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Abstract 

The hydrophobicity of functionalized interfaces can be quantified by the structure and dynamics 

of water molecules using molecular dynamics (MD) simulations, but existing methods to quantify 

interfacial hydrophobicity are computationally expensive. In this work, we develop a new machine 

learning approach that leverages convolutional neural networks (CNNs) to predict the hydration 

free energy (HFE) as a measure of interfacial hydrophobicity based on water positions sampled 

from MD simulations. We construct a set of idealized self-assembled monolayers (SAMs) with 

varying surface polarities and calculate their HFEs using indirect umbrella sampling calculations 

(INDUS). Using the INDUS-calculated HFEs as labels and physically informed representations of 

interfacial water density from MD simulations as input, we train and evaluate a series of neural 

networks to predict SAM HFEs. By systematically varying model hyperparameters, we 

demonstrate that a 3D CNN trained to analyze both spatial and temporal correlations between 

interfacial water molecule positions leads to HFE predictions that require an order of magnitude 

less MD simulation time than INDUS. We showcase the power of this model to explore a large 

design space by predicting HFEs for a set of 71 chemically heterogeneous SAMs with varying 

patterns and mole fractions. 
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Introduction 
The hydrophobicity of an interface reflects its thermodynamic tendency to minimize contact with 

surrounding water molecules1. Interfacial hydrophobicity determines the magnitude of attractive, 

water-mediated hydrophobic interactions that drive numerous processes, such as protein folding2-

4, molecular recognition4-6, colloidal aggregation6, 7, and nanoparticle adsorption on surfaces8-10. 

However, the hydrophobicity of interfaces that are chemically heterogeneous at the nanoscale – 

i.e., surfaces with polar and nonpolar groups in close spatial proximity – is poorly understood and 

difficult to predict11-14. Typical methods quantify interfacial hydrophobicity at the nanoscale based 

on the nonpolar solvent-accessible surface area15-19 or by group-specific parameters (e.g., 

hydrophobicity scale values20 or octanol-water partition coefficients21-24). These methods neglect 

non-additive contributions to hydrophobicity that emerge from the complex interplay of water-

water and water-solute interactions that determines interfacial water structure. Accordingly, 

methods that can account for these nanoscale effects are needed to predict the hydrophobicity of 

both synthetic and biological materials.  

The hydrophobicity of idealized nonpolar solutes (i.e., rigid solutes unable to form 

hydrogen bonds with water) manifests from the restructuring of water at two limiting length scales. 

Near nonpolar solutes at sub-nanometer sizes, interfacial water molecules restructure while 

preserving a hydrogen bond network similar to that of bulk water, leading to a negative entropy of 

hydration1. Conversely, near nonpolar solutes larger than ~1 nm, hydrogen bonds between 

interfacial water molecules are broken, leading to a decrease in the enthalpy of hydration1. These 

length-scale dependent perturbations to water structure and hydration thermodynamics are well-

described by Lum-Chandler-Weeks (LCW) theory, which emphasizes the importance of water 

density fluctuations that induce the dewetting of hydrophobic interfaces25. Simulations have 

further confirmed the LCW prediction that interfacial water molecules near extended hydrophobic 

interfaces exhibit structural and dynamical correlations consistent with a soft, fluctuating 

interface26, 27. However, the hydrophobicity of more complex interfaces is less readily 

characterized. For example, experiments and simulations have shown that hydrophobicity is 

strongly modulated by the number and spatial positions of polar and nonpolar amino acid residues 

in proteins28-30 and peptides31-33 and the composition and patterning of polar end groups in mixed 

self-assembled monolayers (SAMs)34, 35. Interfacial physical properties, such as the length and 

saturation of alkanethiol ligands, have also been shown to influence the hydrophobicity of 
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uniformly nonpolar, planar SAMs by modulating the surface order36-38. These examples illustrate 

that realistic interfaces cannot be described as idealized nonpolar solutes, requiring alternative 

techniques to predict their hydrophobicity.   

