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Abstract—The massive amount of data generated by IoT de-
vices places enormous pressure on sensory data query processing.
Due to the limitations of computation and data transmission
capabilities in traditional wireless sensor networks, the current
query processing methods are no longer effective. Furthermore,
processing vast amount of sensory data also overloads the cloud.
To address these problems, we investigate query processing in an
Edge Assisted IoT Data Monitoring System (EDMS). Multi-access
Edge Computing (MEC) is an emerging topic in IoTs. Unlike
wireless sensor networks, the edge servers in an EDMS can deploy
the computation and storage resources to nearby IoT devices and
offer data processing services. Therefore, queries towards massive
sensory data can be processed in an EDMS in a distributed
manner and the edge servers can handle the sensory data in a
distributed manner, reducing the workload of the cloud. In this
paper, we define a query processing problem in an EDMS which
aims to deriving a distributed query plan with the minimum
query response latency. We prove that this problem is NP-
Hard and propose a corresponding approximation algorithm. The
performance of the proposed algorithm is bounded. Furthermore,
we evaluate the performance of the proposed algorithm through
extensive simulations.

Index Terms—Query Processing, Data Monitoring, MEC

I. MOTIVATION

The Internet of Things (IoT) acts as a bridge connecting the
cyber world and the physical world. An IoT system allows
users to collect data from the physical world via sensors,
to monitor system performance, and to run queries towards
the collected data [1]-[3]. Many useful techniques, such as
DeepDirect for tie direction learning [4], are proposed for data
monitoring and analysis in distributed environments. Multi-
access Edge Computing (MEC) [5] is an emerging [oT archi-
tecture which is composed of edge servers.Unlike conventional
IoT systems, MEC systems can obtain extra computation and
storage resources from the physical world.

In this work, we address the query processing problem in
modern IoT systems. Query processing is one of the most
important topics in traditional IoT systems such as Wireless
Sensor Networks (WSNs), and there are many existing works
in this regard [6]-[12]. In WSNs, there are two major strate-
gies for query processing which are centralized strategy and
distributed strategy. In the centralized strategy, all sensory data
are transmitted to the cloud, and the cloud is in charge of query
processing. On the contrary, in a distributed strategy, queries
are processed by cooperative sensor nodes. However, query
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processing is more challenging in modern IoT systems, and
the above two query processing strategies are not feasible in
modern IoT systems due to the following two challenges.

Challenge 1. Large volume of the sensory data [13].
According to a report by Cisco [14], there will be 31 billion
connected IoT devices by 2020 and 75 billion devices by
2025. These IoT devices will generate an enormous volume of
sensory data and query processing on this volume of data will
place too much computation and transmission pressure on the
underlying systems. The data transmission will be slow and the
computation workload will overload the sinks (or cloud). Thus,
the centralized strategy used in WSNs cannot be adopted.

Challenge 2. Complex queries. In WSNs, existing works
have tried to process queries in a distributed manner, such as
the top-k query, range query and curve query. However, in the
recent [oT systems, queries are becoming more complex than
what they are used to be in traditional WSNs. To answer a
query in a modern IoT system, the data might have to be pre-
processed by a series of services including image processing,
speech recognition, data integration, and a node may have to
deploy an AI model to process these data processing services.
For example, if a user wants to select the license number of the
fast vehicle, then the speed data of vehicles should be sorted
to obtain the fast vehicle, the image data of vehicles should
be recognized to obtain the license number, and the results
of above two steps should be joined to obtain the final result.
However, since the sensor nodes in WSNs have limited compu-
tation, storage and energy resources, the above-mentioned data
processing services cannot be carried out at each individual
sensor node, thus WSNs cannot process complex queries in a
distributed manner. Therefore, the distributed strategy used in
WSNs cannot be adopted.

To process complex queries in a modern IoT system and
address the above mentioned challenges, we consider the Edge
Assisted IoT Data Monitoring System (EDMS). The EDMS
can be deployed in a city to monitor the traffic, the security,
the change of the environment and so on. Moreover, the
EDMS can also be deployed in a big factory to monitor the
industrial parameters. An overview of the EDMS is shown in
Fig.1. In an EDMS, sensory data are collected from different
data sources and are stored in a distributed way at edge
servers, and these edge servers are connected to a remote
cloud. The cloud translates a query into a series of data
processing services, such as image processing, information
integration, top-k query processing and so on. These data
processing services have been cached at the edge servers.
When a query arrives at the cloud, it will generate a query
plan and assign the tasks to some edge servers. Since edge
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servers have more computation and storage resources, the large
volume of sensory data (Challenge 1) and the complex queries
(Challenge 2) can be processed in a distributed manner by
them. The distributed query processing in EDMS can make
the best use of the resources at edge servers and decrease the
computation and transmission costs.

Unfortunately, query processing in an EDMS is still chal-
lenging. An EDMS is a heterogeneous system where different
edge servers have different computation and communication
capabilities. Furthermore, the data processing services in each
query are interdependent, and the output of one service can
be the input of another service. Therefore, an improper query
plan may lead to unnecessary response latency. In this paper,
we investigate how to generate a query plan to optimize query
response delay in an EDMS. To the best of our knowledge, this
is the first work investigating query processing in an EDMS.
The contributions of the paper are summarized as follows.

(1) We propose a model for distributed query processing
in an EDMS, and define the Query Processing Latency Min-
imization (MIN-QPL) problem. We prove that the MIN-QPL
problem is NP-Hard.

(2) We show that in some specific cases, the optimal solution
of the MIN-QPL problem can be obtained in polynomial time.
Furthermore, we provide the upper bound and lower bound of
the MIN-QPL problem.

(3) We propose an approximation algorithm to solve the
MIN-QPL problem. We also prove that the approximation
algorithm has an acceptable approximation ratio.

(4) We evaluate the performance of the proposed algorithm
by carrying out extensive simulations. The simulation results
show that the proposed algorithm is effective and efficient.

The rest of the paper is organized as follows. Section II
provides a summary of related works. Section III defines the
MIN-QPL problem. Section IV investigates two special cases
of the MIN-QPL problem. An approximation algorithm for
the MIN-QPL problem is proposed in Section V. The upper
bound and lower bound of the MIN-QPL problem are provided
in Section VI, and the approximation ratio of the proposed
algorithm is analyzed. Section VII shows the simulation results
and Section VIII concludes the paper.

II. RELATED WORKS

1) Multi-Access Edge Computing: Multi-Access Edge
Computing (MEC) [15] aims at deploying computation and
storage resources closer to users (or mobile devices) and
releasing the workload pressure of the cloud. Mobile devices
can send their sensory data to edge servers for further analysis.
The works in [16], [17] investigate the offloading problem
with a single mobile device and a single MEC server. The
works in [18]-[25] consider the task offloading problem in an
MEC system with multiple mobile devices and a single MEC
server. Other works have considered the service placement
and the requests routing problems. In the service placement
problem [26], [27], the authors aim to investigate how to
place/migrate services in edge services to reduce the respond
latency. The request routing problem [28] aims to investigate
how to send users’ requests to feasible edge servers to improve
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Fig. 1: An example of the EDMS.

the performance. However, none of these works addresses
query processing at edge servers.

2) Directed Acyclic Graph: The DAG (Directed Acyclic
Graph) is always used to represent the relationships between
services [18], [29], [30]. In these papers, the authors use a
directed edge to represent the dependency between two tasks
(or services). Each direct edge (f;, f;) means that f; can
process if and only if f; has been processed. However, the
authors in these papers have not fully considered the data
dependency between services. In this paper, we propose the
Data Based DAG (DDAG for short) by considering the data
dependency between services.

3) Query Processing in WSNs: Query processing is a key
method to help users to access the data [31]-[34] and it is
also a classical issue in WSNs [35]. The authors in [36]-
[39] investigated how to collect enough sensory data in the
energy harvesting networks and battery-free sensor networks.
The works in [6] and [7] propose some secure range query pro-
cessing algorithms for WSNs. Two spatial-correlation based
approximate aggregation algorithms are proposed in [8] and
[9] with an adaptive clustering method for WSNs to support
aggregation query processing. k-NN query processing is in-
vestigated in [10] based on an itinerary-based method. The
work in [11] investigates curve query processing in WSNs.
A sampling-based method is proposed in [12]. However, as
mentioned in Section I, these methods cannot be adopted to
solve the query processing problem in modern IoT systems.

