2020 International Conference on Unmanned Aircraft Systems (ICUAS)

Athens, Greece. September 1-4, 2020

Multi-Agent Mapping and Navigation of Unknown GPS-Denied
Environments Using a Relative Navigation Framework

Jacob M. Olson!, Nathan A. Toombs, Timothy W. McLain?

Abstract— When generating 3D maps with unmanned aerial
vehicles (UAVs) in GPS-denied environments, it is important
to correctly handle path planning, estimation, and mapping
techniques. Because multirotor UAVs are limited in flight time,
using multiple UAVs to map an environment collaboratively
can significantly improve the mapping efficiency. This paper
addresses the following key issues required to enable mapping
with multiple agents: Combining a reactive path planner
with an obstacle avoidance algorithm to handle navigation in
complex environments. Estimating the relative and global states
of a UAV separately with a relative navigation framework to
allow for loop closures in the mapping process without causing
the estimation to diverge. Adapting a graph-based simultaneous
localization and mapping (graph-SLAM) technique for multiple
UAVs flying simultaneously and merging their maps in real-
time. We were able to use these strategies to generate dense
maps in complex GPS-denied environments with multiple UAVs.

I. INTRODUCTION

Many new applications are being explored to make use
of dense 3D mapping technology, such as surveying an
earthquake damaged building to find survivors and check
for damage, infrastructure inspections, and generating as-
built models for infrastructure. Mapping and navigating an
environment such as these, where global positioning system
(GPS) signals are degraded or entirely unavailable, are diffi-
cult. Often, these GPS-denied environments are inaccessible
to ground robots due to rubble or structural damage. En-
vironments like these lend themselves better to the use of
unmanned aerial vehicles (UAVs) to carry out some or all
of the mapping. When navigating indoor environments with
a UAY, collision with any obstacles can be catastrophic and
measures must be taken to avoid them. We use a combination
of a high-level reactive path planner and a low-level obstacle
avoidance filter to avoid collisions.

Most dense mapping approaches rely on high-quality GPS
measurements to geotag data to enable map generation [1],
[2]. These methods break down when GPS is not available
because the global position must be estimated rather than
measured. To overcome the lack of GPS, some form of
simultaneous localization and mapping (SLAM) with visual
odometry can be used. We use a form of graph-SLAM with
a 3D camera and depth-enhanced visual odometry.

Because of the limited flight time of UAVs, mapping large
areas with a single UAV can be inefficient. The mapping
process can be streamlined by dividing the area between
multiple UAVs and then, combining their individual maps

IThe corresponding author can be contacted at jacobmo at
byu.edu.

2All authors are with the Department of Mechanical Engineering,
Brigham Young University, Provo, UT, 84602, USA.

978-1-7281-4277-7/20/$31.00 ©2020 IEEE

into a single combined map. One recent approach to this
problem by Michael et al. used ground robot and a UAV to
collaboratively map an earthquake-damaged building. In this
research, the UAV acted as an extension to the ground robot,
flying into the difficult terrain to build onto the map started
by the ground robot [3]. More recently, Mangelson et al.
detailed a method to effectively merge maps collected from
multiple robots acting separately after the mapping process is
complete [4]. In our approach, we use multiple UAVs flying
simultaneously to map an indoor GPS-denied environment.
The method we propose also combines the maps from the
UAVs into a single map in near real-time while the mapping
process is ongoing.

The remainder of the paper is organized as follows: Sec-
tion II presents the framework we use to navigate and map
an environment along with background information about
previous work that we build upon. Section III details the
planning and control schemes used to successfully navigate
an unknown environment. The method used to combine maps
in near real-time is then explained in Section IV. Results
showing and evaluating the generated maps are presented in
Section V. Finally, conclusions are presented in Section VI.

