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Abstract—The massive amount of data generated by IoT de-
vices places enormous pressure on sensory data query processing.
Due to the limitations of computation and data transmission
capabilities in traditional wireless sensor networks, the current
query processing methods are no longer effective. Furthermore,
processing vast amount of sensory data also overloads the cloud.
To address these problems, we investigate query processing in an
Edge Assisted IoT Data Monitoring System (EDMS). Multi-access
Edge Computing (MEC) is an emerging topic in IoTs. Unlike
wireless sensor networks, the edge servers in an EDMS can deploy
the computation and storage resources to nearby IoT devices and
offer data processing services. Therefore, queries towards massive
sensory data can be processed in an EDMS in a distributed
manner and the edge servers can handle the sensory data in a
distributed manner, reducing the workload of the cloud. In this
paper, we define a query processing problem in an EDMS which
aims to deriving a distributed query plan with the minimum
query response latency. We prove that this problem is NP-
Hard and propose a corresponding approximation algorithm. The
performance of the proposed algorithm is bounded. Furthermore,
we evaluate the performance of the proposed algorithm through
extensive simulations.

Index Terms—Query Processing, Data Monitoring, MEC

I. MOTIVATION

The Internet of Things (IoT) acts as a bridge connecting the
cyber world and the physical world. An IoT system allows
users to collect data from the physical world via sensors,
to monitor system performance, and to run queries towards
the collected data [1]–[3]. Many useful techniques, such as
DeepDirect for tie direction learning [4], are proposed for data
monitoring and analysis in distributed environments. Multi-
access Edge Computing (MEC) [5] is an emerging IoT archi-
tecture which is composed of edge servers.Unlike conventional
IoT systems, MEC systems can obtain extra computation and
storage resources from the physical world.

In this work, we address the query processing problem in
modern IoT systems. Query processing is one of the most
important topics in traditional IoT systems such as Wireless
Sensor Networks (WSNs), and there are many existing works
in this regard [6]–[12]. In WSNs, there are two major strate-
gies for query processing which are centralized strategy and
distributed strategy. In the centralized strategy, all sensory data
are transmitted to the cloud, and the cloud is in charge of query
processing. On the contrary, in a distributed strategy, queries
are processed by cooperative sensor nodes. However, query
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processing is more challenging in modern IoT systems, and
the above two query processing strategies are not feasible in
modern IoT systems due to the following two challenges.

Challenge 1. Large volume of the sensory data [13].
According to a report by Cisco [14], there will be 31 billion
connected IoT devices by 2020 and 75 billion devices by
2025. These IoT devices will generate an enormous volume of
sensory data and query processing on this volume of data will
place too much computation and transmission pressure on the
underlying systems. The data transmission will be slow and the
computation workload will overload the sinks (or cloud). Thus,
the centralized strategy used in WSNs cannot be adopted.

Challenge 2. Complex queries. In WSNs, existing works
have tried to process queries in a distributed manner, such as
the top-k query, range query and curve query. However, in the
recent IoT systems, queries are becoming more complex than
what they are used to be in traditional WSNs. To answer a
query in a modern IoT system, the data might have to be pre-
processed by a series of services including image processing,
speech recognition, data integration, and a node may have to
deploy an AI model to process these data processing services.
For example, if a user wants to select the license number of the
fast vehicle, then the speed data of vehicles should be sorted
to obtain the fast vehicle, the image data of vehicles should
be recognized to obtain the license number, and the results
of above two steps should be joined to obtain the final result.
However, since the sensor nodes in WSNs have limited compu-
tation, storage and energy resources, the above-mentioned data
processing services cannot be carried out at each individual
sensor node, thus WSNs cannot process complex queries in a
distributed manner. Therefore, the distributed strategy used in
WSNs cannot be adopted.

To process complex queries in a modern IoT system and
address the above mentioned challenges, we consider the Edge
Assisted IoT Data Monitoring System (EDMS). The EDMS
can be deployed in a city to monitor the traffic, the security,
the change of the environment and so on. Moreover, the
EDMS can also be deployed in a big factory to monitor the
industrial parameters. An overview of the EDMS is shown in
Fig.1. In an EDMS, sensory data are collected from different
data sources and are stored in a distributed way at edge
servers, and these edge servers are connected to a remote
cloud. The cloud translates a query into a series of data
processing services, such as image processing, information
integration, top-k query processing and so on. These data
processing services have been cached at the edge servers.
When a query arrives at the cloud, it will generate a query
plan and assign the tasks to some edge servers. Since edge
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servers have more computation and storage resources, the large
volume of sensory data (Challenge 1) and the complex queries
(Challenge 2) can be processed in a distributed manner by
them. The distributed query processing in EDMS can make
the best use of the resources at edge servers and decrease the
computation and transmission costs.
Unfortunately, query processing in an EDMS is still chal-

lenging. An EDMS is a heterogeneous system where different
edge servers have different computation and communication
capabilities. Furthermore, the data processing services in each
query are interdependent, and the output of one service can
be the input of another service. Therefore, an improper query
plan may lead to unnecessary response latency. In this paper,
we investigate how to generate a query plan to optimize query
response delay in an EDMS. To the best of our knowledge, this
is the first work investigating query processing in an EDMS.
The contributions of the paper are summarized as follows.
(1) We propose a model for distributed query processing

in an EDMS, and define the Query Processing Latency Min-
imization (MIN-QPL) problem. We prove that the MIN-QPL
problem is NP-Hard.
(2) We show that in some specific cases, the optimal solution

of the MIN-QPL problem can be obtained in polynomial time.
Furthermore, we provide the upper bound and lower bound of
the MIN-QPL problem.
(3) We propose an approximation algorithm to solve the

MIN-QPL problem. We also prove that the approximation
algorithm has an acceptable approximation ratio.
(4) We evaluate the performance of the proposed algorithm

by carrying out extensive simulations. The simulation results
show that the proposed algorithm is effective and efficient.
The rest of the paper is organized as follows. Section II

provides a summary of related works. Section III defines the
MIN-QPL problem. Section IV investigates two special cases
of the MIN-QPL problem. An approximation algorithm for
the MIN-QPL problem is proposed in Section V. The upper
bound and lower bound of the MIN-QPL problem are provided
in Section VI, and the approximation ratio of the proposed
algorithm is analyzed. Section VII shows the simulation results
and Section VIII concludes the paper.

II. RELATED WORKS

1) Multi-Access Edge Computing: Multi-Access Edge
Computing (MEC) [15] aims at deploying computation and
storage resources closer to users (or mobile devices) and
releasing the workload pressure of the cloud. Mobile devices
can send their sensory data to edge servers for further analysis.
The works in [16], [17] investigate the offloading problem
with a single mobile device and a single MEC server. The
works in [18]–[25] consider the task offloading problem in an
MEC system with multiple mobile devices and a single MEC
server. Other works have considered the service placement
and the requests routing problems. In the service placement
problem [26], [27], the authors aim to investigate how to
place/migrate services in edge services to reduce the respond
latency. The request routing problem [28] aims to investigate
how to send users’ requests to feasible edge servers to improve
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Fig. 1: An example of the EDMS.

the performance. However, none of these works addresses
query processing at edge servers.
2) Directed Acyclic Graph: The DAG (Directed Acyclic

Graph) is always used to represent the relationships between
services [18], [29], [30]. In these papers, the authors use a
directed edge to represent the dependency between two tasks
(or services). Each direct edge (fi, fj) means that fj can
process if and only if fi has been processed. However, the
authors in these papers have not fully considered the data
dependency between services. In this paper, we propose the
Data Based DAG (DDAG for short) by considering the data
dependency between services.
3) Query Processing in WSNs: Query processing is a key

method to help users to access the data [31]–[34] and it is
also a classical issue in WSNs [35]. The authors in [36]–
[39] investigated how to collect enough sensory data in the
energy harvesting networks and battery-free sensor networks.
The works in [6] and [7] propose some secure range query pro-
cessing algorithms for WSNs. Two spatial-correlation based
approximate aggregation algorithms are proposed in [8] and
[9] with an adaptive clustering method for WSNs to support
aggregation query processing. k-NN query processing is in-
vestigated in [10] based on an itinerary-based method. The
work in [11] investigates curve query processing in WSNs.
A sampling-based method is proposed in [12]. However, as
mentioned in Section I, these methods cannot be adopted to
solve the query processing problem in modern IoT systems.

III. PROBLEM DEFINITION

A. System Overview

An Edge assisted IoT Data Monitoring System (EDMS)
is illustrated in Fig.1. An EDMS involves three ma-
jor components, a network composed of servers E+ =
{E0, E1, E2, ..., E|E|} including a remote cloud E0 and a set
of edge servers E = {E1, E2, ..., E|E|}, a set of users U , and a
monitored region R. The edge servers in E are deployed close
to the monitored region and collect sensory data. Each edge
server is equipped with a set of data processing services to
process the sensory data. The users also can submit query re-
quests to the cloud to retrieve the physical world information.
The cloud will handle the submitted query requests and return
results to users. As illustrated in Fig. 1, a user has submitted a
query request (the red arrow) to the cloud. Then the cloud will
generate a corresponding query processing plan and will send
the plan to edge servers. After receiving the processing plan,
the edge servers (E1 and E2) with the user’s interested data
will transmit the data to edge servers with the feasible data
processing service (E3) to be processed. After processing the
data, the final query results will be transmitted to the cloud.
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Unlike traditional DBMS, the sensory data in an EDMS are
stored in a distributed manner at edge servers and the stored
sensory data are raw data collected from different data sources,
such as cameras, microphones, sensors and so on. These data
need to go through a few preprocessing steps, such as sorting,
data integration, image processing, speech recognition, etc. to
enable query processing. Thus, if we process queries in the
cloud, collecting all the sensory data will be time-consuming
and processing complex queries will be resource-consuming.
In an EDMS, we can picture a data query as a series of data
processing tasks, and because the data processing services
have been placed at edge servers, we can process queries in a
distributed way to reduce query response latency and relieve
the workload of the cloud.