Several recent studies have used molecular dynamics (MD) simulations to quantify 

interfacial hydrophobicity. Based on the insight that water structure is a key determinant of 

hydrophobicity, Shin and Willard39 defined the intrinsic hydropathy as a measure of the deviation 

of interfacial water structure at non-ideal hydrophobic surfaces from water structure at an ideal 

hydrophobic surface, while Remsing and Weeks40 calculated the solvent electrostatic potential to 

quantify the local reorientation of water molecules at heterogeneous interfaces. However, neither 

of these techniques have been applied to differentiate the hydrophobicity of different surfaces. 

Recent work from our group measured the hydrophobic force between two uniformly nonpolar 

SAMs, and demonstrated correlation with hydrophobic forces between nonpolar SAMs measured 

experimentally36. Unfortunately, calculating the SAM-SAM hydrophobic force is too 

computationally expensive to be widely applied to a large range of SAM compositions and 

chemistries. Recognizing that water density fluctuations are enhanced near hydrophobic interfaces, 

Patel et al developed indirect umbrella sampling (INDUS) to calculate the excess chemical 

potential, or hydration free energy (HFE), of a cavity near an interface by measuring the free 

energy cost for expelling water molecules from the cavity41, 42. Because interfacial water molecules 

near hydrophobic interfaces are susceptible to dewetting, the HFE decreases near more 

hydrophobic interfaces. HFEs calculated using INDUS have been shown to correlate with 

experimental measurements36 and the method has been applied to study the hydrophobicity of 

SAM surfaces36, 43, nanostructured solutes44, and proteins44. Nonetheless, INDUS is still 

computationally expensive due to the need for multiple simulation windows for convergence. 

There remains a need for a computationally efficient, quantifiable, generalizable method to 

compute the hydrophobicity of interfaces with varying chemical features. 

As an alternative to human-guided analysis, the large data sets generated by atomistic MD 

simulations (comprising of thousands of atomic positions for millions of timesteps) provide the 

opportunity to apply machine learning (ML) techniques to sample and estimate thermodynamic 

properties from MD simulation output. ML has been used to accelerate MD simulations, improve 

force field parameterization45, 46, and increase the efficiency of equilibrium sampling47, but there 

are relatively few cases of ML being used to replace statistical mechanics formalisms through 
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feature-learning from labeled data48, 49. As one recent example, DeFever et al. demonstrated the 

use of a neural network called PointNet to identify local structural environments in molecular 

simulations48. In another study, Oh et al.50 used a deep learning model to predict surface charge 

densities based on water orientation angle distributions computed from MD simulations. These 

studies demonstrate the power of using ML in conjunction with MD to learn features of water 

structure at interfaces and predict surface properties. Among different neural network 

architectures, Convolutional Neural Networks (CNNs) are well-suited for analyzing spatially 

correlated data (e.g., 2D images) which allows them to outperform other ML methods at image 

classification tasks51. CNNs learn spatial features over both short and long length scales and 

efficiently learn generalizable features of data52-54. CNNs have been applied to physically relevant 

systems by studying local protein microenvironments around amino acids55, evaluating protein-

ligand binding sites56, and studying the configurational chemical space for stability of molecules57. 

Importantly, CNNs have also been exploited for the analysis of sequences of images (i.e., videos) 

by recognizing temporal correlations between distinct images58. A CNN is thus a potentially 

powerful tool for predicting thermodynamic observables from MD data based on both structural 

and temporal information, rather than structural information alone as in prior methods48-50.  

In this work, we investigate the hypothesis that a CNN can efficiently predict interfacial 

hydrophobicity based on analysis of the spatial correlations (e.g., due to water structure) and 

temporal correlations (e.g., due to water density fluctuations) encoded within the positions of 

interfacial water molecules sampled using MD. We utilize MD simulations and INDUS to 

calculate the HFEs of idealized SAMs of varying hydrophobicity. We then train a series of ML 

models to predict HFEs based on the positions of interfacial water molecules obtained from short 

MD trajectories and systematically vary the input data representation to determine the impact of 

spatial and temporal information on HFE predictions. We find that the prediction accuracy of a 

CNN exceeds that of an artificial neural network, which we attribute to the recognition of spatial 

correlations between interfacial water molecules. We further find that providing time-series data 

to either a 2D or 3D CNN increases prediction accuracy, which we attribute to recognition of short-

timescale fluctuations. CNN predictions generalize across interfaces with distinct chemical 

properties while requiring only 200 ps of MD data per HFE prediction. We leverage this 

computational efficiency to compute HFEs for 71 mixed SAMs composed of methyl- and hydroxy-

terminated alkanethiols and identify trends associated with the spatial heterogeneity of end groups. 
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These results demonstrate the ability of MD simulations with ML analysis to rapidly screen the 

hydrophobicity of chemically heterogeneous surfaces. 

