
Journal of Parallel and Distributed Computing 00 (2021) 1–17

JPDC

TSM2X: High-Performance Tall-and-Skinny Matrix-Matrix Multiplication
on GPUs

Cody Riveraa,1, Jieyang Chenb,1, Nan Xiongc, Jing Zhangd, Shuaiwen Leon Songe, Dingwen Taof,a,∗

aThe University of Alabama, Tuscaloosa, AL 35487, USA
bOak Ridge National Laboratory, Oak Ridge, TN 37830, USA

cThe University of Tennessee, Knoxville, TN 37996, USA
dUniversity of Colorado Colorado Springs, CO 80918, USA

eThe University of Sydney, NSW 2006, Australia
fWashington State University, Pullman, WA 99164, USA

Abstract

Linear algebra operations have been widely used in big data analytics and scientific computations. Many works have been done on optimizing
linear algebra operations on GPUs with regular-shaped input. However, few works focus on fully utilizing GPU resources when the input is
not regular-shaped. Current optimizations do not consider fully utilizing the memory bandwidth and computing power; therefore, they can only
achieve sub-optimal performance. In this paper, we propose two efficient algorithms—TSM2R and TSM2L—for two classes of tall-and-skinny
matrix-matrix multiplications on GPUs. Both of them focus on optimizing linear algebra operation with at least one of the input matrices is tall-
and-skinny. Specifically, TSM2R is designed for a large regular-shaped matrix multiplying a tall-and-skinny matrix, while TSM2L is designed for
a tall-and-skinny matrix multiplying a small regular-shaped matrix. We implement our proposed algorithms and test on several modern NVIDIA
GPU micro-architectures. Experiments show that, compared to the current state-of-the-art works, (1) TSM2R speeds up the computation by 1.6x on
average and improves the memory bandwidth utilization and computing power utilization by 18.1% and 20.5% on average, respectively, when the
regular-shaped matrix size is relatively large or medium; and (2) TSM2L speeds up the computation by 1.9x on average and improves the memory
bandwidth utilization by up to 9.3% on average when the regular-shaped matrix size is relatively small.

Keywords: Matrix-matrix multiplication, Tall-and-skinny matrix, GEMM, GPU, CUDA, Performance, Optimization

1. Introduction

Matrix-matrix multiplication (GEMM) has been one of the
most extensively used linear algebra operations in big data an-
alytics and scientific computations. Due to many factors (such
as algorithms, input data, etc.) the size or shape of input ma-
trices for GEMM usually varies when it is used in different ap-
plications. For example, many modern highly scalable scien-
tific simulation packages in the field of fluid dynamics, such
as Finite Element Method (FEM) simulations, need to com-
pute many GEMMs with small-sized input matrices. Artificial
neural networks (ANN) involve using GEMM with small to
medium input matrices. Matrix decompositions uses GEMM
with large-sized input matrices [1, 2, 3, 4]. Thus, besides large-
sized input, which has already been extensively optimized dur-
ing the past decades, GEMM with small to medium sized in-

∗Corresponding author
Email address: dingwen.tao@wsu.edu (Dingwen Tao)

1Cody Rivera and Jieyang Chen have contributed equally to this work.

put has also drawn much attention to recent researchers. For
instance, Dong et al. [5] proposed MAGMA-Batched, which
aims to batch small input matrices into larger ones in order
to utilize the highly optimized implementations for large input
size on GPUs. Heinecke et al. [6] proposed to speed up GEMM
with small input using architecture and instruction level opti-
mization on modern CPU architectures.

Although previous works have focused on optimizing
GEMM with different matrix sizes, most of them only assume
that the input matrices are regular-shaped. In other words, the
size mentioned in their works usually refers to both dimen-
sions of the input matrix. For example, a small matrix means
both of its width and height are small and their magnitudes are
close to each other. When the dimensions of the input matri-
ces have significant difference, we consider them as irregular-
shaped inputs. In particular, many irregular-shaped inputs in-
volve tall-and-skinny matrices, in which their widths are sig-
nificantly smaller then their heights. Although few works have
been done to study and optimize GEMM with tall-and-skinny

1



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 2

input, this input case has been widely used in many applica-
tions [7]. For instance, recent highly optimized K-means im-
plementations [8, 9] use GEMM as their core computation, and
the input size is mostly tall-and-skinny. This is because the
number of centroids is usually far less than the number of in-
put data points. Moreover, when GEMM is used for encoding
checksums for many algorithm-based fault tolerance applica-
tions [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], the input in-
volves a tall-and-skinny checksum weight matrix.

Previous efforts made for optimizing GEMM with regular-
shaped input may not work for non-regular shaped input. For
instance, Chen et al. [13] illustrates that calculating GEMM
with tall-and-skinny input using the vendor’s highly optimized
linear algebra library (e.g., cuBLAS [21]) is slower than disas-
sembling the tall-and-skinny input matrix into several vectors
and then applying matrix-vector multiplications. However, it
can be easily seen that even with this workaround the com-
putation is not efficient, since elements in input matrices are
accessed by the GPU more times than necessary. Although
the performance can be optimized by grouping many tall-and-
skinny input matrices into large ones similar to the approach
proposed, there are cases where this grouping approach is not
feasible. For example, tall-and-skinny input matrices may be
generated one at a time from a producer process in user’s work-
flow. Grouping several of them into a large matrix requires ex-
tended waiting time, which is not applicable for time-sensitive
applications. On the other hand, the memory space may limit
the total number of matrices that can fit into the memory at the
same time, if the input matrices are large (e.g., multiplication
of regular-shaped large and tall-and-skinny matrices).

In this work, we target on optimizing the computation of
GEMM with tall-and-skinny input on the GPU platform since
many applications that use GEMM are deployed on GPUs.
So, our optimization greatly benefits those applications. The
key insight of our work is that the computation characteristic
of GEMM on modern computing systems is not always un-
changed as we change the shape of input matrices. For exam-
ple, when the sizes of regular-shaped matrices are large (i.e.,
m ' k ' n � 1 for an m×k matrix multiplying an k×n matrix),
the compute-to-load ratios of each element in the input matri-
ces are O(m) ≈ O(n). So, the regular-shaped GEMM opera-
tions are usually compute-bound especially for large matrices.
However, when the input is tall-and-skinny (i.e., m ' k � n
or m � k ' n), the average compute-to-load ratio is re-
duced to around O(1). Moreover, when k is very small (i.e.,
m � k ' n), each GPU thread would not perform enough
workload to hide latency and hence low occupancy. There-
fore, depending on the relationship between m, k, and n, and
the performance characteristics of GPUs, the computation can
be compute-bound, memory-bound, or latency-bound. Specif-
ically, when (1) m ' k � n, as n gets larger, it moves toward
compute-bound; (2) m ' k � n, as n gets smaller, it moves
toward memory-bound; and (3) m � k ' n, it moves toward
latency-bound. To optimize GEMM with tall-and-skinny input,
it is critical to design a computation algorithm that considers all
compute-bound, memory-bound, and latency-bound cases.

The main contributions of this paper include:

• We study the limitation of current state-of-the-art GEMM
implementations with tall-and-skinny inputs (i.e., m '

k � n or m � k ' n). With benchmarking, we find that
the under-utilization of GPU resources is the main reason
for performance degradation when the input is tall-and-
skinny.

• To handle a broad spectrum of tall-and-skinny inputs for
GEMM on GPUs, we design two classes of algorithms
with optimizations focusing on different tall-and-skinny
input cases: (1) TSM2R is designed to handle a large
regular-shaped matrix multiplying a tall-and-skinny ma-
trix (i.e., m ' k � n); (2) TSM2L is designed to handle a
tall-and-skinny matrix multiplying a small regular-shaped
matrix (i.e., m � k ' n).

• We present a performance model for TSM2R and compare
it with our evaluation performance results. Moreover, we
examine the inadequacies of the model for TSM2L and fur-
ther improve it based on our observations.

• We carefully implement TSM2R and TSM2L using CUDA
C2 and evaluate them on four generations of NVIDIA
GPUs including Kepler, Maxwell, Pascal, and Volta. Ex-
periments show that our TSM2R and TSM2L can achieve
1.6x and 1.9x speedups, respectively, on average with dif-
ferent tall-and-skinny inputs, compared to the state-of-the-
art GEMM library cuBLAS.

The rest of this paper is organized as follows. In Section 2,
we give a formal definition of tall-and-skinny matrix and show
some preliminary benchmark results of the GEMM with tall-
and-skinny matrix using cuBLAS. In Section 3, we propose our
detailed design of TSM2R and TSM2L for two different kinds of
tall-and-skinny inputs. In Section 4, we present our evaluation
results. In Section 5, we examine related works for tall-and-
skinny inputs. In Section 6, we conclude the paper.

2. Background

2.1. Tall-and-Skinny Input for GEMM

In this work we restrict our scope to handle irregular-shaped
inputs that involve tall-and-skinny matrices. The tall-and-
skinny input size means that, for the two input matrices, at
least one matrix is tall-and-skinny (i.e., one dimension is sig-
nificantly smaller than the other). For example, either (i) in-
put matrix A with size 20480 × 20480 and matrix B with size
20480× 2 or (ii) input matrix A with size 20480× 2 and matrix
B with size 2 × 2 is considered as tall-and-skinny input in our
work. Tall-and-skinny matrices are a typical class of matrices
that can be found in irregular-shaped inputs for GEMM. In this
paper, we focus on optimizing GEMM with (i) one large regular
input matrix and one tall-and-skinny input matrix and (ii) one
tall-and-skinny input matrix and one small regular input matrix.

2The TSM2X code is available at https://github.com/codyjrivera/
tsm2x-imp.

2

https://github.com/codyjrivera/tsm2x-imp
https://github.com/codyjrivera/tsm2x-imp


C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 3

In this paper, for the first case, we let matrix A be the larger in-
put matrix (m × k) and matrix B (k × n) be the tall-and-skinny
input matrix, where m ' k � n; for the second case, we let
matrix A be the tall-and-skinny input matrix (m× k) and matrix
B (k × n) be the smaller input matrix, where m � k ' n. We
choose these input sizes and shapes because we believe they
can expose most of the challenges in processing all kinds of
tall-and-skinny input, so the design idea and optimization tech-
niques introduced in this paper can be easily applied to other
cases with slight modification. Also, for simplicity’s sake, we
choose to let the larger matrix in (i) and smaller matrix in (ii) to
be square-shaped in most of our experiments. Our optimization
can work with non-square input as well with similar effects.