B. Network Model

Sensory Data. Assume that we have D types of data
sources in the monitored region, such as image data from
surveillance cameras, temperature data from temperature sen-
sors, speed data from speed detectors and so on. The set of
sensory data generated in the monitored region is denoted by
S = {S(i)|1  i  D} where S(i) is the sensory data collected
from the type i (1  i  D) data source. We assume that each
sensory data set S(i) is distributedly stored at the edge servers.
Let S(Ej) =

S
1iD

S(i)(Ej) be the set of sensory data kept
at Ej where S(i)(Ej) is the set of type i data. For every two
edge servers Ek, Ej 2 E , we have S(i)(Ej) \ S(i)(Ek) = Ø
and for all the edge servers, we have

S
Ej2E S

(i)(Ej) = S(i).
Communication. The edge servers and the remote cloud

can communicate with each other through the backbone net-
work. For each link (i, j) where Ei, Ej 2 E+, let li,j be the
communication delay of transmitting one unit of data. Without
loss of generality, the communication between an edge server
and the cloud is much slower than the communication between
two edge servers, i.e., min{l0,i|Ei 2 E} � max{li,j |Ei, Ej 2
E}. Suppose Ei transmits a set of data O to Ej . The trans-
mission delay is Li,j(O) = |O|li,j .
Computation. Edge servers and the remote cloud can

provide different data processing services, such as image
processing, data integration and speech recognition, to process
the sensory data. Let F be the universal set of services. For
each Ei 2 E [ {E0}, let Ci be the computing resource of
Ei and Fi = {f1, f2, ..., f|Fi|} ✓ F be the set of services
provided by Ei. The cloud E0 provides all the services in F ,
i.e., F0 = F . We assume that each Ei 2 E+ can only carry out
one service at a time and the service cannot be interrupted. For
service f 2 Fi, let I and O be the input and output data, a.k.a
f(I) = O, and C(f(I)) be the computing resources needed
by f with input I . Thus, the processing latency f(I) is

Li(f(I)) =
C(f(I))

Ci

. (1)

We notice that the computing resources needed by f(I) and
the size of the output O are related to the size of I . Therefore,
Formula (1) can be rewritten as

Li(f(I)) =
cf (|I|)
Ci

, (2)

(a) Category 1 (b) Category 2 (c) Category 3

Input  Data ServiceOutput  DataData Distribution Function 

Fig. 2: Different categories of services.

and the relationship between |I| and |O| is

|O| = gf (|I|), (3)

where cf (·) and gf (·) are the functions related to service f .
We assume that cf (·) and gf (·) are both convex functions.

We have noticed that each data processing service in F
could be distributedly processed, partially distributedly pro-
cessed or cannot be distributedly processed. Thus, the data
processing services can be classified into the following three
categories.

Category 1: f(I) = f(f(I1) [ f(I2) [ ...). If a service
f 2 F belongs to Category 1, f can be partially distribut-
edly processed. As illustrated in Fig.2 (a), service f(I) can
be decomposed into several sub-tasks f(I1), f(I2), ..., f(Ik),
where I = I1 [ I2 [ ... [ Ik, and the outputs of the sub-tasks
need to be aggregated by f to obtain the final output. Data
processing services, such as top-k query and sorting, belong
to this category.

Category 2: f(I) =
S

1ik
f(Ik). If service f 2 F

belongs to this category, f can be fully distributedly processed.
As shown in Fig.2(b), the combination of the outputs of the
sub-tasks is the final output of service f . The face recognition
service [40] belongs to this category.

Category 3: f(I) /2 {f({f(I1), f(I2), ...}),
S

1ik
f(Ik)}.

When service f belongs to this category (Fig.2(c)), f cannot
be distributedly processed. For example, an event detection
service [41] cannot be processed distributedly because all the
sensory data should be input to the service function to obtain
the entire information about the physical world.

C. Query Model
Given a query Q(SQ), where SQ ✓ S is a collection of

different types of sensory data, the cloud can easily return a
logical query processing strategy PQ(·) based on the existing
DBMS methods. The correct result of Q(SQ) is equal to
PQ(SQ). The query Q can also be represented by PQ(·).
To distributedly process queries, PQ(·) can be divided into a
series of data processing services FQ ✓ F and the dependency
between these services can be represented by an Equivalent
Data based Directed Acyclic Graph (E-DDAG). The DDAG
and E-DDAG are defined as follows.

Definition 1 (Data based Directed Acyclic Graph (DDAG)).
Given a collection of different types of sensory data S =
{S1, S2, ..., Sk} and a set of different services F =
{f1, f2, ..., fm}, a Data based Directed Acyclic Graph
G(V,E) satisfies that

(1) V = F [ S and E is a set of directed edges;
(2) G(V,E) is a Directed Acyclic Graph;
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(3) S is the leaf nodes of G(V,E).

Different from traditional DAG, an edge (fi, fj) (or
(Si, fj)) in a DDAG not only represents that fj should be
executed after fi, but also means the output of fi (or Si) is
the input of fj .

Definition 2 (Equivalent DDAG (E-DDAG)). Given a query
Q(SQ), the logical query processing strategy PQ(·) and a set
of data processing services FQ, an Equivalent DDAG of PQ(·)
GQ(V,E) satisfies V = SQ [ FQ and fr(Afr ) = PQ(SQ)
where Af =

S
Si2Kf

Si [
S

fi2Kf
fi(Afi), fr 2 V is the root

of GQ(V,E), Af is the input of f , and Kf = {⇠|(⇠, f) 2 E}
is the set of children of f .

An E-DDAG of PQ(·) illustrates the dependency between
the services in FQ and Fig.4 gives an example E-DDAG. In
Fig.4, a user submits the query “the license plate number of
the top-10 fastest vehicles”. In this case, S = {SI , SS} is
the set of vehicle image data SI and the vehicle speed data
SS . ⇧Q(S) = fTK(fJN (SS , fIR(SI))) where fTK , fJN , and
fIR are the top-k service, join service and image recognition
service. PQ(S) can be represented by the E-DDAG shown
in Fig.3. This E-DDAG has two leaf nodes, “image data”
and “speed data”, representing that the answer to this query
can be found in these data sets. Based on the E-DDAG, the
“image data” will be sent to the “image recognition” service
to recognize the license plate number of the vehicles. The
outputs of the “image recognition” are combined (joined) with
the speed data, and the “top-k query” service will be carried
out towards the output of the “join” service.

D. Query Processing in EDMS

Based on the E-DDAG GQ(SQ [FQ, E) of a query Q, the
EDMS will map GQ(SQ [ FQ, E) to the network composed
of servers and process query Q distributedly. The distributed
query processing in the EDMS has the following two steps.

Step 1. Data Supply. The EDMS will select a set of edge
servers which can provide enough sensory data to cover SQ.

Step 2. Data Processing. The servers in E+ will process
the sensory data distributedly, obtain the query answer and
return the answer to the cloud.

These two steps can be described by a collection of servers’
actions. Let ⇡t

i
(f(S)) denote the action that at time t, service

f 2 Fi in Ei 2 E [ {E0} will process the data in S. Specif-
ically, we include a special service fEj (·), and ⇡t

i
(fEj (S))

represents that at time t, Ei will transmit S to Ej and we
define fEj (S) = S. We will use these actions to explain the
workflow of EDMS as follows.

1. Data Supply. Let ES ✓ E be the set of edge servers
that will provide sensory data in the first step and S0(Ei) ✓
S(Ei) be the set of sensory data sets provided by Ei 2 ES .
S0(Ei) and ES satisfy

S
Ei2E S

0(Ei) = SQ. Based on the
dependency in E-DDAG, these sensory data will be transmitted
to the servers with the corresponding services.

2. Data Processing. Suppose at time t, there are a set
of servers E 0, and each Ei 2 E 0 has a set of data Si that
need to be processed by service f 2 F . The data sets in

S(E 0) = {Si|Ei 2 E 0} will be processed based on the
following conditions.

Case 1: f belongs to Category 1. f can be partially
distributedly processed. Let Ef = {Ei|f 2 Fi ^ Ei 2 E+}
be the servers to carry out service f . The data sets in S(E 0)
can be processed based on the following steps.
(a) Partition each Si 2 S(E 0) into |Ef | � k � 1 subsets

Si =
S

1lk
Sil .

(b) Select k servers Ee1 , Ee2 , ..., Eek from Ef . Each server
Ei 2 E 0 transmits Sij to Eej . To transmit Si1 , ..., Sik

from Ei to Ee1 , ..., Eek , we have the following actions
{⇡ti1

i
(fEe1

(Si1)), ⇡
ti2
i

(fEe2
(Si2)),..., ⇡

tik
i

(fEek
(Sik))}

where t = ti1 < ti2 < ... < tik and for each 1  j  k,
tij�1 + Li,ej�1(Sij�1) < tij .

(c) Let tij0 be the time when Sij arrived at Eej . Eej receives
all the data sets at time tj = max{ti0j |Ei 2 E 0}. Each
Eej 2 {Eej |1  j  k} processes

S
Ei2E0 Sij and the

action of Eej is ⇡
tj0
ej (f(

S
Ei2E0 Sij )). Obviously, tj0 > tj .

(d) Select a server Eek+1 from Ef . Each Eej 2 {Eej |1 
j  k} will transmit the output of f to Eek+1 . The
action of Eej is ⇡

tj00
ej (f(

S
Ei2E0 Sij ))) where tj00 �

tj0 + Lej (f(
S

Ei2E0 Sij )). The relationship between tj0
and tj00 implies that Eej can transmit the output of f if
and only if f has been finished.