III. PROBLEM DEFINITION

A. System Overview

An Edge assisted IoT Data Monitoring System (EDMS)
is illustrated in Fig.1. An EDMS involves three ma-
jor components, a network composed of servers £* =
{Eo, E1, Es, ..., Ej¢|} including a remote cloud E, and a set
of edge servers £ = {E, Es, ..., E|g| }, a set of users U, and a
monitored region R. The edge servers in £ are deployed close
to the monitored region and collect sensory data. Each edge
server is equipped with a set of data processing services to
process the sensory data. The users also can submit query re-
quests to the cloud to retrieve the physical world information.
The cloud will handle the submitted query requests and return
results to users. As illustrated in Fig. 1, a user has submitted a
query request (the red arrow) to the cloud. Then the cloud will
generate a corresponding query processing plan and will send
the plan to edge servers. After receiving the processing plan,
the edge servers (F; and Fs) with the user’s interested data
will transmit the data to edge servers with the feasible data
processing service (E3) to be processed. After processing the
data, the final query results will be transmitted to the cloud.
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Unlike traditional DBMS, the sensory data in an EDMS are
stored in a distributed manner at edge servers and the stored
sensory data are raw data collected from different data sources,
such as cameras, microphones, sensors and so on. These data
need to go through a few preprocessing steps, such as sorting,
data integration, image processing, speech recognition, efc. to
enable query processing. Thus, if we process queries in the
cloud, collecting all the sensory data will be time-consuming
and processing complex queries will be resource-consuming.
In an EDMS, we can picture a data query as a series of data
processing tasks, and because the data processing services
have been placed at edge servers, we can process queries in a
distributed way to reduce query response latency and relieve
the workload of the cloud.

B. Network Model

Sensory Data. Assume that we have D types of data
sources in the monitored region, such as image data from
surveillance cameras, temperature data from temperature sen-
sors, speed data from speed detectors and so on. The set of
sensory data generated in the monitored region is denoted by
S = {S®]1 <i < D} where S is the sensory data collected
from the type i (1 < ¢ < D) data source. We assume that each
sensory data set S() is distributedly stored at the edge servers.
Let S(E;) = U;<icp SW(E;) be the set of sensory data kept
at F; where S(i)_(E_j) is the set of type ¢ data. For every two
edge servers Ey, E; € £, we have S (E;) N SW(Ey) = 0
and for all the edge servers, we have U, oo S (E;) = S®.

Communication. The edge servers and the remote cloud
can communicate with each other through the backbone net-
work. For each link (4, j) where E;, E; € £, let I; ; be the
communication delay of transmitting one unit of data. Without
loss of generality, the communication between an edge server
and the cloud is much slower than the communication between
two edge servers, i.e., min{ly ;|E; € £} > max{l; ;|E;, E; €
E}. Suppose E; transmits a set of data O to E;. The trans-
mission delay is L; ;(O) = |O|l; ;.

Computation. Edge servers and the remote cloud can
provide different data processing services, such as image
processing, data integration and speech recognition, to process
the sensory data. Let F be the universal set of services. For
each E; € £ U {Ey}, let C; be the computing resource of
E; and F; = {f1, f2,..., fir,;} € F be the set of services
provided by E;. The cloud Ej provides all the services in F,
i.e., Fy = F. We assume that each E; € £T can only carry out
one service at a time and the service cannot be interrupted. For
service f € Fj, let I and O be the input and output data, a.k.a
f(I) = O, and C(f(I)) be the computing resources needed
by f with input I. Thus, the processing latency f(I) is
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We notice that the computing resources needed by f(I) and
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and the relationship between |I| and |O] is
0] = g7 (1), 3)

where c;(-) and gy(-) are the functions related to service f.
We assume that cy(-) and gy (-) are both convex functions.

We have noticed that each data processing service in F
could be distributedly processed, partially distributedly pro-
cessed or cannot be distributedly processed. Thus, the data
processing services can be classified into the following three
categories.

Category 1: f(I) = f(f(I1) U f(I2) U ...). If a service
f € F belongs to Category 1, f can be partially distribut-
edly processed. As illustrated in Fig.2 (a), service f(I) can
be decomposed into several sub-tasks f(I1), f(I2), ..., f(Ix),
where I = Iy U Io U ... U I, and the outputs of the sub-tasks
need to be aggregated by f to obtain the final output. Data
processing services, such as top-k query and sorting, belong
to this category.

Category 2: f(I) = Uj<;<p f({k). If service f € F
belongs to this category, f can be fully distributedly processed.
As shown in Fig.2(b), the combination of the outputs of the
sub-tasks is the final output of service f. The face recognition
service [40] belongs to this category.

Category 3: f(I) ¢ {/({ (1), f(I2), }).Uy<icy, F(T1)}-
When service f belongs to this category (Fig.2(c)), f cannot
be distributedly processed. For example, an event detection
service [41] cannot be processed distributedly because all the
sensory data should be input to the service function to obtain
the entire information about the physical world.

C. Query Model

Given a query Q(Sg), where Sg C S is a collection of
different types of sensory data, the cloud can easily return a
logical query processing strategy Pg(-) based on the existing
DBMS methods. The correct result of Q(Sg) is equal to
P5(Sg). The query @ can also be represented by Pgf(-).
To distributedly process queries, Pg(-) can be divided into a
series of data processing services Fp C F and the dependency
between these services can be represented by an Equivalent
Data based Directed Acyclic Graph (E-DDAG). The DDAG
and E-DDAG are defined as follows.

Definition 1 (Data based Directed Acyclic Graph (DDAG)).
Given a collection of different types of sensory data S =
{S1,52,...,8x} and a set of different services F =
{f1, f2y s fm}, a Data based Directed Acyclic Graph
G(V, E) satisfies that

(1) V=FUS and E is a set of directed edges;

(2) G(V, E) is a Directed Acyclic Graph;
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(3) S is the leaf nodes of G(V, E).

Different from traditional DAG, an edge (f;, f;) (or
(Si, fj)) in a DDAG not only represents that f; should be
executed after f;, but also means the output of f; (or .5;) is
the input of f;.

Definition 2 (Equivalent DDAG (E-DDAG)). Given a query
Q(Sq), the logical query processing strategy Pg(-) and a set
of data processing services Fg, an Equivalent DDAG of Pg(-)
Go(V,E) satisfies V. = Sg U Fg and f.(Ay.) = Po(Sg)
where Ay =g e, 9i U Uy,ex, fi(Ay,), fr €V is the root
of Go(V, E), Ay is the input of f, and Ky = {£|(§, f) € E}
is the set of children of f.

An E-DDAG of Pg(-) illustrates the dependency between
the services in Fy and Fig.4 gives an example E-DDAG. In
Fig.4, a user submits the query “the license plate number of
the top-10 fastest vehicles”. In this case, S = {S7,Sg} is
the set of vehicle image data S; and the vehicle speed data
Ss. IIo(S) = fri(fin(Ss, frr(Sr))) where frr, fin,and
f1r are the top-k service, join service and image recognition
service. Pg(S) can be represented by the E-DDAG shown
in Fig.3. This E-DDAG has two leaf nodes, “image data”
and “speed data”, representing that the answer to this query
can be found in these data sets. Based on the E-DDAG, the
“image data” will be sent to the “image recognition” service
to recognize the license plate number of the vehicles. The
outputs of the “image recognition” are combined (joined) with
the speed data, and the “top-k query” service will be carried
out towards the output of the “join” service.

D. Query Processing in EDMS

Based on the E-DDAG G (Sq U Fg, E) of a query @, the
EDMS will map G¢(Sq U Fg, E) to the network composed
of servers and process query () distributedly. The distributed
query processing in the EDMS has the following two steps.

Step 1. Data Supply. The EDMS will select a set of edge
servers which can provide enough sensory data to cover Sg.

Step 2. Data Processing. The servers in £ will process
the sensory data distributedly, obtain the query answer and
return the answer to the cloud.

These two steps can be described by a collection of servers’
actions. Let 7! (f(S)) denote the action that at time ¢, service
f€F;in E; € EU{Ey} will process the data in S. Specif-
ically, we include a special service fg, (), and «!(fg,(S))
represents that at time ¢, E; will transmit S to E; and we
define fg;(S) = S. We will use these actions to explain the
workflow of EDMS as follows.

1. Data Supply. Let £ C £ be the set of edge servers
that will provide sensory data in the first step and S’(E;) C
S(E;) be the set of sensory data sets provided by E; € Eg.
S'(E;) and Es satisty Jp, oo S'(Ei) = Sg. Based on the
dependency in E-DDAG, these sensory data will be transmitted
to the servers with the corresponding services.

