable across frictionless and scalable networks. A
transaction refers to a manufacturing order that has been
placed and executed by different users via their OSCM
interactions. OSCM has software components to enable
collaborations amongst users, including for machine owners
and customers to register, administer, and access manufactur-
ing capacity in the network through several end-user
applications. OSCM integration with Gr-ResQ is one such
end-user application. The OSCM client is embedded into the
Gr-ResQ tool to allow users to create and interact with
transactions and experimental resources via the OSCM restful
API. In this case, the transaction refers to a request to run a
specific synthesis experiment.
The integration between OSCM and Gr-ResQ enables users

to reserve time in synthesis labs (facilities) and on equipment
(specific CVD furnaces), as well as to capture all data related
to the graphene synthesis experiment in a single transaction.
The transaction contains experimental information such as the
facility or CVD furnace, the recipe, who created the transaction
(customer), who approved and executed the transaction
(provider). The transaction also includes data that is not in
the recipe database: live-measured process variables obtained
during the experiment such as temperatures, pressures, flows,
and so forth.
The interaction between Gr-ResQ users and OSCM is

depicted in Figure 9. Here, the customer is a Gr-ResQ user
requesting a specific synthesis experiment from their colleague
or collaborator. This customer creates a recipe in the OSCM
tab inside the Gr-ResQ tool. The recipe and additional
information about the CVD furnace are automatically
encapsulated as a transaction by the OSCM tool when the
customer confirms the submission. The OSCM tool sends the
transaction to the OSCM cloud and saves it in its database.
The provider, who operates the CVD reactor, then downloads
the recipe from the transaction in OSCM Cloud to the
computer that controls the CVD furnace. The recipe is then
imported as an input by the CVD controller. The provider
starts the experiment, and while the process is running, an
OSCM client embedded in the controller CVD furnace collects

and saves the process data (Figure 10). We have developed an
application to run a LabVIEW controller of a graphene

synthesis CVD reactor. Such applications can greatly accelerate
research even within the same laboratory. When the experi-
ment is completed, the process data are then attached to the
transaction in OSCM Cloud by the provider. Finally, the
customer can pull any transaction information from the OSCM
Tool for further analysis.
In short, OSCM integration closes the loop between

database users and the experimental facilities generating the
data. OSCM allows customers to request synthesis experiments
by creating transactions using the OSCM Tool based on a
requested recipe. From the provider perspective, OSCM allows
an operator to download a recipe job, execute it, and upload
the result. Both customers and providers are required to be
registered OSCM users and can do so via the OSCM Tool or
OSCM Cloud.

■ SUMMARY AND FUTURE WORK
We have introduced Gr-ResQ as a powerful platform which
includes a synthesis database and a suite of tools to accelerate
progress toward the manufacturable CVD synthesis of
graphene. If adopted by the community, this platform could
lead to rapid advancement in graphene synthesis, and later in
other 2D materials, and enable the integration of graphene in
electronic devices on the industrial scale. We view Gr-ResQ as
a holistic approach to meet the objectives of graphene

Figure 9. OSCM Tool workflow. Interaction between customer,
provider, transactions, and OSCM. (1) Customer creates a recipe in
the OSCM tab inside the Gr-ResQ tool. (2) OSCM tool sends the
transaction to the OSCM cloud and saves it in its database. (3)
Provider downloads and executes the recipe. (4) When the
experiment is completed, the process data are then attached back to
the transaction information located in OSCM Cloud by the provider.
(5) Customer downloads the synthesis result.

Figure 10. OSCM client is embedded in controller software. It
collects and saves all process data, which is then attached to a
transaction in OSCM Cloud.
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manufacturing defined as the scalable, sustainable, cost-
effective, and defect-free production of graphene on dielectric
substrates for use in future electronics. While basic graphene
synthesis has already reached critical milestones, such as large
area single domain growth on an optimized metal catalyst, the
future goals delineated here still greatly challenge the research
community. The required advancements could be more
effectively achieved by the community if some of the current
hurdles are lifted, such as those associated with finding the
most relevant recipes in the vast literature, having sufficient
data to quickly replicate specific growth conditions in a
different lab, and having large amounts of reliable data to
enable the use of machine learning and other data-driven tools.
Gr-ResQ addresses these needs by providing tools for
researchers to organize and analyze their own data as well as
data from the broader community, in the form of SEM and
Raman spectroscopy post-processing. It also allows users to
upload the results of their own recipes into a centralized and
standardized table-like database, allowing researchers to learn
best practices for the production of high-quality graphene. The
integration of a recipe database with cyberphysical platforms
such as OSCM, allows researchers to seamlessly collaborate in
community-driven experimentation and machine learning-
based modeling. The functional properties of graphene,
including various electric, optical, and thermal properties can
be added to the database in the future. However, at the current
stage, we have not added these properties yet as we need to
first establish a consistent protocol for taking and reporting
such measurements. This includes details of transferring the
graphene, post-processing, and various details of the measure-
ments. Without these details, the reported properties will be
unreliable. We are looking forward to community input
regarding the inclusion of measured functional properties.
The Gr-ResQ framework is flexible and expandable, but we
wanted to start from a scope that can be realistically managed
at this early stage. Beyond graphene, we believe that a similar
approach should be adopted for the synthesis and production
of all other 2D materials by CVD,54 enabling faster realization
of technologies that use these new materials.
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