The manuscript is organized as follows. We first discuss methods for labeling idealized 

SAMs with HFEs, converting MD data to density matrices, and using these density matrices to 

train 2D and 3D CNNs to predict HFEs. We then present results for HFE calculations, evaluation 

of different model architectures that analyze spatial and temporal features of the input MD data, 

and results demonstrating the utility of a 3D CNN to learn spatial and temporal correlations that 

most accurately predict HFEs. Finally, we use the 3D CNN trained on ideal SAMs to predict HFEs 

of experimentally representative mixed SAMs of different patterns. 
Methods 

 

Figure 1: Idealized SAMs. (A) Chemical structures of ligands with amide, amine, and hydroxyl end groups 

that were used to construct idealized SAMs. The partial charges of the atoms drawn in blue are multiplied 

by the polarity scaling factor, k, to generate a range of SAMs of varying surface polarity. A representative 

MD simulation snapshot of a solvated SAM is shown at right. (B) Representative simulation snapshot from 

an INDUS window in which the cavity, indicated by 𝜈, is dewet (N = 0). 
Generating a set of idealized SAMs 

We generated a set of single-component, idealized SAMs similar to the SAMs studied by Kanduc 

et al59. Each idealized SAM consisted of 64 alkanethiol ligands with either a hydroxyl, amine, or 

amide end group and with a backbone containing either 11, 12, or 13 methylene groups for the 

hydroxyl, amide, and amine end groups respectively (Figure 1A). We multiplied the partial charges 

of all ligand end group atoms (defined as the atoms in the end group and atoms in the backbone as 

necessary to ensure a net-neutral group of atoms) by a scaling factor, k, to modulate surface 

polarity. SAMs were generated using values of k between 0 (most hydrophobic) to 1 (most 
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hydrophilic) for each of the end groups (values of k are listed in Table S1). 50 idealized SAMs 

were generated: 22 with hydroxyl end groups, 14 with amine end groups, and 14 with amide end 

groups.  

 Each SAM was constructed by positioning the 64 ligands in the x-y plane to mimic self-

assembly onto a gold (111) lattice with a grafting density of 21.6 Å2/ligand60. Gold atoms were 

not modeled because our prior work showed that removing the gold substrate leads to SAM 

properties in better agreement with experiments36. Ligands were oriented with the end-groups 

pointing in the positive z-direction. A 5-nm thick water layer was placed above the SAM such that 

the ligand end groups were in contact with the water. A 3-nm thick buffering vacuum layer was 

then added above the top of the water layer. Periodic boundary conditions were applied in all 3 

dimensions. Ligands were modeled using the CHARMM36 force field61 with the TIP4P/2005 

water model62. Electrostatic interactions were calculated using the smooth Particle Mesh Ewald 

algorithm63 with short-range Coulomb, van der Waals, and neighbor list cutoffs set to 1.2 nm. 

Because gold-sulfur bonds do not exist in the simulations, harmonic restraints with a spring 

constant of 50,000 kJ/mol/nm2 were applied to the sulfur atoms to hold the SAM in place. 

Indirect Umbrella Sampling (INDUS) to generate labels for idealized SAMs 

We performed INDUS simulations41, 42 to calculate HFEs for the idealized SAMs to use as labels 

for the machine learning model. Equation 1 defines the HFE in terms of the probability, 𝑃𝜈(0), 

that a cavity (indicated by subscript 𝜈) placed near the SAM is occupied by 0 water molecules:  

HFE = −𝑘𝐵𝑇 ln(𝑃𝜈(0)) (1)  

For cavities larger than typical molecular sizes, HFEs cannot be sampled from unbiased 

simulations because 𝑃𝜈(0) is extremely small. Instead, INDUS samples the probability of 

observing 0 molecules in a cavity 𝜈 by biasing the number of water molecules in the cavity in a 

series of independent windows. The HFE is sensitive to the placement and size of the cavity. To 

ensure consistency across SAMs, all INDUS calculations used a 2.0×2.0×0.3 nm3 cavity (Figure 