(e) After receiving the outputs of f(
S

Ei2E0 Si1)),
f(
S

Ei2E0 Si2), ..., f(
S

Ei2E0 Sik), Eek+1 will aggregate
them together. Let t0 = max{tj00 + Lej ,ek+1 |1  j  k}
be the time when Eek+1 has received all the data sets. The
action of Eek+1 is ⇡tk+1

ek+1(f(
S

1jk,Ei2E0 f(Sij ))) where
tk+1 � t0. At tk+1 +Lek+1(f(

S
1jk,Ei2E0 f(Sij ))), f

is finished.
Based on the above five steps, data S in Ei can be

processed by service f . These five steps can be divided
into two phases: 1)partition ((a)-(c)) and 2)aggregation ((d)-
(e)). In the first phase, S is partitioned into subsets and
these subsets are assigned to other servers to be distributedly
processed. The second phase selects a server to aggregate the
outputs. The above five steps start at time t and end at time
tk+1 + Lek+1(f(

S
1jk

f(Sj))).
Case 2: f belongs to Category 2. f can be fully distribut-

edly processed. As shown in Fig.2, a Category 2 service is a
special case of a Category 1 service without the “aggregation”
phase. Therefore, we only need to adopt the first three steps
in Case 1. Obviously, the processing of f starts at t and ends
at max{tj0 + Lej (f(

S
Ei2E0 Sij ))|1  j  k}.

Case 3: f belongs to Category 3. f cannot be distributedly
processed. The following steps are adopted to process f .
Firstly, the servers in E 0 select a server Ej 2 Ef and each
Ei 2 E 0 transmits Si to Ej . For Ei, the action is ⇡t

i
(fEj (Si)).

Secondly, Ej will process f(
S

Ei2E0 Si) at time tj > max{t+
Li,j(Si)|Ei 2 E 0}. The action is ⇡

tj

j
(f(

S
Ei2E0 Si)). In

this case, the processing starts at t and ends at the time
t0 � tj + Lj(f(

S
Ei2E0 Si)) when Ej has been finished f .

Based on the above three cases, we can process f on
the servers. Let �f (S(E 0)) be the set of actions that process
f(S(E 0)) on the servers. �f (S(E 0)) can also be considered as a
component with a set of inputs S(E 0) and output f(

S
Ei2E0 Si)

Authorized licensed use limited to: George Mason University. Downloaded on February 18,2021 at 15:47:29 UTC from IEEE Xplore.  Restrictions apply. 
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(or {f(
S

Ei2E0 Si1), f(
S

Ei2E0 Si2), ..., f(
S

Ei2E0 Sik)} if f
belongs to Category 2). The formal definition of the com-
ponent is defined in Definition 3.

Definition 3 (Component). A Component �f (S(E 0)) is a set
of actions that can process f(S(E 0)) on the servers. �f (S(E 0))
has the following properties.
(1) The input and output of �f (S(E 0)) are S(E 0)

and f(
S

Ei2E0 Si) (or {f(
S

Ei2E0 Si1), f(
S

Ei2E0 Si2), ...,
f(
S

Ei2E0 Sik)} if f belongs to Category 2);
(2) The start time and end time of �f (S) are

ts(�f (S(E 0))) = min{ t | ⇡t

i
(·) 2 �f (S(E 0))} and

te(�f (S(E 0))) = max{t|⇡t

i
(·) 2 �f (S(E 0))}.

Specifically, each data supply edge server Ei 2 ES can
be considered as a component �s(S0(Ei)) = Ø with the
same input and output S0(Ei), and the same start and end
time. We can also connect two different components together
to complete more complex data processing services. When
connecting two components �f (·) and �f 0(·) together, the
output of �f (·) is the input of �f 0(·), and the start time
of �f 0(·) and the end time of �f (·) are adjusted to sat-
isfy ts(�f 0(·)) � te(�f (·)). Therefore, given an E-DDAG
GQ(V,E) which illustrates the relationships between services,
we can connect different components together to map the E-
DDAG to the servers’ network and process the query in a
distributed way. Let � ⇤

f
(S) be the output of �f (S), then the

query processing plan in an EDMS can be defined as follows.

Definition 4 (Query Processing Plan (QPE) in an EDMS).
Given an E-DDAG GQ(V = FQ[SQ, E), a Query Processing
Plan ⇧(Q) can be constructed through the following steps.

(1) For each (S, f) 2 E, replace S by the compo-
nents in {�s(S0(Ei1)),�s(S0(Ei2)), ...,�s(S0(Eik))} where
{Ei1 , ..., Eik} ✓ ES and

S
1lk

S0(Eil) = S. Connect the
components in {�s(S0(Ei1)), ...,�s(S0(Eik))} with compo-
nent �f (

S
1lk

� ⇤
s
(S0(Eil))).

(2) For each (f, f 0) 2 E, connect components �f (·) and
�f 0(·) together.

(3) Construct a set of actions �c(� ⇤
fr
(·)) to transmit the

output of �fr (·) to the cloud E0, where fr is the root of
GQ(V,E).

After the above steps, ⇧(Q) =
S

f2FQ
�f (·) [ �c(� ⇤

fr
(·)).

The query plan ⇧(Q) can obtain the answer of Q. The
first and second steps in Definition 4 imply that the interested
sensory data set of query Q(SQ) has been processed and the
query has been answered. The third step aims to transmit the
query answer to the cloud. Given a feasible query plan ⇧(Q),
the latency of ⇧(Q) is equal to

L(⇧(Q)) = te(⇧(Q))� ts(⇧(Q)) (4)

where ts(⇧(Q)) = min{ts(�f (·))|�f (·) ✓ ⇧(Q)} and
te(⇧(Q)) = max{te(�f (·))|�f (·) ✓ ⇧(Q)} are the start time
and the end time of ⇧(Q), respectively.

An example is shown in Fig.4. In the EDMS based
vehicle monitoring system, the image data and speed data
of vehicles are stored in edge servers. The image data
SI = SI1 [ SI2 is stored at E4 and E5, and the speed data
is only stored at E5. Based on the E-DDAG shown in Fig.3,

image data

speed data

image recognition

join top-k query

Fig. 3: An example of the E-DDAG.

Cloud

1E 2E 3E
I1S

3S

image data
speed data
edge server
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^ `2 ,I SS S^ `1IS 1 2 �I I IS S S

SS

4E E5

 
  

! "  SSI 2, S

  

 

!SI 1"

Fig. 4: Query processing in an EDMS. A user wants to figure
out the license plate number of the top-10 fastest vehicles.

we have a QPE ⇧(Q) = {⇡t1
4 (fE1(SI1)),⇡

t1
5 (fE2(SI2 [

SS)),⇡
t2
1 (fIR(SI1)),⇡

t2
2 (fIR(SI2)),⇡

t3
1 (fE2(S̄I1)),⇡

t4
2 (fJN (

S̄I1[S̄I2[SS)),⇡
t5
2 (fE3(S3)),⇡

t6
3 (fTK(S3)),⇡

t7
3 (fE0(S4))},

where S̄I1 = fIR(SI1), S̄I2 = fIR(SI2), S3 = fJN (S̄I1[
S̄I2 [ SS), and S4 = fTK(S3). ⇧(Q) implies that the image
data SI1, SI2 will be processed by the image recognition
service in E1 and E2 respectively. Then E1 will send the
output S̄I1 to E2. After that, the image recognition results
S̄I1, S̄I2 and the speed data SS will be joined together in
E2. The join results S3 will be sent to E3 to be processed
by the “top-k query” service. Finally, the query result S4

will be transmitted to the cloud. In ⇧(Q), ⇡t1
4 (fE1(SI1)),

⇡t2
1 (fIR(SI1)), ⇡t3

1 (fE2(S̄I1)) and ⇡t1
5 (fE2(SI2 [ SS)),

⇡t2
2 (fIR(SI2) constitute the components �fIR(SI).

S1
<latexit sha1_base64="9AIfOXRv6Jjmh8+sk1bXiFV7Zv4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rtR/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzSRBP6JDyUPOqLFSo9H3+uWKW3XnIKvEy0kFctT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqt5l9ebhslK7zeMowgmcwjl4cAU1uIc6NIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/XI42H</latexit>

S2
<latexit sha1_base64="AQLH8yeADiw4cc37YlxUFmrK+jg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLevEYiXlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M7+Z++wmV5rF8NJME/YgOJQ85o8ZKjUa/0i+W3LK7AFknXkZKkKHeL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrz2p1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5albJXLd88VEu12yyOPJzBOVyCB1dQg3uoQxMYDOEZXuHNEc6L8+58LFtzTjZzCn/gfP4A2KeNiA==</latexit>

Sk
<latexit sha1_base64="LfE2L8WVW5jaY5tLxB8Y0qFkn4Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rtR/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38389hPXRsTqEScJ9yM6VCIUjKKVGo3+uF+uuFV3DrJKvJxUIEe9X/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3L6s3DZaV2m8dRhBM4hXPw4ApqcA91aAKDITzDK7w50nlx3p2PRWvByWeO4Q+czx8vGo3B</latexit>

f1
<latexit sha1_base64="riFTaWnqF1YSjipBDXUCQmKp9PY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHsK+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuql6ten1fq9Rv8jiKcAKncA4eXEId7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QP0FY2a</latexit>

f2
<latexit sha1_base64="GsqaD/wZa9lCNSbBRiuI35inew4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKQb0VvXisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7sN+rV+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCS/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7VvXq1au7eqVxncdRhBM4hXPw4AIacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx/1mY2b</latexit>

fk
<latexit sha1_base64="f+OXz4jUBevvGy562Zw4D2X50E4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQ9gf98sVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVL1a9fq+Vqnf5HEU4QRO4Rw8uIQ63EEDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wdMDI3U</latexit>

……
fk+1

<latexit sha1_base64="2BixE4blN2QCPXuASVfcTwji20Q=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBfVW9OKxgv2ANpTNdtIu3WzC7kYooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38389hMqzWP5aCYJ+hEdSh5yRo2V2mE/G19403654lbdOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n83Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyex3MuAKmRETSyhT3N5K2IgqyoxNqGRD8JZfXiWty6pXq9481Cr12zyOIpzAKZyDB1dQh3toQBMYjOEZXuHNSZwX5935WLQWnHzmGP7A+fwB6e6PUA==</latexit>

Fig. 5: The E-DDAG in the sub-MIN-QPL problem.

