


ELLINGSON ET AL.

that constrain the pose either to a global location, such as

an opportunistic GPS measurement, or, as introduced in

this paper, relative to non-stationary objects, such as other

aircraft.

The majority of GPS-denied navigation research has

been performed with multirotor UAS as the experimental

platform. To effectively navigate fixed-wing UAS without

GPS, additional considerations including aircraft dynam-

ics, mission profiles, and sensing requirements must be

taken into account. Prior work that has focused on

fixed-wing UAS has often either made significant simplify-

ing assumptions, including flat-Earth or Manhattan world

environments, or imposed strict sensing requirements,

such as a downward facing camera or distance measure-

ments.14,15 The ability of multirotor UAS to hover in place

enables them to more easily fly in and around buildings

and structure. This allows laser scans and other distance

measurements to effectively measure the aircraft motion.

For fixed-wing UAS that typically fly at high speeds and

high above the ground, the vehicles are often at altitudes
that exceed or approach the limit of the measurement

range of depth sensors making them less effective for sens-
ing aircraft motion.

Using the relative navigation framework as a guide, this

work enables GPS-denied navigation of fixed-wing UAS

by developing a tightly coupled, EKF-based, visual-inertial

odometry (VIO). With the fixed-wing requirements in

mind, we avoid the use of depth sensors, such as laser

scanners and RGB-D cameras, and utilize only a monoc-
ular camera with no assumptions about the distance to
observed features. By producing keyframe-based estimates

of the change in pose, the front-end estimator enables the

fixed-wing aircraft to utilize all the advantages of the global

back end within the relative-navigation framework for

GPS-denied navigation. This paper extends our previous

efforts16 where the concepts for the VIO filter and lim-

ited simulation results were initially presented. This paper

provides a complete filter development and improved sim-

ulation results, as well as hardware, flight-demonstration

results. Along with the flight-demonstration results, our

efforts to mitigate calibration, timing, and initialization

errors are discussed. Another contribution of this paper

is in the back-end pose graph optimization. We provide a

model of a slowly varying scale bias to account for both

scale errors that arise from potentially unobservable veloc-

ity associatedwith straight-and-level flight and the correla-

tion from one graph edge to the next. The full system local-

ization is demonstrated by utilizing the front-end odom-

etry together with various other opportunistic measure-

ments that provide loop-closure-like constraints. Finally,

to motivate future work, results are presented using mea-

surements and constraints between cooperative aircraft
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FIGURE 1 This work enables GPS-denied flight of fixed-wing

UAS. The method was tested on a modified STRIX StratoSurfer, a

1.5 m wingspan aircraft [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]

errors remain small, such as when the availability of GPS

measurements is used to regularly remove drift errors.

The nonlinear nature of the process, however, causes the

Gaussian representation of the belief to become inconsis-

tent when errors are large due to the global states being

unobservable and their estimates drifting from the true

value. If a global measurement is received by an EKF after

significant drift errors have accumulated, nonlinearities

can make utilizing the measurement problematic. This

causes over confidence, especially in states such as veloc-

ities and inertial measurement unit (IMU) biases.7,8 This

may result in large jumps in the estimate and, in severe

cases, can even cause filter divergence. Methods to allow

EKFs to handle sparse opportunistic global measurements

are often ad hoc or cumbersome, including reinitializing

the filter by shifting its origin, treating GPS as a relative

sensor by transforming the measurement into a tempo-

rary coordinate frame,8 or gating (and thus ignoring) the

measurement.9 Some methods simply avoid using an EKF

when GPS measurements are intermittent.10

These observability and consistency problems have been

addressed in recent years by the proposal of a new

approach called relative navigation.11,12 Relative naviga-

tion has been introduced as a solution for operating UAS

when GPS is either unavailable or intermittent at best. It

utilizes an EKF for front-end estimation relative to the

local environment and a back-end optimization that com-

bines the relative information to produce the global esti-

mates. The complete architecture is shown in Figure 2.

Dividing the architecture into a relative front end and

a global back end provides important observability and

computational advantages. The front end navigates with

respect to a local frame where the states can remain

observable and the Gaussian distribution can accurately

represent uncertainty, thus enabling the computational

advantage of an EKF to be utilized. The back end uses a

pose graph that can accurately represent nonlinearities in

heading and be robustly optimized when given additional

constraints. These constraints arise from measurements
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FIGURE 2 Relative navigation architecture for GPS-denied navigation. State estimation and control is performed relative to a locally

declared coordinate frame. Global mission planning and localization are performed in the back end. Left: In previous work, a view-based

odometry has been used to produce an odometry solution for use as a measurement in the filter.12,13 Right: This work develops a fixed-wing,

front-end estimator by removing the view-based odometry and making the estimator a tightly coupled, visual-inertial odometry. This work

also provides a significant hardware flight-test experiment of the front-end estimator and provides a new method for improving the back-end

optimization by modeling time-correlated scale bias caused by small velocity errors in front-end estimates

that demonstrate the potential of the proposed method for

low-bandwidth, multi-vehicle cooperative localization.

2 RELATED WORKS

This paper builds upon previous research in two main

areas: The overarching framework draws from the relative

navigation body of research, and themethod for construct-

ing the visual-inertial odometry uses the principles from

the multi-state-constraint Kalman filter (MSCKF). Rele-

vant research contributions in these areas are summarized

in the subsequent sections.

2.1 Relative navigation

Relative navigation is built on an elegant concept: At any

point in time, an agent can have complete confidence in

its position if, at that instant, it places its reference-frame

origin at the vehicle center. An agent can further maintain

good confidence of its localmotion by observing the appar-

ent motion of the local surroundings, even if the global

position is unknown or is unobservable over large scales.

As an example, a robot agent can set its initial position

to zero and then localize around this initial origin, even

though the origin's global position is arbitrary.

Relative navigation uses this concept in the front-end fil-

ter in a process called the relative-reset step. The reset step

is closely related to the keyframe update of keyframe-based

odometry methods. As the vehicle travels from the cur-

rent origin, the front-end filter is able to reset the origin

to the current location of the vehicle (the new coordinate

frame being aligned with the heading of the vehicle but
level with the local-level frame), where the reset coincides

with the declaration of a keyframe image. Within the EKF,
the covariance associated with the position and heading

states can then be zeroed, and the states continue to evolve

with respect to the newly declared reference frame. The

state from just prior to the reset then forms a transfor-

mation from one reset to the next and, together with the

associated covariance, is provided to the back end. The

transformations form a directed pose graph, where each

origin is a node (or node frame) and each transformation

is an edge. Because the EKF operates only with respect

to a local origin, it is observable, as well as consistent, by

construction.7 The uncertainty is regularly removed from

the filter while a Gaussian is still able to accurately repre-

sent it, and nonlinearities are handled appropriately in the

back-end graph.