2. Data Processing. Suppose at time ¢, there are a set
of servers &', and each E; € &' has a set of data S; that
need to be processed by service f € F. The data sets in

4

S(&") = {S;)|E; € &'} will be processed based on the
following conditions.

Case 1: f belongs to Category 1. f can be partially
distributedly processed. Let & = {E;|f € F; ANE; € €T}
be the servers to carry out service f. The data sets in S(&)
can be processed based on the following steps.

(a) Partition each S; € S(&’) into |€f| > k > 1 subsets
Si = Ur<i<r Siv-

(b) Select k servers Fe,, Ee,, ...,
E; € &' transmits Si, to E.;. To transmit S;,, ..., S;,
from E; to E.,, ..., E.,, we have the following actions
{1 (Fey (8i))s 12 (fy (Sia))soees 7 (f, (S3))}
where t =t;, <t;, <..<t;, and foreach 1 < j <k,
ti; y + Lie; ,(Si;,_,) <ti.

(c) Let tij, be the time when Sij arrived at F . E,; receives
all the data sets at time ¢; = max{t;|E; € £'}. Each
E.; € {E.,|1 < j < k} processes B,cer Si; and the
action of E, is Wzi/ (f(Ug,cer Si,))- Obviously, t: > t;.
Select a server E,,,, from &. Bach E., € {E, |1 <
J < k} will transmit the output of f to E, . The
action of E.; is Wéill(f(UEieg, Si;))) where tjn >
tjr + Le;(f(Ug,cer Si;))- The relationship between ¢
and t;» implies that F,, can transmit the output of f if
and only if f has been finished.

(e) After receiving the outputs of f(Ug, ce Sii)),
FUg,cer Siz)s s F(Ug,eer Sir)s Eeyyy Will aggregate
them together. Let ¢’ = max{t;» + L, ¢,,,|1 < j < k}
be the time when E, ., has received all the data sets. The
action of E, _, is Lo (fUi<j<k,p.eer F(Si;))) where
lht1 = t'. At ltr + L5k+1 (f(Ulgjgk,Eieg’ f(SlJ)))’ f

is finished.

Based on the above five steps, data S in E; can be
processed by service f. These five steps can be divided
into two phases: 1)partition ((a)-(c)) and 2)aggregation ((d)-
(e)). In the first phase, S is partitioned into subsets and
these subsets are assigned to other servers to be distributedly
processed. The second phase selects a server to aggregate the
outputs. The above five steps start at time ¢ and end at time
o1 + Leysr (fF (Ui << f(55)))-

Case 2: f belongs to Category 2. f can be fully distribut-
edly processed. As shown in Fig.2, a Category 2 service is a
special case of a Category 1 service without the “aggregation”
phase. Therefore, we only need to adopt the first three steps
in Case 1. Obviously, the processing of f starts at ¢ and ends
at max{tj/ + Lej (f(UE,;eS’ Sl]))‘l < .7 < k}

Case 3: f belongs to Category 3. f cannot be distributedly
processed. The following steps are adopted to process f.
Firstly, the servers in £’ select a server E; € & and each
E; € & transmits S; to E;. For E;, the action is wf(ij (Si))-
Secondly, E; will process f(Up, ce i) at time t; > max{t+
Lij(Si)|E; € &'} The action is 7 (f(Ug,cer Si)). In
this case, the processing starts at ¢ and ends at the time
t' >t; + L;j(f(Ug,ce Si)) when Ej has been finished f.

Based on the above three cases, we can process f on
the servers. Let I';(S(E’)) be the set of actions that process
F(S(E")) on the servers. I';(S(E’)) can also be considered as a
component with a set of inputs S(£’) and output f(Up, cer Si)

E., from &;. Each server

(d)
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(or {f(Ug,ee Sin): fUp,eer Sia), oo F(Up,eer Sin)} if

belongs to Category 2). The formal definition of the com-
ponent is defined in Definition 3.

Definition 3 (Component). A Component I';(S(E')) is a set
of actions that can process f(S(E')) on the servers. I'y(S(E))
has the following properties.
(1) The input and output of I'y(S(E')) are S(E')
and f(UE cer Si) (or {f(UE cer Sir); (UEieg’ Sig)y s
fUg,eer Lk)} if f belongs to Category 2);

(2) The start time and end time of It(S) are
L(H(SEY) = min{ ¢ | 7() € Iy(SE))} and
te(I'y(S(E1)) = max{t|m;(-) € I'((S(£)}-

Specifically, each data supply edge server F; € Eg can
be considered as a component [5(S’(E;)) = @ with the
same input and output S’(E;), and the same start and end
time. We can also connect two different components together
to complete more complex data processing services. When
connecting two components I'¢(-) and I'y(-) together, the
output of I'y(-) is the input of I'y/(-), and the start time
of I'p/(-) and the end time of I'j(-) are adjusted to sat-
isfy ts(L/(-)) > te(I'f(-)). Therefore, given an E-DDAG
G¢(V, E) which illustrates the relationships between services,
we can connect different components together to map the E-
DDAG to the servers’ network and process the query in a
distributed way. Let I'f(S) be the output of I't(S), then the
query processing plan in an EDMS can be defined as follows.

Definition 4 (Query Processing Plan (QPE) in an EDMS).
Given an E-DDAG G (V = FQUSq, E), a Query Processing
Plan I1(Q) can be constructed through the following steps.

(1) For each (S,f) € E, replace S by the compo-
nents in {I's(S'(Ei,)), [s(S"(Ei,)), ..., [s(S"(E;,))} where
{Ei,, ..., E;,} C 55 and U1<l<k (E ) = S. Connect the
components in {I's(S'(E;,)), ..., [s(S"(E;,))} with compo-
nent Ty (Uy <icp, T2(S'(Eq))).

(2) For each (f, f') € E, connect components I';(-) and
I'y/(-) together.

(3) Construct a set of actions I.(I'; (-)) to transmit the
output of Iy (-) to the cloud Ey, where f, is the root of
Go(V, B).

After the above steps, I1(Q) = UfeFQ I'y()u FC(F;T('))'

The query plan I7(Q) can obtain the answer of Q. The
first and second steps in Definition 4 imply that the interested
sensory data set of query Q(S¢g) has been processed and the
query has been answered. The third step aims to transmit the
query answer to the cloud. Given a feasible query plan I1(Q),
the latency of I7(Q) is equal to

L(I(Q)) = t(11(Q)) — t,(I(Q))

where ,(17(Q)) = min{t.(I'y()|Iy() C
te(I1(Q)) = max{te(L'+()|I4() C 11(Q)
and the end time of I7(Q), respectively.
An example is shown in Fig.4. In the EDMS based
vehicle monitoring system, the image data and speed data
of vehicles are stored in edge servers. The image data
S; = S5 U Sys is stored at Fy and FEj5, and the speed data
is only stored at E5. Based on the E-DDAG shown in Fig.3,

“4)
II1(Q)} and

} are the start time

[image data} — [image recognition J -
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4
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Fig. 3: An example of the E-DDAG.
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Fig. 4: Query processing in an EDMS. A user wants to figure
out the license plate number of the top-10 fastest vehicles.

we have a QPE II(Q ) = {7} (fe (SH)) U (fE,(Sra U
S5)), 74 (Frn(Sn)), w8 (Fra(S12)). 7 (i (S70), 78 (o
SnUSrUSs)), 75 (fi,(93)), 75° (fric(S3)), 757 (£, (Sa)) }
where Sp1 = frr(Sn), Sr2 = fIR(512)7 Ss = fin(SnU
Sr2USs), and Sy = fri(Ss3). II(Q) implies that the image
data Spi,Sr2 will be processed by the image recognition
service in E; and FE5 respectively. Then F; will send the
output Sy to E,. After that, the image recognition results
Sr1,Sro and the speed data Sg will be joined together in
Fs. The join results S3 will be sent to E3 to be processed
by the “top-k query” service. Finally, the query result Sy
will be transmitted to the cloud. In I7(Q), 7% (f&,(S11)),
™2 (fir(Sn)), ™ (fe.(Sn)) and 73 (fe,(Si2 U Ss))s
752 (f1r(Sr2) constitute the components Iy, ,, (S7).

o
o=

Fig. 5: The E-DDAG in the sub-MIN-QPL problem.