E. Problem Definition

We notice that given an E-DDAG GQ(V,E), there are many
feasible distributed query processing plans. For a GQ(V,E),
different QPEs will result in different latency. In order to re-
duce the latency of distributed query processing, we define the
Query Processing Latency Minimization (MIN-QPL) problem.
MIN-QPL Problem
Input:
(1) A cloud E0 and a set of edge servers E ;
(2) A query Q(SQ) and the E-DDAG GQ(V = SQ[FQ, E)

generated by the cloud;
(3) The sensory data S(Ei) stored at each edge server Ei;
(4) The computing capability Ci of each Ei 2 E [ {E0};
(5) The set of services of each edge server Ei and Fi;
(6) The communication latency li,j of transmitting one unit

of data between Ei, Ej 2 E+.
Outputs: A QPE ⇧(Q) with the minimum latency.

Theorem 1. The MIN-QPL problem is NP-Hard.
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Proof. Consider the following special case of the MIN-QPL
problem.
sub-MIN-QPL Problem:
Input:

(1) A cloud E0 and a set of edge servers E ;
(2) A query Q(SQ) and the E-DDAG GQ(V = SQ [

FQ, E) (as illustrated in Fig.5) generated by the cloud, where
SQ = {S1, S2, ..., Sk} is composed of Category 3 services
FQ = {f1, f2, ..., fk+1}, E = {(S1, f1), (S2, f2), ..., (Sk,
fk), (f1, fk+1), (f2, fk+1), ..., (fk, fk+1)} and k > |E|;
(3) The sensory data S(Ei) stored at each edge server Ei,

where S(E1) = SQ and
S

1<i<|E| S(Ei) \ SQ = Ø;
(4) The computing capability Ci of each Ei 2 E+, and

C0 = C1 = ... = C|E+| = 1;
(5) The set of services of each edge server Ei, Fi, and

Fi = FQ � {fk+1};
(6) The communication latency li,j = 0 of transmitting one

unit of data between Ei, Ej 2 E+.
Outputs: A QPE ⇧(Q) with the minimum latency.

Based on the E-DDAG (Input (2)) and the service deploy-
ment (Input (5)) of the sub-MIN-QPL problem, the query
processing must follow the following steps. First, the edge
server E1 will transmit the sensory data to the servers in E+ to
process data services {f1, f2, ..., fk}. Second, after processing
data services {f1, f2, ..., fk}, the outputs will be transmitted
to the cloud to process data service fk+1.

Since the transmission does not cause any delay, the latency
of a feasible ⇧(Q) is equal to Lk+L0(fk+1(

S
1ik

fi(Si))),
where Lk is the latency of conducting all the services
in {f1, f2, ..., fk} and L0(fk+1(

S
1ik

fi(Si))) is the to-
tal time of conducting fk+1(·) at the cloud. Obviously,
L0(fk+1(

S
1ik

fi(Si))) is a constant. Therefore, the optimal
⇧(Q) must minimize Lk, and in order to optimize the solution
of MIN-QPL, we only need to consider how to finish the
services in {f1, f2, ..., fk}.

We reduce the Minimum Makespan Scheduling problem
(MMS) to the sub-MIN-QPL problem to prove its NP hard-
ness. Given an instance of the MMS problem [J,M ], where
J = {J1, J2, ..., Jk} is a set of k jobs each of which takes ti
time to be processed and M = {M1,M2, ...,Mm} is a set of
m identical machines. The reduction has the following steps.

Step 1. Construct a data processing service fi and a type of
data set Si for each Ji 2 J .

Step 2. Construct another service fk+1. Then FQ =
{fi|Ji 2 J} [ {fk+1} and SQ = {Si|Ji 2 J}.
Step 3. Construct an E-DDAG GQ(SQ[FQ, E), where E =

{(S1, f1), (S2, f2), ..., (Sk, fk), (f1, fk+1), (f2, fk+1), ..., (fk,
fk+1)}.

Step 4. Construct m identical servers E+ = {E0, E1, ...,
Em�1}. Let C0 = 1 and F0 = FQ. For each i 6= 0, let
Ci = 1, Fi = FQ � {fk+1}.

Step 5. Let S(E1) = SQ and
S

1<i<|E| S(Ei) \ SQ = Ø.
Step 6. Let li,j = 0 for each Ei, Ej 2 E+.
Let Ai be the set of jobs assigned to machine Mi and

Ao = {Ao

i
|Mi 2 M} be the optimal solution of the

MMS problem. We now derive a corresponding solution of
the sub-MIN-QPL problem. For each Ji 2 Ao

j
, we assign

data set Si to server Ej as the input of service fi, and

Symbol Description
E0 The remote cloud.
E The set of edge servers.

S(Ei) The sensory data stored in Ei.
Ci The computation capability of Ei.
Fi The set of services in Ei.
li,j The latency of transmitting data between Ei, Ej .
fj A service in the universal set of service F .

C(fj(I)) The computation resources needed by fj with input I .
Li(fj(I)) The processing latency of fj(I).
Q(SQ) The query on data sets SQ.

GQ(V,E) The E-DDAG of query Q(SQ).
⇧(Q) The QPE of query Q.

TABLE I: Symbol Table

image data face recognition top-k query

Fig. 6: An example of Case 2. User wants to find out the top-
10 oldest people that have passed through the security camera.

�fi(Si) = {⇡t0
1 (fEj (Si)),⇡

t0
j
(fi(Si))}. The services pro-

cessed at server Ej is {fi|Ji 2 Ao

j
}, and at time Tj =P

Ji2Ao
j
ti, all the services in Ej has been finished. Then

all the services in {f1, f2, ..., fk} have been finished at time
Tmax = max{Tj |1  j  m}. Since Ao is the optimal
solution of the jobs in J , the corresponding solution of the
sub-MIN-QPL problem is also optimal. Similarly, given an
instance of the sub-MIN-QPL problem, we can also obtain a
corresponding optimal solution for the MMS problem.

Based on above analysis, the sub-MIN-QPL problem is NP-
Hard, and the MIN-QPL problem is also NP-Hard.

IV. SOME SPECIAL CASES OF THE MIN-QPL PROBLEM.
We first consider the following two special cases of the

MIN-QPL problem.
Case 1.

S
Ei2E Fi \ FQ = Ø, i.e., the query needs to be

processed in the cloud.
Case 2. The E-DDAG GQ(V = SQ [ FQ, E) of query

Q is linear, and each service f 2 FQ belongs to Category 2.
That means, for each non-leaf node f 2 V , f has only one
child node and at most one parent.

Obviously, Case 1 is the case when query Q is processed
centrally in the cloud. Case 2 means the data sets in SQ is
processed linearly, and it also describes a common scenario.
An example of Case 2 is shown in Fig. 6. In such example, the
user wants to find out the top-10 oldest people that have passed
through the security camera. First, the image data collected
by the camera will be processed by the “face recognition”
service to recognized the age of each person. Then the output
of the “face recognition” service will be sent to the “top-k
query” service to obtain the final result. Although the MIN-
QPL problem is NP-Hard, we will show that we can obtain
the optimal solution of these two special cases.

A. Special Case 1
Special Case 1 of the MIN-QPL problem (C1-MIN-QPL)

is defined as follows.
C1-MIN-QPL Problem
Input:
(1) A cloud E0 and a set of edge servers E ;

Authorized licensed use limited to: George Mason University. Downloaded on February 18,2021 at 15:47:29 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3026988, IEEE Internet of
Things Journal

7

(2) A query Q(SQ) and the E-DDAG generated by the cloud
GQ(V = SQ [ FQ, E);

(3) The sensory data S(Ei) stored at each edge server Ei;
(4) The computation capability Ci of each Ei 2 E [ {E0};
(5) The set of services Fi of each edge server Ei, and for

each Ei 2 E , Fi \ FQ = Ø,
(6) The communication latency of transmitting one unit of

data between Ei, Ej 2 E+.
Outputs: A QPE ⇧(Q) with the minimum latency.
According to the fifth input, the query needs to be answered

by the cloud. Thus, the query processing plan (QPE)⇧(Q) can
be divided into two sets ⇧(1)(Q) and ⇧(2)(Q). The actions
in ⇧(1)(Q) aim to transmit the sensory data to the cloud, and
based on the actions in ⇧(2)(Q), the cloud will process the
sensory data based on the E-DDAG. It should be noted that
the cloud can only carry out one service at a time. Therefore,
the actions in ⇧(1)(Q) can be carried out in a parallel way and
the actions in ⇧(2)(Q) can only be carried out sequentially.
Obviously, the actions in ⇧(2)(Q) are affected by the actions
in ⇧(1)(Q). In the following sections, we will discuss three
problems:

(1) Given ⇧(1)(Q), how to construct ⇧(2)(Q)?
(2) Given ⇧(2)(Q), how to construct ⇧(1)(Q)?
(3) How to combine ⇧(1)(Q) and ⇧(2)(Q) together and

obtain an optimal ⇧(Q)?
1) Construction of ⇧(2)(Q): Let t(S) be the time when the

data set S 2 SQ has arrived in the cloud. t(S) is determined by
⇧(1)(Q). In this section, we assume that ⇧(1)(Q) is given and
the value of t(S) is known. We will discuss how to construct
⇧(2)(Q) based on {t(S)|S 2 SQ}.
The cloud will process the services sequentially. Let ts(f)

and te(f) be the start time and end time of a service f . Based
on GQ(V,E), ts(f) and te(f) must satisfy the following
conditions.
(a) Data Dependency. If (S, f) 2 E, then ts(f) � t(S).
(b) Service Dependency. If (f, f 0) 2 E, then te(f)  ts(f).
(c) Interrupt Free. te(f)� ts(f) = L0(f(Af )), where Af is

the input data set of f .
Based on the above conditions, we propose Algorithm ?? to
construct ⇧(2)(Q). Algorithm ?? initializes ⇧(2)(Q) = Ø and

Algorithm 1: ⇧(2)(Q) Construction Algorithm
Input: GQ(V = SQ [ FQ, E); {t(S)|S 2 SQ}.
Output: ⇧(2)(Q)

1 ⇧(2)(Q) = Ø;
2 Let G0

Q(FQ, EFQ
) be the graph deduced from FQ and construct a

topological order of G0
Q, T (G0

Q) = {fo1 , ..., fo|FQ|};
3 foreach 1  i  |FQ| do
4 Let N(foi ) = {S|(S, foi ) 2 E};
5 if N(foi ) 6= Ø then
6 tmax = max{t(S)|S 2 N(foi )};
7 ts(foi ) = max{tmax, te(foi�1 )};
8 te(foi ) = ts(foi ) + L0(foi (Afoi

));
9 else
10 ts(foi ) = te(foi�1 );
11 te(foi ) = ts(foi ) + L0(foi (Afoi

));

12 ⇧(2)(Q) = ⇧(2)(Q) [ {⇡ts(foi )
0 (foi (Afoi

))};

13 return ⇧(2)(Q);

then it executes the following three steps.
Step 1. (Line 2) Construct a topological order of G0

Q
which

is a subgraph of GQ and is deduced from FQ. Since the
cloud carries out services sequentially, the execution order of
services must obey the topological order of E-DDAG.

Step 2 and Step 3 are executed iteratively.
Step 2. (Line 3-Line 11) Determine the start time and

end time of each service based on the topological order and
conditions (a)-(c).

Step 3. (Line 12) Derive the actions of each service based
on the start time and end time.

Obviously, the time complexity of Algorithm ?? is O(|V |+
|E|) which is the time complexity of the topological order
construction algorithm.

2) Construction of ⇧(1)(Q): We aim to construct ⇧(1)(Q)
based on the ⇧(2)(Q) obtained in Algorithm ??. After the
iterations in Algorithm ??, the total latency of ⇧(Q) is

L(⇧(Q)) = te(fo|FQ|) = max{⌃(S)|S 2 SQ} (5)

where ⌃(S) = t(S)+
P

f2FQ
x(S, f)L0(f(Af )) and x(S, f)

2 {0, 1} is determined by ⇧(2)(Q). Based on the computation
model in Section III-B, L0(f(Af )) can be estimated for each
f and it can be considered as a constant. Without loss of
generality, we sort the data sets in SQ based on the value
of

P
f2FQ

x(S, f)L0(f(Af )), and SQ = {S1, S2, ..., S|SQ|}
where

X

f2FQ

x(Si, f)L0(f(Af )) >
X

f2FQ

x(Si+1, f)L0(f(Af )).

Then we have the following theorem.

Theorem 2. Let SQ = {S1, S2, ..., S|SQ|} where
X

f2FQ

x(Si, f)L0(f(Af )) >
X

f2FQ

x(Si+1, f)L0(f(Af )).

Given an optimal ⇧(1)(Q), based on ⇧(1)(Q), the data sets
in SQ arrive at the cloud at time {to(Sj)|Sj 2 SQ}, then we
can always construct another optimal ⇧̄(1)(Q), and based on
⇧̄(1)(Q), the data sets arrive at the cloud at time t(S1) 
t(S2)  ...  t(S|SQ|).

Proof. Let T = max{⌃(Sj)|Sj 2 SQ}. For each
Sj 2 SQ, we can change to(Sj) to t̄o(Sj) = T �P

f2FQ
x(Sj , f)L0(f(Af )). Obviously, t̄o(Sj) � to(Sj).

Therefore, we can easily construct another feasible solution
⇧̄(1)(Q), based on which the arrival time of each data set
equals to t̄o(Sj), and max{t̄o(Sj)|Sj 2 SQ} = T . It is easy
to see that for each two t̄o(Sj) and t̄o(Si), if j < i, then
t̄o(Sj)  t̄o(Si).

According to Formula (5), latency L(⇧(Q)) is
related to t(S)s. Based on Theorem 2, we can assume
that the arrival time of the data sets in SQ satisfies
t(S1)  t(S2)  ...  t(S|SQ|). Given the data sets
stored at edge server Ei, {S1(Ei), S2(Ei), ..., S|SQ|(Ei)},
(Sj(Ei) ✓ Sj) Ei will transmit the data sets
based on the order S1(Ei), S2(Ei), ..., S|SQ|(Ei). For
each Ei 2 E , the actions are ⇡t1

i
(fE0(S1(Ei))),

⇡t2
i
(fE0(S2(Ei))), ...,⇡

t|SQ|

i
(fE0(S|SQ|(Ei))), where for
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Fig. 7: The QPE ⇧(Q) can be represented by a series of linear
connected components.

each 1  k  |SQ|, tk � tk�1 = li,0|Sk(Ei)|. Thus, we can
construct ⇧(1)(Q). Based on Theorem 2, ⇧(1)(Q) is optimal.

3) Construction of ⇧(Q): After Algorithm ?? generates
⇧(1)(Q), a feasible QPE ⇧(Q) can then be obtained. How-
ever, we notice that the outputs of Algorithm ?? are also
related to the topological order constructed in Step 1. Dif-
ferent topological orders may result in different final QPEs.
Considering that the number of topological orders of a graph
is limited, we can use the brute force search method to obtain
an optimal ⇧(Q) for C1-MIN-QPL. The details are omitted
here.

B. Special Case 2
In this special case, the E-DDAG GQ(V,E) of query Q is

linear. We define this special case as follows.
C2-MIN-QPL Problem
Input:
(1) A cloud E0 and a set of edge servers E ;
(2) A query Q(SQ) and the corresponding E-DDAG

GQ(V = SQ [ FQ, E) generated by the cloud, where GQ

is linear, i.e., |SQ| = 1 and |E| = |V |� 1, and each f 2 FQ

belongs to Category 2;
(3) The sensory data S(Ei) stored at each edge server Ei;
(4) The computation capability Ci of each Ei 2 E [ {E0};
(5) the set of services Fi of each edge server Ei;
(6) the communication latency of transmitting one unit of

data between Ei, Ej 2 E+.
Outputs: A QPE ⇧(Q) with the minimum latency.
Without loss of generality, we assume FQ = {f1, ..., f|FQ|}

and E = {(S, f1), (f1, f2), (f2, f3), ..., (f|FQ|�1, f|FQ|)}.
Since GQ is linear as illustrated in Fig.7, ⇧(Q) can be
represented by a series of linear connected components, where
�s(·) is the component that provides a set of sensory data S
and �c(·) is the component that transmits the answer of the
query to the cloud. Based on the definition in Section III-D,
�s(·) = Ø. Therefore, in order to construct⇧(Q), we can con-
struct {�f1(·),�f2(·), ...,�f|FQ|(·),�c(·)} by iterations. In the
following, we first investigate how to construct a component
�fi(·), then we consider how to minimize the total latency of
⇧(Q).

1) Component Construction: Suppose that service fi�1 has
been finished at time t̄i�1, and based on the property of
Category 2 service, the output of fi�1 is distributedly stored at
the servers in Ei�1 ✓ E+. Let Sj (|Sj | = ↵j) be the distributed
output stored at Ej . (If i = 1, then Ei�1 is the set of servers
that store the data set S 2 SQ and Sj = S.) These data need
to be processed by service fi. The servers in Ei�1 will transmit
data to the servers in Ei, where Ei = {Ej |fi 2 Fj ^Ej 2 E+}
is the set of the servers that have carried out service fi. Let
Sj,k ✓ Sj (|Sj,k| = ↵j,k) be the set of data transmitted from
Ej 2 Ei�1 to Ek 2 Ei. We have

X
Ek2Ei

↵j,k = ↵j .

For each server Ek 2 Ei and Ej 2 Ei�1, they will follow the
following two steps to construct �fi(

S
Ej2Ei�1

Sj).
Step 1. Ej transmits data sets Sj,k to each server Ek 2 Ei,

and we have action ⇡ti�1

j
(fEk(Sj,k)).

Step 2. Ek starts carrying out fi at time

tk,i = t̄i�1 +max{lj,k↵j,k|Ej 2 Ei�1}

which is the time when Ek has finished receiving data. Ek

finishes carrying out fi at time

t̄k,i = tk,i + Lk(fi(
[

Ej2Ei�1

Sj,k)).

According to Formula (3), the size of the output of
fi(

S
Ej2Ei�1

Sj,k) is

|fi(
[

Ej2Ei�1

Sj,k)| = gfi(|
[

Ej2Ei�1

Sj,k|) = gfi(
X

Ej2Ei�1

↵j,k).