The global position and heading are accounted for in

the back end because it contains the keyframe-to-keyframe

transformations as edges in a pose graph. The global pose,

which is necessary for accomplishing a mission with a

global goal, can be produced by combining, or compos-

ing, the transforms. Figure 3 demonstrates how the graph

edges are able to represent the nonlinear coupling in

SE(3) better than a single pseudo-global state with a Gaus-

sian uncertainty, especially when heading uncertainty is

large.7 The global localization is also improved when the

back end is able to optimize the pose graph when it

receives other constraints, such as opportunistic GPSmea-

surements and place-recognition loop closures.12,13 Graph

optimization has been studied extensively, and computa-

tionally efficient methods are available17,18 for performing

these optimizations. Using these techniques, relative nav-

igation deliberately avoids global updates to the front-end

filter and thereby increases filter robustness.

The division of the front end and back end also pro-

vides additional benefits for scalable UAS operations.

First, because the EKF of the front end implicitly draws

on the Markov assumption (i.e., the current state and

covariance completely represent the previous sequence

of events and measurements), it essentially compresses
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FIGURE 3 An example of a relative-navigation graph. Each edge

provides a transformation from one keyframe (or node) to the next.

Although the transformations and associated covariances (small

ellipses) are linear, the graph is able to represent more complex,

nonlinear uncertainties (such as the banana distribution of the

Monte-Carlo samples) better than a single Gaussian (large

ellipses).3,7 This figure fromWheeler et al.7 is reproduced with

permission [Color figure can be viewed at wileyonlinelibrary.com

and www.ion.org]

the high-rate sensor information into edges that are pub-

lished at a low frequency. This compression, effectively

pre-marginalization of the graph factors, helps to make

the back-end scale for long-duration flights. Also, as the

back-end graph grows and the computation of optimiza-

tion increases, the decoupling of the front end allows the

graph optimization to be completed slower than real time

if needed, while the front end is still providing full-rate

state estimates necessary for vehicle control. Without pro-

viding empirical results, Brink19 hypothesizes that these

scalablility properties could be beneficial for multi-vehicle

cooperative localization.

Prior to this work, the relative-navigation front end has

relied on a loosely coupled VIO where the filter depends

on a separate visual odometry algorithm, such as Zhang

et al.,20 and uses a complete odometry solution as a mea-

surement input. This is depicted in Figure 2 with sep-

arate boxes for view-based odometry and relative-state

estimation. The primary functions of the filter have been

to perform the relative-reset step and fuse the odometry

with inertial measurements.21 The keyframe-based visual

odometries have been responsible for maintaining visual

overlap between the keyframe and the current image by

declaring new keyframes regularly and thus have con-

trolledwhennodes are declared. Theyhave, so far, resolved

scale ambiguity by depending on sensors that measure

distance, including laser scanners and RGB-D cameras.12

Since these sensors are impractical for small, low-cost,

fixed-wing UAS, a method that is capable of observing

scale without them, such as a visual-inertial odometry, is

ideal for this work.

2.2 MSCKF

The MSCKF has had a significant impact on the VIO

research field. Results have shown that it is capable of

maintaining an accumulated error of less than 1% of the

total distance traveled. It has also been proposed for a

variety of applications including smart phones,22 ground

vehicles,23 and spacecraft.24 A recent comparison of the

MSCKF to other VIO methods25 shows that its accu-

racy and consistency performance remains comparable to

the state-of-the-art while it is often computationally less

expensive.

The work in Li and Mourikis26 presented the MSCKF as

a dual to EKF SLAM. When EKF SLAM is used as a VIO,

the state vector includes states that evolve with the vehi-

cle motion (ximu) and is augmented with the image feature

locations. The state vector x has the form:

x = [xTimu 𝑓0 𝑓1 … 𝑓k]
T,

where fk is the location of feature k. Although EKF SLAM

is relatively intuitive, several issues arise from the fact

that the location of the feature is initially unknown by

a scale factor and error is introduced when the state

vector is augmented. Various modifications have been

proposed, including delayed feature initialization27 and

inverse depth parameterization,28 but the addition of ini-

tialization error to the state vector with every feature

remains an issue with EKF-SLAM-based VIO.

The MSCKF avoids these issues by instead augment-

ing the state vector with the transformation to the camera

at the instant each image is captured. The state vector is

therefore defined as

x = [xTimu 𝜋0 𝜋1 … 𝜋k]
T, (1)

where 𝜋k is the pose of image k. In this formulation,

little additional error is added to the state vector dur-

ing augmentation because the location of the image is

well known and its error is correlated with error in ximu.

The state vector contains a time history of image poses

that enables feature tracks to be used as measurements

given a measurement model.29 A given feature is tracked

across a sequence of images, and once it leaves the cam-

era field of view, the feature track is residualized as a single

measurement-update step.

The residual is created by first perform-

ing a least-squares optimization to produce the

three-dimensional location of the feature given the image

poses. The optimized location of the feature is used to
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produce the predicted pixel coordinates ẑ that are sub-

tracted from the measured pixel coordinates z to produce

the residual r as

r ≜ z − ẑ .

Because the feature location was optimized given both the

feature pixel coordinates and the image poses in the state

vector, the errors in the feature location are correlatedwith

errors in the state vector. This correlation is removed by

performing a projection of the residual onto the null space

of the feature position. A linear approximation of the resid-

ual is produced by two Jacobians: Hx, which accounts for

the residual with respect to perturbations in the state vec-

tor, and Hf, which approximates the residual with respect

to perturbations in the feature location. The residual and

Jacobians are fully defined in Appendix B1. These, with a

noise term 𝜼, can be written as

r ≃ Hxx̃ +H𝑓 p̃
𝑓
n + 𝜼,

where x̃ and p̃𝑓n are the error in the state vector and position

of the feature, respectively. The update is then performed

by first projecting the residual, noise, and JacobianHx onto

the null space of Hf, or

r0 ≜ AT(z − ẑ) ≃ ATHxx̃ + AT𝜼,

where A denotes the unitary matrix whose columns form

the basis of the left null space of Hf. Finally, the projected

residual r0 and Jacobian H0 are in an appropriate form

r0 ≃ H0x̃ + 𝜼0 ,

for use in the Kalman update, given that H0 = ATHx and

𝜼0 = AT𝜼.

The MSCKF has also had several extensions and vari-

ations. The original work was extended in the publica-

tion of the MSCKF 2.0, which introduces a method for

ensuring the state-transition matrix has accurate observ-

ability properties.26 On-line camera calibration, including

accounting for rolling-shutter, was introduced in Shelley22

to improve accuracy. Several slightly different formula-

tions of the state vector have been proposed. The work

in Clement et al.,23 for example, propagates the estimates

using velocity commands and therefore avoids the need

for acceleration bias terms. Formulations have used both

continuous and fully discrete propagation steps with dis-

crete measurement updates. Finally, to ensure computa-

tion remains tractable, several strategies have been pro-

posed for regularly pruning camera poses from the state

vector.22,29

3 DEVELOPMENT

The MSCKF measurement model provides a method for

constructing a VIO for a fixed-wing UAS because it does

not make assumptions about the distance to image fea-

tures and is both accurate and consistent, at least while

nonlinearities due to heading uncertainty remain small.