II. TECHNICAL APPROACH
A. Problem Statement

For UAV-based map building to be successful, flight
paths that produce high-quality loop closures and sufficient
coverage of the environment are required. The framework
presented in this section assumes that these high-quality
paths will be supplied either by the user or by a high-
level coverage path planner. Rather than focus on high-level
path generation, the focus of this paper is first, to show
that properly estimating UAV states allows for successful
GPS-denied navigation, and second, to demonstrate how to
streamline the mapping process by merging multiple maps
into a single one. A high-level network diagram is shown
in Fig. 1 that outlines the framework we use to successfully
generate a single merged map from multiple UAVs in a GPS
denied environment.

B. Sensors

Since we are operating in a GPS-denied environment, we
are not able to rely on GPS measurements to give us global
information about the UAVs locations. The sensors used by
each UAV to estimate their states are a 3D color and depth
(RGB-D) camera (Intel RealSense D435 [5]), a planar light
detection and ranging (LiDAR) laser scanner, a single-beam
LiDAR range finder, and an inertial measurement unit (IMU)

1221

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

Control

> | Waypoint Planner Slobal Gool

All Current
Global Waypoints

Inputs/Outputs

Coverage Planner/
Operator Input

Sensors Estimation
Image
RGB-D Camera Map
- Global Estimate
> RTAB'Map Keyframe Data

Odometry/Keyframe I

Scan
Laser Scanner }

Relative State

:I Map Merger |
y

Next Global
Waypoint

y

YV

RMEKF
A

- IMU
Flight Controller

Relative
(Odometry

Position Controller

Raw
Velocity
Commands

A

—>| Waypoint Manager
\
\

y
.
| 'l Obstacle Avoidance |

: |Visua| Odometry Il'(eyf'a"‘e

| Sonar/LiDAR I“‘““de

Adjusted
Velocity
Commands

Y

Motor Commanda | |Attitude Controller

Fig. 1.

on the onboard flight controller. Using only these sensors and
the flight computer, we estimate the states of the UAV with
sufficient accuracy to control its attitude and position. The
following section elaborates on how these sensors are used
in the estimation.

C. Estimation

Estimation is the most critical element in enabling au-
tonomous flight. Without adequate position and attitude es-
timation, autonomous navigation algorithms have difficulty.
We use a graph-SLAM approach similar to that developed
by Thrun et al. [6] to navigate and generate the maps.
Loop closures, which occur when a robot sees the same
objects from similar locations at different points in time, can
cause estimators to diverge if they are not handled correctly.
Every time a new loop closure occurs, the map and position
estimate are re-optimized. If the new loop closure results
in a large shift in the current position estimate, a naive
estimator can diverge because of the discontinuity of the
estimated global position. To avoid the issue of loop closures
causing instability in the controller, we estimate the global
and relative states of the UAV separately and do not rely on
the global state estimate to control the attitude of the UAV.

We store the current global state estimates in a transfor-
mation tree as shown in Fig. 2. The world frame is the
inertial NED (north-east-down) frame with a fixed origin
that does not change over time. The UAV’s starting location
with respect to the world is set as the map frame which is
represented in the inertial NWU (north-west-up) orientation.
The base_link frame represents the current estimated posi-
tion of the UAV in the NED orientation with the camera_link
frame representing the position in the NWU orientation. The
camera_base_link frame represents the current position of

The network diagram of the relative navigation framework proposed in this paper.

the camera in the camera frame.

The odom frame is used to adjust for loop closures. When
the flight begins, the odom frame starts with zero offset from
the map frame. Every time a loop closure is detected and
the map is re-optimized, the transform between the map
and odom frames is adjusted to reflect the correction in
the current global state estimate. This allows the transform
between the odom frame and the robot frames (camera_link
and base_link) to stay continuous when loop closures are
detected even though the position estimate does not.

The keyframe, keyframe_world and keyframe_camera
frames are used to track the relative visual odometry used
by the relative estimator. More specifically, the relative visual
odometry is stored in the tree as the transform between the
keyframe and camera_link frames in the NWU orientation.
For convenience, we also keep track of the NED orientation
with the keyframe_world frame and the camera orientation
with the keyframe_camera frame.

The UAV’s current waypoint is represented as the trans-
form between the world and waypoint frames. This way,
a loop closure does not shift the desired global position of
the waypoint. The position controller operates on the error
between the waypoint and base_link frames. More detail
regarding the uses and implementations of these transforms
will be further explained in the following sections.