2.2. cuBLAS

One of the most commonly used standard linear algebra li-
braries optimized for the GPU is the cuBLAS library developed
by NVIDIA. cuBLAS is the core computing library of many
big data and scientific computing applications. For example, it
is the GPU computing library for MAGMA heterogeneous lin-
ear algebra library [22, 23, 24], cuLA library [25], and cuDNN
deep learning library [26]. With NVIDIA’s deep optimization,
the cuBLAS library is able to provide state-of-the-art perfor-
mance in many use cases. For example, with large regular-
shaped input matrix, their GEMM implementation is able to
achieve near peak GPU performance [27].

However, we found that the GEMM subroutine is not fully
optimized with certain input matrix sizes [10]. For example,
with inputs that involve tall-and-skinny matrices, the GEMM
operation in current best implementation (cuBLAS 9.0 running
on NVIDIA Tesla K40c GPU) uses less than 10% of the the-
oretical peak memory bandwidth on average with n = 2 (as
demonstrated in Figure 7 (a)-(b)). When n = 16, the same
GEMM operation uses less than 20% of the theoretical peak
memory bandwidth on average (as demonstrated in Figure 7
(g)-(h)). The resource utilization is even lower with larger in-
put dimensions. By comparing the two input sizes, it can be
seen for input with smaller n values, the computation utilizes
higher memory bandwidth (close to memory bound). On the
other hand, for input with larger n values, the computation uti-
lizes higher computing power (close to compute bound). How-
ever, since we are unable to analyze the GEMM implementation
in the closed-source cuBLAS library, it is hard to tell its exact
computational characteristics.

3. Design Methodologies

To handle the GEMM with two different classes of tall-and-
skinny inputs on GPUs described in Section 2.1, we design
two efficient algorithms: TSM2R and TSM2L. TSM2R is designed
to handle inputs with one large-to-medium regular-shaped ma-
trix and one tall-and-skinny matrix, while TSM2L is designed
to handle inputs with one tall-and-skinny matrix and one small
regular-shaped matrix. Note that “R” or “L” means that the tall-
and skinny matrix is multiplied on the right or left.

3.1. Design of TSM2R
In this section, we describe our proposed algorithm TSM2R

for GEMM with a large regular-shaped matrix and a tall-and-
skinny matrix.

3.1.1. Insight on Tall-and-Skinny Input
For regular-shaped GEMM (m × k matrix multiplies k × n

matrix), the input matrices’ total size is O(mk + kn), while the
computing time complexity is O(mkn), so each element in the
input matrices is used O(m) or O(n) times within the entire com-
putation process. Since loading data to the GPU from the off-
chip DRAM (i.e., global memory) to GPU is expensive and to
avoid extensive data load operations, one common optimiza-
tion for this kind of problem is minimizing the number of times
each element needs to be loaded into the GPU by using fast
on-chip memory (e.g., cache, registers) to enable data reuse.
As the number of loads reduces, optimized GEMM tends to be
compute-bound. For example, current GEMM implementation
in cuBLAS library can reach near bare-metal performance on
GPUs [27].

However, unlike regular-shaped GEMM, when one matrix
is tall-and-skinny (e.g., n � m, k), each element in the input
matrices is used O(n) times on average:

(m×k)×n times+(k×n)×m times
m×k+k×n ≈ O(n) times.

Depending on the size of n and target GPU peak computing
power and memory throughput ratio, the computation can be
either compute-bound or memory-bound. When n gets smaller,
the computation tends to be memory-bound. Otherwise, the
problem tends to be compute-bound. In either case, the prob-
lem is always near the boundary between memory bound and
compute bound, so it is critical to design an algorithm that is
optimized for both cases.

3.1.2. Algorithm Design
Algorithm design plays a critical role in our proposed opti-

mizations. First, we need to consider how to fit the workload of
our TSM2R into the programming model of CUDA (i.e., thread
hierarchy). Although the workload can be easily decomposed
into many independent smaller workloads, careful considera-
tion of the workload distribution is still necessary, since any un-
necessary performance penalty can cause drastic GPU resource
under-utilization. Several factors are considered in our design:

1. Total number of global memory accesses;
2. Shared and global memory access efficiency;
3. Utilization of overall memory bandwidth;
4. Parallelism of overall workload;
5. On-chip memory utilization;
6. Streaming Multiprocessor (SM) utilization;
7. Optimization for compute & memory-bound cases.

To achieve good performance, there must exist enough active
threads in each SM of the GPU to ensure proper instruction
and memory access latency hiding. So, in our algorithm we
divide the workload by assigning n rows of matrix A to n dif-
ferent threads. Each vector-matrix multiplication is assigned to

3



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 4

Require: input matrix A (m × k) and B (k × n), output matrix C
(m × n)

1: for i = 1 to n do
2: for j = 1 to k do
3: C[global tid, i]+ = A[global tid, j] × B[ j, i]
4: end for
5: end for

Algorithm 1: Each thread’s workload with inner product.

Require: input matrix A (m × k) and B (k × n)
Require: output matrix C (m × n)

1: Reg1:n ← C[global tid, 1 : n]
2: for i = 1 to k do
3: Reg1:n+ = A[global tid, i] × B[i, 1 : n]
4: end for
5: C[global tid, 1 : n]← Reg1:n

Algorithm 2: Each thread’s workload with outer product.

one thread (i.e., (A[i, :] × B)). The benefit is three-fold: 1) this
ensures high parallelism and high SM occupancy; 2) since the
number of elements of matrix A is much higher than matrix B,
this kind of distribution ensures that matrix A is accessed as lit-
tle as possible; 3) it also enables high memory access efficiency
and throughput, since all memory accesses to matrix A are nat-
urally coalesced (assuming matrices are stored in column-major
by convention).

As for the vector-matrix multiplication assigned to each
thread, to further reduce the number of memory accesses to
matrix A, we use outer-product style computation instead of
the usual inner-product style computation. As shown in Algo-
rithm 1, if we use inner-product, each element of matrix A is
repeatedly referenced n times. On the other hand, if we use
outer-product as shown in Algorithm 2, each element of ma-
trix A is referenced only once. (Please note, as we will discuss
in later sections, when n is larger than a certain threshold, el-
ements in matrix A still need to be referenced more than once
due to the limited resources available for each thread, but it
is still far lower than using inner-product). When matrix A is
large, the benefit is significant, since it greatly reduces the total
number of global memory accesses during the entire GEMM
computation. Also, the outer-product style does not bring any
extra memory accesses to matrix B compared to inner-product
style. The only cost for outer-product is extra registers holding
n intermediate results. However, with proper tuning, the benefit
of fewer memory accesses outweighs this cost.

3.1.3. Efficient Off-Chip Memory Access
One key factor of optimizing memory intensive applications

is ensuring high off-chip memory access efficiency. Depending
on the GPU model type or runtime configurations, global mem-
ory (off-chip) accesses of threads within the same warp can be
coalesced into 128 byte- or 32 byte-transactions [28] if their ac-
cess addresses fall into the same 128 byte- or 32 byte-segments
in global memory, which enables efficient use of memory band-
width. Otherwise, the GPU still loads memory in 128 byte- or
32 byte-transactions, but it may contain unrequested data that
are stored in neighbor addresses, which causes inefficient mem-
ory accesses.

Since each thread reads one row of matrix A and the ma-
trix is stored in column-major format by convention, memory
accesses are naturally coalesced when threads within the same
warp access elements on different rows but on the same col-
umn. So, 100% memory access efficiency is achieved on matrix
A. However, for matrix B, all threads access the same element
at the same time, which results in a single memory transac-
tion containing one requested element and several unrequested
neighbor elements. So, only 8 bytes

128 bytes = 6.25% or 8 bytes
32 bytes = 25%

memory access efficiency is achieved for accessing 64-bit dou-
ble floating point elements. Although the total number of ele-
ments in matrix B is small, given that each element needs to be
accessed n times, this inefficient access pattern can still greatly
impact the overall performance.

To improve the efficiency of memory accesses to matrix B,
we utilize shared memory in GPU. Since it is located on-chip,
shared memory gives us the speed of L1 cache and it is fully
programmable. Threads within one thread block can use shared
memory to share data. So, one key advantage of shared mem-
ory is that it eliminates the need for the consistency between
patterns of data loading and data using pattern, which enables
us to load global memory in the most efficient way and keep the
way that we use data as before.

By using shared memory for accessing matrix B, we can re-
duce the total number of memory accesses and enable coalesced
memory access. As shown in Algorithm 3, for each iteration,
instead of letting threads request elements they need individu-
ally by themselves inefficiently, we now let a block of threads
work together to fetch a tile of matrix B into the shared memory
in a coalesce-compatible way (Line 11). Then during compu-
tation, each thread references elements in matrix B through the
shared memory instead of loading each one of them individ-
ually from global memory. This reduces the total number of
accesses to matrix B from global memory (from n to n/t1 per
element). Also, threads in a same thread block fetch elements
of matrix B column by column, which enables coalesced mem-
ory access and greatly improves memory-access efficiency to
100%. Moreover, we also introduce three parameters: t1, t2,
and t3 in Algorithm 3. These parameters are used for adjusting
the performance and will be discussed in later sections.

3.1.4. Optimizing Use of Shared Memory
Although fast, elements in shared memory still need to be

loaded into registers before using them [29]. Its access speed
can affect the overall performance. Shared memory is di-
vided into several same-sized memory banks for fast parallel
accesses. Different threads can access different memory banks
simultaneously. So, having a total of b memory banks can
speedup overall shared memory throughput by up to b times
compared to the throughput of one single memory bank. How-
ever, if x threads in the same warp access different data from the
same memory bank, an x-way bank conflict occurs and each re-
quest is processed sequentially, which dramatically reduces the
accessing throughput by a factor of 1/x.