For it to function as a relative-navigation, front-end esti-

mator, the original MSCKF, must be modified to include a

reset step. There is some added complexity and some slight

degradation in the filter's accuracy, compared to the origi-

nal MSCKF inherent in this approach. The degradation is

due to a small amount of information being lost every time

a new node frame is declared.We argue that these changes

and their benefits, specifically the improved robustness as

well as the potential for a light-weight multi-agent back

end, outweigh the disadvantages for many applications.

The development of the filter begins by completely

defining the state vector in Equation (1). The pose of

the vehicle body (b) consists of a quaternion qbn and a

north-east-down position pbn with respect to the most

recent node frame (n). The body of the aircraft is assumed

to be centered at and axis aligned with the IMU. In con-

trast to other MSCKF implementations, the velocity is

body-fixed vb, meaning expressed in the body frame. The

complete IMU state is

ximu ≜
[
pbn q

b
n vb 𝛽w 𝛽a

]T
,

where the IMU acceleration and angular rate estimated

bias are 𝛽a and 𝛽w, respectively. The transformation to the

kth camera image ik is its position and orientation in the

node frame,

𝜋k ≜
[
p
ik
n q

ik
n

]T
. (2)

When an image is taken, these states are calculated from

the current IMU state using

p
ik
n = pbn + RT(qbn)p

c
b

q
ik
n = qbn ⊗ qc

b

where ⊗ is Hamiltonian-quaternion multiplication,

(pc
b
, qc

b
) is the calibrated pose of the camera in the body

frame, and R(qbn) denotes the rotation matrix associ-

ated with qbn. It is important to note that the use of the

quaternion for rotation requires the filter to use the

error-state formulation and be multiplicative. In practice,

this means that while the quaternion has four values, to

be a minimal representation, the covariance for the same

rotation is a three-by-three matrix of the rotational error

uncertainty.30,31

The covariance P of the state vector consists of an upper

left block that corresponds to the IMU state ximu. With

every image transformation that is added to the state vec-

tor, the covariance matrix is augmented as

P ←

[
P PJT𝜋
J𝜋P J𝜋PJ

T
𝜋

]
,

where the Jacobian J𝜋 relates the current camera loca-

tion to ximu by accounting for the IMU-to-camera extrinsic
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parameters. If ⌊·⌋ is the skew-symmetric matrix (defined
in Appendix B1), J𝜋 is defined as

J𝜋 ≜

[
I3×3 03×3 −RT(qbn)⌊pcb⌋ 03×3 03×3 03×6k
03×3 03×3 R(qc

b
) 03×3 03×3 03×6k

]
,

where 03×3 is a 3 by 3 matrix of zeros and I3×3 is the iden-

tity. These terms are important because the correlations

from the images to the IMU states make the feature track

measurements useful in removing error from ximu.

The IMU states are propagated with every IMU mea-

surement. The orientation and velocity are mechanized by

integrating angular rate and acceleration measurements

on the manifold. At each time step, a small amount of pro-

cess noise is added to the covariance of the bias states to

model a slow random walk and to the covariance of the

integrated states to model sensor noise. The dynamics are

modeled as
.
pbn = RT(qbn)vb

.
qbn =

1

2
qbn ⊗

[
w
0

]

.
vb = ⌊vb⌋w + R(qbn)g + a
.
𝜷w = 𝜼𝜷w
.
𝜷a = 𝜼𝜷a

.
𝜋k = 07×1,

where 𝜼𝜷w
and 𝜼𝜷a

are Gaussian noise processes for their

respective states, g is the gravity vector, w is the angular

velocity vector, and a is the acceleration vector. In prac-

tice,w anda are obtained by removing their respective bias

estimates from the IMU measurements.

The measurement update, including the measurement

Jacobians, is formulated to depend on the optimization

producing the feature location in the node frame p𝑓n . This

is in contrast to prior work that has defined the opti-

mizations in the global frame22 or in the image frame

where the feature was first observed.29 The node frame

was used because the filter state is relative to the most

recent node and the majority of feature-track measure-

ments are initialized on the keyframe image. An inverse

depth parameterization of the feature location is used to

performLevenberg-Marquardt least squares and is defined

in Appendix C1. The coordinate-frame transformations

necessary for the optimization are depicted in Figure 4.

The relative-reset step consists of removing the head-

ing portion of qbn as well as zeroing the position pbn. The

uncertainty of the states is also removed by applying a

projection to the covariance matrix.21 The reset step is

fully defined in Appendix D1. In prior relative navigation

implementations,12,13 the reset step was performed after

the vehicle had traveled more than a specified distance or

yawed more than a specified angle. Since these criteria are

insufficient to ensure image overlap, this work makes the

FIGURE 4 The location of a feature in the node frame p𝑓n is

obtained through a least-squares optimization. The flight path

begins at the declaration of a new node frame. Also shown are the

transformations from the node frame to the keyframe, to all other

image frames, and to the current aircraft pose [Color figure can be

viewed at wileyonlinelibrary.com and www.ion.org]

criteria for reset depend on the number of feature tracks

that are maintained with the most recent keyframe. Once

the feature tracker can no longer maintain nine common

feature tracks, the reset is performed. This criteria is used

to ensure that there is sufficient overlap between images

and also that the number of feature correspondences is

adequate to construct a complete transformation between

the keyframe and the current image.32 It has the added

benefit of ensuring the reset does not happen sooner than

necessary. The state vector is then purged of all image

transformations 𝜋k, and the current image becomes the

next keyframe. The state vector is augmented with the

keyframe image transformation𝜋0, and the keyframe is the

first image i0.

4 FRONT-END IMPLEMENTATION

The mathematical development of the filter, while essen-

tial, is insufficient without the myriad of implementation

details necessary to run and test it. The following sections

describe, in part, the simulation implementation details

and our efforts to minimize and appropriately account for

relevant sources of error that accompany running the filter

on hardware.

4.1 Filter

The feature tracker implemented a pyramidal KLT

tracker33-35 using C++ OpenCV libraries. The feature
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tracker was responsible for informing the filter precisely

when to augment the filter state as well as when to per-

form a reset step. When the feature tracker can no longer

track a given feature, for example, if the feature goes out

of view, the tracker provides to the filter the complete

track as a measurement, consisting of the history of pixel

coordinates for every image where it was observed.

Although it was initially developed in Python,16 the filter

was implemented in C++ and uses the Robot Operating

System (ROS) for communication with sensors. The C++

implementation allowed the filter to run in real time and

at full sensor rate, even on an embedded ARM processor.

4.2 Simulation

The filter was first tested in a ROS/Gazebo simulation

using the tools that are distributedwith ROSplane.36,37 The

fidelity of the simulation was enhanced by simulating a

small fixed-wing aircraft, including aircraft aerodynamics,

flight characteristics, and sensors. The aircraft was flown

in a realistic flight over a cityscape image appropriate for

obtaining image features and testing a VIO algorithm.