E. Problem Definition

We notice that given an E-DDAG G (V, E), there are many
feasible distributed query processing plans. For a Go(V, E),
different QPEs will result in different latency. In order to re-
duce the latency of distributed query processing, we define the
Query Processing Latency Minimization (MIN-QPL) problem.

MIN-QPL Problem

Input:

(1) A cloud Ej and a set of edge servers &;

(2) A query Q(Sg) and the E-DDAG G (V = SqUFg, E)
generated by the cloud;

(3) The sensory data S(FE;) stored at each edge server E;;

(4) The computing capability C; of each E; € E U{Ey};

(5) The set of services of each edge server E; and F};

(6) The communication latency /; ; of transmitting one unit
of data between E;, E; € £7.

Outputs: A QPE II(Q) with the minimum latency.

Theorem 1. The MIN-QPL problem is NP-Hard.
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Proof. Consider the following special case of the MIN-QPL
problem.

sub-MIN-QPL Problem:

Input:

(1) A cloud Ey and a set of edge servers &;

(2) A query Q(Sg) and the E-DDAG Go(V = S U
Fg, E) (as illustrated in Fig.5) generated by the cloud, where
Sg = {51,5%,...,S,} is composed of Category 3 services
Fo = {fi,fo ot E = {(S1, /1), (52, f2), -, (ks

Tr), (f1s fern), (fos frevn), oo (fas frw1)} and k> [E€];
(3) The sensory data S(E;) stored at each edge server FE;,

where S(E1) = Sq and U, ;g S(Ei) N Sq = O;

(4) The computing capability C; of each F; € £, and
CO = 01 =..= C|g+‘ = 1;

(5) The set of services of each edge server F;, F;, and
Fi=Fo —{fes1}:

(6) The communication latency /; ; = 0 of transmitting one
unit of data between E;, E; € £T.

Outputs: A QPE II(Q) with the minimum latency.

Based on the E-DDAG (Input (2)) and the service deploy-
ment (Input (5)) of the sub-MIN-QPL problem, the query
processing must follow the following steps. First, the edge
server £} will transmit the sensory data to the servers in £ to
process data services { f1, fa, ..., fx }- Second, after processing
data services {f1, fo, ..., fx}, the outputs will be transmitted
to the cloud to process data service fiy1.

Since the transmission does not cause any delay, the latency
of a feasible 17(Q) is equal to L+ Lo (fr+1(Uj<;<x fi(S:))),
where Lj is the latency of conducting all the services
in {f1, f2,.... fr} and LO(fk+1(U1§igk fi(S5))) is the to-
tal time of conducting fry1(-) at the cloud. Obviously,
Lo(fr+1(Uy<;< fi(Si))) is a constant. Therefore, the optimal
I1(Q) must minimize Ly, and in order to optimize the solution
of MIN-QPL, we only need to consider how to finish the
services in {f1, fa, ..., fi }-

We reduce the Minimum Makespan Scheduling problem
(MMS) to the sub-MIN-QPL problem to prove its NP hard-
ness. Given an instance of the MMS problem [J, M], where
J ={J1,Ja,...,J} is a set of k jobs each of which takes ¢;
time to be processed and M = {M;, Ms, ..., M,,} is a set of
m identical machines. The reduction has the following steps.

Step 1. Construct a data processing service f; and a type of
data set .S; for each J; € J.

Step 2. Construct another service fr41. Then Fp =
{leJz S J} U {fk-l-l} and SQ = {SI|J1 € J}

Step 3. Construct an E-DDAG G (SqUFg, E), where £ =
{(S1, f1), (S2, f2), oo (Sks fi), (f1, frt1)s (f2s frg1), ooy (fis
fr1)}-

Step 4. Construct m identical servers ¥ = {Fy, F1, ...,
Epn_1}. Let Cy = 1 and Fy = Fg. For each i # 0, let
Ci=1,F=Fg —{fer1}.

Step 5. Let S(E1) = Sq and U; ;g S(E:) NS = 0.

Step 6. Let [; ; = 0 for each E;, E; € ET.

Let A; be the set of jobs assigned to machine M; and
A° = {A?|M; € M} be the optimal solution of the
MMS problem. We now derive a corresponding solution of
the sub-MIN-QPL problem. For each J; € A9, we assign
data set S; to server F; as the input of service f;, and

6

[ Symbol ] Description
FEo The remote cloud.
& The set of edge servers.
S(E:) The sensory data stored in F;.
C; The computation capability of E;.
F; The set of services in E;.
lij The latency of transmitting data between F;, ;.
fi A service in the universal set of service F.
C(fj(I)) | The computation resources needed by f; with input I.
L;(f;(I)) The processing latency of f;(I).
Q(Sg) The query on data sets Sq.
Go(V,E) The E-DDAG of query Q(Sq).
1(Q) The QPE of query Q.

TABLE I: Symbol Table

[image data]—> [ face recognition ] I [top-k query]

Fig. 6: An example of Case 2. User wants to find out the top-
10 oldest people that have passed through the security camera.

I'y (S:) = {Wio(ij(S,-)L7r§°(f,-(SZ-))}. The services pro-
cessed at server E; is {f;|J; € A;?}, and at time T; =
> J.caotis all the services in E; has been finished. Then
all the services in {f1, f2, .-, f} have been finished at time
Tae = max{T;|1 < j < m}. Since A° is the optimal
solution of the jobs in J, the corresponding solution of the
sub-MIN-QPL problem is also optimal. Similarly, given an
instance of the sub-MIN-QPL problem, we can also obtain a
corresponding optimal solution for the MMS problem.

Based on above analysis, the sub-MIN-QPL problem is NP-
Hard, and the MIN-QPL problem is also NP-Hard. O

IV. SOME SPECIAL CASES OF THE MIN-QPL PROBLEM.

We first consider the following two special cases of the
MIN-QPL problem.

Case 1. Up, e Fi N Fo = O, ie., the query needs to be
processed in the cloud.

Case 2. The E-DDAG Gq(V = Sg U Fg, E) of query
Q is linear, and each service f € F belongs to Category 2.
That means, for each non-leaf node f € V, f has only one
child node and at most one parent.

Obviously, Case 1 is the case when query @ is processed
centrally in the cloud. Case 2 means the data sets in Sg is
processed linearly, and it also describes a common scenario.
An example of Case 2 is shown in Fig. 6. In such example, the
user wants to find out the top-10 oldest people that have passed
through the security camera. First, the image data collected
by the camera will be processed by the “face recognition”
service to recognized the age of each person. Then the output
of the “face recognition” service will be sent to the “top-k
query” service to obtain the final result. Although the MIN-
QPL problem is NP-Hard, we will show that we can obtain
the optimal solution of these two special cases.

A. Special Case 1

Special Case 1 of the MIN-QPL problem (C1-MIN-QPL)
is defined as follows.

C1-MIN-QPL Problem

Input:

(1) A cloud Ej and a set of edge servers &;
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(2) A query Q(Sg) and the E-DDAG generated by the cloud
Go(V =5qUFg, E);

(3) The sensory data S(F;) stored at each edge server E;;

(4) The computation capability C; of each E; € £ U{Ey};

(5) The set of services F; of each edge server F;, and for
each E; € £, ;N Fgo =0,

(6) The communication latency of transmitting one unit of
data between E;, E; € .

Outputs: A QPE [7(Q) with the minimum latency.

According to the fifth input, the query needs to be answered
by the cloud. Thus, the query processing plan (QPE) I7(Q) can
be divided into two sets 1TV (Q) and I7®)(Q). The actions
in I7(M(Q) aim to transmit the sensory data to the cloud, and
based on the actions in I7(®)(Q), the cloud will process the
sensory data based on the E-DDAG. It should be noted that
the cloud can only carry out one service at a time. Therefore,
the actions in I7(")(Q) can be carried out in a parallel way and
the actions in 17(?(Q) can only be carried out sequentially.
Obviously, the actions in I7(*)(Q) are affected by the actions
in I71M(Q). In the following sections, we will discuss three
problems:

(1) Given IT™(Q), how to construct I7*)(Q)?

(2) Given IT®®)(Q), how to construct IT™)(Q)?

(3) How to combine I7™)(Q) and IT®(Q) together and
obtain an optimal I7(Q)?

1) Construction of IT®(Q): Let t(S) be the time when the
data set S € S has arrived in the cloud. ¢(.5) is determined by
I™M(Q). In this section, we assume that 17" (Q) is given and
the value of ¢(S) is known. We will discuss how to construct
?(Q) based on {t(S)|S € Sg}.