1B) positioned with its base on a constant water (number) density isosurface computed using the 

method developed by Willard and Chandler64. SI Section S1 further discusses the cavity placement 

and INDUS simulation details. 
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INDUS simulations were performed using the simulation package GROMACS (version 

2016)65 patched with the PLUMED plugin (version 2.5.1). Simulations used the leap-frog 

integrator with a 2-fs timestep. The temperature was maintained at 300 K using a velocity rescaling 

thermostat with a temperature-coupling time of 0.1 ps66. Each system was equilibrated for 5 ns, 

then INDUS simulations were performed using ~13 windows per SAM. Values of 𝜂𝑗 and 𝜅𝑗 for 

all windows are listed in SI Section S1. Each window was simulated for 5 ns, with the first 2 ns 

discarded as equilibration. This number of windows and simulation time is sufficient for 

convergence (SI Figure S1), leading to a total of 65 ns of INDUS simulation time to calculate the 

HFE for each SAM.  

 

Figure 2: Conversion of MD data to CNN input. (A) Illustration of interfacial water molecules, defined 

as those within the INDUS cavity (defined in Figure 1B). The enlarged panel shows views of interfacial 

water molecules projected into the x-y plane for multiple consecutive simulation configurations from one 

MD trajectory.  (B) Input representations for 2D CNNs. All input representations are generated by 

projecting the oxygen atom positions of interfacial water molecules onto a grid with Nx and Ny segments in 

the x- and y-dimensions, respectively, to generate a water density matrix. Either a single matrix is input (the 

“single” representation) or matrices are generated for Nt consecutive configurations and stored as separate 
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channels (for the “stacked” representation) or averaged together (for the “averaged” representation). (C) 

Input representations for 3D CNNs. Water density matrices for Nt consecutive configurations are stored in 

the 3rd (temporal) dimension for the “stacked” representation. Density matrices containing both oxygen and 

hydrogen atom positions are stored for the “hydrogen” representation. 

Generating MD data for training and testing CNNs 

Two different types of CNN architectures were used in this study – a 2D CNN and a 3D CNN. A 

2D CNN, which is typically used for image analysis, interprets input data consisting of Nx × Ny × 

Nc matrices, where Nx and Ny refer to the number of pixels in the x- and y-dimensions of the input 

image and Nc is the number of color channels (e.g., Nc = 3 for red-green-blue images). A 3D CNN, 

which can be used for video analysis, interprets input data consisting of Nx × Ny × Nt × Nc matrices, 

where Nx, Ny, and Nc have the same interpretation as for a 2D CNN and Nt is the number of images 

(which would typically be from sequential timepoints for video analysis).  

Unbiased MD simulations of each of the idealized SAMs were performed to generate 

atomic positions that were converted to input matrices that could be interpreted by CNNs, as 

summarized in Figure 2. Each simulation was performed for 40 ns using GROMACS (version 

2016)67 with the same force field and runtime parameters described above. Configurations were 

output every 1 ps. To convert these configurations to CNN input representations, we divided the 

projected area of the INDUS cavity into a Nx × Ny grid of bins, with each bin occupying a 2.0/Nx 

× 2.0/Ny nm2 area. For each MD configuration, we defined the set of interfacial water molecules 

as those water molecules with oxygen atoms within the cavity, then recorded the number of 

interfacial water molecules with oxygen atoms that had x- and y-positions within each bin. We 

defined this value as the water density within that bin, yielding a Nx × Ny × 1 water density matrix 

for each MD configuration.  

Water density matrices were combined using different procedures to test multiple input 

representations for CNN analysis. In the “averaged” representation, density matrices from Nt 

consecutive MD configurations were averaged to create a single Nx × Ny × 1 water density matrix. 