In the simulation, sensor plug-ins were used to supply

the filter with simulated camera images and IMU mea-

surements from the aircraft. The IMU was oriented to be

axis-aligned with the body of the aircraft, and noise and

bias walk parameters were representative of anMPU-6050

IMU, based on models presented in Furrer et al. and May-

beck38,39. Feature tracks were obtained from the simulated

camera image using the tracker described previously. An

example of the simulated image and image feature tracks

is shown in Figure 5. The camera was oriented facing for-

ward and tilted 45◦ down from the longitudinal axis of the

aircraft. The imageswere 640 by 480 pixels, and the camera

had a 115◦ field of view.

4.3 Hardware

The front-end filter was implemented on a small remotely

piloted hobby-grade aircraft (Figure 1). The aircraft car-

ried an Nvidia Jetson TX2 embedded computer. The use of

the OpenCV CUDA functionality was utilized to perform

image processing on the GPU. The use of the GPU freed

the CPU to perform other tasks and reduced the tracker

CPU load from 130% to 30% of a single processor core. The

TX2 received images from a Point Grey Chameleon 3 USB

camera and the acceleration and angular-rate gyroscope

measurements from a thermally calibrated InertialSense

IMU. This IMU is also a micro GPS-INS and is capable of

producing a full navigation solution for truth comparison.

The hardware implementation introduced three sources

of error that were not initially considered in the simu-

lation: calibration error, timing error, and initialization

error. Without addressing these errors, the filter would

either diverge or give unsatisfactory performance. Figure 6

demonstrates the sensitivity of the estimator accuracy to

these types of errors when they are deliberately intro-

duced into the simulation without correcting for them as

described in the following sections. The results in Figure 6

show that estimator performance was relativity insensi-

tive to body (IMU) to camera position offset pc
b
calibration

error, and therefore, the calibration error discussion below

will focus primarily on body (IMU) to camera angular off-

set qc
b
error. Figure 7 further demonstrates that estimator

performance is significantly degraded by these sources of

error.

4.3.1 Calibration error
Initial testing showed that a satisfactory calibration of

the camera's intrinsic parameters can be performed prior

to the flight. Error in the extrinsic parameters, specif-

ically the body (IMU) to camera rotation angles, how-

ever, was detrimental to the filter performance. Since the

transformation from the body to camera is used in the

measurement-model calculation of the residual r andmea-

surement Jacobians Hx and Hf (see Appendix B1), the

error is correlated with every feature measurement, and it

causes significant bias in the estimates. As shown in the

lower left plot in Figure 6, position error increases as angu-

lar errors are added to the body-to-camera offset. With

0.8◦ of error or less, the RMS error appears to increase

quadratically with calibration error. When the calibration

error is greater than approximately 0.8◦, the outlier rejec-

tionwithin the filter begins to preventmeasurements from

negatively affecting the estimates, and RMS error con-

tinues to increase approximately linear with additional

calibration error.

This calibration error was accounted for, and removed

in flight, by introducing the camera rotation to the state

vector, making Equation (1) become

x = [xTimu qc
b

𝜋0 𝜋1 … 𝜋k]
T,

where qc
b
is a quaternion of the rotation from the body

(IMU) frame to camera frame. The covariance was ini-

tialized to a relatively large value and allowed to con-

verge over time. We note that the introduction of qc
b
to

the state vector makes the use of q
ik
n in Equation (2)

a non-minimum representation of the state because the

camera pose includes the calibrated camera rotation. This

slight mismodeling, and the fact that the camera calibra-

tion is both static and minimally observable in this case

(monocular camera and unknown features), necessitates

the use of partial updates40 (defined in Appendix E1) to

avoid inaccurate updates to qc
b
during in-flight calibration.

The body-to-camera position offset pc
b
was not included in

the online calibration for two reasons. First, the physical
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FIGURE 5 Left: Simulated camera image. Right: Real image from a flight test. Image features are shown as dots, and their track histories

are also overlaid. Simulating the camera image rather than simulating the features improved the simulation fidelity [Color figure can be

viewed at wileyonlinelibrary.com and www.ion.org]

FIGURE 6 Using a simulation of an aircraft,

the effect of unmodeled calibration, timing, and

initialization errors (in the two left, upper right,

and lower right plots, respectively) are shown

on the root-mean-squared (RMS) position error

for a 60 s flight and approximately 620 m

trajectory length. Calibration error was

introduced by adding both a position offset from

the body frame (IMU) to camera frame (pc
b
) and

an angular offset about a random axis to the

rotation from the body frame (IMU) to camera

frame (qc
b
). Timing error was added to the

image-feature measurements. Initialization

error was added to the initial roll and pitch

estimate, but no error was added to the

acceleration bias (see the discussion in

Section 4.3.3) [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]

distance was small (about 2 cm) compared to the baseline

to observed features, making it nearly unobservable, and

second, testing using the simulation environment showed

the filter performance was insensitive to errors in pc
b
, as

shown in Figure 6.

In general, the mathematical development provided in

this paper, including the appendices, corresponds to the

original state vector Equation (1). The inclusion of qc
b
as an

estimate introduces only minor modifications and similar

efforts are discussed in Shelley.22

4.3.2 Timing error
The upper right plot in Figure 6 demonstrates that as lit-

tle as 10 ms of timing error in the sensor measurements is

enough to approximately double the RMS position error,

and when the timing error was 20 ms or more, the tim-

ing error produced biases in the estimated motion that

mostly corresponded with the direction of travel. This is

due to image measurements, which are effectively posi-

tion updates, being applied later than when they were

produced. Since the TX2 was not running a real-time oper-

ating system, the filter depended on accurate time stamps

on each measurement. The image measurements were

prevented from receiving an accurate time stamp by sig-

nificant and varying delays introduced while transferring

the images from the camera to the computer. To overcome

this delay, the camera was configured to provide a strobe

pulse that coincided with the camera shutter. Each pulse
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FIGURE 7 Unmodeled calibration, timing,

and initialization errors cause unacceptably

large pose estimation errors as shown in the

lower left, upper right, and lower right plots

compared to the nominal estimator

performance shown in the upper left plot. The

errors include 5◦ of body (IMU) to camera

angular calibration error, 0.08 s of timing error,

and 1.5◦ of initialization error and are

representative of errors that could be expected in

a hardware demonstration. These error sources

produced root-mean-squared (RMS) position

estimation errors of 36.9, 21.2, and 82.6 m in

their respective tests [Color figure can be viewed

at wileyonlinelibrary.com and www.ion.org]

caused the InertialSense IMU to publish the current time

stamp. Once the time stamps were received on the TX2

computer, theywere added to a queue andused to re-stamp

the images once they were fully transferred from the cam-

era. Since both the IMU measurements and the GPS-INS

truth navigation solution also originated from the Iner-

tialSense IMU, every necessarymeasurementwas stamped

relative to the same time reference. Because recombining

time stamps with their corresponding images depended

only on their order in the queue, this method was only

reliable up to an image frame rate of 7 Hz.