The cloud will process the services sequentially. Let ¢4(f)
and t.(f) be the start time and end time of a service f. Based
on Ggo(V,E), ts(f) and t.(f) must satisfy the following
conditions.

(@) Data Dependency. If (S, f) € E, then t5(f) > t(5).

(b) Service Dependency. If (f, ') € E, then t.(f) < ts(f).

(¢) Interrupt Free. t.(f) —ts(f) = Lo(f(Ay)), where Ay is
the input data set of f.

Based on the above conditions, we propose Algorithm ?? to
construct IT(?) (Q). Algorithm ?? initializes I7()(Q) = @ and

Algorithm 1: I7()(Q) Construction Algorithm

Input: Go(V = Sq U Fg, E); {t(S)|S € Sq}-
Output: 11(2)(Q)

1 I3 (Q) = 0,

2 Let G’Q(FQ7 E,,) be the graph deduced from Fiy and construct a

topological order of G’Q, T(G’Q) ={fors s f"IFQI IS

3 foreach 1 < i < |Fg| do

Let N(fo;) = {S|(S, fo,) € E};

if N(fo,) # @ then

tmaz = max{t(S)|S € N(fo;)};

ts(foi) = max{tmaw7 te(foi,l )},

te(fo;) = ts(fo;) + Lo(fo; (Ag,, )

else
10 ts(foi):te(foi—l);
1 te(fo;) =ts(fo;) + Lo(fo; (Ag,,)):

2| IO(Q) = 1@ U {my " (fo,(Ag, )
13 return 17 (Q);

e ® 9 s

7

then it executes the following three steps.

Step 1. (Line 2) Construct a topological order of G’Q which
is a subgraph of G¢ and is deduced from F. Since the
cloud carries out services sequentially, the execution order of
services must obey the topological order of E-DDAG.

Step 2 and Step 3 are executed iteratively.

Step 2. (Line 3-Line 11) Determine the start time and
end time of each service based on the topological order and
conditions (a)-(c).

Step 3. (Line 12) Derive the actions of each service based
on the start time and end time.

Obviously, the time complexity of Algorithm ?? is O(|V |+
|E|) which is the time complexity of the topological order
construction algorithm.

2) Construction of IT™(Q): We aim to construct IT™)(Q)
based on the I7(?)(Q) obtained in Algorithm ??. After the
iterations in Algorithm ??, the total latency of II(Q) is

LUI(Q)) = te(for, ) = max{E(5)[S € So}  (5)

where X(5) = ¢(5) + > e, (5, f)Lo(f(Ay)) and (S, f)
€ {0,1} is determined by IT(*)(Q). Based on the computation
model in Section III-B, Lo(f(Af)) can be estimated for each
f and it can be considered as a constant. Without loss of
generality, we sort the data sets in Sg based on the value
of EfEFQ J:(S, f)Lo(f(Af)), and SQ = {Sl, SQ, ceey S\SQ|}
where

> a(Si HLo(f(Af) > > a(Sivr, f)Lo(f(Af)).

fEFqg fEFq

Then we have the following theorem.

Theorem 2. Let S = {S1, 52, ..., 5|5, } where
Z z(Si, f)Lo(f(Af)) > Z z(Si+1, [)Lo(f(Ay)).

feFg feFg

Given an optimal ITM(Q), based on IIM(Q), the data sets
in Sq arrive at the cloud at time {t°(S,;)|S; € Sq}, then we
can always construct another optimal IT™") (Q), and based on
HMN(Q), the data sets arrive at the cloud at time t(S;) <
t(S2) <...< t(S|SQ|).

Proof. Let T = max{X(5;)|S; € Sg}. For each
S; € Sg, we can change t°(S;) to t°(S;) = T —
ZfEFQ .Z‘(Sj,f)Lo(f(Af)) Obviously, f,o(Sj) > tO(Sj).
Therefore, we can easily construct another feasible solution
I™M(Q), based on which the arrival time of each data set
equals to t°(S;), and max{t°(S;)|S; € So} = T. It is easy
to see that for each two ¢°(S;) and t°(S;), if j < 4, then
t°(S;) < t°(S,). O

According to Formula (5), latency L(II(Q)) is
related to t(S)s. Based on Theorem 2, we can assume
that the arrival time of the data sets in Sg satisfies
t(S1) < t(S2) < < t(S|s,|)- Given the data sets
stored at edge server E;, {S1(E;),S2(E;), ..., Ss,((Ei)},
(S;(E;) < S;) E; will transmit the data sets
based on the order Si(E;),S2(E;), ..., S|s,|(E;). For
each FE; € & the actions are 7' (fg,(S1(E;))),

72 (i (S2(Ei)))s s 1, *2' (fiy (Sisg) (E2))),  where  for
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Fig. 7: The QPE I1(Q) can be represented by a series of linear
connected components.

each 1 < k < |Sg|, ty — tk—1 = l;,0|Sk(E;)|. Thus, we can
construct 17 (Q). Based on Theorem 2, IT(M) () is optimal.

3) Construction of II(Q): After Algorithm ?? generates
IM(Q), a feasible QPE IT(Q) can then be obtained. How-
ever, we notice that the outputs of Algorithm ?? are also
related to the topological order constructed in Step 1. Dif-
ferent topological orders may result in different final QPEs.
Considering that the number of topological orders of a graph
is limited, we can use the brute force search method to obtain
an optimal IT(Q) for C1-MIN-QPL. The details are omitted
here.

B. Special Case 2

In this special case, the E-DDAG G¢(V, E) of query Q is
linear. We define this special case as follows.

C2-MIN-QPL Problem

Input:

(1) A cloud Ej and a set of edge servers &;

(2) A query Q(Sg) and the corresponding E-DDAG
Go(V = Sg U Fp, E) generated by the cloud, where Gg
is linear, i.e., |Sg| =1 and |E| = |V|—1, and each f € Fy
belongs to Category 2;

(3) The sensory data S(F;) stored at each edge server E;;

(4) The computation capability C; of each F; € £ U{Ey};

(5) the set of services F; of each edge server Ej;

(6) the communication latency of transmitting one unit of
data between E;, E; € £T.

Outputs: A QPE II(Q) with the minimum latency.

Without loss of generality, we assume Fg = {f1, ..., firy|}
and £ = {(S7f1)7(f17f2)7(f27f3)’""(f\FQ|—17f\FQ|)}'
Since Gg is linear as illustrated in Fig.7, II(Q) can be
represented by a series of linear connected components, where
I's(+) is the component that provides a set of sensory data S
and I.(-) is the component that transmits the answer of the
query to the cloud. Based on the definition in Section III-D,
I's(-) = O. Therefore, in order to construct I7(Q), we can con-
struct {Lp, (), L', (4), -y Lfiey (), I(-)} by iterations. In the
following, we first investigate how to construct a component
Iy, (), then we consider how to minimize the total latency of
Q).

1) Component Construction: Suppose that service f;_1 has
been finished at time #;_;, and based on the property of
Category 2 service, the output of f;_; is distributedly stored at
the serversin &_1 C £T. Let S; (|S;| = «;) be the distributed
output stored at E;. (If i = 1, then ;1 is the set of servers
that store the data set S € Sg and S; = S.) These data need
to be processed by service f;. The servers in &1 will transmit
data to the servers in &;, where & = {E,|fi € F;ANE; € £T}
is the set of the servers that have carried out service f;. Let
Sjk € Sj (|S),k| = ajx) be the set of data transmitted from
Ej € &_1to E € E. We have

A = Q.
ZE&E&: 7 J
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For each server £, € & and E; € &_1, they will follow the

following two steps to construct I'y, (Up, e,

 5))-

Step 1. E; transmits data sets S, to each server E, &,

and we have action 7, S (fm (Sik)-
Step 2. Ej, starts carrylng out f; at time

b, = ti—1+ maX{lLkO&j,HEJ‘ €&i_1}

which is the time when FEj has finished receiving data. Fj
finishes carrying out f; at time

According to Formula (3),

t '—tkz+kaz U S]k

E;e&i 1

the size of the output of

fi(UE,ve&q Si k) is

|fi(

U S]k:l_gfL

E;e&i1

U s

E;e&i1

=gr.( > k)

E;e&i 1

In this step, we have action 7; e, l(fl(UE ce,. Sik))-
Step 3. At time

ti = max{fk’i|Ek € 51},

service f; has been finished. The output of f; will be trans-
mitted to the next component ;41 (-).
Based on the above three steps, we have

Ffi(UEjegi_l SJ)

={m} " (fE (S k)| Ej € Eiv}

u{me (f(UJ Sjk))|Br € £}

E;e&;-

Obviously, the component construction can be carried out
iteratively and we can finally obtain the components in

{Ff1(')7 FfQ(')’ )

Lfirg) (-)}. We only need to adopt the first

step of the component construction method to construct I'.(+).