In the “stacked” representation, water density matrices from Nt consecutive MD configurations 

were stored in separate channels to create a single Nx × Ny × Nt water density matrix. The averaged 

representation was only used as an input to the 2D CNN. The stacked representation was used as 

an input to both the 2D and 3D CNN (as a Nx × Ny × Nt ×1 water density matrix). Finally, we 
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defined a “hydrogen” representation, in which separate sets of bins were used to record both the 

number of interfacial oxygen atoms and interfacial hydrogen atoms, leading to a Nx × Ny × Nt × 2 

density matrix that was only input to the 3D CNN. For all results in the main text, we used Nx = 

Ny = 20; the effect of alternative values of Nx and Ny on model predictions is discussed in the SI 

(Figure S2-S4). Nt was varied as described in the Results. Alternative approaches, such as one in 

which water molecule densities were obtained using a Gaussian kernel function, were also tested 

without significant improvement in resulting model accuracy (discussed in SI Section S7).  

Training, cross-validating, and testing the CNNs 

Each CNN was trained for the regression task of predicting the HFE using density matrices 

generated from unbiased MD simulations as input. HFEs (labels) and corresponding 40-ns MD 

trajectories (each with 40,000 MD configurations) for 40 idealized SAMs were used for model 

training and validation. HFEs and MD trajectories for 10 idealized SAMs (4 with hydroxyl end 

groups, 3 with amine end groups, and 3 with amide end groups) were held out for model testing. 

Table S1 lists values of k for all 50 SAMs and their division into training/validation and test sets. 

A 5-fold cross-validation procedure was employed to evaluate each model. In this 

approach, the 40 SAMs and associated MD data designated for model training and validation were 

randomly split into 5 equal folds. 4 folds were used as a training set and 1 fold was used as the 

validation set. For each SAM in the training set, the final 36 ns of the trajectory were used to 

generate between 1,200 and 36,000 independent density matrices depending on the value of Nt for 

the specific input representation, as further discussed in the Results. For each SAM in the 

validation set, up to the first 3 ns of the MD trajectory were used to generate between 100 and 

3,000 independent density matrices depending on the value of Nt for the specific input 

representation. The first part of the trajectory was chosen for validation set predictions since this 

helps determine the ability of the CNN to screen new SAMs with minimal simulation data. Thus, 

in total each model was trained using between 38,400 and 1.1 million density matrices, then 

validated by predicting HFEs for between 800 and 24,000 density matrices. The validation set 

HFE for each SAM was calculated by averaging predicted HFEs for multiple density matrices, 

with the total amount of simulation time per HFE prediction (i.e., the amount of simulation time 

per density matrix multiplied by the number of density matrices per HFE) treated as a 
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hyperparameter. This procedure was repeated five times such that each SAM was included in the 

validation set exactly once.  

CNNs were developed using the Keras wrapper for Tensorflow, implemented in Python 

3.468. For training the 2D CNNs, we used an Adamax optimizer with a learning rate of 0.001, batch 

size of 128, and training over 50 epochs. For training the 3D CNNs, we used an Adamax optimizer 

with a learning rate of 0.00002, batch size of 256, and training over 500 epochs. Model architecture 

and training loss curves are discussed in more detail in SI Section S4. 

Results and Discussion 

Hydration free energies of idealized SAMs as labels for machine learning 

We performed INDUS simulations to calculate HFEs for all idealized SAMs that were then used 

as labels for the ML model. We chose the HFE as a label because it is a thermodynamically well-

defined, continuous quantity that can be used to rank-order interfacial hydrophobicity and can be 

related to experimental measurements. A lower HFE implies that the SAM has a lower affinity for 

water (leading to enhanced water density fluctuations) and is accordingly more hydrophobic than 

a SAM with a larger HFE. Previous studies have shown that HFEs are correlated with experimental 

hydrophobic force measurements between SAMs36, 43 and contact angles69. We calculated the HFE 

using a 2.0×2.0×0.3 nm3 cavity (Figure 1B) because this size falls within the large length scale 

regime appropriate for quantifying the hydrophobicity of extended planar interfaces41. We chose 

to label three sets of idealized SAMs with different end groups because these systems enable a 

wide range of HFEs to be sampled while testing generalizability across end group chemistries. We 

scaled the polarity parameter k from 0 (nonpolar) to 1 (polar) for each end group with values of k 

selected to distribute HFE values within +/- 5 kBT of each other. This approach causes the HFEs 

(labels) to sample the entire range of relevant values for each end group to facilitate accurate 

regression predictions. Incorporating diverse end group chemistries ensures that features that could 

be associated with distinct water-end group interactions are included in the training data. 