Once the measurements were stamped with the correct

time, they were used by the filter even though the images

(and thus the feature track measurements) arrived after

the IMU measurements. The filter uses the out-of-order

measurement scheme described inWheeler et al.,12 where

sensor measurements and filter state snapshots are stored

in a priority queue.When an oldmeasurement arrives, the

filter rewinds to just before the newmeasurement, applies

it, and then fast-forwards (and updates the snapshots)

to the latest measurement. Because image measurements

incur more delay and IMU measurements only propagate

the IMU state ximu, thismethod is computationally feasible

and runs in real time.

4.3.3 Initialization error
The MSCKF measurement model, including augmenting

the state vector with the time-history of image transfor-

mation, performs well once the filter is converged to the

true value but suffers when there are significant errors in

the IMU state. This is particularly problematic during ini-

tialization. Assuming the aircraft is not moving when the

filter starts, position and velocity can be initialized to zero

with negligible covariance, and the angular-rate bias can

be determined from the first few measurements. The fil-

ter must be initialized, however, to an unknown attitude

qbn and acceleration bias 𝜷a. These states cannot easily be

sensed by measuring the gravity vector because attitude

errors and acceleration bias are correlated. The lower right

plot in Figure 6 shows how filter performance is sensitive

to initial roll and pitch attitude error. In the simulation

tests, the initial covariance for the attitude states did not

accurately model the error. If the initialization errors are

small and the flight is sufficiently long, the initialization

errors often die out as the estimates converge, but not until

after the odometry has accumulated error that can signifi-

cantly reduce the accuracy of the navigation solution.

Our strategy for initialization of the filter (in the hard-

ware flight tests only) included using the InertialSense
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GPS-INS attitude to initialize the filter attitude and using

its reported body-frame velocity as a measurement for the

first 45 s to help the acceleration bias states converge.

Using the velocity as a measurement was advantageous

because the relative-reset step did not affect how the mea-

surements were utilized by the filter. Conversely, using the

reported position would have required transforming the

measurement into the node frame using a potentially inac-

curate attitude estimate. The use of the partial update40

on acceleration bias and on attitude states improved the

consistency of the filter and limited its confidence of the

estimates. The partial update is detailed in Appendix E1.

5 FRONT-END RESULTS

The filter was first tested in the high-fidelity fixed-wing

simulation described above. Because the filter publishes

the position relative to the most recent reset-step node

frame, to plot and analyze the performance of the filter,

the state must be put into the global frame or the truth

must be put in the node frame. In Figure 8, the esti-

mates are put into the global frame by composing current

state with the previously published edge transforms, sim-

ilar to a back-end graph. Figure 8 compares the front-end

results for 60 s of three different simulated trajectories and

shows that the results suffer when the aircraft flies straight

and level, but improve as the aircraft turns.41 This phe-

nomenon is particularly important for fixed-wing aircraft

because they often fly over greater distances to accomplish

mission objectives. For the trajectory with the most turns,

the total accumulated error is shown as less than 1% of

the distance traveled, where the distance traveled is the

integrated flight-path length.

Hardware flight results were also obtained by flying the

aircraft in Figure 1 over a 6 km trajectory. The front-end

estimates were produced on the aircraft in real time. The

true flight trajectory and accumulated estimates are shown

in Figure 9. Because the aircraft was flown by a remote

pilot, the trajectory is only roughly straight and level, that

is, other than during take-off and landing. The effects of

the initialization error can also be seen in the first 100 s of

the flight when the scale error is much greater. The filter

estimates from 150 to 350 s are also shown to compare the

performance after the estimates converge and the effects of

initialization are minimized. The total accumulated error

of the filter estimate from 150 to 350 s was approximately

2.5% of the distance traveled. The entire dataset was 388 s

long, and the total accumulated error for the flight, corre-

sponding to the trajectory labeled “front-end estimate” in

Figure 9, was 5.3% of the distance traveled.

The results in Figure 10 show that the estimates track the

true motion of the aircraft. The effect of the relative reset

can be seen when position and heading angle abruptly

return to zero, as previously defined. During a reset step, a

new origin is declared at the position of the aircraft, ensur-

ing both the true and estimated values return to zero. The

estimated velocity and roll and pitch angles do not reset.

The amount of time between resets varies depending on

there being more than nine continuous feature tracks but

generally is between one and seven seconds.

Figure 11 shows 3𝜎 bounds around the relative error.

The bounds are calculated from the square root of the diag-

onal terms of the covariance matrix ¶. From these plots,

it appears that the filter is consistent, and the uncertainty

grows approximately linearly with the distance traveled.

The effect of the relative-reset step can be seen as the error

and 3𝜎 bound both return to zero for the position and

heading states. The filter also publishes its position and

heading state (and associated covariance) from just prior

to the reset to be used in a relative-navigation, back-end

pose graph.

6 BACK END

The results presented thus far, including those from both

simulation and hardware flight tests, have been for the

front-end estimator exclusively. We now briefly turn our

attention to the back end with subsequent sections pre-

senting results highlighting how the front end and back

end work together to improve localization accuracy.

In all prior relative-navigationwork, the global back-end

graph optimization has assumed that the edges published

from the front end have been statistically independent,

meaning errors in one edge were uncorrelated with errors

in all others. This assumption has worked well when the

errors in the estimated linear velocities remained small

due to direct depth measurements13 or flying with s-turns

to help velocity remain observable.16 The assumption

becomes less appropriate, however, when errors are more

significant. In this paper, velocity error is more signifi-

cant for a fixed-wing UAS flying straight and level over

extended periods causing the forward velocity to be less

observable41 and therefore the edge errors to be more cor-

related. Further, because features tracks are discarded and

reinitialized at each keyframe and associated relative-reset

step, the velocity estimates are likely degraded. In this

section, we introduce a method for modeling the corre-

lation of the velocity error between edges in the back

end. Modeling this correlation improves the ability of the

back-end optimization to remove error when intermit-

tent global measurements or other loop-closure-like con-

straints are available. Themethod is alignedwith our belief

that the back end provides value and flexibility for the

GPS-denied localization problem and small errors intro-
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FIGURE 8 Top: Three simulation flight tests

where the true path is compared to the

accumulated estimate. Bottom: The error as a

percent of the distance traveled is shown for the

first 60 s of each flight. There are significant bias

errors when the aircraft flies straight and level

due to velocity being less observable for a

monocular VIO. The estimates improve

significantly when a non-straight trajectory is

used, even with a slight sinusoidal s-turn. In the

flight with the most deviation from straight, the

accumulated error is ultimately less than 1% of

the distance traveled [Color figure can be viewed

at wileyonlinelibrary.com and www.ion.org]

FIGURE 9 Left: The aircraft flight path during a manually flown flight test. Right: The true path is compared to the accumulated estimate.

The estimates from 150 to 350 s are also shown to compare the result of removing most of the effects of the initialization errors. Other than

the take-off and landing circles, the aircraft was flown approximately straight and level over a 6 km distance. Notice the scale bias in the

estimates [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

duced by the relative reset are mitigated and offset by the

back-end optimizations.