2) Minimizing total latency of I1(Q):

The above section

provides a scheme to construct components. However, mini-
mizing the total latency is still a problem. Based on the above
section, the latency is mainly related to the amount of data
transmitted between servers, denoted as «; ;. We have the
following program.

min

S.t.

C.

14

C.

15

C.

Sty = thi + Lk(fi(U

ZG:

t1rg| + max{lj o0 Ej € Epy 11} (6)
fi € FQ :
. o , +
PY e, Mk = 0 VE; €€

: tkﬂ' = {i—l + maX{lj7kaj,k|Ej € gi—l}

VEJ‘ S €+7Ek €&
e Sjk))

VEJ‘ S 5+,Ek €&

st = max{ty ;|Ey € &}
oy = gfi(ZEngH a

jik)

o) = |S‘,gz = {E]‘fL €I} NE; € 5+}

In Program (6), there are six conditions for each f; € Fg.
According to Formulas (2) and (3), we have

Cfi(l U Skl Cfi( > k)
U S E €€ 1 _ E €€ 1
7 k Ck: C/c )

E] €&i—1
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and ajy1 = g5,(Xpee, , ¥k)- Since ¢ (1) and gp,(-)  Algorithm 2: Latency Minimization Algorithm

are convex functions, Program (6) is a Convex Optimization Input: Go(V = So U Fg, E), £
Problem which has an optimal solution. Based on the solution Output: 17(Q)
of Program (6), we can obtain an optimal I7(Q) which has ! I}ng Z)Q Uifeot B =EU{(fr fBo)}:
. 2 c =5
the minimum latency. 3 Fo=O:
4 VE; € $+,Ji =,
s VE;,E; € 5+,JZ‘,]' =Q;
V. APPROXIMATION ALGORITHM FOR THE GENERAL 6 while 7. # F do
MIN-QPL PROBLEM 1| FF=0:
8 For each f € Fq, let Ky be the set of children of 7
As illustrated in Algorithm ??, we propose the Latency ° For each f € Fq, let Py be the set of ancestors of f;
. . . 10 foreach f € Fg do
Minimization Algorithm (LMA) to approximately solve the if ; C F; then
MIN-QPL problem. 12 L F&=Fruisk
The MIN-QPL problem can be considered as an assignment 13 wg = |Prl;
problem.wh.lch aims at assigning daFa transmission tasks to |, Sort it in descending order by the weight of each f:
communication links and data processing tasks to edge servers s f* = argmax{ws|f € F&};
to minimize the overall makespan. Action 7/(f(S)) can be 16 if f* belongs to Category 3 then
. . . . 17 foreach E; € £(f*) do
considered as assigning task f(.5) to E; at time ¢, and action . " N
. . S . 18 t = max{7;; + 1;:|S; (f)IE; € ET AS;(f*) #
7:(fr,(S)) can be considered as assigning task S to link o
(7,%) between E; and E; at time ¢. Therefore, given a query 19 ti(f*) = max{t, 7 };
processing plan I7(Q), we can partition I7(Q) into 2 L) =6 + LilF* (Ugeer S5 (F)):
21 w; = max{Lc, t;(f*)};
I - J U J 2 E,, = argmin{w;|E; € {E;|f* € F;}};
(Q) UEieé“*' ¢ UE/L',Ej eE+ b2 23 Assign f* to E,, and update task sets;
24 | Fe=FU{f*}h
where J; and J; ; are regarded as fask sets, and 25 if £* belongs to Category 2 then
26 Solve Programming (7);
Ji = {ﬂ'f(f(S)”T(f(f(S)) S H(Q)} 27 Update task sets based on the solution of (7);
28 | Fe=FcU{f*}
and 29 if f* belongs to Category I then
30 for E; € £(f*) do
gt t 31 Solve Programming (8);
Jig {m; (fEJ (S))|m; (fEJ (5) € H(@)} U k5 Let A; be the assignment strategy;
{5 (fE. ()7} (f£.(S)) € T(Q)} » wi =Ti;
34 E,, = argmin{w;|E; € E(f*)};
The LMA algorithm shown in Algorithm ?? aims at con- 3s Update task sets based on Ay,
structing a query plan I7(Q) by constructing J; and J; ; for * L Fe=FU{f"}

each server and link, respectively. Obviously, if all the services s 11(Q) = peet Ji YU, B, cet Jidt
have been assigned, the query has been answered. 38 return I7(Q);

Initially (Line 1 - Line 5 in Alg. ??), given an E-DDAG
Go(Fg U Sg, E), we add another service fg, into F and
add another edge (f,, fg,) into E, where fg, is the service
that transmits the final answer of @ to the cloud Ey and f,
is the root of G¢. Obviously, fg, belongs to Category 2. For This phase has three steps.
each server F; and each link (i, j), we initialize J; = @ and Step 1 (Line 7-Line 9). Initialize 7" = @ and let K and
Ji.; = O, respectively. Furthermore, F.. is used to record the Py be the sets of children and ancestors of f respectively.
services that have been assigned to the servers and Fj is Step 2 (Line 10-Line 13). For each f € Iy, if Ky C F,,
used to record the services that can be processed based on the it means all f’s children have been finished and f can be
current F,. Then the LMA algorithm executes the iterations processed at the current time. Then we add f into 7. and set
until 7. = Fg (Line 6 - Line 36). Each iteration has the the weight of f as |Py|.
following two phases. Step 3 (Line 14). Sort 7" by wy in descending order. If f

Phase 1. Service Preselection (Line 7-Line 14). The has more ancestors and larger weight, then executing f may
algorithm preselects a list of services 7./ that can be assigned “unlock” more other services.
to the servers based on the current F, and the services in F,"
are weighted.

Phase II. Service Assignment (Line 15 - Line 36). The Phase I1. Service Assignment

Phase 1. Service Preselection.

algorithm selects a service from F. and assigns the service Given the task sets of servers {J;|E; € £*} and links
and the corresponding data sets to servers and links based on ¢ Jij|Ei, Ej € £t} in the current iteration, a server E; will
the service type. finish its current tasks at time

The details of these two phases are described in the follow-
ing sections. 7; = max{t|7l(-) € J;}
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and a link (4, j) will finish its transmission tasks at
Tji = max{t|7rf(-),7r§(-) € Jij}

Then the current total latency L. is the time when every server
and link have finished their tasks and

L. =max{rg, 7},

where 7g = max{r;|E; € £} and 7, = max{r, ;|E;, E; €
ET1}. The service assignment phase adopts the greedy strategy
and aims at carrying out a service that can minimize the
latency. Let S; = U Fo Si(f) be the set of data kept by
E; in the current iteration where S;(f) is the data set that
needs to be processed by service f. The service assignment
phase has the following steps.

Step 1 (Line 15). Select the service with the maximum
weight f* from F..

Step 2 (Line 16 - Line 36). In order to assign f* to
the servers in {E;|f* € F;} and assign the data sets in
{S;(f*)|E; € £} to links, we need to consider the service
category, and this step is carried out based on the following
cases.

Case 1. f* belongs to Category 3 (Line 16-Line 24). We
need to select a server in E(f*) = {E;|E; € EYAf* € Fi} to
carry out f* and minimize the latency, where £(f*) is the set
of the servers that can carry out service f*. For each server
E; € E(f*), its weight w; is determined as follows.

(1) Suppose E; € E(f*) is selected to carry out f*.

(2) Each server E; € {E;|E; € EY A Sj(f*) # O} will
transmit S;(f*) to E;, and E; has received all the data
sets at time

t = max{7;; + 1;;s|S;(f*)| |E; € ET A S;(f*) # O}

(3) E; starts carrying out f(f*) at time ¢;(f*) = max{t, 7},
and F; finishes f* at time

L) =t + L (U S;i(f*))-

E]’€S+

4) Let w; = max{ L, ;(f*)}.

After weighing each server, we assign f* to the server with
the minimum weight. Then update the corresponding task sets
and let 7, = F. U {f*}.