In our algorithm, threads in the same thread block load data
from global memory into shared memory column by column to

4



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 5

Require: input matrix A (m × k) and B (k × n), output matrix C
(m × n)

1: t1 ← tile size B, t2 ← tile size C, t3 ← tile size A
2: Register: A1, A2, ..., At3
3: Register: C1,C2, ...,Ct2
4: Shared Memory: currB with size t1 × t2

5: Threads per thread block← t1

6: Total thread blocks← m/t1

7: for p = 1 to n with step size = t2 do
8: C1:t2 ← C[global tid, p : p + t2 − 1]
9: for j = 0 to k with step size = t1 do

/* Load a tile of B into shared memory */
10: ThreadsSynchronization()
11: currB[global tid, 1 : t2]← B[ j + global tid, p : p + t2 − 1]
12: ThreadsSynchronization()
13: for l = j to j + t1 with step size = t3 do

/* Load a tile of A into registers*/
14: A1:t3 ← A[global tid, l : l + t3 − 1]
15: C1:t2 + = A1:t3 × currB[l : l + t3, 1 : t2]
16: end for
17: end for
18: C[global tid, p : p + t2 − 1]← C1:t2
19: end for

Algorithm 3: TSM2R with shared memory.

Bank 0

Bank 1

Bank 2

Bank 3

Bank 28

Bank 29

Bank 31

Bank 30

Bank 0

Bank 1

Bank 2

Bank 3

Bank 28

Bank 29

Bank 31

Bank 30

0

1

2

3

28

29

30

32

33

34

35

60

61

62

0

1

2

3

28

29

30

32

33

34

35

60

61

62

31 63 31 63

0

0

1

1

14

14

15

16

16

17

17

30

30

31

32

32

33

33

46

46

47

48

48

49

49

62

62

63

15 31 47 63

… …

No bank conflict 2-way bank conflict

Thread 0

Thread 1
Thread 2
Thread 3

Thread 28

Thread 29

Thread 30

Thread 31

Thread 0
Thread 16

Thread 1
Thread 17

Thread 14
Thread 30

Thread 15
Thread 31

Figure 1: Comparing column-major (left) with row-major (right) storage for
storing a 64 × 2 tile of matrix B in shared memory. Blue and yellow squares
represent elements in the first and second column. When one warp of 32 threads
accessing 32 elements in one column (e.g. element 0 to 31 of the first column),
the column-major storage brings no bank conflict and row-major storage brings
2-way bank conflict, which reduces throughput by half.

enable fast coalesced global memory access. Then threads ac-
cess data from shared memory row by row during computation.
How we store elements in shared memory will affect how these
elements are accessed from memory banks, which affects the
throughput of shared memory. We have two ways of storing a
tile of matrix B in shared memory: column-major storage and
row-major storage. To choose between the two ways, we need
to analyze and compare which way brings the least overall bank
conflict. We assume the size of one tile of matrix B is t1 × t2
and t1 is the multiply of total number of memory banks b for
simplicity.

For column-major storage, elements (32-bit words or 64-bit
words) in the same column of one tile of matrix B are stored
in successive memory banks. So, for shared memory with b
memory banks, t1 elements of one column are stored in b dif-
ferent successive memory banks with each bank storing at most
t1
b elements and being accessed by at most warp size

b threads at the
same time, which may potentially cause bank conflict if warp size

b
is greater than one.

For row-major storage, elements in the same row of matrix

B are stored in successive memory banks. So, elements of the
same column are stored in b

t2
different banks, where each bank

stores t1×t2
b elements from one column. Since each bank has t2

times more elements from one column, each bank has at most t2
times more threads accessing it at the same time: warp size

b × t2,
which may also potentially cause bank conflict.

On modern NVIDIA GPUs, the warp size is fixed to 32 and
total number of banks is also 32 [28], so column-major storage
does not cause bank conflict, since each bank can only have up
to one thread accessing. Row-major storage can cause up to
t2-way bank conflict, which decreases overall shared memory
throughput to 1

t2
of the peak throughput. As shown in Figure 1,

we load a 64 × 2 matrix tile into shared memory using column-
major storage (left) and row-major storage (right). When using
column-major storage, threads in one warp all access different
banks, so no bank conflict occurs. But when using row-major
storage, 32 elements are stored in 16 banks causing 2-way bank
conflict. When accessing elements in shared memory for com-
putation, threads in a warp all access the same element at the
same time in our algorithm. Although multiple threads are ac-
cessing one bank, they are accessing the same element, so one
broadcast is initiated, which does not cause bank conflict. It is
the same for both storage styles. So, we choose column-major
storage as it brings no bank conflict and potentially brings the
highest shared memory throughput.

3.1.5. Overlapping Computation and Memory Access Latency
During execution, for each instruction issuing moment, each

warp scheduler picks an eligible warp and send it to the cor-
responding component for execution. A warp becomes eligible
only if all operands of its next instruction are ready. However, if
a warp is loading data from global memory, it will take several
hundred cycles before it can be ready for execution. To hide
this long latency, we can either increase the number of threads
residing in each SM to ensure there always exist eligible warps
[30] or put independent instructions in between data loading
and data consuming operations, so that warps are also eligible
for execution during memory loading time. The first approach
requires us to adjust the on-chip resource usage of each thread
block. We will save that discussion for the next section. In this
section, we aim to add independent instructions in between data
loading and data consuming operations.

A shown in Algorithm 3, Line 11 and 14 load data from
global memory and Line 15 consumes data once data is loaded.
However, due to data dependency, there is no independent in-
struction in between, so once each warp issues global memory
access requests, it must wait for the requested elements to be
ready before it can proceed to computation.

So, to add independent instructions, we use data prefetching
to mix data loading and consumption between neighbor itera-
tions. Specifically, instead of letting each iteration loads data
that is going to be used for current iteration, we let the data
needed for current iteration to be loaded by the previous iter-
ation, so that its calculation will not be blocked by data load-
ing (since the data are ready). When doing calculation, it also
loads data that is going to be used for the next iteration. By

5



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 6

LD C

LD NextB

LD NextA

Compute

LD NextA

Compute

ST CThreads Sync.

LD NextB

LD NextA

Compute

LD NextA

Compute

Threads Sync.

LD NextB

LD NextA

Compute

LD NextA

Compute

Threads Sync.

Figure 2: Example workload of one iteration of our optimized TSM2R with data
prefetching.

overlapping data loading and computation, we can significantly
improve memory bandwidth and SM utilization. We apply data
prefetching to both matrix A and B.

Require: input matrix A (m × k) and B (k × n), output matrix C (m × n)
1: t1 ← tile size B, t2 ← tile size C, t3 ← tile size A
2: Register: currA1, currA2,...,currAt3
3: Register: nextA1, nextA2,...,nextAt3
4: Register: nextB1, nextB2,...,nextBt2
5: Register: C1, C2,...,Ct2
6: Shared Memory: currB with size t1 × t2
7: Threads per thread block← t1
8: Total thread blocks← m/t1
9: for p = 1 to n with step size = t2 do

10: C1:t2 ← C[global tid, p : p + t2 − 1]
/*load the first tile of A and B*/

11: currB[local tid, 1 : t2]← B[local tid, p : p + t2 − 1]
12: currA1:t3 ← A[global tid, 1 : t3]
13: for j = 0 to k with step size = t1 do
14: ThreadsSynchronization()

/*prefetch the next tile of B into registers*/
15: if j + t1 < n then
16: nextB1:t2 ← B[ j + t1 + local tid, p : p + t2 − 1]
17: end if
18: for l = j to j + t1 with step size = t3 do

/*prefetch the next tile of A into registers*/
19: if l + t3 < n then
20: nextA1:t3 ← A[global tid, l + t3 : l + t3 + t3 − 1]
21: end if
22: C1:t2 + = currA1:t3 × currB[l : l + t3, 1 : t2]

/*load the prefetched tile of A from nextA registers into currA
registers*/

23: currA1:t3 ← nextA1:t3
24: end for
25: ThreadsSynchronization()

/*load the prefetched tile of B from nextB registers to shared
memory*/

26: currB[local tid, 1 : t2]← nextB1:t2
27: end for
28: C[global tid, p : p + t2 − 1]← C1:t2
29: end for

Algorithm 4: TSM2R with shared memory and data prefetching.

As shown in Algorithm 4, we design our TSM2R with data
prefetching. Note that global tid and local tid represent the
(global) thread ID in the grid and the (local) thread ID in the
block, respectively. In Line 2 and 3, we allocate two sets of
t3 registers for storing current tile of elements of matrix A and
next tile of element of matrix A for prefetching. In Line 4 and
6, we allocate t2 registers for data prefetching of elements in
matrix B, and allocate t1 × t2 for storing currently loaded tile
of matrix B. Note that we cannot store current tile of matrix
B in registers, because elements in matrix B need to be shared
between threads during computation.

Before the core computation iteration (Line 13-27), we pre-
load current tile of matrix A and B into registers and shared
memory (Line 11 and 12), so that computation can start imme-
diately as soon as we enter the computation loop without being

A

B

C

 Thread 0
 Thread 1
 Thread 2
 Thread 3

 Thread 0
 Thread 1
 Thread 2
 Thread 3

registers
holding 
current 
tile of A

shared mem.
holding current 

tile of B

t1

t2

t3

prefetch next tile A 
to registers

next tile becomes 
current tile in next iteration 

prefetch next 
tile B to registers

load next tile to 
shared mem.
before next 

iteration.

{one 
thread 
block

{one 
thread 
block

calculation on 
current tile

Figure 3: Matrix view of tall-and-skinny matrix matrix multiplication with data
prefetching.

blocked by any data dependency. The main computation resides
in Line 22. To overlap computation with memory accesses, we
initiate loading for the next tile before the computation (Line 16
for matrix B and Line 20 for matrix A). We use two loops for
loading matrix A and B, because we want to have the flexibility
to adjust loading pace (tile size) differently for the two matri-
ces. We will discuss this in the next subsection. Figures 2 and 3
show one iteration of our optimized TSM2R with data prefetch-
ing. LD C and ST C represent loading initial values from matrix
C and storing final results back to matrix C. Each iteration we
show three sub-iterations for loading matrix B. As we can see,
we compute and pre-load the next tile of matrix B concurrently
to improve memory bandwidth utilization. A thread barrier is
inserted in the end of each iteration. For the innermost iteration,
we do the actual computation and pre-load elements from ma-
trix A each time. Please note that the length of each rectangle
does not accurately represent the exact execution time length
and the ratio between number of LD nextA and LD nextB is
not necessarily two in actual computation. Also, we show one
thread block with four threads only for illustration proposes. As
we will discuss in the next subsection that different parameter
values can affect the length of each part and the ratio between
number of LD nextA and LD nextB. Especially on the exe-
cution time of LD nextA and Compute, which will affect the
characteristic of computation (i.e. memory-bound or compute-
bound). Also, for simplicity, we ignore the data movement from
next tile to current tile that occurs in each iteration.