1) RTAB-Map: The real-time appearance-based mapping
(RTAB-Map) package, developed by Labbe et al. [7], [8],
[9], is a powerful open-source software library. It uses
graph-SLAM with appearance-based loop closures to gen-
erate high-quality, dense 3D maps using only an RGB-D
camera and a planar laser scanner. When coupled with the
depth-enhanced visual odometry algorithm called RGBD-
Odometry, which was developed in conjunction with RTAB-

1222

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

camera_link

keyframe_camera

relative -
odometry ="

keyframe
keyframe_world

RTAB-Map K
odometry ¢
.

keyframe 3
dropped from 4
odometry

H S
H .
H .
H .
H ’."
: .
H .
loop closure H i
adjustment

_--*"global
- waypoint
position

camera_base_link
waypoint

X controller
base_link error

NWU Dynamic
frame

w
y d
camera NED
frame frame

Static
Transform Transform

Fig. 2.

Map [9], the UAV’s position with respect to the map that is
being built can be accurately estimated at all times. The map-
building algorithm uses a keyframe-based approach. Unlike
the visual odometry algorithm, the map-building algorithm
does not try to use the information from every camera frame
to build the map and optimize the graph. Instead, it only uses
camera information that has been saved periodically at a set
rate. In our case, once every second the information from
the current camera frame is sent to RTAB-Map and saved as
a keyframe. Only these keyframes are used to build the map
and optimize the graph. RTAB-Map is primarily designed
for use with slow-moving ground robots that do not need
high-rate state estimation to work. The only state estimation
that is performed by RTAB-Map is from the visual odometry,
which is limited by the frame rate of the camera. We found
the estimation rate of RTAB-Map on our hardware to be in
the 10-30 Hz range, which is not sufficient for autonomous
navigation of a UAV. We use the state estimates from the
RGBD-Odometry node as an input to the estimation for the
relative framework.

Although the current functionality of RTAB-Map does
allow for a single robot to combine maps from multiple
sessions, it does not allow for multiple agents mapping
simultaneously to combine the maps into a single one. This
paper proposes a method to extend the functionality of
RTAB-Map to combine the maps of multiple agents flying

The transformation tree of the reference frames used in estimation and control.

simultaneously into a single map in near real-time. The
implementation of this method is detailed in Section IV.

RTAB-Map manages the map, odom, base_link,
camera_link, and camera_base_link frames in the
transformation tree as previously described. Along with
the frames, it handles all of the loop closures and graph
optimization. We use the current position estimate produced
by RTAB-Map for the position controller and waypoint
manager. Because of the inevitable inaccuracies and the
lower estimation rates of RTAB-Map, we do not use these
estimates to perform attitude control on the UAVs. Rather,
we use a relative navigation framework to estimate the
relative state and control the attitude.

2) Visual Odometry: The odometry and keyframe infor-
mation generated by RTAB-Map is used to produce a relative
odometry message that is sent to the relative estimator.
RTAB-Map produces a global visual odometry that provides
a real-time estimate of the global position and orientation
of the UAV. Each time a new keyframe is declared, a new
node is added to the graph, and the visual odometry node
shown in Fig 1 resets the transform between the keyframe
and camera_link frames to zero. The relative odometry only
tracks the UAV’s movement with respect to the last keyframe
that was declared and stores the information as the transform
between the keyframe and camera_link frames. Because
of the continual resetting of the keyframe transform, the

1223

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

odometry used by the relative estimator is less susceptible to
drift over time [10].

3) RMEKF: The relative navigation framework [11], [12],
[13] has been shown to successfully estimate the UAV’s
relative state sufficient to autonomously navigate in GPS-
denied environments that have previously been mapped. Thus
far, however, it has not been extended to estimation and
navigation in unknown and unmapped environments. This
paper proposes a method to extend the functionality to these
environments.