Case 2. f* belongs to Category 2 (Line 25-Line 28).
Each server E; € £ with S;(f*) # O will assign S;(f*)
to the servers in £(f*). Let Si(f*) = Upg,ce(pe) Sis(f7)
where S; ;(f*) is the set of data transmitted from FE; to
E; € £(f*). Obviously, in order to save communication and
computation resources, for every two S; ;(f*) and S, x(f*),
we have S, ;(f*) N S;x(f*) = . Therefore, we have

1S:(f) = Xpeer) 190 (F7)]- Let |Si(f*)] = ai and

10
|S:,;(f*)] = ;. Then this case can be formulated as the
following program.

min T 7

st. T =max{max{t;(f*)|E; € E(f")}, L.}
VE; € E(f):
th = max{r ; + li ja; ;|E; € ET N Si(f*) # O}
t;(f*) = max{tj, 7;}
L) = L0 + LU, ., Sl

In Program (7), ¢7 is the time when server E; has received all
the data sets, and ¢;(f*) is the time when E; starts carrying
out service f*. Then at time ¢;(f*), E; finishes f*. Therefore,
T = max{max{t;(f*)|E; € E(f*)}, L.} is the updated
latency. Program (7) is a convex optimization problem, and
by solving Program (7), we can obtain an optimal assignment
strategy that can minimize the latency.

Case 3. f* belongs to Category 1 (Line 29-Line 36). To
assign f* to the servers, we first select a set of servers from
E(f*) to distributedly carry out f* and then select a server
from E(f*) to aggregate the distributed outputs. We have the
following steps (Line 28 - Line 31) to assign f*.

(1) Suppose Ej € E(f*) is selected to aggregate the dis-
tributed outputs.
(2) Solve the following program.

min T (®)
st. T =max{t}, L.}
t, = max{t;(f*) + lz}jgf*(z
t% = max{ty, tx(f*), 7}
f=ti+ L (U
VE; € E(f*) :

t; = max{r; + i jai | Ei € ETAS(f*) # O}

ti(f*) = max{t}, 7;}

) =t + L (U, e 500(F))

The meanings of ¢%, ¢;(f*), and ¢;(f*) are the same
as those in Program (7). gy« (3 p ce+ @ij) is the size
of f*(Ug,ce+ Sij(f*)), and ¢ is the time when Ej
has received all the distributed outputs. t{ is the time
when Ej, can aggregate the outputs and ¢{ is the time
when E finishes the aggregation. 7' is the latency after
carrying out f*. Obviously, Program (8) is also a convex
optimization problem, and we can obtain the optimal
solution of Program (8).

(3) The optimal solution of Program (8) is a strategy to assign
f*. Let Ay be the assignment strategy and T} be the
optimal latency of Program (8). The weight of Ay is
WE = Tk.

After the above steps, we have |£(f*)| assignment strategies.

Select the strategy with the minimum weight to assign f*.

Finally (Line 37), after the above two phases, we can obtain

a query processing plan I7(Q).

In Step 2 of Phase II, the LMA algorithm constructs a
feasible component for each service in Fig and finally, the

@i j)|E; € E(f)}

E,eEt

R CIEIe)))

E;€&(f*)
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answer of @ is transmitted to the cloud. Obviously, I7(Q) is
a feasible query plan that can answer query Q.

Program (7) and Program (8) can be solved by many
existing convex optimization methods [42]. Let O(fco) be the
time complexity of the adopted method. The time complexity
of the LMA algorithm is O(|Fg + 1| fco) where |Fg + 1] is
the number of the iterations.

VI. THEORETICAL ANALYSIS

In this section, we will analyze the upper bound and lower
bound of the MIN-QPL problem, and the approximation ratio
of the LMA algorithm.

A. Upper Bound and Lower Bound of the MIN-OPL Problem

Given an instance of the MIN-QPL problem I(Gq(Fg U
So, E),ET), we can construct the instances of C1-MIN-QPL
and C2-MIN-QPL, denoted as I and Ico respectively.

Construction of Ic;. Icq has the same E-DDAG G and
ET as I. However, for each server E; of Ioq, E; N Fo=0.

Construction of /5. The E-DDAG of Io G(Q2) is a path

of G and the root node in G is the last node of Gg). For

each service f in Gé, we regard f as a Category 2 service.
Let 11 (Q), IIc2(Q) and T1(Q) be the optimal solutions of

Ici, Ioo and I respectively. We have the following theorems.

Theorem 3. L(IIc1(Q)) is the upper bound of L(I1(Q)), i.e.,
LI (Q)) = LUII(Q))-

Proof. A feasible solution of [ is to carry out all the services in
the cloud. Therefore, we can consider 111 (@) as a solution of
the MIN-OPL instance I, and L(IIc1(Q)) > L(I1(Q)). O

Theorem 4. L(I1c2(Q)) is the lower bound of L(IT1(Q)), i.e.,

L(I1(Q)) < LUI(Q)).

Proof. IIc2(Q) only carries out a subset of the services in
Gg. Since II1co(Q) is the optimal solution of Ico, we have

L1 (Q)) < LUI(Q)). H

B. Approximation Ratio of the LMA algorithm

Given an E-DDAG Gg(Fg U Sg, E), we can partition
Fg into levels. The first level V; contains the root node
frs Vi = {fr}. For every two levels V; and V;_;, we have

= {f|f has at least one parent node in V;_1}. For
every two arbitrary f, f’ € V;, f is neither the ancestor nor
the child of f’. Let N; be the number of the levels. We
have Fo = (J,<;<p, Vi- The following theorem proves the
approximation ratio of the LMA algorithm.

Theorem 5. Given the optimal solution I1(Q)) and the solution
IT14(Q) obtained by the LMA algorithm, we have

L(I14(Q))
L(I(Q))
where k" = max{|V;||1 < i < N}, k7*® = max{ky¢|ky
HEi|f € F; NE; € EY} AN f € Fgu}, and A(z)

5
max{ <L (|,‘S\|))|f € Fot

S max{k amkmaa:5 kimaxA(kmax)}’

VA
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Proof. Consider another LMA-based algorithm, which carries
out services by levels. It has following steps.

Step 1. Let N, be the current level and N, = N;.

Step 2. The services in the last level Vi, are carried out.

Step 3. After all the services in Vv, have been finished, then
let N. = N, — 1.

Step 4. Process Step 1 - Step 3 in iteration until N, = 0.

These steps will run repeatedly until all the services in Fg
are finished. Furthermore, in the LMA-based algorithm, a ser-
vice can be finished if and only if the previous service has been
finished already. Obviously, we have L(IT5(Q)) > L(I14(Q))
where I15(Q) and I14(Q) are the solutions returned by the
LMA-based algorithm and the LMA algorithm.

Without loss of generality, let V; = {fi,, fir, -, fir, }
and f;, = argmax{cs(|Sf|)|f € Vi}. Consider a query
plan II’ that only carries out fi,, fa,,..., fv,, and treat
them as Category 2 services. Suppose each server E; in
ET contains a data set S; that will be processed by f;,.
We can assume that S; = max{S;|E; € £'}. To carry
out f;,, II' assigns the data sets needed by f;, to the

servers, and II' needs at least ["™"|S;| + M time,
where [™™ = min{l; ;|E;,E; € £t} is the minimum
communication latency and S; is a piece of data assigned
to server E;. However, on the other hand, II3(Q) needs at
most I | S| + M time, where S = UE ce+ S5 is the
whole data set that "needs to be processed by ﬂ1 and Chaz
is the maximum computation capability since the LMA-based
algorithm will choose the strategy with the minimum latency.
Since f;, = argmax{cs(|Sy|)|f € Vi}, carrying out all the
services in V; needs at most k;(I"**|S| + W) time. We
then have "

er,, (S)) fllu )

k(™IS + ") kmerlS| + )
c S c S
lm7n|S| L}ﬂ‘) lm?ﬂ‘S |_|_ f7-1( )
A(Sj)eyr, (IS
klamaxk)maw'kgjl_i_w)
= c (IS \)k
< max{k kmaxal’k A(kmam)}’
= s (KIS])
where 6 = . A(k) > max{~ At |f € Fg} and

k}nam = max{kf kf = {E;|f € F; /\E € g+}| Afe FQ}
Let k*** = max{|V;||1 <¢ < N;}. We have

Cmaa

LiT(Q)) Ni(ki ("] 8] +

L)