3.1.6. Parameters Definition
In Algorithm 3 and Algorithm 4, we introduced three ad-

justable parameters: t1, t2, and t3. In this section, we first
discuss how each parameter controls the computation of our
TSM2R. Then, we introduce our performance model that esti-
mates how certain performance metrics change with these pa-
rameters. Finally, we explain our strategies for choosing values
for these parameters in order to achieve high GPU resource uti-
lization and optimize overall performance. Please note that the
following discussions are all based on Algorithm 4.

6



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 7

3.1.7. Behaviors of Parameters
We first list the behaviors of each parameter below:

• t1 specifies the number of rows of one tile of matrix B. To
maximize use of available active threads and to avoid any
inefficient thread execution caused by warp divergence, we
let all threads in each thread block participate in fetching
elements of matrix B. For fast coalesced global memory
access, we let each thread fetch one row, so t1 is also the
total number of threads in each thread block. Also, since
we let a total of m threads work on the computation, the
total number of thread blocks can be calculated as: m/t1.

• t2 specifies the number of elements in matrix C that each
thread is working on at a time. It is used to divide the
overall workload into several smaller workloads that are
processed iteratively by each thread. A smaller workload
makes each thread’s SM resource usage smaller, which al-
lows us to keep higher SM occupancy. However, dividing
the workload means we need to load matrix A repeatedly
for each small workload. So, there is a trade-off. t2 also
affects the ratio between total number of memory fetches
and computation operations in core part of our algorithm,
which allows us to adjust the computation to be compute
or memory-bound (will be discussed later in detail).

• t3 specifies the number of elements in matrix A that each
thread fetches at a time. Since elements fetches are inde-
pendent to each other, they can be done without blocking
each other, so t3 can be used to adjust the memory loading
concurrency.

3.1.8. Performance Metrics Estimation
In this section, we introduce our parameter-based perfor-

mance model that is used to estimate three important perfor-
mance metrics: SM occupancy, memory bandwidth utilization
and computing power utilization. These estimations will be
used for optimizing the overall performance.

• Max SM occupancy estimation
With these parameters we can calculate the max occu-
pancy of each SM, which is defined as max number of
active threads per SM. (Some works also use max number
of warps, which is similar to ours. We found that using the
maximum number of threads is more consistent across our
performance models. We also choose our thread block size
to be the dividend of this value to ensure the expected num-
ber of threads are active.) This occupancy is mainly bound
by the maximum hardware allowable number of threads
(HW MAX) and on-chip memory utilization per thread.
We first calculate the total number of registers utilized per
thread. Since register utilization can potentially be opti-
mized by the nvcc compiler, we use the maximum num-
ber of registers to estimate this value. First of all, there
is a relatively fix amount of registers uses for CUDA ini-
tial setup, and we represent this amount as C. We get its
amount through offline profiling. Then, we need two sets
of t2 registers for storing elements of matrix B for both

next tile fetching and current tile calculation. Please note
that although the current tile of matrix B is stored in shared
memory, it still needs to be transferred to registers for cal-
culation. Next, we need t2 registers for keeping interme-
diate results of matrix C. Finally, we need two sets of t3
registers for storing elements of matrix A for both next tile
fetching and current tile calculation. So, the total number
of registers is:

Rthread = (t2 × 3 + t3 × 2) × bytes per element
bytes per register + C.

As for shared memory, although it is allocated per thread
block, we calculate the average amount of shared memory
that each thread uses for consistent calculation here. Since
the size of allocated shared memory per thread block is
t1 × t2, and as we will discuss earlier that we set t1 =

threads per threadblock, the amount of shared memory
allocated for each thread on average is:

S thread = t2 × bytes per element.

So, the max SM occupancy can be calculated as:

MaxOccupS M = min(HW MAX, RS M
Rthread
, S S M

S thread
).

In the above calculation, RS M and S S M stand for the max
available registers and shared memory per SM.

• Max memory bandwidth utilization estimation
Next, we estimate the max memory bandwidth utiliza-
tion of our algorithm when the computation is memory-
bound. In this case, loading elements of matrix A domi-
nates the computation instead of floating point calculations
in our algorithm. So, we can estimate max memory band-
width utilization using the maximum number of concur-
rent global memory accesses per SM. It can be calculated
as:

Concurrentmem ≈ MaxOccupS M × t3.

Note that we only consider the memory accesses to matrix
A here for simplicity. Since the majority of memory ac-
cesses are for matrix A, this only brings minor inaccuracy.
Then, similar to [30, 31] we calculate the least number
of concurrent memory accesses per SM needed to achieve
max memory bandwidth utilization using Little’s Law:

Throughputmax mem = Peak Band.
# o f S M×core clock ,

Concurrentmax mem = latencymem × Throughputmax mem.

The latencymem is the average global memory access la-
tency, which is considered as a constant in our model and
is obtained through offline profiling. The estimated mem-
ory bandwidth utilization is:

Utilmem = Concurrentmem
Concurrentmax mem

.

• Max computing power utilization estimation
Next, we estimate the max computing power utilization of
our algorithm when the computation is compute-bound. In

7



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 8

this case, floating point calculation dominates the compu-
tation instead of memory accesses in our algorithm. So,
we can estimate max computing power utilization using
the maximum number of concurrent floating point opera-
tions per SM. It can be calculated as:

Concurrentcomp = MaxOccupS M × t3 × t2.

Then, also similar to [30] we calculate the least number
of concurrent floating point operations per SM needed to
achieve max computing power utilization using Little’s
Law:

Throughputmax comp =
Peak Per f .

# o f S M×core clock ,

Concurrentmax comp = latencycomp × Throughputmax comp.

The latencycomp is the average latency of floating point op-
erations in our calculations, which is considered as a con-
stant in our model and is obtained through offline profiling.
So, the estimated computing power utilization is:

Utilcomp =
Concurrentcomp

Concurrentmax comp
.

• Determine compute-bound or memory-bound
Given parameters and GPU specification, we can de-
termine whether the current computation is memory or
compute-bound. This is mainly determined by the inner-
most loop (Line 20-24) of Algorithm 4. The memory load-
ing instructions (Line 21) overlap the computation (Line
23). Since Line 24 depends on memory loading results,
it serves as an implicit synchronization point for mem-
ory loading and computation. The time takes for the two
parts will determine whether the current computation is
compute-bound or memory-bound. So, we first estimate
the time takes for computation and memory access as fol-
lows:

timecomp =
t3×t2

Peak Per f .×# o f S M×OccupancyS M
,

timemem =
t3×bytes per elem.

Peak Band.×# o f S M×OccupancyS M
.

Then, by comparing the two time costs, we can deter-
mine whether the current computation is compute-bound
or memory-bound.

r =
timecomp

timemem
= t2

bytes per elem. ×
Peak Band.
Peak Per f .

As we can see, when r is greater than one, the compu-
tation is compute-bound. Otherwise, the computation is
memory-bound. Also, since we divide the original work-
load into several smaller workloads using t2, this ratio is
determined by t2. By adjusting t2, the actual computation
can be shifted between compute and memory-bound. The
boundary between the two cases can be calculated by set-
ting the ratio r = 1, so we get a threshold for t2:

tthreshold
2 =

Peak Per f .
Peak Band. × bytes per elem.

Similarly, we can also estimate the computation charac-
teristics of the original problem, in which the workload is
not divided into smaller workloads. In this case, t2 is al-
ways fixed to k. So, by comparing k with tthreshold

2 we can
estimate the computation characteristics. If k is greater
than tthreshold

2 , the original problem is compute-bound; oth-
erwise, it is memory-bound. It can be easily seen, depend-
ing on the value of t2 and k, the computation characteristics
of the current problem and original problem can be differ-
ent, which can affect the overall performance. We discuss
this in later part of this section.

3.1.9. Deciding Parameters
When choosing parameters, the first thing we should deter-

mine is whether we should optimize for computation or mem-
ory bandwidth. This is determined by whether the given TSM2R

computation on the given GPU should be compute or memory-
bound. In the last section, we proposed to estimate this charac-
teristic by comparing n and tthreshold

2 , so that we can accordingly
adjust parameters to optimize the computation.

In the case where original problem is memory-bound (n ≤
tthreshold
2 ), we need to keep the actual computation memory-

bound also (let 1 ≤ t2 ≤ n) and optimize for memory band-
width utilization. On the other hand, if the original problem is
compute-bound (n > tthreshold

2 ), we first try to keep the actual
computation compute-bound too (let tthreshold

2 ≤ t2 ≤ n) and op-
timize computing power utilization. However, in the case where
tthreshold
2 is too high on the given GPU, we also try to optimize it

for memory-bound (let 1 ≤ t2 ≤ tthreshold
2 ) and output the result

parameters that deliver better performance.
Algorithm 5 shows the parameter optimization procedure for

t2 and t3. We first determine the computation characteristic in
Line 1. If it is memory-bound, we optimize for the total global
memory access time (Line 4). Otherwise, we optimize for ei-
ther total computation time (Line 9) or memory access time
(Line 14). Please note that we only count the total amount of
memory accesses to matrix A for simplicity, since total accesses
to matrix B is much less than matrix A, so this simplification
only brings minor inaccuracy. Also, considering the total ac-
cesses to matrix B would bring one additional parameter (t1),
which can be hard to optimize since t1 is also related to threads
organization that is hard for modeling-based estimation. The
memory bandwidth utilization term (Utilmem) and computing
power utilization term (Utilcomp) is calculated using the equa-
tion mentioned before. Since we have two parameters (t2 and
t3) in our optimization target, we use Gradient Descent (GD) to
do the optimization. In GD, based on our experience, we set
initial value of both t2 and t3 to be 1, and step size to be 0.1.
The stop threshold is set to be 10−4, since we do not need very
accurate precision. The final t2 and t3 are rounded to the nearest
integers.

To optimize t1, we find it only controls the number of threads
in each thread block. Since the total number of threads is fixed
to m, t1 only determines how these threads are organized into
thread blocks. There is trade-off: if t1 is large, the total number
of accesses to elements of matrix B is reduced, however, a large

8



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 9

1: if n ≤ tthreshold
2 then

2: Total memory ≈ m × k × n
t2
× bytes per elem.