The relative multiplicative extended Kalman filter
(RMEKEF) is the heart of the relative framework. It uses
the IMU measurements from the flight controller, the rel-
ative visual odometry explained previously, and the attitude
measurement from the LiDAR single-beam range finder for
the measurement updates. Then, using a multirotor dynamics
model, the RMEKEF accurately estimates the relative state of
the UAV with respect to the previous keyframe. This estimate
is used for obstacle avoidance and high-rate attitude control.
The RMEKF makes no effort to estimate the global position
of the UAV. As a result, corrections in the estimated global
position from loop closures and drift in visual odometry do
not cause the estimator to diverge. This enables the UAV to
avoid stability issues in the velocity and attitude controllers.

D. Control

To successfully control a UAV using the relative navigation
framework, the control must be segmented into different tiers
to take advantage of both global and relative estimates. The
following paragraphs explain the different tiers of the UAV
control shown in Fig 1.

1) Waypoint Planner: The first stage of the control archi-
tecture is the waypoint planner. The inputs to the planner are
the global goal, the current known obstacles, and the current
global estimates. It outputs a path to the goal that avoids all
known obstacles as set of waypoints. The detailed workings
of the planner will be further explained in Section III.

2) Waypoint Manager: After receiving the waypoints, the
waypoint manager selects the appropriate waypoint for the
UAV and sends the global location to the position controller.
The waypoint manager monitors the position and heading
error between the current estimated position and the current
waypoint. When the error decreases below a user-defined
threshold value, the next waypoint is sent to the position
controller.

3) Position Controller: The position controller drives the
error between the current estimated position and heading of
the UAV and the next waypoint to zero. Since it operates in
the error space of the UAV rather than the state space, sudden
shifts in the UAV’s position estimate caused by loop closures
have minimal effect on the controller. When these shifts
happen, the controller is able to quickly adjust to continue
controlling the error to zero. The position controller outputs
a velocity command.

4) Obstacle Avoidance: Before passing the velocity com-
mand into the attitude controller, it is filtered through an
obstacle avoidance algorithm. This algorithm uses the current

relative estimates from the RMEKF and current obstacles
detected by the planar laser scanner to modify the input
velocity command. It uses a cushioned extended-periphery
avoidance (CEPA) technique [14] to alter the velocity com-
mand when necessary by pushing the UAV away from
obstacles while changing the incoming velocity command
as little as possible. Because the position controller does not
manage the trajectory of the UAV, it often causes overshoot
after reaching waypoints. This overshoot is suppressed by the
CEPA filter if it causes the UAV to fly near obstacles. The
obstacle avoidance node then sends the modified velocity
command to the attitude controller.

5) Attitude Controller: The attitude controller is a con-
ventional PID controller that runs on the autopilot. It takes
the linear velocity from the position controller as the input
commands, performs the attitude control loop, and outputs
the raw motor commands to the electronic speed controllers
(ESCs).

E. Inputs/Outputs

The input for each agent in the system is the desired high-
level path either from operator input or from a high-level
path planner. As each agent maps the environment, keyframe
data consisting of the color and depth images and the feature
descriptions from the images is sent to the map merger each
time a new keyframe is declared. The map merger will be
further explored in Section IV.

III. PLANNING

When designing the reactive planner, we explored using
both node-based optimal algorithms and sampling based
algorithms [15]. Node-based (or heuristic search) algorithms
like A* work well to find optimal paths around obstacles
[16]. The downside to these planners is that in order to find
a path, they need to exhaustively search the design area. This
makes them less efficient to use when the map is large and
constantly changing. They also require the environment to be
discretized, which can result in the planner not finding paths
to the goal when a path does exist. This tends to happen in
complex maps when the environment is coarsely discretized.
Sampling-based algorithms, like rapidly-exploring random
trees (RRT) [17] are effective for planning in real-time with
dynamic obstacles. RRT randomly searches the full, non-
discretized map for feasible paths rather than requiring an
exhaustive search. Although RRT does not guarantee optimal
paths, it is much less computationally intensive than A* each
time a new path is planned. More recently, improvements
to RRT have been explored such as RRT* [18], which
generates asymptotically optimal paths by modifying the
search tree. Since our planner is used as a form of exploration
of unknown environments, we chose to use RRT. This allows
the flight path to be more random and encourage more
exploration of the map while flying paths.