In this step, we have action ⇡
tk,i

j
(fi(

S
Ej2Ei�1

Sj,k)).
Step 3. At time

t̄i = max{t̄k,i|Ek 2 Ei},

service fi has been finished. The output of fi will be trans-
mitted to the next component �i+1(·).

Based on the above three steps, we have

�fi(
[

Ej2Ei�1

Sj) ={⇡ti�1

j
(fEk(Sj,k))|Ej 2 Ei�1}

[ {⇡tk,i

k
(fi(

[
Ej2Ei�1

Sj,k))|Ek 2 Ei}.

Obviously, the component construction can be carried out
iteratively and we can finally obtain the components in
{�f1(·),�f2(·), ...,�f|FQ|(·)}. We only need to adopt the first
step of the component construction method to construct �c(·).
2) Minimizing total latency of ⇧(Q): The above section

provides a scheme to construct components. However, mini-
mizing the total latency is still a problem. Based on the above
section, the latency is mainly related to the amount of data
transmitted between servers, denoted as ↵i,j . We have the
following program.

min t̄|FQ| +max{lj,0↵j,0|Ej 2 E|FQ�1|} (6)
s.t. fi 2 FQ :

Ci1 :
X

Ek2Ei

↵j,k = ↵j 8Ej 2 E+

Ci2 : tk,i = t̄i�1 +max{lj,k↵j,k|Ej 2 Ei�1}
8Ej 2 E+, Ek 2 Ei

Ci3 : t̄k,i = tk,i + Lk(fi(
[

Ej2Ei�1

Sj,k))

8Ej 2 E+, Ek 2 Ei
Ci4 : t̄i = max{t̄k,i|Ek 2 Ei}
Ci5 : ↵j+1 = gfi(

X
Ej2Ei�1

↵j,k)

Ci6 : ↵1 = |S|, Ei = {Ej |fi 2 Fj ^ Ej 2 E+}

In Program (6), there are six conditions for each fi 2 FQ.
According to Formulas (2) and (3), we have

Lk(fi(
[

Ej2Ei�1

Sj,k)) =

cfi(|
S

Ej2Ei�1

Sj,k|)

Ck

=

cfi(
P

Ej2Ei�1

↵j,k)

Ck

,
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and ↵j+1 = gfi(
P

Ej2Ei�1
↵j,k). Since cfi(·) and gfi(·)

are convex functions, Program (6) is a Convex Optimization
Problem which has an optimal solution. Based on the solution
of Program (6), we can obtain an optimal ⇧(Q) which has
the minimum latency.

V. APPROXIMATION ALGORITHM FOR THE GENERAL
MIN-QPL PROBLEM

As illustrated in Algorithm ??, we propose the Latency
Minimization Algorithm (LMA) to approximately solve the
MIN-QPL problem.

The MIN-QPL problem can be considered as an assignment
problem which aims at assigning data transmission tasks to
communication links and data processing tasks to edge servers
to minimize the overall makespan. Action ⇡t

i
(f(S)) can be

considered as assigning task f(S) to Ei at time t, and action
⇡t

j
(fEi(S)) can be considered as assigning task S to link

(j, i) between Ej and Ei at time t. Therefore, given a query
processing plan ⇧(Q), we can partition ⇧(Q) into

⇧(Q) =
[

Ei2E+
Ji [

[
Ei,Ej2E+

Ji,j ,

where Ji and Ji,j are regarded as task sets, and

Ji = {⇡t

i
(f(S))|⇡t

i
(f(S)) 2 ⇧(Q)}

and

Ji,j ={⇡t

i
(fEj (S))|⇡t

i
(fEj (S)) 2 ⇧(Q)} [

{⇡t

j
(fEi(S))|⇡t

j
(fEi(S)) 2 ⇧(Q)}.

The LMA algorithm shown in Algorithm ?? aims at con-
structing a query plan ⇧(Q) by constructing Ji and Ji,j for
each server and link, respectively. Obviously, if all the services
have been assigned, the query has been answered.

Initially (Line 1 - Line 5 in Alg. ??), given an E-DDAG
GQ(FQ [ SQ, E), we add another service fE0 into FQ and
add another edge (fr, fE0) into E, where fE0 is the service
that transmits the final answer of Q to the cloud E0 and fr
is the root of GQ. Obviously, fE0 belongs to Category 2. For
each server Ei and each link (i, j), we initialize Ji = Ø and
Ji,j = Ø, respectively. Furthermore, Fc is used to record the
services that have been assigned to the servers and F+

c
is

used to record the services that can be processed based on the
current Fc. Then the LMA algorithm executes the iterations
until Fc = FQ (Line 6 - Line 36). Each iteration has the
following two phases.

Phase I. Service Preselection (Line 7-Line 14). The
algorithm preselects a list of services F+

c
that can be assigned

to the servers based on the current Fc and the services in F+
c

are weighted.
Phase II. Service Assignment (Line 15 - Line 36). The

algorithm selects a service from F+
c

and assigns the service
and the corresponding data sets to servers and links based on
the service type.

The details of these two phases are described in the follow-
ing sections.

Algorithm 2: Latency Minimization Algorithm
Input: GQ(V = SQ [ FQ, E), E+.
Output: ⇧(Q)

1 FQ = FQ [ {fE0}, E = E [ {(fr, fE0 )};
2 F+

c = Ø;
3 Fc = Ø;
4 8Ei 2 E+, Ji = Ø;
5 8Ei, Ej 2 E+, Ji,j = Ø;
6 while Fc 6= FQ do
7 F+

c = Ø ;
8 For each f 2 FQ, let Kf be the set of children of f ;
9 For each f 2 FQ, let Pf be the set of ancestors of f ;
10 foreach f 2 FQ do
11 if Kf ✓ Ft then
12 F+

c = F+
c [ {f};

13 wf = |Pf |;

14 Sort F+
c in descending order by the weight of each f ;

15 f⇤ = argmax{wf |f 2 F+
c };

16 if f⇤ belongs to Category 3 then
17 foreach Ei 2 E(f⇤) do
18 t = max{⌧j,i + lj,i|Sj(f⇤)||Ej 2 E+ ^ Sj(f⇤) 6=

Ø};
19 ti(f⇤) = max{t, ⌧i};
20 t̄i(f⇤) = ti(f⇤) + Li(f⇤(

S
Ej2E+ Sj(f⇤)));

21 wi = max{Lc, t̄i(f⇤)};
22 Em = argmin{wi|Ei 2 {Ei|f⇤ 2 Fi}};
23 Assign f⇤ to Em and update task sets;
24 Fc = Fc [ {f⇤};
25 if f⇤ belongs to Category 2 then
26 Solve Programming (7);
27 Update task sets based on the solution of (7);
28 Fc = Fc [ {f⇤};
29 if f⇤ belongs to Category 1 then
30 for Ei 2 E(f⇤) do
31 Solve Programming (8);
32 Let Ai be the assignment strategy;
33 wi = Ti;

34 Em = argmin{wi|Ei 2 E(f⇤)};
35 Update task sets based on Am;
36 Fc = Fc [ {f⇤};

37 ⇧(Q) =
S

Ei2E+ Ji [
S

Ei,Ej2E+ Ji,j ;
38 return ⇧(Q);

Phase I. Service Preselection.

This phase has three steps.
Step 1 (Line 7-Line 9). Initialize F+

c
= Ø and let Kf and

Pf be the sets of children and ancestors of f respectively.
Step 2 (Line 10-Line 13). For each f 2 FQ, if Kf ✓ Fc,

it means all f ’s children have been finished and f can be
processed at the current time. Then we add f into F+

c
and set

the weight of f as |Pf |.
Step 3 (Line 14). Sort F+

c
by wf in descending order. If f

has more ancestors and larger weight, then executing f may
“unlock” more other services.

Phase II. Service Assignment

Given the task sets of servers {Ji|Ei 2 E+} and links
{Ji,j |Ei, Ej 2 E+} in the current iteration, a server Ei will
finish its current tasks at time

⌧i = max{t|⇡t

i
(·) 2 Ji}
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and a link (i, j) will finish its transmission tasks at

⌧j,i = max{t|⇡t

i
(·),⇡t

j
(·) 2 Ji,j}.

Then the current total latency Lc is the time when every server
and link have finished their tasks and

Lc = max{⌧S , ⌧L},

where ⌧S = max{⌧i|Ei 2 E+} and ⌧L = max{⌧i,j |Ei, Ej 2
E+}. The service assignment phase adopts the greedy strategy
and aims at carrying out a service that can minimize the
latency. Let Si =

S
f2FQ

Si(f) be the set of data kept by
Ei in the current iteration where Si(f) is the data set that
needs to be processed by service f . The service assignment
phase has the following steps.

Step 1 (Line 15). Select the service with the maximum
weight f⇤ from F+

c
.

Step 2 (Line 16 - Line 36). In order to assign f⇤ to
the servers in {Ei|f⇤ 2 Fi} and assign the data sets in
{Sj(f⇤)|Ej 2 E+} to links, we need to consider the service
category, and this step is carried out based on the following
cases.

Case 1. f⇤ belongs to Category 3 (Line 16-Line 24). We
need to select a server in E(f⇤) = {Ei|Ei 2 E+^f⇤ 2 Fi} to
carry out f⇤ and minimize the latency, where E(f⇤) is the set
of the servers that can carry out service f⇤. For each server
Ei 2 E(f⇤), its weight wi is determined as follows.

(1) Suppose Ei 2 E(f⇤) is selected to carry out f⇤.
(2) Each server Ej 2 {Ej |Ej 2 E+ ^ Sj(f⇤) 6= Ø} will

transmit Sj(f⇤) to Ei, and Ej has received all the data
sets at time

t = max{⌧j,i + lj,i|Sj(f
⇤)| |Ej 2 E+ ^ Sj(f

⇤) 6= Ø}.