3: Bandwidth = PeakBand. × Utilmem
4: Use Gradient Descent to Optimize (t2 and t3): Time =

Total memory
Bandwidth with

1 ≤ t2 ≤ n and 1 ≤ t3
5: Output: t2 and t3
6: else
7: Total f lops = m × k × n × 2
8: Compute power = PeakPer f . × Utilcomp

9: Use Gradient Descent to Optimize (t2 and t3): Time1 =
Total f lops

Compute power

with tthreshold
2 ≤ t2 ≤ k and 1 ≤ t3

10: t2(time1) ← t2
11: t3(time1) ← t3
12: Total memory ≈ n × n × k

t2
× bytes per elem.

13: Bandwidth = PeakBand. × Utilmem
14: Use Gradient Descent to Optimize (t2 and t3) in Time2 =

Total memory
Bandwidth

with 1 ≤ t2 ≤ tthreshold
2 and 1 ≤ t3

15: t2(time2) ← t2
16: t3(time2) ← t3
17: if Time1 < Time2 then
18: Output: t2(time1) and t3(time1)
19: else
20: Output: t2(time2) and t3(time2)
21: end if
22: end if

Algorithm 5: Parameter optimization for TSM2R.

thread block means a large number of threads need to partici-
pate in the same synchronization, which may have an impact on
performance. On the other hand, if t1 is small, the total number
of accesses to elements of matrix B is higher, but the smaller
thread block makes scheduling more flexible and efficient. It is
hard to determine the optimum value of t1 theoretically, so we
use offline profiling to choose the best value. Specifically, once
t2 and t3 are determined, we benchmark different t1 values that
can divide MaxOccupS M as mentioned earlier, and choose the
t1 for the best performance. Although t1 seems to have direct
effect on shared memory allocation (or max SM occupancy), it
actually has limited impact on it, since we fix the amount of
shared memory per thread (S thread = t2 × bytes per element).

3.2. Design of TSM2L

The algorithm proposed in the above sections—TSM2R—is
optimized for the case where a large regular-shaped matrix mul-
tiples a tall-and-skinny matrix. In this section, we first propose
a new algorithm TSM2L to handle the case where a tall-and-
skinny matrix multiplies a small regular-shaped matrix. For
example, an input matrix A of size 102400 × 4 multiples an
input matrix B of size 4 × 4, where the tall-and-skinny matrix
is multiplied on the left. We then introduce two different opti-
mization approaches to overcome the bottleneck that this kind
of tall-and-skinny input poses.

3.2.1. Performance Bottlenecks
We start by adapting our previous algorithm TSM2R to handle

the new case without further optimization. However, applying
the algorithm to this case reveals a bottleneck. We evaluate
TSM2R on this case with matrices of 15360 × k and k × 16—
where k varies—on an NVIDIA Tesla V100 GPU. As shown
in Figure 4, as the inner dimension k decreases, the memory
bandwidth usage also decreases.

Figure 4: Memory bandwidth usage of very small values of k with double pre-
cision (m=15360, n=16).

Require: input matrix A (m × k) and B (k × n)
Require: output matrix C (m × n)

1: tc f ← thread count f actor
2: t1 ← tile size B, t2 ← tile size C, t3 ← tile size A
3: Register: currA1, currA2,...,currAt3
4: Register: nextA1, nextA2,...,nextAt3
5: Register: nextB1, nextB2,...,nextBt2
6: Register: C1, C2,...,Ct2
7: Shared Memory: currB with size t1 × t2

8: Threads per thread block← t1

9: Total thread blocks← m/(t1 × tc f )
10: Total threads← m/tc f
/*loop over all the horizontal tiles of matrix A*/

11: for r = global tid to m with step size = Total threads do
12: Perform Line 9-29 of Algorithm 4 with all occurrences of the

identifier global tid replaced by the identifier r
13: end for

Algorithm 6: Proposed optimization-1 for TSM2L.

To explain these results, we expand upon the performance
model proposed in Section 3.6.2. This model assumes that the
maximum theoretical occupancy is always achieved throughout
the computation. However, on the one hand, since the algo-
rithm loops k × n

t2 times, and k is very small, each thread does
not perform enough workload to hide the latency, resulting in
low occupancy. On the other hand, the program issues much
fewer global memory reads than the case with large k, resulting
in less efficient memory usage. Therefore, TSM2R performs in
a latency-bound mode (neither compute-bound nor memory-
bound) on this input case (i.e., a tall-and-skinny matrix multi-
plying a small matrix), as indicated in a prior study [30].

3.2.2. Proposed Optimizations
Based on these observations, we design two further optimiza-

tions for TSM2L. Both optimizations intend to trade warp la-
tency for memory-access latency by launching fewer threads.
As a result, each thread performs more computation, and the ac-
cumulated warp latency can be replaced by the memory-access
latency. Since we are launching fewer threads than the number
of rows of matrix A, we must divide it into several horizontal
tiles. Here we introduce a new parameter tc f to represent the
tile number of matrix A in our algorithm. We launch m

tc f threads
in the new kernel.

The first optimization involves dividing the multiplication
into tc f parts, where each part consists of multiplying a m

tc f -
row tile of matrix A by the entire matrix B. In essence, this
optimization repeats the TSM2R algorithm once for each tile of

9



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 10

matrix A. In this optimization, each element of matrix A is still
accessed n

t2
times, though each element of B is loaded tc f × n

t2
times, which is tc f times more than that in TSM2R. We describe
the detail in Algorithm 6.

Require: input matrix A (m × k) and B (k × n), output matrix C (m × n)
1: tc f ← thread count f actor
2: t1 ← tile size B, t2 ← tile size C, t3 ← tile size A
3: Register: currA1, currA2,...,currAt3
4: Register: nextA1, nextA2,...,nextAt3
5: Register: nextB1, nextB2,...,nextBt2
6: Register: C1, C2,...,Ct2
7: Register: nextC1, nextC2,...,nextCt2
8: Shared Memory: currB with size t1 × t2
9: Threads per thread block← t1

10: Total thread blocks← m/(t1 × tc f )
11: Total threads← m/tc f
12: for p = 1 to n with step size = t2 do
13: currB[local tid, 1 : t2]← B[local tid, p : p + t2 − 1]
14: currA1:t3 ← A[global tid, 1 : t3]
15: for j = 0 to k with step size = t1 do
16: ThreadsSynchronization()

/*prefetch the next tile of B into nextB*/
17: nextB1:t2 ← B[ j + t1 + local tid − 1, p : p + t2 − 1]
18: C1:t2 ← C[global tid, p : p + t2 − 1]

/*loop over all the horizontal tiles of matrix A*/
19: for r = global tid to m with step size = Total threads do

/*prefetch the next tile of C into registers*/
20: if r + Total threads ≤ m then
21: nextC1:t2 ← C[r+Total threads, p : p + t2 − 1]
22: end if
23: Perform Line 18-25 of Algorithm 4, with all occurrences of the identifier

global tid replaced by the identifier r
/*store the sum so far in C*/

24: C[r, p : p + t2 − 1]← C1:t2
/*load the prefetched tile C from nextC to C*/

25: C1:t2 ← nextC1:t2
26: end for
27: ThreadsSynchronization()

/*load the prefetched tile B from nextB to shared memory*/
28: currB[local tid, 1 : t2]← nextB1:t2
29: end for
30: end for

Algorithm 7: Proposed optimization-2 for TSM2L.

The second optimization is to interleave the computation of
the tiles, rapidly loading elements from different tiles of matrix
A and loading and storing intermediate sums in matrix C. Once
a t1 × t2 tile of matrix B is loaded, the intermediate results are
loaded, computed, and stored for each tile of matrix A. The C
register set is loaded with values from matrix C which contains
the product accumulated so far. After the computation is fin-
ished, the values are stored to matrix C again as the next tile
of matrix A is prepared for computation. To quickly switch be-
tween tiles, values from matrix C are prefetched in addition to
the prefetching already described in Algorithm 4. A new set of
registers, nextC1:t2 , is used to store the values of C associated
with the next tile of A. The elements of A and B are accessed
only n

t2
times, though each element of C is accessed k

t1
× n

t2
times.

However, since we do not achieve either high occupancy or high
memory bandwidth in this case, we are not as concerned about
issuing more memory read instructions. We describe the detail
in Algorithm 7.

Figure 5 illustrates the effects of the two optimizations on
both performance and memory bandwidth usage. As fewer and
fewer threads are launched, the impact of warp latency is re-
placed with that of different kinds of latency such as memory
bandwidth latency. As a result, computation time decreases and
memory access bandwidth increases in this case. Note that for

(a) Speedup (single) (b) Mem. bw. util. (single)

(c) Speedup (double) (d) Mem. bw. util. (double)

Figure 5: Performance comparison with single and double precision using dif-
ferent tc f (m=107, k=n=16).

this case the number of threads launched must be reduced to at
least 1

64 of m before a significant decline in speedup or memory
bandwidth utilization occurs. This is because the kernel must
manage so many threads that perform little work when m = 107.

Therefore, we must choose an appropriate tc f , determining
the number of threads to launch for each kernel. If the algo-
rithm is launched with an insufficient number of threads, the
parallelism becomes too low and hence the performance would
suffer. If the algorithm is launched with too many threads, the
performance would be impacted by warp latency just as it does
in the naive adaptation of TSM2R. We thus must determine an
appropriate tc f for each target system with offline profiling.

3.3. Design Summary

We summarize the design of TSM2R and TSM2L, including
our performance model, in Table 1.