We used a form of RRT with a path smoothing approach
similar to that proposed [19] to improve and simplify the
resultant paths. Since our planner uses a dense 2D grid
map of all currently known obstacles, some adjustments are

1224

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

needed to efficiently plan and re-plan when new obstacles
are discovered in the current path.

A. Global Goal Following with Relative Estimation

As mentioned earlier, the relative estimator critical to
keeping the UAV airborne only estimates the UAV’s relative
state with respect to the last keyframe and makes no attempt
to estimate the global position of the UAV. By doing so, the
global estimate of the position does not have to be continuous
and is able to slide and adjust with loop closure corrections
without affecting the estimator. The path planner generates
a global path from the current position to the goal. The
global paths do not adjust with loop closures and the map
is continually changing as the UAV flies. For both of these
reasons, obstacles can appear in the path at any time. To
avoid these obstacles, the planner dynamically re-plans any
time an obstacle is detected in the path.

B. Reactive Path Planning

Fig. 3 shows the process of how the dynamic path planner
works in an example scenario. When the UAV starts, little
is known about the environment. The only obstacles in the
map are the ones that are within line-of-sight of the laser
scanner when the flight begins. A path is planned to the
goal that avoids the obstacles that are initially detected. As
the UAV flies, the obstacle map is continuously updated with
new obstacles and the path is constantly being checked for
collisions. If collisions are found, a new path is planned
to the goal from the current location that avoids the newly
discovered obstacles. This process continues until the agent
successfully reaches the goal. Since the path is updated any
time a potential collision is detected, no prior knowledge of
the environment is required to begin flying.

The planner also includes a buffer around each detected
obstacle to avoid planning paths that would cause the UAV
to fly too close to the obstacles. The buffer size is set by the
user, but is always at least half the width of the UAV. This
ensures that every waypoint is sufficiently far from obstacles
that it can be reached without any part of the UAV touching
an obstacle.

Since this planner is used in conjunction with the CEPA
obstacle avoidance node explained in II-D.4, the UAV can
effectively navigate through complex maps and avoid obsta-
cles in emergency situations. The planner enables complex
navigation that would not be possible with only obstacle
avoidance. The obstacle avoidance node filters velocity com-
mands from the position controller that would inadvertently
cause the UAV to collide with obstacles when either a new
obstacle is detected that is not in the current map, or when
the position controller causes overshoot.

1) Efficient Collision Detection: Most implementations of
RRT are not designed to deal with extremely large number
of obstacles. The obstacles we use are from a 2D grid map
generated by RTAB-Map based on the planar LiDAR scanner
returns. Consequently, rather than having just a few large
obstacles, there are many small obstacles. Using a standard
obstacle detection check with each propagation of the RRT

would be extremely inefficient. To maximize the efficiency
during planning, we use a strategy that allows the planner to
ignore most obstacles in the map when performing collision
checks. An example of how this works is illustrated in Fig. 4.

As the RRT branches propagate, before each candidate
node is added to the tree, an obstacle collision check is
done only on the obstacles within range of the new node.
The obstacles are determined to be in range according to
algorithm 1.

Algorithm 1 Obstacle Range Filter

Require: candidate_branch, obstacle_list, ryys
for all obstacles in obstacle_list do
if x,ps + Thuf < min (331, 332) then
continue
else if 2,5 — 75y > max (1, 22) then
continue
else if y,55 + 75y < min (y1,72) then
continue
else if y,p5 — Ty > max (y1,y2) then
continue
else
filtered _obstacles < obstacle
end if
end for
return filtered_obstacles

The points (z1,y1) and (x2,y2) are the endpoints of
the candidate branch, (Zps,¥yobs) is the location of the
obstacle being checked, and 7, is the buffer radius for each
obstacle. The green bounding box in Fig. 4 shows which
obstacles would be included in the filtered _obstacles after
this check. The perpendicular distance between the candidate
line (shown in red) and each remaining obstacle is found by