Velocity errors can be accounted for over a single edge

by applying a scale bias to the published position. Because

velocity errors persist through a relative-reset step, they

are also correlated between consecutive edges. This corre-

lation is similar to how gyro bias walks and is correlated

over time.

In the back end, we model a two-dimensional slowly

varying bias walk using trinary factors for edges (Ek),

which are similar to IMU preintegration factors that

account for IMU bias.42 Each node variableN includes the

global north and east position (p = [ne]T) and global head-

ing (𝜓), and each bias variable B includes the scale bias

(b = [bxby]T). The factor is then defined by a loss function

𝓁 that effectively rotates the change in global position into

the previous node frame, applies the bias scale, and then

subtracts the measured odometry. The function is defined

as

𝓁(Nk,Nk+1,Bk,m) =[
(cos(𝜓k)(nk+1 − nk) + sin(𝜓k)(ek+1 − ek))bx −mx

(− sin(𝜓k)(nk+1 − nk) + cos(𝜓k)(ek+1 − ek))b𝑦 −m𝑦

(𝜓k+1 − 𝜓k) −m𝜓

]
,

where m is the measurement of the edge odometry

published by the front end at each relative reset and

265



ELLINGSON ET AL.

FIGURE 10 The true and estimate states of a UAS in flight relative to the most recent node. Position, velocity, and attitude states are

shown from left to right, respectively. The relative reset associated with the declaration of new nodes are shown with vertical lines [Color

figure can be viewed at wileyonlinelibrary.com and www.ion.org]

FIGURE 11 State error is shown for position, velocity, and attitude states (from left to right, respectively). The 3𝜎 uncertainty bounds

come from the square root of the diagonal terms of the covariance matrix. Sharp decreases in the position error bounds are due to the

relative-reset steps that are also indicated by vertical lines [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

includes the change in position (mx and my) and head-

ing (m𝜓 ). The factor graph is shown in Figure 12 with the

same depiction style as in Dellaert17 and is implemented

using GTSAM.

Unlike gyrocope bias, velocity errors are not a stochastic

process. The autocorrelation of the velocity errors depends

on the observability of the velocity and thus the flight

trajectory of the aircraft, and the scale error correlation

between edges depends on the time between resets. This

means modeling the bias scale as a random walk is a sim-

plification. In practice, the covariance of the binary factor

(R) between bias variables (Bk) is hand tuned. In the results

shown below, these factors use𝜮 = 0.0001I2×2, where I2×2
is a 2 by 2 identity. This extensionmay bemost relevant for

fixed-wing aircraft using VIO but could also be applied to

all previous relative-navigation work where velocity errors

persist through the reset step.

Once the factors are defined, they can be added to the

graph with connections to the appropriate variables. The

variables in the graph are the global north, east, and

yaw poses of the keyframe nodes (N) and the bias (B) at

each odometry and are initialized appropriately. Finally,

GTSAM provides functions to optimize the graph such

that the loss of all the combined factors is minimized. The

resulting graph, and thus the global state, is produced by

optimizing after all the factors have been added. The full

details of factor-graph optimization are extensive but can

be ascertained from Dellaert,17 Kummerle et al.,18 Forster

et al.,42 and elsewhere.

Figure 13 shows several examples of the advantage of

including these additional factors when there is significant

scale bias in the estimates. When several GPS measure-

ments are included in the optimization, the scale bias

can cause the optimized trajectory between the measure-
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FIGURE 12 Factor graphs used in the global back end where

values are ovals and measurement factors are squares. Top: Original

graph where nodes (N) are connected by odometry edge factors (E)

from the front-end filter and the edges are modeled as independent.

GPS measurements or other global constraints can be

opportunistically added as unary factors. Bottom: In our method,

edges become a trinary factor, which also considers a bias scale

variable (B). Because velocity errors persist through a relative-reset

step and errors in the edges are correlated, the bias is modeled as a

random walk through the use of binary factors (R) which are

initialized as identity with small, non-zero covariance

ments to bulge out. This is because the optimizer prefers

to add a small amount of heading change to each edge

rather than reduce the distance between each edge trans-

formation. Properly modeling the correlated scale error

between edges with scale-bias factors enables the opti-

mizer to remove the bulging and make the graph consis-

tent with the true trajectory. The bulging effect is partic-

ularly dramatic, as seen in Figure 13, under conditions

where the scale bias is large and GPS measurements are

intermittent enough for a relatively large amount of head-

ing uncertainty to accumulate. The figure demonstrates

that when there is only one GPS measurement, the opti-

mization cannot remove scale errors. Finally, it shows that

when GPS measurements are frequent and regular, the

need for scale-bias factors is mitigated since the GPS mea-

surements correct for the scale bias before significant path

errors accumulate.

The flight-test data used to construct Figure 13 included

significant scale bias in the front-end estimates. As dis-

cussed previously, most of the bias occurred near the

beginning of the trajectory due to initialization errors. The

bias was up to a factor of approximately 1.2 and varied

along the trajectory due to changes in observability of the

forward velocity.

7 FULL SYSTEM RESULTS

To demonstrate the value of the proposed relative front

end, the full localization solution is produced in a sin-

gle back-end graph using the published edges from

pre-recorded hardware flight tests. The results shown in

this section utilize a two-dimensional graph that is opti-

mized post-process and in a single batch, although sim-

ilar back-end architectures have been shown to work on

single multirotor aircraft for both localization and naviga-

tion in near real time.13 The back-end results simulated

global measurements calculated from the reported states

from the InertialSense GPS-INS that were used for truth

comparison.

Figure 14 incorporates three simulated GPS measure-

ments into the graph. The GPS measurements were added

to the graph with a 0.32 m standard deviation error.

Thesemeasurements help remove initialization errors and

provide constraints to optimize the scale factors intro-

duced previously. The results represent a mission pro-

file where GPS is available until the aircraft enters an

area where the GPS is spoofed or jammed or otherwise

unavailable.

The results in Figure 15 also incorporate simulated

global measurements, but in this example, the back end

utilizes five distance measurements to two static fea-

tures. The range measurements represent measurements

to a distance-measuring-equipment (DME) transponder or

similar fixed ground-based range station. The range mea-

surements were simulated as having a 0.71 m standard

deviation error. These results again show the ability of the

back end to improve global accuracy. If a given range mea-

surement had been used as an update to the EKF, however,

it may have caused the filter to become inconsistent or

even diverge, depending on the amount of uncertainty. By

incorporating these inputs in the back end and not in the

filter, this approach avoids the worst case scenario while

still improving the localization.