4. Experimental Evaluation

4.1. Experiments Setup

We implement our TSM2R and TSM2L using CUDA C for
single and double precision floating-point input. We disable
compiler auto unrolling in favor of explicit loop unrolling for
better control on register allocation. Note that since our pro-
posed algorithms mainly target traditional scientific computing
applications rather than machine learning applications, we omit
an evaluation on half-precision input. We evaluate our opti-
mized implementations on two heterogeneous testbed clusters,
which are Darwin [32] at Los Alamos National Laboratory and
PantaRhei [33] at the University of Alabama. We run each
test on a single GPU node with single GPU. We conduct our
tests on four different commonly used modern NVIDIA GPUs
with four different micro-architectures: Kepler, Maxwell, Pas-
cal, and Volta. For Kepler GPU, we use Tesla K40c, which
has 1430 GFLOPS peak double floating-point performance and

10



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 11

TSM2R Large square or rectangular matrix by tall-and-skinny matrix
TSM2L Tall-and-skinny matrix by small square matrix

TSM2R optimizations Compute and memory-bound cases
Algorithm 1 Inner product only
Algorithm 2 Outer product: saves global memory accesses
Algorithm 3 Shared memory: more efficient global accesses to matrix B
Algorithm 4 Data prefetch: overlap compute and memory operations

TSM2L optimizations Latency bound cases
Algorithm 6 Divide matrix A into horizontal tiles: compute each tile sequentially
Algorithm 7 Divide matrix A into horizontal tiles: interleave the computation of each tile

Performance Model
Parameter t1 Number of rows of a tile of Matrix B
Parameter t2 Number of elements of C each thread computes at a time
Parameter t3 Number of elements of A each thread fetches at a time

Utilcomp Computing power utilization term
Utilmem GPU memory bandwidth utilization term
tthreshold
2 =

Peak Per f .
Peak Band. × bytes per elem.

Determines whether a computation is compute-bound or memory-bound

Table 1: Summary of TSM2R and TSM2L design.

Darwin PantaRhei

CPU Intel Xeon E5-2650v2 Intel Xeon Gold 6148
Memory 251 GB 384 GB
GPU Tesla K40c Tesla M40 Tesla P100 Tesla V100
Architecture Kepler Maxwell Pascal Volta
GPU Memory 12 GB 12 GB 16 GB 16 GB
Peak Performance (Single) 5046 GFLOPS 6844 GFLOPS 10600 GFLOPS 15000 GFLOPS
Peak Performance (Double) 1430 GFLOPS 213 GFLOPS 4600 GFLOPS 7500 GFLOPS
Memory Bandwidth 288 GB/s 288 GB/s 720 GB/s 900 GB/s

Table 2: Experimental platforms with detailed GPU information.

288 GB/s memory bandwidth. For Maxwell GPU, we use Tesla
M40, which has 213 GFLOPS peak double floating-point per-
formance and 288 GB/s memory bandwidth. For Pascal GPU,
we use Tesla P100, which has 4600 GFLOPS peak double
floating-point performance and 720 GB/s memory bandwidth.
For Volta GPU, we use Tesla V100, which as 7500 GFLOPS
peak double floating-point performance and 900 GB/s memory
bandwidth. We provide more information about our experimen-
tal clusters and GPUs in Table 2.

For comparison, we compare our TSM2R and TSM2L with
GEMM in the current latest cuBLAS library [21] and latest
BLASX library [34]. Also, we try to compare our work with
KBLAS [35], however since its GEMM kernel is based on
cuBLAS, its performance is identical to cuBLAS, so we omit-
ted its results. Each test is repeated multiple times to reduce
noise and timed using CUDA Events API. We measure per-
formance by calculating the performance of FAMD instructions.
We also measure the global memory throughput using nvprof

on the command line with --metrics gld throughput op-
tion. In addition, we use --metrics gld efficiency option
to verify if 100% global memory access efficiency is achieved
in our optimization.

Our input matrices are initialized with random floating-point
numbers between 0 and 1. We test the multiplication of a large
squared matrix and a tall-and-skinny matrix for TSM2R and the
multiplication of a tall-and-skinny matrix and a small squared
matrix for TSM2L. Specifically, for TSM2R, the size of the large
regular-shaped matrix is from 10240×10240 to 30720×30720,
and the size of the tall-and-skinny matrix ranges from 10240×n

to 30730 × n with n equals 2, 4, 8, and 16. For TSM2L, the size
of the tall-and-skinny matrix ranges from 104×k to 107×k with
k equals 8 or 16, and the size of the small regular-shaped matrix
is 8 or 16.

4.2. Evaluation of TSM2R
In this section, we first evaluate the performance of TSM2R

with different input sizes and compare it with state-of-the-art
libraries on K40c, M40, P100, and V100.

4.2.1. Tests with Different Optimization Combinations
We use the GEMM in cuBLAS as our comparison baseline.

We apply different combinations of optimization in TSM2R and
compare them with GEMM in cuBLAS and BLASX. We have
in total four versions of TSM2R:

• V0: the most straightforward inner product version as de-
scribed in Algorithm 1;

• V1: the outer version as in Algorithm 2. This version re-
duces the total number of global memory accesses from
algorithm level;

• V2: based on outer production version as in Algorithm 2,
we add the use of shared memory, leading to more efficient
global memory access to matrix B;

• V3: based on the outer production version as in Algorithm
2 and the use of shared memory, we add data prefetch.
This is the best version of our optimized implementation,
which is described in Algorithm 4.

11



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 12

(a) single (2) (b) double (2)

(c) single (4) (d) double (4)

(e) single (8) (f) double (8)

(g) single (16) (h) double (16)

Figure 6: Speedup comparison with single and double precision on K40c (n =

2, 4, 8, 16).

We provide detailed performance breakdowns on K40c and
V100, but our optimization behaves similarly on other GPUs.
To evaluate our optimization, we need to determine by which
resource our program is bounded. Since, tthreshold

2(k40c) ≈ 40, the
computation is always memory bound for the given n values.
The optimized parameters are: t2 = n, t3 = 4, and t1 = 128. The
parameters are only applied to the last to versions of TSM2R.
Figure 6 shows the speedup of different versions in single
and double precision. From the results, we can see that the
TSM2R-V0 suffers from poor performance due to the require-
ment of much higher number of global memory accesses in
the inner product version. TSM2R-V1, on the other hand, sig-
nificantly improves the performance compared to TSM2R-V0

(2.2x∼4.7x faster), since it requires much lower number of
global memory accesses. TSM2R-V2 further improves the effi-
ciency of global memory access to matrix B, which plays a vital
role in the overall performance. In addition, the shared memory

(a) single (n=2) (b) double (n=2)

(c) single (4) (d) double (4)

(e) single (8) (f) double (8)

(g) single (16) (h) double (16)

Figure 7: Memory bandwidth utilization comparison on K40c (n = 2, 4, 8, 16).

shares tiles of matrix B between threads within a thread block
also reduced the total number of memory accesses to matrix B.
This leads to additional 1.1x to 2.1x speedup. Finally, the data
prefetch introduced in TSM2R-V3 further mitigates the memory
access bottleneck, which brings additional 1.3x∼3.5x speedup
(1.9x on average).

4.2.2. Memory Throughput Analysis
Figure 7 shows the memory throughput of TSM2R-V3,

cuBLAS and BLASX in both single and double precision
on K40c GPU. Result show that TSM2R brings 12.5%∼26.6%
(17.6% on average) improvement on memory bandwidth uti-
lization compared with cuBLAS and 20.1%∼38.8% (24.3% on
average) improvement compared with BLASX.

4.2.3. Tests on Different Micro-architectures
In addition to Kepler micro-architecture, we also conduct

tests on newer Maxwell, Pascal, and Volta GPUs. Similar to
the Kepler GPU, we get tthreshold

2(m40) ≈ 6 and tthreshold
2(p100) ≈ 50. Tesla

12



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 13

(a) Speedup (b) Comp. power util.

Figure 8: Speedup and computing power utilization comparison with double
precision on M40 (n = 16).

(a) Speedup (b) Mem. bw. util.

Figure 9: Speedup and memory bandwidth utilization comparison with double
precision on P100 (n = 16).

M40 has lower computing power, so the computation with in-
put with n = 16 is compute bound. Our parameter optimization
procedure also output parameters in favor of computing opti-
mization: t2 = 8, t3 = 4, and t1 = 256. As shown in Figure
8, our optimized implementation achieves 1.1x -1.9x (1.47x on
average) speedup on Tesla M40 with 7% to 37.3% (20.5% on
average) computing power usage improvement compared to the
GEMM function in cuBLAS 9.0. P100 has much stronger com-
puting power, as we can see the computation with input with
n = 16 is memory bound. Our parameter optimization proce-
dure also output parameters in favor of memory optimization:
t2 = 4, t3 = 4, and t1 = 128. As shown in Figure 9, our op-
timized implementation achieves 1.1x∼3.0x (2.15x on average)
speedup on Tesla P100 with 17% to 47.6% (34.7% on average)
memory bandwidth utilization improvement compared to the
GEMM function in cuBLAS.

We also test TSM2R on the NVIDIA Tesla V100 GPU with
Volta micro-architecture. Due to larger memory space on V100,
we further increase the size of regular-shaped matrix to 40960
× 40960. As tthreshold

2(v100) ≈ 70, the computation is memory-bound
for the given values. To ensure maximum performance and
account for the Volta’s architectural improvements, we opti-
mize the parameters via brute-force. The optimized parame-
ters are t1 = 128, t2 = n, and t3 = 32 for single precision.
For double precision, the optimized parameters are t1 = 128,
t2 = n, and t3 = 16 if m < 10240, or t3 = 12 otherwise.
As shown in Figure 10, we exhibit gradually improving per-
formance from TSM2R-V0 to TSM2R-V2, similar to K40c. For
TSM2R-V3, our best version, speedups of up to 1.35x (0.91x
on average) are achieved on single precision, while speedups
of up to 3.2x (1.5x on average) are achieved on double preci-
sion. Note that the speedup for n = 16 on single precision is
slower than cuBLAS. This is due to cuBLAS’s single-precision
GEMM being optimized for 32×32 matrices; thus we no longer

0.0

0.5

1.0

1.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(a) single (2)

0.0

0.5

1.0

1.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(b) double (2)

0.0

0.5

1.0

1.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(c) single (4)

0.0

0.5

1.0

1.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(d) double (4)

0.0

0.5

1.0

1.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(e) single (8)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(f) double (8)

0.0

0.5

1.0

1.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(g) single (16)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

cuBLAS BLASX
TSM2R-V0 TSM2R-V1
TSM2R-V2 TSM2R-V3

(h) double (16)

Figure 10: Speedup comparison with single and double precision on V100 (n
= 2, 4, 8, 16).

target this case. Finally, we note that the kernels achieve higher
memory bandwidth utilization on V100 than on other GPUs, as
shown in Figure 11. This is partly attributed to the improve-
ments of Volta over previous micro-architectures. More specif-
ically, V100 with improved HBM2 memory allows more work-
loads to obtain up to 19% more memory bandwidth utilization
than Pascal GPUs, according to its whitepaper [36]. We provide
experimental metrics for our TSM2R kernels in Table 3.