_ Ay zops — Ax Yops + As|

d) (1)
where
Ar = x9 — 11 2)
Ay=y2—mn 3)
As = x5 Y1 — T1 Yo. “4)

If the distance d is less than the buffer radius, a collision
is detected and the candidate is rejected. By only checking
for collisions with obstacles within the bounding box, nearly
all obstacles are ignored for each step of propagation. This
significantly improves performance of the RRT planner and
allows it to plan in real-time and dynamically update the path
whenever needed. The collision detection for path smoothing
and path checking works the same way, with (z1,y;) and
(z2,y2) being the endpoints of each path segment.

IV. MAP MERGING

The map merging process we use is able to generate
a combined map from multiple agents on a base-station
computer in near real-time as the UAVs are mapping the

1225

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3.

An example of how the reactive path planner works as the UAV flies the planned path. The current estimated position is marked by the green

arrow, the current goal position is marked by the red arrow, and the current path is marked with blue lines. Detected obstacles and safety buffers are

represented with black and grey respectively.

Legend

A Current location
A Current goal

® Obstacle
’ Obstacle buffer

* RRT nodes
— RRT branches

¢ Candidate node
— Candidate branch

__1 Collission search bounding box

Fig. 4. Example of one step of collision check with the RRT planner.

environment. Fig. 5 shows the network diagram of the
process of merging the maps. To merge the maps in near
real-time, each time a new keyframe is initialized, its data
is stored in the RGB-D Cache database which is hosted on
the base-station computer. A 3D color and depth (XYZRGB)
pointcloud is generated using the color and depth information
from the RGB-D cameras and the features are generated from
either SIFT/SURF or ORB using OpenCV.

Once the database has been initialized, the maps are
periodically merged using functions from an instance of

RTAB-Map running on the base-station computer. This merg-
ing process functions similarly to how individual maps are
generated for each UAV [7], [8], [9]. The first step is to
search for loop closures in the feature descriptions from each
keyframe using a bag-of-words approach. Rather than only
look for loop closures from the keyframes of a single agent,
this process looks for loop closures from all keyframes from
all agents. Each time a new loop closure is found, a new
edge is added to combined map graph with an estimated
transformation between keyframes. After finding all loop
closures with the current dataset, the graph is optimized
using the pose graph optimizer built into RTAB-Map. The
optimized pose graph is then sent to the map assembler along
with the XYZRGB pointcloud from each keyframe where
the pointclouds are combined according to the optimized
graph edges. This generates a single map with all keyframes
that can be connected into a single graph. This map is then
processed to reduce noise and filter out the ceiling to make
the map more understandable to the operator.

Since the base-station computer is merging the maps, the
algorithm is able to run in real-time. The larger the map
grows, the longer it takes to re-optimize the combined map.
This causes the updated map to lag behind real-time when
the map is large.

V. RESULTS AND DISCUSSION
A. Simulation

We successfully navigated and mapped a simulation en-
vironment autonomously in ROS Gazebo [20] with multiple
agents and combined the maps. The simulation environment
was designed to be as close to the real world and hardware
as possible. We used a software-in-the-loop (SIL) version of
ROSAflight [21], an open-source autopilot library built with
ROS, to mimic the flight controller. We did not use any
ground-truth information in the simulation; all measurements
were from simulated sensors with noise characteristics sim-
ilar to hardware. Fig. 6 shows the simulation setup used to

1226

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

Inputs/Outputs Map Merger
Agent 1 &Ml—; RGB-D Cache
All
Keyframe
Data RTAB-Map Functions
I 2l)
Agent 2 Keyframe Data |
9 | |Loop Closure Detectorl—
|
| Raw |
| Keyframe
| Tranforms |
|
Keyframe Data Y
Agentn ! Pose Graph Optimizer Keyframe I
| pnh Op XYZRGB
Pointclouds |
I Optimized |
| Pose Graph |
|
| Y |
| |Map Assembler|<_ |
______________]
Raw
Combined
Map
Y
Filtered Ma | .
Base Station [' 2 Map Filter

Fig. 5.