)
c S
Ny(Imin| S| + fll(l I))

< max{k" TR, k" ‘”A(k}”‘”)}.
Obviously, L(I1(Q)) > L(IT"). Then we have

LU14(Q) _ LUT5(Q) _ LUT5(Q))
L{I(Q) ~ L{IQ) = L(T')
< max{kmamkma$§l7 kmax (k}nax)}'

O
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VII. SIMULATIONS

A. Simulation Settings

In this section, we evaluate the performance of the LMA
algorithm through extensive simulations. We run the LMA
algorithm on different EDMSs. In these EDMSs, the number
of edge servers varies from 5 to 30. Let C be the average
computation capability of the edge servers. We assume that
the value of C' is in the range of [I0GHz,40GHz] [21].
The computation capability of each edge server is randomly
assigned based on the average value C. Furthermore, we
assume that the computation capability of the cloud Ej is
five times larger than that of the edge servers. We assume that
the data rate between every two servers varies from 200M bps
to 1000M bps [43]. For each E-DDAG Gq(Fo U Sq, E), we
assume that the number of data sources |S¢g| and services | Fg|
vary from 2 to 8 and 4 to 14, respectively. For each service
f € Fg, the specific functions c¢(-) and gs(-) are linear
functions and they are randomly generated. Let |S| be the
average size of different types of data sets. In the simulations,
we assume that |.S| varies from 20GB to 70GB.

Through the simulations, we investigate the impact of
different system parameters on the latency incurred by the
LMA algorithm. The system parameters include the number of
edge servers, the number of services, number of data sources,
average size of each data set, average computation capability,
and transmission latency.
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B. The Impact of Different System Parameters

In this section, we investigate the impact of different system
parameters on the LMA algorithm and the upper bound and
the lower bound of latency. The upper bound and lower bound
of latency can be obtained based on Theorem 3 and Theorem
4. According to Theorem 3, the upper bound of latency is
also the latency caused by the centralized query processing
method.

1) The impact of the number of edge servers: In this group
of simulations, we generate different EDMSs and vary the
number of edge servers from 5 to 30. In these EDMSs,
the average computation capability of each edge server is
20G H z, the average data rate of each communication link is
1000 M bps, the number of services is 10, the number of data
sources is 4, and the average size of each data size is 50G.
We run the LMA algorithm on these EDMSs and calculate the
upper bound and lower bound of the query processing latency.
The results are shown in Fig.8. It can be seen that the latency
incurred by the LMA algorithm is 50.3% better than the upper
bound, and is close to the lower bound as the number of edge
servers increases. If there are more edge servers in the EDMS,
there are more computation resources. Therefore, when there
are 30 edge servers, the performance of the LMA algorithm
is close to the lower bound. However, when there are only 5
edge servers, the latency incurred by the LMA algorithm is
2.18 times larger than the lower bound. Moreover, since the
centralized query processing method is not highly correlated
with the number of edge servers, the latency’s upper bound
has no significant change when the size of || increases.

2) The impact of the number of services: In this group
of simulations, we generate an EDMS with 10 edge servers,
and vary the number of services in each E-DDAG from 4
to 14. The values of other system parameters are similar to
the ones in the above group of simulations. We randomly
generate hundreds of E-DDAGs with different numbers of
services and carry them out based on the LMA algorithm. The
average query processing latency of each type of E-DDAG is
illustrated in Fig.9. We can see that the latency incurred by the
LMA algorithm is 43.4% smaller than the upper bound, and is
3.05 times higher than the lower bound. In this case, the ratio
between the latency incurred by the LMA algorithm and the
optimal latency is much smaller than the approximation ratio
provided in Theorem 5. Since the computation capability of
the cloud is powerful, the upper bound slowly increases along
with the increase of the number of services. On the other hand,
when the number of services varies from 4 to 14, the latency
incurred by the LMA algorithm increases from 174s to 372s.
Furthermore, since the lower bound latency is caused by a
subset of services, the lower bound has no significant change
when |F| increases.

3) The impact of the number of data sources: The number
of data sources is another important parameter in E-DDAG.
In this group of simulations, we vary the size of |Sg| from 2
to 8. The number of services is fixed to 10 and we generate
hundreds of E-DDAGs based on the different numbers of data
sources. The settings of other system parameters are similar
to the ones in the previous simulations. We adopt the LMA
algorithm to process these queries and illustrate the average
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query processing latency in Fig.10. It can be seen that the
query processing latency incurred by the LMA algorithm is
42.7% lower than the upper bound. It is interesting to see that
as the number of data sources increases, the query processing
latency incurred by the LMA algorithm decreases. The reason
is when the size of Sg increases, the dependency among
services becomes weaker, and a query is more feasible to be
processed in a distributed manner.

4) The impact of the average size of each data set: The size
of each data set determines the transmission latency between
every two servers and is a key parameter that impacts query
processing latency. In this group of simulations, we assume
that there are four sensory data sets belonging to different
data sources {SM), S () S(1} and we adjust the average
size of these data sets >, ,_, S from 20GB to T0GB.
Moreover, the average computation capability of each edge
server is 20G H z, the average data rate of each communi-
cation link is 1000M bps, the number of services is 10, and
the number of edge servers is 10. After running the LMA
algorithm and calculating the upper bound and lower bound
of the latency, the relation between size of data set and query
processing latency is shown in Fig.11. We can see that when
the average size of each data set increases, the upper bound and
lower bound of the query processing latency incurred by the
LMA algorithm increase simultaneously. When the size varies
from 20GB to 7T0GB, the query processing latency grows
by 4.4 times. Since the LMA algorithm processes the query
distributedly, the data size has a high impact. However, the
LMA algorithm is still better than a centralized data processing
method, and the performance of the LMA algorithm is 32%
better than that obtained by a centralized data processing
method (or the upper bound).

5) The impact of the average computation capability: The
computation capability of each edge server determines the
computation latency and also affects the query processing
latency. In this group of simulations, we deploy ten edge
servers Iy, Es, ..., Fhg, and the computation capability of
each edge server is randomly generated based on an average
value C where C' = 53,1, Ci. The value of C varies
from 10GHz to 40GHz. Moreover, we assume that the
computation capability of the cloud is five times higher than
the average value. The number of services and data sources
of each E-DDAG are 10 and 4, respectively. After running
the LMA algorithm and calculating the upper bound and the
lower bound of the latency, the simulation results are shown
in Fig.12. We can see that when the computation capability
increases, the computation latency of each server is reduced,
and the query processing latency of the LMA algorithm, the
upper bound and the lower bound of the latency all decrease.
The query processing latency of the LMA algorithm decreases
24% when the computation capability increases from 10GH z
to 40GHz. Furthermore, the latency caused by the LMA
algorithm is 29.7% less than the upper bound.

C. The impact of the average latency of each link

The data transmission rate has a high impact on query
processing latency. In this group of simulations, we simulate
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the data transmission rate based on the 5G network [43].
We assume that the average data transmission rate varies
from 200Mbps to 1000M bps, which means the latency of
transmitting 1G data varies from 1s to 5s. Based on different
average data transmission rates, we generate different EDMSs
and run the LMA algorithm on these EDMSs. The simulation
results are shown in Fig.13. We can see that when the data
rate decreases, the latency of the LMA algorithm and the upper
bound increase significantly. However, since the services are
assumed to be fully distributedly carried out, the lower bound
increases slowly when the data rate decreases. Furthermore,
the latency incurred by the LMA algorithm is 35.7% lower
than the upper bound, and when the data rate increases from
200Mbps to 1000Mbps, the latency of the LMA algorithm
increases almost 5 times. We can conclude that the latency
of each communication link has a high impact on the data
processing latency.

VIII. CONCLUSION

In this paper, we investigate the distributed query processing
problem in EDMS. We define the MIN-QPL problem which
aims to deriving a query processing plan with the minimum
query response latency. We prove that the MIN-QPL problem
is NP-Hard. We first investigate two special cases of the MIN-
QPL problem and prove that for these two cases, we can obtain
an optimal solution for the MIN-QPL problem in polynomial
time. Then we propose an approximation algorithm to solve
the MIN-QPL problem and provide analysis that the algorithm
has a feasible approximation ratio. We also illustrate the sim-
ulation results to evaluate the performance of the algorithm,
and the simulation results imply that the algorithm is effective.
In this work, we focus on how to reduce the latency, and in
our future works, we will investigate the energy efficiency
algorithms in the EDMS.
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