Due to our performance modeling, we can predict TSM2R’s
performance on the Nvidia Tesla A100, with Ampere architec-
ture. Its peak double-precision floating point performance is
9.7 TFLOPS, 1.3× that of the V100, and its global memory
bandwidth is 1555 GB/s, 1.73× that of the V100. Since all
the cases considered in this paper are memory-bounded on the

13



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 14

GPU Precision t1 t2 t3 Threads/Block Shared Memory (bytes) # Registers
K40c Single 128 n 4 128 512 × (n × 4) 64
K40c Double 128 n 4 128 1024 × (n × 8) 128
M40 Single 256 8 4 256 8192 40
M40 Double 256 8 4 256 16384 70

P100 Single 128 4 4 128 2048 32
P100 Double 128 4 4 128 4096 56
V100 Single 128 n 32 128 512 × (n × 4) 144
V100 Double 128 n 16 128 1024 × (n × 8) 180
V100 Double 128 n 12 128 1024 × (n × 8) 168

Table 3: Details of TSM2R kernel. Note that the number of registers is experimental data collected from NVCC and depends on n (n = 16).

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak cuBLAS
TSM2R-V3 BLASX

(a) single (2)

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak cuBLAS
TSM2R-V3 BLASX

(b) double (2)

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak cuBLAS
TSM2R-V3 BLASX

(c) single (4)

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak cuBLAS
TSM2R-V3 BLASX

(d) double (4)

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak cuBLAS
TSM2R-V3 BLASX

(e) single (8)

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak cuBLAS
TSM2R-V3 BLASX

(f) double (8)

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak cuBLAS
TSM2R-V3 BLASX

(g) single (16)

0%

25%

50%

75%

100%

10K 15K 20K 25K 30K 35K 40K
Matrix Size (m=k)

 Peak TSM2R-V3
cuBLAS BLASX

(h) double (16)

Figure 11: Memory bandwidth utilization with single and double precision on
V100 (n = 2, 4, 8, 16).

A100 (as tthreshold
2(a100) ≈ 50) and our implementation has already

achieved more than 90% efficiency in memory bandwidth, we
expect TSM2R can achieve a speedup of about 1.7 × on the
A100 over the V100. Since we do not currently have access
to a Nvidia Tesla A100 GPU, our estimates are based on the
available whitepaper and do not take into account any other ar-
chitectural improvements [37].

4.2.4. Tests on Non-squared Input
We also evaluate TSM2R with rectangular input matrices

(m × k) on V100, where k is smaller than m by certain small

(a) Speedup (b) Mem. bw. util.

Figure 12: Performance comparison with double-precision rectangular input on
V100 (m = 15360, n = 16).

(a) single (8) (b) double (8)

(c) single (16) (d) double (16)
Figure 13: Speedup comparison with single and double precision on V100 (k
= n = 8, 16).

integer factors. Evaluating this case reveals very little perfor-
mance impact, as demonstrated in Figure 12. Although smaller
than m, k is still large enough to ensure the kernel to follow
our performance model. The memory bandwidth utilization of
the kernel remains similar to the case where m = k, and the
performance of the kernel scales linearly with the matrix size.

4.3. Evaluation of TSM2L

We next evaluate the performance of TSM2L and compare it
with cuBLAS on V100. For TSM2L, we must choose the vari-
able tc f for each matrix input combination. We obtain these
values through experiments that vary tc f . As a result, for
m = 104, 105, 106, 107, we select tc f values as 1, 1, 2, and 8

14



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 15

Optimization Precision t1 t2 t3 Threads/Block Shared Memory (bytes) # Registers
TSM2L-Opt1 Single 128 n 32 128 512 × (n × 4) 144
TSM2L-Opt1 Double 128 n 16 128 1024 × (n × 8) 180
TSM2L-Opt1 Double 128 n 12 128 1024 × (n × 8) 168
TSM2L-Opt2 Single 128 n 32 128 512 × (n × 4) 251
TSM2L-Opt2 Double 128 n 16 128 1024 × (n × 8) 254
TSM2L-Opt2 Double 128 n 12 128 1024 × (n × 8) 252

Table 4: Details of TSM2L kernel on V100. Note that the number of registers is experimental data collected from NVCC and depends on n (n = 16).

(a) single (8) (b) double (8)

(c) single (16) (d) double (16)

Figure 14: Memory bandwidth utilization with single and double precision on
V100 (k = n = 8, 16).

for single precision and values 1, 1, 1, and 4 for double preci-
sion. Considering two proposed optimizations for TSM2L, we
have two versions of TSM2L: TSM2L-Opt1, based on Algorithm
6, and TSM2L-Opt2, based on Algorithm 7.

As shown in Figure 13, TSM2L can obtain speedups over
cuBLAS ranging from 1.1x∼3.5x (2.5x on average) in single
precision and speedups from 1.0x∼1.7x (1.3x on average) in
double precision. TSM2L-Opt1 generally performs better on
single precision input than TSM2L-Opt2, while TSM2L-Opt2

performs better than TSM2L-Opt1 in several double precision
cases. In addition, as shown in Figure 14, TSM2L achieves mem-
ory bandwidth utilization of up to 55% peak global memory
bandwidth (40% on average). In single precision, TSM2L uti-
lizes significantly more memory bandwidth than cuBLAS, up
to 40% more (25% on average). However, in double precision,
TSM2L uses only slightly more memory bandwidth in the case
that k = n = 8, and in the case that k = n = 16, cuBLAS uses
more memory bandwidth. However, since TSM2L still outper-
forms cuBLAS, this can be explained by inefficient memory use
patterns in the GEMM kernel. We provide experimental metrics
for our TSM2L kernels in Table 4.

5. Related Works

A preliminary version of this work was published in [7].
It introduces our TSM2R algorithm and evaluates it on Kepler,
Maxwell, and Pascal GPUs respectively. In this paper, we ex-
pand the evaluation by adding experiments on the Volta GPU

V100. Moreover, we also broaden the applicability of this work
through our new TSM2L algorithm to handle a new input case.

Ernst et al.’s work also focuses on optimizing tall-and-skinny
GEMM [38]. It proposes two algorithms for tall-and-skinny in-
put: TSMTTSM, where a tall-and-skinny matrix is multiplied by
transposed tall-and-skinny matrix, and TSMM, where a tall-and-
skinny matrix is multiplied by a small square matrix. It eval-
uates these algorithms on the Volta GPU V100 with double-
precision real and complex floating-point numbers. Although
TSMTTSM’s input case is not considered by our work, TSMM’s in-
put case is the same as TSM2L’s. However, TSMM and TSM2L ap-
proach this input case differently. Specifically, TSMM takes ma-
trices in row-major format as input, so its optimizations focus
on avoiding partially-written cache lines while storing columns
of matrix C. TSMM launches multiple threads per row of matrix
C, with each thread storing several columns of matrix C. Unlike
TSMM, the design of our TSM2L takes into account the latency of
launching many threads that perform little work, and its opti-
mizations’ focus on managing both warp and memory band-
width latency. Moreover, note that our TSM2L achieves supe-
rior performance. TSMM only achieves speedups over cuBLAS
where the small dimension, k = n, is less than 8, whereas our
TSM2L achieves speedups with the small dimension up to 16.

6. Conclusion

In this work, we first analyze the performance bottleneck of
current GEMM in the latest cuBLAS library. We identify that
current implementations lack of full utilization of computing
power or memory bandwidth when the input shape is tall-and-
skinny. Then, we discovered the potential challenges of op-
timizing tall-and-skinny GEMM since its workload can vary
between compute bound, memory bound, and latency bound.
Next, we propose two high-performance GEMM algorithms—
TSM2R and TSM2L—on GPUs for tall-and-tinny input with sev-
eral optimization techniques focusing on GPU resource utiliza-
tion. Finally, experiment results show that our optimized imple-
mentations can achieve speedups tall-and-skinny matrix-matrix
multiplication with diverse input sizes on modern GPUs.

Acknowledgements

This research is supported by the National Science Foun-
dation under Grants OAC-2034169 and OAC-2003624. We
would like to thank the University of Alabama for providing
the startup support in this work. The authors acknowledge the
Texas Advanced Computing Center (TACC) at The University
of Texas at Austin for providing HPC resources that have con-
tributed to the research results reported within this paper.

15



C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 16

References

[1] MAGMA: Matrix Algebra on GPU and Multicore Architectures, http:
//icl.cs.utk.edu/magma/.

[2] J. Chen, L. Tan, P. Wu, D. Tao, H. Li, X. Liang, S. Li, R. Ge, L. Bhuyan,
Z. Chen, GreenLA: green linear algebra software for gpu-accelerated het-
erogeneous computing, in: SC16: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, IEEE, 2016,
pp. 667–677.

[3] L. Tan, S. Kothapalli, L. Chen, O. Hussaini, R. Bissiri, Z. Chen, A survey
of power and energy efficient techniques for high performance numerical
linear algebra operations, Parallel Computing 40 (10) (2014) 559–573.

[4] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, D. J. Kerbyson, Investigat-
ing the interplay between energy efficiency and resilience in high perfor-
mance computing, in: 2015 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2015, pp. 786–796.

[5] T. Dong, A. Haidar, P. Luszczek, S. Tomov, A. Abdelfattah, J. Dongarra,
Magma batched: A batched blas approach for small matrix factorizations
and applications on gpus, Tech. rep., Technical report (2016).

[6] A. Heinecke, G. Henry, M. Hutchinson, H. Pabst, Libxsmm: accelerat-
ing small matrix multiplications by runtime code generation, in: SC16:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2016.

[7] J. Chen, N. Xiong, X. Liang, D. Tao, S. Li, K. Ouyang, K. Zhao, N. De-
Bardeleben, Q. Guan, Z. Chen, Tsm2: optimizing tall-and-skinny matrix-
matrix multiplication on gpus, in: Proceedings of the ACM International
Conference on Supercomputing (ICS), 2019, pp. 106–116.

[8] I. S. Dhillon, Y. Guan, B. Kulis, Kernel k-means: spectral clustering and
normalized cuts, in: Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, 2004, pp.
551–556.

[9] K-means by NVIDIA, https://github.com/NVIDIA/kmeans.
[10] J. Chen, X. Liang, Z. Chen, Online algorithm-based fault tolerance

for cholesky decomposition on heterogeneous systems with gpus, in:
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2016.