 Figure 3 compares HFEs for the 40 idealized SAMs in the training set. HFEs increase 

monotonically with k from k = 0 (most hydrophobic) to k = 1 (most hydrophilic). For k = 0, the 

amine SAM is more hydrophobic than the hydroxyl and amide SAMs due to the distinct Lennard-

Jones interactions of the various end groups with interfacial water molecules. As k increases, there 
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is a marginal increase in HFEs for all SAMs until k reaches approximately 0.3-0.4, at which point 

the partial charges in the SAM end groups lead to increased SAM-water hydrogen bonding and a 

consequential greater increase in the HFE. The amine SAMs remain more hydrophobic than the 

hydroxyl and amide SAMs for all values of k because the hydrogen atoms in the amine end group 

have a lower partial positive charge, which reduces the strength of hydrogen bonding with amine 

end group ligands. HFEs for the hydroxyl and amine SAMs increase more rapidly than the HFEs 

for the amide SAM, leading to a cross-over between the HFEs of the amide and hydroxyl SAMs 

at k = 0.7. We hypothesize that this behavior is due to the onset of hydrogen bonding between end 

groups, thus reducing hydrogen bonding with water, that is unique to the amide end group and 

decreases the HFE compared to the hydroxyl SAM59. Finally, the HFE for the hydroxyl SAM 

plateaus at large values of k, which is consistent with the plateauing of contact angles in previous 

studies70. These results indicate that the idealized SAMs span a range of HFEs as desired and each 

end group exhibits distinct behavior contributing to a diverse training set for CNN analysis. 

   

Figure 3: Labels for idealized SAMs. Hydration free energies (HFEs) of the 40 idealized SAMs included 

in the training set as a function of the polarity scaling factor (k) of the end group. Three different end groups 

(amide, amine, and hydroxyl) are modeled with structures shown in Figure 1A. 

Approach for evaluating neural network architectures and input data representations 

Using the idealized SAM HFEs as labels, we developed CNNs for the regression task of predicting 

the HFE based on input density matrices obtained from unbiased MD simulations. Depending on 

the input representation, each density matrix quantifies water positions in either a single MD 
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configuration or a series of Nt consecutive configurations (illustrated in Figure 2). Once trained, 

the CNN can predict an HFE for a single density matrix or can average together predictions for 

multiple density matrices generated with sequential MD simulation configurations. The amount of 

simulation time per prediction is then the product of the number of density matrices used to 

compute the average HFE and the simulation time per density matrix. There are thus many 

hyperparameters that can impact CNN accuracy, which poses a challenge due to the complexity 

of testing all possible hyperparameter combinations. We focused on systematically varying the 

CNN architecture, input representation, and the amount of simulation time per prediction to test 

hypotheses related to the importance of spatial and temporal correlations and to determine the 

efficiency of HFE predictions. We found that other hyperparameters (learning rate, batch size, etc.) 

had minimal effect on CNN accuracy.  

We varied one of the three selected hyperparameters at a time to identify values that 

improve CNN accuracy and then checked if previously selected hyperparameters were robust after 

selection of a new hyperparameter. For each set of hyperparameters, we trained and evaluated a 

corresponding CNN using the 5-fold cross-validation procedure described in the Methods. We 

assessed CNN accuracy by computing the root-mean-squared error (RMSE) and Pearson’s R (as 

a measure of linear correlation) between the CNN-predicted and INDUS-calculated HFEs for 

SAMs in the validation set and repeated this procedure five times such that each SAM was in the 

validation set once. This procedure ensures the generalizability of CNN predictions and permits 

the comparison of CNN accuracy for different hyperparameters as explored in the following 

sections. 

Analysis of spatial correlations improves HFE prediction accuracy 

We first varied the CNN architecture by sequentially adding layers and neurons to a single-layer 

artificial neural network (ANN) to match the architecture of LeNet5, a 2D CNN first introduced 

by LeCun et al.71. Figure 4A schematically illustrates the types of layers added to the ANN: 

convolutional layers, which detect spatial correlations in input data; max pooling layers, which 

down sample input data to reduce dimensionality and the number of model parameters; and fully-

connected layers, which calculate the final output given flattened input data. We hypothesized that 

adding convolutional layers would improve model accuracy by recognizing short length-scale 

spatial correlations between interfacial water molecules that have been identified at hydrophobic 
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interfaces26, 27. All CNNs were trained using the “single” representation (Figure 2) with 800 ps of 

simulation time per prediction (corresponding to 800 density matrices).  