(3) Ei starts carrying out f(f⇤) at time ti(f⇤) = max{t, ⌧i},
and Ei finishes f⇤ at time

t̄i(f
⇤) = ti(f

⇤) + Li(f
⇤(
[

Ej2E+
Sj(f

⇤))).

(4) Let wi = max{Lc, t̄i(f⇤)}.

After weighing each server, we assign f⇤ to the server with
the minimum weight. Then update the corresponding task sets
and let Fc = Fc [ {f⇤}.

Case 2. f⇤ belongs to Category 2 (Line 25-Line 28).
Each server Ei 2 E+ with Si(f⇤) 6= Ø will assign Si(f⇤)
to the servers in E(f⇤). Let Si(f⇤) =

S
Ej2E(f⇤) Si,j(f⇤)

where Si,j(f⇤) is the set of data transmitted from Ei to
Ej 2 E(f⇤). Obviously, in order to save communication and
computation resources, for every two Si,j(f⇤) and Si,k(f⇤),
we have Si,j(f⇤) \ Si,k(f⇤) = Ø. Therefore, we have
|Si(f⇤)| =

P
Ej2E(f⇤) |Si,j(f⇤)|. Let |Si(f⇤)| = ↵i and

|Si,j(f⇤)| = ↵i,j . Then this case can be formulated as the
following program.

min T (7)
s.t. T = max{max{t̄j(f⇤)|Ej 2 E(f⇤)}, Lc}
8Ej 2 E(f⇤) :

tr
j
= max{⌧i,j + li,j↵i,j |Ei 2 E+ ^ Si(f

⇤) 6= Ø}
tj(f

⇤) = max{tr
j
, ⌧j}

t̄j(f
⇤) = tj(f

⇤) + Lj(f
⇤(
[

Ei2E+
Si,j(f

⇤)))

In Program (7), tr
j
is the time when server Ej has received all

the data sets, and tj(f⇤) is the time when Ej starts carrying
out service f⇤. Then at time t̄j(f⇤), Ej finishes f⇤. Therefore,
T = max{max{t̄j(f⇤)|Ej 2 E(f⇤)}, Lc} is the updated
latency. Program (7) is a convex optimization problem, and
by solving Program (7), we can obtain an optimal assignment
strategy that can minimize the latency.

Case 3. f⇤ belongs to Category 1 (Line 29-Line 36). To
assign f⇤ to the servers, we first select a set of servers from
E(f⇤) to distributedly carry out f⇤ and then select a server
from E(f⇤) to aggregate the distributed outputs. We have the
following steps (Line 28 - Line 31) to assign f⇤.
(1) Suppose Ek 2 E(f⇤) is selected to aggregate the dis-

tributed outputs.
(2) Solve the following program.

min T (8)
s.t. T = max{t̄a

k
, Lc}

tr
k
= max{t̄j(f⇤) + li,jgf⇤(

X
Ei2E+

↵i,j)|Ej 2 E(f⇤)}

ta
k
= max{tr

k
, tk(f

⇤), ⌧k}
t̄a
k
= ta

k
+ Lj(f

⇤(
[

Ej2E(f⇤)
f⇤(Si,j(f

⇤))))

8Ej 2 E(f⇤) :

tr
j
= max{⌧i,j + li,j↵i,j |Ei 2 E+ ^ Si(f

⇤) 6= Ø}
tj(f

⇤) = max{tr
j
, ⌧j}

t̄j(f
⇤) = tj(f

⇤) + Lj(f
⇤(
[

Ei2E+
Si,j(f

⇤)))

The meanings of tr
j
, tj(f⇤), and t̄j(f⇤) are the same

as those in Program (7). gf⇤(
P

Ei2E+ ↵i,j) is the size
of f⇤(

S
Ei2E+ Si,j(f⇤)), and tr

k
is the time when Ek

has received all the distributed outputs. ta
k
is the time

when Ek can aggregate the outputs and t̄a
k
is the time

when Ek finishes the aggregation. T is the latency after
carrying out f⇤. Obviously, Program (8) is also a convex
optimization problem, and we can obtain the optimal
solution of Program (8).

(3) The optimal solution of Program (8) is a strategy to assign
f⇤. Let Ak be the assignment strategy and Tk be the
optimal latency of Program (8). The weight of Ak is
wk = Tk.

After the above steps, we have |E(f⇤)| assignment strategies.
Select the strategy with the minimum weight to assign f⇤.
Finally (Line 37), after the above two phases, we can obtain

a query processing plan ⇧(Q).
In Step 2 of Phase II, the LMA algorithm constructs a

feasible component for each service in FQ and finally, the
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answer of Q is transmitted to the cloud. Obviously, ⇧(Q) is
a feasible query plan that can answer query Q.

Program (7) and Program (8) can be solved by many
existing convex optimization methods [42]. Let O(fCO) be the
time complexity of the adopted method. The time complexity
of the LMA algorithm is O(|FQ + 1|fCO) where |FQ + 1| is
the number of the iterations.

VI. THEORETICAL ANALYSIS

In this section, we will analyze the upper bound and lower
bound of the MIN-QPL problem, and the approximation ratio
of the LMA algorithm.

A. Upper Bound and Lower Bound of the MIN-OPL Problem

Given an instance of the MIN-QPL problem I(GQ(FQ [
SQ, E), E+), we can construct the instances of C1-MIN-QPL
and C2-MIN-QPL, denoted as IC1 and IC2 respectively.
Construction of IC1. IC1 has the same E-DDAG GQ and

E+ as I . However, for each server Ei of IC1, Ei \ FQ = Ø.
Construction of IC2. The E-DDAG of IC2 G(2)

Q
is a path

of GQ and the root node in GQ is the last node of G(2)
Q

. For
each service f in G2

Q
, we regard f as a Category 2 service.

Let⇧C1(Q),⇧C2(Q) and⇧(Q) be the optimal solutions of
IC1, IC2 and I respectively. We have the following theorems.

Theorem 3. L(⇧C1(Q)) is the upper bound of L(⇧(Q)), i.e.,
L(⇧C1(Q)) � L(⇧(Q)).

Proof. A feasible solution of I is to carry out all the services in
the cloud. Therefore, we can consider ⇧C1(Q) as a solution of
the MIN-OPL instance I , and L(⇧C1(Q)) � L(⇧(Q)).

Theorem 4. L(⇧C2(Q)) is the lower bound of L(⇧(Q)), i.e.,
L(⇧C1(Q))  L(⇧(Q)).

Proof. ⇧C2(Q) only carries out a subset of the services in
GQ. Since ⇧C2(Q) is the optimal solution of IC2, we have
L(⇧C1(Q))  L(⇧(Q)).

B. Approximation Ratio of the LMA algorithm

Given an E-DDAG GQ(FQ [ SQ, E), we can partition
FQ into levels. The first level V1 contains the root node
fr, V1 = {fr}. For every two levels Vi and Vi�1, we have
Vi = {f |f has at least one parent node in Vi�1}. For
every two arbitrary f, f 0 2 Vi, f is neither the ancestor nor
the child of f 0. Let Nl be the number of the levels. We
have FQ =

S
1iNl

Vi. The following theorem proves the
approximation ratio of the LMA algorithm.

Theorem 5. Given the optimal solution⇧(Q) and the solution
⇧A(Q) obtained by the LMA algorithm, we have

L(⇧A(Q))

L(⇧(Q))
 max{kmax

l
kmax

f
�l, k

max

l
�(kmax

f
)},

where kmax

l
= max{|Vi||1  i  Nl}, kmax

f
= max{kf |kf =

|{Ei|f 2 Fi ^ Ei 2 E+}| ^ f 2 FQ}, and �(x) �
max{ cf (x|S|)

cf (|S|) |f 2 FQ}.

Proof. Consider another LMA-based algorithm, which carries
out services by levels. It has following steps.

Step 1. Let Nc be the current level and Nc = Nl.
Step 2. The services in the last level VNl are carried out.
Step 3. After all the services in VNl have been finished, then

let Nc = Nc � 1.
Step 4. Process Step 1 - Step 3 in iteration until Nc = 0.
These steps will run repeatedly until all the services in FQ

are finished. Furthermore, in the LMA-based algorithm, a ser-
vice can be finished if and only if the previous service has been
finished already. Obviously, we have L(⇧B(Q)) � L(⇧A(Q))
where ⇧B(Q) and ⇧A(Q) are the solutions returned by the
LMA-based algorithm and the LMA algorithm.

Without loss of generality, let Vi = {fi1 , fi2 , ..., fiki
}

and fi1 = argmax{cf (|Sf |)|f 2 Vi}. Consider a query
plan ⇧ 0 that only carries out f11 , f21 , ..., fNL1

and treat
them as Category 2 services. Suppose each server Ei in
E+ contains a data set Si that will be processed by fi1 .
We can assume that Sj = max{Si|Ei 2 E+}. To carry
out fi1 , ⇧ 0 assigns the data sets needed by fi1 to the
servers, and ⇧ 0 needs at least lmin|Sj | +

cfi1
(|Sj |)
Ck

time,
where lmin = min{li,j |Ei, Ej 2 E+} is the minimum
communication latency and Sj is a piece of data assigned
to server Ej . However, on the other hand, ⇧B(Q) needs at
most lmax|S| +

cfi1
(|S|)

Cmax
time, where S =

S
Ej2E+ Sj is the

whole data set that needs to be processed by fi1 and Cmax

is the maximum computation capability since the LMA-based
algorithm will choose the strategy with the minimum latency.
Since fi1 = argmax{cf (|Sf |)|f 2 Vi}, carrying out all the
services in Vi needs at most ki(lmax|S|+

cfi1
(|S|)

Cmax
) time. We

then have

ki(lmax|S|+
cfi1

(|S|)
Cmax

)

lmin|Sj |+
cfi1

(|Sj |)
Ck


ki(lmax|S|+

cfi1
(|S|)

Ck
)

lmin|Sj |+
cfi1

(Sj)

Ck


ki(lmaxkmax

f
|Sj |+

�(Sj)cfi1
(|Sj |)

Ck
)

lmin|Sj |+
cfi1

(|Sj |)
Ck

 max{kikmax

f
�l, ki�(kmax

f
)},

where �l = l
max

lmin , �(k) � max{ cf (k|S|)
cf (|S|) |f 2 FQ} and

kmax

f
= max{kf |kf = |{Ei|f 2 Fi ^ Ei 2 E+}| ^ f 2 FQ}.