[11] K.-H. Huang, J. Abraham, et al., Algorithm-based fault tolerance for ma-
trix operations, Computers, IEEE Transactions on.

[12] J. Chen, S. Li, Z. Chen, Gpu-abft: Optimizing algorithm-based fault tol-
erance for heterogeneous systems with gpus, in: 2016 IEEE International
Conference on Networking, Architecture and Storage (NAS).

[13] J. Chen, H. Li, S. Li, X. Liang, P. Wu, D. Tao, K. Ouyang, Y. Liu, K. Zhao,
Q. Guan, et al., Fault tolerant one-sided matrix decompositions on het-
erogeneous systems with gpus, in: SC18: International Conference for
High Performance Computing, Networking, Storage, and Analysis, IEEE
Press, 2018, p. 68.

[14] D. Tao, S. L. Song, S. Krishnamoorthy, P. Wu, X. Liang, E. Z. Zhang,
D. Kerbyson, Z. Chen, New-sum: A novel online abft scheme for general
iterative methods, in: Proceedings of the 25th ACM International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC),
2016.

[15] P. Wu, Q. Guan, N. DeBardeleben, S. Blanchard, D. Tao, X. Liang,
J. Chen, Z. Chen, Towards practical algorithm based fault tolerance in
dense linear algebra, in: Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC), 2016.

[16] P. Wu, N. DeBardeleben, Q. Guan, S. Blanchard, J. Chen, D. Tao,
X. Liang, K. Ouyang, Z. Chen, Silent data corruption resilient two-sided
matrix factorizations, in: Proceedings of the 22nd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP),
2017.

[17] X. Liang, J. Chen, D. Tao, S. Li, P. Wu, H. Li, K. Ouyang, Y. Liu, F. Song,
Z. Chen, Correcting soft errors online in fast fourier transform, in: SC17:
International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, 2017, p. 30.

[18] P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson, Z. Chen, Fault
tolerant matrix-matrix multiplication: correcting soft errors on-line, in:
Proceedings of the second workshop on Scalable algorithms for large-
scale systems, ACM, 2011, pp. 25–28.

[19] J. Chen, Fault tolerant and energy efficient one-sided matrix decompo-
sitions on heterogeneous systems with gpus, Ph.D. thesis, UC Riverside
(2019).

[20] D. Tao, S. Di, X. Liang, Z. Chen, F. Cappello, Improving performance
of iterative methods by lossy checkponting, in: Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC), 2018, pp. 52–65.

[21] Basic Linear Algebra on NVIDIA GPUs, https://developer.

nvidia.com/cublas.
[22] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for

hybrid GPU accelerated manycore systems, Parallel Computing.
[23] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, Dense linear algebra solvers

for multicore with gpu accelerators, in: 2010 IEEE International Sympo-
sium on Parallel & Distributed Processing, Workshops and PhD Forum
(IPDPSW), IEEE, 2010, pp. 1–8.

[24] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Ya-
mazaki, Accelerating numerical dense linear algebra calculations with
gpus, Numerical Computations with GPUs.

[25] CULA, www.culatools.com.
[26] cuDNN, https://developer.nvidia.com/cudnn.
[27] cuBLAS Benchmark, http://developer.download.nvidia.com/

compute/cuda/compute-docs/cuda-performance-report.pdf.
[28] CUDA Programming Guide, http://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html#

multiprocessor-level.
[29] PTX Programming Guide, http://docs.nvidia.com/

cuda/parallel-thread-execution/index.html#

data-movement-and-conversion-instructions-ld.
[30] V. Volkov, Understanding latency hiding on gpus, Ph.D. thesis, University

of California, Berkeley (2016).
[31] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, A. Moshovos,

Demystifying gpu microarchitecture through microbenchmarking, in:
Performance Analysis of Systems & Software (ISPASS), 2010 IEEE In-
ternational Symposium on, 2010.

[32] Darwin cluster, https://www.osti.gov/biblio/

1441285-darwin-cluster.
[33] PantaRhei cluster, https://www.dingwentao.com/

experimental-system.
[34] L. Wang, W. Wu, Z. Xu, J. Xiao, Y. Yang, Blasx: A high performance

level-3 blas library for heterogeneous multi-gpu computing, in: Pro-
ceedings of the 2016 International Conference on Supercomputing (ICS),
ACM, 2016, p. 20.

[35] A. Abdelfattah, D. Keyes, H. Ltaief, Kblas: An optimized library for
dense matrix-vector multiplication on gpu accelerators, ACM Transac-
tions on Mathematical Software (TOMS) 42 (3) (2016) 18.

[36] Nvidia Tesla V100 GPU Architecture, https://images.

nvidia.com/content/volta-architecture/pdf/

volta-architecture-whitepaper.pdf.
[37] Nvidia A100 Tensor Core GPU Architecture, https://www.

nvidia.com/content/dam/en-zz/Solutions/Data-Center/

nvidia-ampere-architecture-whitepaper.pdf.
[38] D. Ernst, G. Hager, J. Thies, G. Wellein, Performance engineering for

real and complex tall & skinny matrix multiplication kernels on gpus,
The International Journal of High Performance Computing Applications
(2020) 1094342020965661.

16

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
https://github.com/NVIDIA/kmeans
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
www.culatools.com
https://developer.nvidia.com/cudnn
http://developer.download.nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf
http://developer.download.nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-ld
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-ld
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-ld
https://www.osti.gov/biblio/1441285-darwin-cluster
https://www.osti.gov/biblio/1441285-darwin-cluster
https://www.dingwentao.com/experimental-system
https://www.dingwentao.com/experimental-system
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf


C. Rivera et al. / Journal of Parallel and Distributed Computing 00 (2021) 1–17 17

Cody Rivera is an undergraduate student
studying Computer Science and Mathe-
matics at the University of Alabama from
Fall 2018. He is also in the Randall Re-
search Scholars Program, an honors inter-
disciplinary undergraduate research pro-
gram. His research interests include com-
puter science theory, algorithms, and high-

performance computing.

Jieyang Chen is a postdoctoral researcher
in the Computer Science and Mathematics
Division at Oak Ridge National Labora-
tory (ORNL). He received his master’s and
Ph.D. degrees in Computer Science from
University of California, Riverside in 2014
and 2019. He received a bachelor’s de-
gree in Computer Science and Engineering

from Beijing University of Technology in 2012. Before joining
ORNL, he interned at Pacific Northwest National Laboratory
and Los Alamos National Laboratory. His research interests
include high-performance computing, parallel and distributed
systems, and big data analytics. He has published over 20 peer-
reviewed high-quality papers in prestigious HPC and Big Data
conferences and journals, such as ICS, HPDC, PPoPP, SC, Big-
Data, IPDPS, TPDS.

Nan Xiong graduated with a master’s de-
gree in Computer Science from University
of California, Riverside in 2018. She also
received a master’s degree in Civil Engi-
neering from University of Southern Cal-
ifornia in 2014 and a bachelor’s degree in

Civil Engineering from Tianjin University in 2012. She is in-
terested in HPC, heterogeneous computing with GPU accelera-
tors, and high-performance big data analytics.

Jing Zhang obtained her master’s de-
gree in Business Administration and Man-
agement from University of Colorado in
2015. She has been selected for member-
ship in Beta Gamma Sigma, the interna-
tional honor society for collegiate schools
of business. She was International Devel-
opment Advisor in FDI Strategies. She is
currently an independent researcher in un-

dergraduate college of Wuhan University, focusing on business
data analysis and information system design.

Shuaiwen Leon Song is currently a se-
nior lecturer (tenured associate professor)
at the school of computer science of Uni-
versity of Sydney and the director of Fu-
ture System Architecture Lab. He is af-
filiated with USYD nanoscience hub and
Sydney Quantum Academy. He is also
an affiliated professor with University of

Washington. Prior to his appointment at University of Sydney,
he worked for U.S. Department of Energy as a senior research

scientist and technical lead. His research interests include holis-
tic system design, system architecture and high performance
computing. His most recent works target future accelerator-
driven system design for AI and planet-scale virtual reality. He
is a Lawrence scholar, Paul E. Torgersen scholar, a recipient
of IEEE TCHPC early career award and DOE pathway to ex-
cellence research award. He widely published in the major
HPC and computer architecture conferences, including ISCA,
HPCA, MICRO, ASPLOS and SC. His past work received a
2017 HiPEAC paper award, two SC best paper runner-ups, and
2018 IISWC best paper finalist. During his tenure at PNNL, he
led two LDRD projects on AI driven future HPC system design
and large-scale data analytics acceleration.

Dingwen Tao is an assistant professor in
the School of Electrical Engineering and
Computer Science at Washington State
University. Prior to that, he worked as
an assistant professor at the University of
Alabama, and interned at Brookhaven Na-
tional Laboratory, Argonne National Lab-
oratory, and Pacific Northwest National

Laboratory. He received his Ph.D. in Computer Science from
University of California, Riverside in 2018 and B.S. in Mathe-
matics from University of Science and Technology of China in
2013. He currently works at the intersection of HPC and big
data analytics, focusing on scientific data management, HPC
storage and I/O systems, fault tolerance at extreme scale, and
distributed machine learning. He has published in major HPC
and big data analytics conferences and journals, such as SC,
PPoPP, HPDC, ICS, PACT, IPDPS, Cluster, ICPP, BigData, and
TPDS. He is the receipt of the IEEE CS TCHPC Early Career
Researchers Award for Excellence in High Performance Com-
puting, NSF CISE Research Initiation Initiative (CRII) Award
in 2020, and UCR Dissertation Year Program Award in 2017.

17


	Introduction
	Background
	Tall-and-Skinny Input for GEMM
	cuBLAS

	Design Methodologies
	Design of TSM2R
	Insight on Tall-and-Skinny Input
	Algorithm Design
	Efficient Off-Chip Memory Access
	Optimizing Use of Shared Memory
	Overlapping Computation and Memory Access Latency
	Parameters Definition
	Behaviors of Parameters
	Performance Metrics Estimation
	Deciding Parameters

	Design of TSM2L
	Performance Bottlenecks
	Proposed Optimizations

	Design Summary

	Experimental Evaluation
	Experiments Setup
	Evaluation of TSM2R
	Tests with Different Optimization Combinations
	Memory Throughput Analysis
	Tests on Different Micro-architectures
	Tests on Non-squared Input

	Evaluation of TSM2L

	Related Works
	Conclusion