Finally, the results in Figure 16 use relative inter-vehicle

range measurements (with a simulated 0.71 m standard

deviation) between aircraft flying in a small formation

rather than from a stationary ground feature only. The

measurements allow the aircraft to cooperatively local-

ize. The three trajectories depicted are from separate flight

tests of the test aircraft in Figure 1. Each trajectory includes

significant initialization errors with bias scale. The cen-

ter aircraft receives intermittent, simulated global position

measurements such as those from GPS or a computa-

tionally expensive satellite-image-based place recognition

system.24 The results show that not only do the outside air-

craft receive the benefit of the global measurements but

also the relative position of the formation is maintained.
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FIGURE 13 Back-end optimizations of three flight-test trajectories with and without scale-bias factors. The graphs were constructed from front-end estimates that included significant scale

bias and used varying numbers of simulated intermittent GPS measurements. The upper plots show the optimized trajectories compared to the true paths. The lower plot shows the RMS

position error of the optimized results as a function of the number of GPS measurements. The graphs that included the scale-bias factors were able to optimize the scale bias out of the

estimates to match the true trajectory with greater accuracy than the graphs that did not include the additional factors [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]
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FIGURE 14 Back-end optimization of the flight-test graph. The

unoptimized trajectory is the raw front-end estimates in a graph but

before optimization (corresponding with the complete estimated

trajectory in Figure 9). Three simulated GPS measurements were

added to help with initialization. Scale-bias factors were used to

remove the scale error of the estimated edges. The shaded

background indicates areas where GPS was available [Color figure

can be viewed at wileyonlinelibrary.com and www.ion.org]

FIGURE 15 Back-end optimization of the flight-test graph

includes five simulated range measurements to two static features

or DME stations. The results improve significantly by removing

initialization and scale errors [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]

These later results do not account for several aspects

of a full multi-vehicle cooperative solution, including the

necessary communication links between vehicles. They

do show that the proposed method holds promise for

these scenarios. For example, a rough estimate of the total

amount of sensor data processed is 5.8GB for all three vehi-

cles, where as the back-end graph is constructed from less

FIGURE 16 Back-end graph includes edges from three vehicles,

or more accurately three flight tests, with starting location of the

second and third vehicles artificially offset by 500 m south and

500 m east, respectively. The graph includes simulated inter-vehicle

range measurements and five GPS measurements for the center

vehicle. The localization accuracy of all vehicles improves and the

relative position of the swarm is maintained [Color figure can be

viewed at wileyonlinelibrary.com and www.ion.org]

than 0.15 MB of data. This suggests the potential for both

the scalability of amulti-agent system aswell as robustness

to communication loss or delay.

8 CONCLUSION

This paper has demonstrated a method for localizing a

fixed-wing UAS in environments where GPS is either

unavailable or unreliable. This work has used the rela-

tive navigation architecture, previously implemented for

multirotor UAS, as a guide. The front-end filter depends

on a camera and an IMU for sensing and has no other

specific requirements. It uses a VIO approach to estimate

the motion of the aircraft and regularly publish trans-

formations that can be used in a back-end graph. The

filter uses amodifiedMSCKFmeasurementmodel and the

relative-reset step. The filter also makes no assumptions

about the scale or distance to observed image features.

The filter was tested first in simulation. The simulation

testing showed the filter accuracy is trajectory-dependent

due to the lack of observability of the velocity in

straight-and-level flight. In simulation, the total accumu-

lated error is demonstrated as less than 1% of the distance

traveled, provided there is sufficient turning to maintain

observability of the velocity estimate. The front-end fil-

ter was also demonstrated in a hardware flight test. The

implementation details of the flight test, including our

efforts to account for calibration, timing, and initialization

errors, were discussed. After the initialization errors were
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removed, the filter was accurate and ultimately accumu-

lated error of approximately 2.5% of the distance traveled.

The value of this approach can best be evaluated by con-

sidering the whole relative-navigation architecture. The

estimates from the relative-navigation, front-end, VIO esti-

mator are used in a back-end graph. The back-end graph

is responsible for both representing and optimizing the

global state, which is necessary for accomplishing a global

mission. For the back end to more accurately utilize our

front-end estimates, we introduced a scale-bias model to

account for the correlation of the scale errors between

edges.

This work has also demonstrated the use of the back

end and graph optimization to incorporate other con-

straints, such as opportunistic, geo-referenced measure-

ments. Such measurements can be problematic for a

front-end EKF because large covariance and filter incon-

sistency can cause the update to produce large jumps in

the state. Because the proposed relative front-end operates

independently from the back end, jumps in the back-end

state do not directly affect the control of the vehicle. The

full system is able to operate over significant periods with-

out global information and whenever it becomes available

the system can seamlessly utilize it in the back end to

improve localization.

Finally, we have shown the potential for the proposed

method and the relative-navigation architecture to be

used in multi-vehicle cooperative localization scenarios.

The back-end graph is able to efficiently incorporate the

odometry edges from multiple vehicles as well as rela-

tive inter-vehicle and global measurements. Cooperative,

multi-vehicle localization will be explored in future work.
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APPENDIX A: MEASUREMENT JACOBIANS

This section defines the measurement Jacobians Hx and

Hf that are necessary for theMSCKFmeasurement model.

As described previously, the measurement is the pixel

coordinates of a feature track. Thus, we begin by provid-

ing a camera projection function h(p) to project a feature in

the image frame onto a pixel coordinate while accounting

for the camera matrix and distortion parameters. The pro-

jection function enables the construction of the predicted

measurement and residual. Finally, we provide the partial

derivatives to fully define the Jacobians.

If we first neglect distortion, the camera projection func-

tion consists of normalizing the feature position vector (in

the image frame) p𝑓
i
by the depth andmultiplying it by the

camera matrix K or

h(p𝑓
i
) = K

[

u
v
1

]

(A1)

where

p𝑓
i
≜

[

px
p𝑦
pz

]

,

u ≜
px
pz

,

and

v ≜
p𝑦

pz
.
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Next, a camera distortion model that includes radial coef-

ficients (k1, k2, and k3) and tangential coefficients (t1 and

t2) is applied to u and v using

r = u2 + v2

dr = (1 + k1r + k2r
2 + k3r

3)

u′ = dru + 2uvt1 + (r + 2u2)t2

v′ = drv + 2uvt2 + (r + 2v2)t1 .

Finally, the projection function h(p𝑓c ) consists of substitut-

ing u′ and v′ for u and v, respectively, into Equation (A1).

Recall that the measurement zk is the pixel location

provided by the tracker for camera image ik and the

least-squares optimization produces p𝑓n , the position of

the feature in the node frame. The residual r can then

be constructed by transforming the feature position to the

appropriate camera image frame with

p𝑓
ik
= R

ik
n [p

𝑓
n − p

ik
n ]

and then projecting it using the projection function h(p𝑓c ).

Thus, the residual for a single feature tracked over several

images is

r =

⎡
⎢⎢⎢⎣

z0 − h(R
i0
n [p

𝑓
n − p

i0
n ])

z1 − h(R
i1
n [p

𝑓
n − p

i1
n ])
⋮

zk − h(R
ik
n [p

𝑓
n − p

ik
n ])

⎤
⎥⎥⎥⎦
.

Finally, in constructing the measurement Jacobians, we

define the partial derivative of the camera projection func-

tion as

Jk ≜
𝜕h(p)

𝜕p
,

the skew-symmetric matrix for a vector as

⌊a⌋ =
[
0 −az a𝑦
az 0 −ax
−a𝑦 ax 0

]
,

and the partial derivative of the residual with respect to the

image transformation 𝜋k as

H𝜋k
≜

𝜕r

𝜕𝜋k
=
[
−JkR

ik
n Jk⌊Rikn [p𝑓n − p

ik
n ]⌋

]
.