Let kmax

l
= max{|Vi||1  i  Nl}. We have

L(⇧B(Q))

L(⇧ 0)


Nl(ki(lmax|S|+
cfi1

(|S|)
Cmax

))

Nl(lmin|Sj |+
cfi1

(|Sj |)
Ck

)

 max{kmax

l
kmax

f
�l, k

max

l
�(kmax

f
)}.

Obviously, L(⇧(Q)) � L(⇧ 0). Then we have

L(⇧A(Q))

L(⇧(Q))
 L(⇧B(Q))

L(⇧(Q))
 L(⇧B(Q))

L(⇧ 0)

 max{kmax

l
kmax

f
�l, k

max

l
�(kmax

f
)}.
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VII. SIMULATIONS

A. Simulation Settings

In this section, we evaluate the performance of the LMA
algorithm through extensive simulations. We run the LMA
algorithm on different EDMSs. In these EDMSs, the number
of edge servers varies from 5 to 30. Let C be the average
computation capability of the edge servers. We assume that
the value of C is in the range of [10GHz, 40GHz] [21].
The computation capability of each edge server is randomly
assigned based on the average value C. Furthermore, we
assume that the computation capability of the cloud E0 is
five times larger than that of the edge servers. We assume that
the data rate between every two servers varies from 200Mbps
to 1000Mbps [43]. For each E-DDAG GQ(FQ [ SQ, E), we
assume that the number of data sources |SQ| and services |FQ|
vary from 2 to 8 and 4 to 14, respectively. For each service
f 2 FQ, the specific functions cf (·) and gf (·) are linear
functions and they are randomly generated. Let |S| be the
average size of different types of data sets. In the simulations,
we assume that |S| varies from 20GB to 70GB.

Through the simulations, we investigate the impact of
different system parameters on the latency incurred by the
LMA algorithm. The system parameters include the number of
edge servers, the number of services, number of data sources,
average size of each data set, average computation capability,
and transmission latency.
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Fig. 8: Impact of |E|.
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Fig. 9: Impact of |FQ|.
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Fig. 10: Impact of |SQ|.
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Fig. 11: Impact of |S|.
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Fig. 12: Impact of C.
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B. The Impact of Different System Parameters
In this section, we investigate the impact of different system

parameters on the LMA algorithm and the upper bound and
the lower bound of latency. The upper bound and lower bound
of latency can be obtained based on Theorem 3 and Theorem
4. According to Theorem 3, the upper bound of latency is
also the latency caused by the centralized query processing
method.

1) The impact of the number of edge servers: In this group
of simulations, we generate different EDMSs and vary the
number of edge servers from 5 to 30. In these EDMSs,
the average computation capability of each edge server is
20GHz, the average data rate of each communication link is
1000Mbps, the number of services is 10, the number of data
sources is 4, and the average size of each data size is 50G.
We run the LMA algorithm on these EDMSs and calculate the
upper bound and lower bound of the query processing latency.
The results are shown in Fig.8. It can be seen that the latency
incurred by the LMA algorithm is 50.3% better than the upper
bound, and is close to the lower bound as the number of edge
servers increases. If there are more edge servers in the EDMS,
there are more computation resources. Therefore, when there
are 30 edge servers, the performance of the LMA algorithm
is close to the lower bound. However, when there are only 5
edge servers, the latency incurred by the LMA algorithm is
2.18 times larger than the lower bound. Moreover, since the
centralized query processing method is not highly correlated
with the number of edge servers, the latency’s upper bound
has no significant change when the size of |E| increases.
2) The impact of the number of services: In this group

of simulations, we generate an EDMS with 10 edge servers,
and vary the number of services in each E-DDAG from 4
to 14. The values of other system parameters are similar to
the ones in the above group of simulations. We randomly
generate hundreds of E-DDAGs with different numbers of
services and carry them out based on the LMA algorithm. The
average query processing latency of each type of E-DDAG is
illustrated in Fig.9. We can see that the latency incurred by the
LMA algorithm is 43.4% smaller than the upper bound, and is
3.05 times higher than the lower bound. In this case, the ratio
between the latency incurred by the LMA algorithm and the
optimal latency is much smaller than the approximation ratio
provided in Theorem 5. Since the computation capability of
the cloud is powerful, the upper bound slowly increases along
with the increase of the number of services. On the other hand,
when the number of services varies from 4 to 14, the latency
incurred by the LMA algorithm increases from 174s to 372s.
Furthermore, since the lower bound latency is caused by a
subset of services, the lower bound has no significant change
when |FQ| increases.
3) The impact of the number of data sources: The number

of data sources is another important parameter in E-DDAG.
In this group of simulations, we vary the size of |SQ| from 2
to 8. The number of services is fixed to 10 and we generate
hundreds of E-DDAGs based on the different numbers of data
sources. The settings of other system parameters are similar
to the ones in the previous simulations. We adopt the LMA
algorithm to process these queries and illustrate the average
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query processing latency in Fig.10. It can be seen that the
query processing latency incurred by the LMA algorithm is
42.7% lower than the upper bound. It is interesting to see that
as the number of data sources increases, the query processing
latency incurred by the LMA algorithm decreases. The reason
is when the size of SQ increases, the dependency among
services becomes weaker, and a query is more feasible to be
processed in a distributed manner.

4) The impact of the average size of each data set: The size
of each data set determines the transmission latency between
every two servers and is a key parameter that impacts query
processing latency. In this group of simulations, we assume
that there are four sensory data sets belonging to different
data sources {S(1), S(2), S(3), S(4)}, and we adjust the average
size of these data sets 1

4

P
1i4 S

(i) from 20GB to 70GB.
Moreover, the average computation capability of each edge
server is 20GHz, the average data rate of each communi-
cation link is 1000Mbps, the number of services is 10, and
the number of edge servers is 10. After running the LMA
algorithm and calculating the upper bound and lower bound
of the latency, the relation between size of data set and query
processing latency is shown in Fig.11. We can see that when
the average size of each data set increases, the upper bound and
lower bound of the query processing latency incurred by the
LMA algorithm increase simultaneously. When the size varies
from 20GB to 70GB, the query processing latency grows
by 4.4 times. Since the LMA algorithm processes the query
distributedly, the data size has a high impact. However, the
LMA algorithm is still better than a centralized data processing
method, and the performance of the LMA algorithm is 32%
better than that obtained by a centralized data processing
method (or the upper bound).

5) The impact of the average computation capability: The
computation capability of each edge server determines the
computation latency and also affects the query processing
latency. In this group of simulations, we deploy ten edge
servers E1, E2, ..., E10, and the computation capability of
each edge server is randomly generated based on an average
value C where C = 1

10

P
1i10 Ci. The value of C varies

from 10GHz to 40GHz. Moreover, we assume that the
computation capability of the cloud is five times higher than
the average value. The number of services and data sources
of each E-DDAG are 10 and 4, respectively. After running
the LMA algorithm and calculating the upper bound and the
lower bound of the latency, the simulation results are shown
in Fig.12. We can see that when the computation capability
increases, the computation latency of each server is reduced,
and the query processing latency of the LMA algorithm, the
upper bound and the lower bound of the latency all decrease.
The query processing latency of the LMA algorithm decreases
24% when the computation capability increases from 10GHz
to 40GHz. Furthermore, the latency caused by the LMA
algorithm is 29.7% less than the upper bound.

C. The impact of the average latency of each link

The data transmission rate has a high impact on query
processing latency. In this group of simulations, we simulate

the data transmission rate based on the 5G network [43].
We assume that the average data transmission rate varies
from 200Mbps to 1000Mbps, which means the latency of
transmitting 1G data varies from 1s to 5s. Based on different
average data transmission rates, we generate different EDMSs
and run the LMA algorithm on these EDMSs. The simulation
results are shown in Fig.13. We can see that when the data
rate decreases, the latency of the LMA algorithm and the upper
bound increase significantly. However, since the services are
assumed to be fully distributedly carried out, the lower bound
increases slowly when the data rate decreases. Furthermore,
the latency incurred by the LMA algorithm is 35.7% lower
than the upper bound, and when the data rate increases from
200Mbps to 1000Mbps, the latency of the LMA algorithm
increases almost 5 times. We can conclude that the latency
of each communication link has a high impact on the data
processing latency.

VIII. CONCLUSION

In this paper, we investigate the distributed query processing
problem in EDMS. We define the MIN-QPL problem which
aims to deriving a query processing plan with the minimum
query response latency. We prove that the MIN-QPL problem
is NP-Hard. We first investigate two special cases of the MIN-
QPL problem and prove that for these two cases, we can obtain
an optimal solution for the MIN-QPL problem in polynomial
time. Then we propose an approximation algorithm to solve
the MIN-QPL problem and provide analysis that the algorithm
has a feasible approximation ratio. We also illustrate the sim-
ulation results to evaluate the performance of the algorithm,
and the simulation results imply that the algorithm is effective.
In this work, we focus on how to reduce the latency, and in
our future works, we will investigate the energy efficiency
algorithms in the EDMS.
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