  

Figure 4: Variations to network architecture. (A) Schematic of a 2D CNN architecture. The types of 

layers and numbers of neurons/filters were varied to find the best-performing architecture. (B) Table 

summarizing variations in network architecture and corresponding changes to validation set accuracy. The 

highlighted row is the chosen architecture. 

Figure 4B lists the number of learned model parameters, cross-validation RMSE, and 

Pearson’s R for different architectures. A large number of learned parameters is undesirable as it 

increases the likelihood of overfitting to the training data, so we evaluate model selections based 

on both the number of learned parameters and RMSE. The baseline ANN with a single fully 

connected layer has a RMSE of 15.6 kBT. Adding neurons to the ANN increases the number of 

learned parameters linearly but the RMSE decreases only marginally to 14.3 kBT. The addition of 

convolutional layers drastically reduces the number of parameters (~200,000 to ~10,000) but 

increases the RMSE. However, adding more filters to the convolutional layers leads to a RMSE 

substantially lower than that of the baseline ANN (13.8 kBT) with fewer learned parameters, 

supporting our hypothesis that a CNN can extract features from spatial correlations in water 

density to improve HFE predictions. Based on these comparisons, we chose the CNN architecture 

highlighted in green in Figure 4B (discussed in more detail in the SI in Section S4). 
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 Analysis of temporal correlations significantly improves HFE prediction accuracy 

The previous analysis was based on input water density matrices generated from single MD 

configurations (Nt = 1) lacking temporal information. We next varied the input representation to 

test the hypothesis that including data from multiple consecutive MD configurations would capture 

water density fluctuations and improve CNN accuracy. We thus compared the accuracy of 2D and 

3D CNNs for input representations as a function of Nt using the CNN architecture (number of 

layers, filters, and neurons) established in the previous section with 800 ps of simulation time per 

prediction; the same architecture was found to perform well for 3D CNNs (Table S2). Since density 

matrices are generated from unique MD configurations, increasing the value of Nt with a fixed 800 

ps of simulation time decreases the number of density matrices per prediction for the stacked 

representation. For the averaged representation, we use overlapping configurations to generate 

consecutive input representations such that increasing the value of Nt decreases the number of 

density matrices per prediction only marginally.  

 Figure 5 shows the validation set RMSE for 2D CNNs with the “averaged” and “stacked” 

input representations as a function of Nt. For both representations, the RMSE decreases with 

increasing Nt and Pearson’s R increases from ~0.85 for Nt  = 1 (Figure 4B) to a maximum of 0.92-

0.93 for larger values of Nt (Figure S7 of the SI). These results illustrate the importance of 

incorporating information from multiple MD configurations into the input representation. 

Surprisingly, the averaged and stacked representations have comparable RMSEs for all values of 

Nt, even though the averaged representation captures time-averaged water densities instead of 

density fluctuations. The comparable performance of the two representations does not invalidate 

the hypothesis that density fluctuations play an important role in predicting the HFE because the 

convolutional filters in a 2D CNN analyze all Nt configurations simultaneously (since data are 

stored in color channels) and thus cannot capture correlations at timescales shorter than the time 

associated with Nt. Alternatively, convolutional filters in a 3D CNN analyze data stored in a 3rd 

temporal dimension and can learn correlations between a smaller number of consecutive 

configurations (e.g., 3) rather than all Nt configurations. A 3D CNN also has the added advantage 

of introducing data in color channels with only a marginal increase in the number of parameters 

(SI Section S4.1). We thus stored hydrogen atom density in the “hydrogen” representation that we 
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hypothesized would provide information on the orientation of water molecules and hydrogen 

bonding in the system which is absent from the oxygen density alone. 

 

Figure 5: Variations to input representations. Validation set RMSE as a function of the number of MD 

configurations (Nt) included in the input representations used for the 2D and 3D CNNs with 800 ps of 

simulation time per prediction.  