The measurement Jacobians are

Hx =

⎡⎢⎢⎢⎣

02×15 H𝜋0
02×6 … 02×6

02×15 02×6 H𝜋1
… 02×6

⋮ ⋮ ⋱

02×15 02×6 02×6 … H𝜋k

⎤⎥⎥⎥⎦
and

H𝑓 =

⎡
⎢⎢⎢⎣

J0R
i0
n

J1R
i1
n

⋮

JkR
ik
n

⎤
⎥⎥⎥⎦
.

In practice, several tracks can be used in a single update

by vertically stacking residuals r and the measurement

Jacobians Hx and Hf.

APPENDIX B: FEATURE OPTIMIZATION

As part of the measurement model described pre-

viously, a least-squares optimization is performed to

produce the position of the feature in the node frame

(p𝑓n ) using the image transformations (𝜋) and the

pixel-coordinate measurements (z). This section defines

the Levenberg-Marquardt least-squares optimization that

is depicted in Figure 4.

For numerical stability, we optimize an inverse-depth

parameterization of the feature position 𝜌 = [
px
pz

p𝑦

pz

1

pz
]T.

Next, we define a function g that receives 𝜌 in the node

frame and the camera image pose and produces the feature

position transformed into the image frame, or

p𝑓
ik
= g(𝜌𝑓n , 𝜋k) ≜ R(q

ik
n )

[
u
v
1

]
−

1

pz
R(q

ik
n )p

ik
n .

The position of the feature can be projected into pixel coor-

dinates of the image using the camera projection matrix

and distortion parameters defined in Equation (A1) of the

previous section.

We now set up the formal optimization problem

min
𝜌

𝑓 (𝜌
𝑓
n ) =

n∑
k=0

[
zk − h(g(𝜌𝑓n , 𝜋k))

]2
.

Finally, after the optimization is completed, the position of

the feature p𝑓n is extracted from 𝜌
𝑓
n .

APPENDIX C: RESET STEP

This section describes the process for performing a

relative-reset step. The relative-reset step is performed as

the position and heading state estimates and their uncer-

tainties are removed from the front-end filter and a new

local origin is declared. We discuss first removing the esti-

mate and then the uncertainty from the covariancematrix.

Removing the position from the state vector is performed

by simply applying zeroes to the position vector or

pbn ← 03×1 .

The orientation of the body in the node frame is repre-

sented by a quaternion qbn. Removing the heading from

the quaternion is non-intuitive, however, and we instead

decompose it to Euler angles, remove the heading, and

finally reconstruct the quaternion. Using the common air-

craft attitude representation of roll 𝜙, pitch 𝜃, and yaw 𝜓

as the active 3-2-1 Euler angles and a Hamiltonian quater-
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nion, the decomposition is

𝜙 = atan

(
2q0qx + 2q𝑦qz

q2z − q2x − q2𝑦 + q20

)
,

𝜃 = asin
(
2q0q𝑦 − 2qxqz

)
,

𝜓 = atan

(
2q0qz + 2qxq𝑦

q2x − q2𝑦 − q2z + q20

)
.

The new quaternion is constructed from the roll and pitch

angles and zero for yaw (𝜓 = 0) by applying equations

qx = cos
𝜓

2
cos

𝜃

2
sin

𝜙

2
− sin

𝜓

2
sin

𝜃

2
cos

𝜙

2
,

q𝑦 = cos
𝜓

2
sin

𝜃

2
cos

𝜙

2
+ sin

𝜓

2
cos

𝜃

2
sin

𝜙

2
,

qz = sin
𝜓

2
cos

𝜃

2
cos

𝜙

2
− cos

𝜓

2
sin

𝜃

2
sin

𝜙

2
,

q0 = cos
𝜓

2
cos

𝜃

2
cos

𝜙

2
+ sin

𝜓

2
sin

𝜃

2
sin

𝜙

2
.

When removing the uncertainty from the covariance

matrix P, we only consider the IMU portion of the state

or ximu, as the augmented camera image transforms 𝜋k are

removed from the state vector during the reset. This is done

by constructing a projection matrix N and applying it to P

using

P ← NP15×15N
T

where

N ≜

⎡⎢⎢⎢⎣

03×3 03×3 03×3 03×6
03×3 I3×3 03×3 03×6
03×3 03×3 Nq 03×6
06×3 06×3 06×3 I6×6

⎤⎥⎥⎥⎦
and

Nq ≜

[
1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos2𝜙 − cos𝜙 sin𝜙
0 − cos𝜙 sin𝜙 sin2𝜙

]
.

APPENDIX D: PARTIAL UPDATE

The partial-update Schmidt-Kalman filter (PSKF) was

introduced in Brink.40 The PSKF generalizes the clas-

sic EKF update step and offers a simple and effective

approach to improve the EKF's consistency and robustness

when estimating problematic and mildly-observable filter

states. It is an extension of the core concept behind the

Schmidt-Kalman filter43 resulting in the ability to reweight

the classic filter update to apply anywhere from 0% to

100% of the nominal EKF update for each state at each

update step.

Unlike a Schmidt-Kalman filter, which applies a zero

update to so-called nuisance states and full updates to all

other states, the partial updates can be applied both to

static nuisance states, as well as classic full states. The par-

tial update is performedby first calculating the full Kalman

update using

K = P−HT(HP−HT + R)−1

x̂+ = x̂− + K(r)

P+ = (I − KH)P− .

The state and covariance is then partially updated with

x̂i ← 𝛾ix̂
−
i + (1 − 𝛾i)x̂

+

i

Pi𝑗 ← 𝛾i𝛾𝑗P
−
i𝑗 + (1 − 𝛾i𝛾𝑗)P

+

i𝑗

where 𝛾 i is from a user defined 𝛾 = [𝛾0… 𝛾n]
T and cho-

sen such that 𝛾i ∈ [0, 1]. The value 1 − 𝛾 i can be thought

of as the percentage of the full update applied to state i.

For example, 𝛾 i = 0 implies the full EKF update is applied

to state i while 𝛾 i = 1 implies that state is simply consid-

ered. Anything in between would result in a partial update

of the state. Generally less observable, slowly time-varying

states should receive a lower percentage of the full update,

while more observable states with higher process noise

or uncertainty growth rates would receive larger (or full)

updates.

The partial-update approachwas shown to increase filter

robustness to large uncertainties in camera to IMU cali-

bration example in Brink.40 In our filter, the partial update

is applied on the acceleration bias 𝛽1, body attitude q
b
n,

and camera to IMU rotation qc
b
states. The results were

obtained with 𝛾 values of 0.9, 0.9, and 0.97, respectively

(and 0 for all other filter states), implying that 10%, 10%,

and 3% (and 100%) of the nominal updates were applied to

the respective states at each measurement update step.
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