XQQ téed» Bl 0V S Path Planning

A

Y
3

Simulation Environment

D Map Generated from RTAB-Map

Fig. 6. Setup used for the simulation results. The reactive planner is shown
on the left, the simulation world is shown on the top right, and the current
map is shown on the bottom right.

map the environment.

Fig. 7 shows the results from mapping the simulated en-
vironment with two agents and combining the maps. Neither
agent saw everything in the combined map, but the maps
were successfully merged together into a single map with
all features from each individual map.

Flying in simulation helped validate the reactive planner
and obstacle avoidance. It was also helpful to debug and sort
out the communication architecture of the relative navigation
framework and control schemes. The area where the simu-
lation falls short is with the computer vision applications
such as visual odometry and loop-closure detection. Gazebo
is excellent at simulating realistic physics and dynamics,
but the environments are significantly less detailed than the

The network diagram for the multi-agent map merging node proposed in this section.

real world. This makes designing a simulation world more
difficult. If there is too little detail added to the world, the
visual odometry algorithms often fail or perform poorly. If
too much repetitive detail is used, RTAB-Map finds too many
false loop closures and the mapping fails. The simulated
world developed and used to obtain results as shown in Figs.
6 and 7 is able to minimize these issues, but still failed to
produce results on par with a real world test. There were only
a few locations in the simulated world with enough unique
detail that loop closures were reliably detected. In contrast, a
real-world environment has enough detail that loop closures
can be detected nearly everywhere except for large blank
walls and glass. After proving the setup in a high-fidelity
simulation, we moved to hardware to more thoroughly test
the computer vision aspects of the approach

B. Hardware

The extension of RTAB-Map to enable real-time map
merging of multiple UAVs flying simultaneously is robust
enough to handle several vehicles at the same time. We began
testing with only merging two flight paths and were able
to expand it up to four simultaneous flight paths. We were
able to successfully combine maps generated from multiple
UAVs in near real time with manual flight. Fig. 8 shows an
example of a map built from an indoor environment with both
hallways and large rooms. The generated map is sufficiently
dense to show detail for a human user to interpret and get
actionable information. This map was built from manually
flying a single UAV four times and recording the data, then
playing back all data simultaneously and merging the map
in real time as shown in Fig. 9. By the end of the map
merging process with this data, the combined map generation

1227

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

Agent 1 Map

Fig. 7.

was lagging behind real-time by about one minute. The
map information is stored in the random-access memory
(RAM), this map uses approximately 3GB of memory. The
size of the area mapped is approximately 40 meters wide
and 60 meters long, with each of the four flights lasting
anywhere from three to five minutes. There is theoretically
no limit to the number of vehicles that could be added and
flown simultaneously, but as more vehicles are added, the
merging process lags further behind real time, more memory
is needed, and loop closure detection gets more complex.

VI. CONCLUSIONS

Using UAVs to generate dense 3D maps of GPS-denied
environments requires a careful choice of planning, esti-
mation, and mapping techniques to be successful. Using
the combination of a reactive path planner and a CEPA
obstacle avoidance velocity filter allows for navigation and
exploration through complex GPS-denied environments. Es-
timating relative and global states separately allows for the
necessary decoupling of position and attitude controllers to
fly autonomously without the use of GPS. Using multiple
UAVs to collaboratively map an area improves mapping
efficiency and, when handled correctly, still allows the map
building to occur in near real-time. Future work includes
streamlining the map merging process to allow for full real-
time map generation, and connecting the UAVs to a high-
level coverage path planner to allow for fully autonomous
flight without human guidance.

Combined Map

Agent 2 Map

Map generated from combined maps in the simulated environment.

VII. ACKNOWLEDGEMENTS

Thanks to Mathieu Labbe for being responsive to answer-
ing questions on the RTAB-Map forum and helping with
developing the map merging node. This research was funded
by The National Institute of Standards and Technology
(NIST) under award number 70NANB17H211.

REFERENCES

[1] S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork
projects using an unmanned aerial vehicle (UAV) system,” Automation
in construction, vol. 41, pp. 1-14, 2014.

[2] R. Martin, I. Rojas, K. Franke, and J. Hedengren, “Evolutionary
view planning for optimized UAV terrain modeling in a simulated
environment,” Remote Sensing, vol. 8, no. 1, p. 26, 2016.

[3] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Na-
gatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, et al.,
“Collaborative mapping of an earthquake-damaged building via ground
and aerial robots,” Journal of Field Robotics, vol. 29, no. 5, pp. 832—
841, 2012.

[4] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan,
“Pairwise consistent measurement set maximization for robust multi-
robot map merging,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2018, pp. 2916-2923.

[5] Intel, “Intel® RealSense depth camera D435 - Intel® RealSense
depth cameras.” [Online]. Available: https://click.intel.com/intelr-
realsensetm-depth-camera-d435.html

[6] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with appli-
cations to large-scale mapping of urban structures,” The International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 403—429, 2006.

[71 M. Labbé and F. Michaud, “Memory management for real-time
appearance-based loop closure detection,” in 2011 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 1EEE, 2011,
pp. 1271-1276.

1228

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

Combined Map

Fig. 8. Example of hardware results of merging maps from four agents into a single map in an indoor environment. Above the individual agent maps are
examples of the detail in the pointclouds when zoomed in.

1229

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

40 seconds: 80 seconds:

Takeoff and flight start

180 seconds:
Loop closures beginning

Agents split off to different paths

120 seconds:
Agents navigating respective paths

T

260 seconds:
Flight complete and map fully combined

Fig. 9. Example of the merged map being generated in near real-time. The combined map is updated every 30-40 seconds as agents are flying.

——, “Appearance-based loop closure detection for online large-scale
and long-term operation,” IEEE Transactions on Robotics, vol. 29,
no. 3, pp. 734-745, 2013.

——, “RTAB-Map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online
operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416446,
2019.

R. C. Leishman, T. W. McLain, and R. W. Beard, “Relative navigation
approach for vision-based aerial GPS-denied navigation,” Journal of
Intelligent & Robotic Systems, vol. 74, no. 1-2, pp. 97-111, 2014.
D. O. Wheeler, D. P. Koch, J. S. Jackson, G. J. Ellingson, P. W.
Nyholm, T. W. McLain, and R. W. Beard, “Relative navigation of au-
tonomous GPS-degraded micro air vehicles,” All Faculty Publications,
2017.

D. O. Wheeler, D. P. Koch, J. S. Jackson, T. W. McLain, and R. W.
Beard, “Relative navigation: A keyframe-based approach for observ-
able GPS-degraded navigation,” IEEE Control Systems Magazine,
vol. 38, no. 4, pp. 3048, 2018.

D. P. Koch, D. O. Wheeler, R. Beard, T. McLain, and K. M. Brink,
“Relative multiplicative extended Kalman filter for observable GPS-
denied navigation,” 2017.

J. Jackson, D. Wheeler, and T. McLain, “Cushioned extended-
periphery avoidance: A reactive obstacle avoidance plugin,” in 2016

[15]

[16]

(171

[18]

[19]

[20]
(21]

1230

International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2016, pp. 399-405.

L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, “Survey of
robot 3D path planning algorithms,” Journal of Control Science and
Engineering, vol. 2016, p. 5, 2016.

N. J. Nilsson, The quest for artificial intelligence: A history of ideas
and achievements. ~ Cambridge, MA: Cambridge University Press,
2009.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846-894, 2011.

R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and
practice. Princeton university press, 2012.

OSREF, “Gazebo.” [Online]. Available: http://gazebosim.org/

J. Jackson, G. Ellingson, and T. McLain, “ROSflight: A lightweight,
inexpensive MAV research and development tool,” in 2016 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS). IEEE,
2016, pp. 758-762.

Authorized licensed use limited to: Brigham Young University. Downloaded on February 17,2022 at 01:23:26 UTC from IEEE Xplore. Restrictions apply.