 Figure 5 shows the validation set RMSE for 3D CNNs with the “stacked” and “hydrogen” 

input representations as a function of Nt for Nt >= 6 (which is required for analysis by the second 

convolutional layer). Both 3D CNN input representations outperform the 2D CNN input 

representations for Nt  > 15. The improved accuracy of the 3D CNN compared to the 2D CNN for 

the “stacked” representation is notable because the input data are identical for these two CNNs. 

We attribute the difference in accuracy to the ability of the 3D convolutional filters to identify 

short time correlations for larger values of Nt that permits recognition of water density fluctuations 

near hydrophobic surfaces14, 72. The addition of hydrogen density information further reduces the 

RMSE to ~6 kBT. Because density fluctuations are enhanced at more hydrophobic surfaces, we 

expect that the improvement in 3D CNN accuracy is due to improved predictions for the most 

hydrophobic surfaces. Comparing the RMSE of the best performing 2D CNN representation and 

best performing 3D CNN representation for the 8 most hydrophobic surfaces confirms this 

expectation: the RMSE for the 2D CNN is ~9.1 kBT whereas the RMSE for the 3D CNN is ~7.2 

kBT. Based on this analysis, we conclude that a 3D CNN with Nt = 30 and the “hydrogen” 

representation yields the highest accuracy HFE predictions by analyzing both spatial and temporal 
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correlations in the input water density matrices. Further discussion of the differences between these 

two models is included in SI Section S6.  

3D CNN HFE predictions require minimal simulation data 

The final hyperparameter that we tuned is the number of density matrices used to compute average 

validation set HFEs during 5-fold cross validation. In principle, only 1 density matrix is required 

to predict the HFE for a surface, corresponding to 30 ps of MD simulation data for the best-

performing 3D CNN. However, averaging HFEs calculated for a larger number of density matrices 

yields a more accurate HFE prediction at the cost of additional simulation time per prediction. 

Figure 6 shows the validation set RMSE as a function of the amount of MD simulation time per 

prediction for the 3D CNN with Nt = 30. The RMSE plateaus once the amount of simulation time 

per prediction exceeds 180 ps (corresponding to 6 input density matrices), which is less than the 

800 ps of simulation time per prediction used in the previous hyperparameter tests (Figures 4 and 

5). We also tested the effect of reducing the simulation time per MD configuration from 1 ps to 

0.2 ps, but this change decreased CNN accuracy (SI Section S8). For comparison, INDUS requires 

65 ns of MD simulation time to calculate the HFE (for 13 windows with 5 ns per window as 

described in the Methods). The 3D CNN prediction thus requires 361 times less MD simulation 

time than INDUS. If the 5 ns of initial SAM equilibration (largely required for the convergence of 

the water density isosurface used to place the INDUS cavity as discussed in the Methods) is 

included in both calculations, the 3D CNN still requires 13.5 times less MD simulation time than 

INDUS. Techniques to decrease this equilibration time (e.g., by initializing the SAM ligands in 

tilted configurations) could be explored in future work to reduce the computational expense needed 

for the 3D CNN. 
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Figure 6: Variation in simulation time per prediction. Validation set RMSE as a function of the total 

amount of MD simulation time per prediction for a 3D CNN with Nt = 30 and the “hydrogen” input 

representation. Increasing the amount of simulation time leads to multiple density matrices per prediction; 

the reported HFE is the average of the HFEs predicted for each density matrix. 

Test set predictions confirm the generalizability of 3D CNN predictions 

Having identified a best-performing 3D CNN (with the “hydrogen” input representation, Nt = 30, 

and 180 ps of simulation time per prediction) based on 5-fold cross-validation, we compared the 

accuracy of this model on the unseen test set (10 SAMs) after re-training using all data in the 

training set (40 SAMs). Figure 7 shows a parity plot between CNN-predicted HFEs and INDUS-

calculated HFEs. Black points indicate test set SAMs whereas gray points indicate predictions 

from cross validation of the training set SAMs. Confidence bars for each prediction of the 3D CNN 

shown in Figure 7 are generated by calculating the standard deviation over 4 independent 180 ps 

intervals. It must be noted that the confidence bars are not very wide, and only 180 ps of data 

suffices to make a robust HFE prediction. The test set RMSE is 5.85 kBT, which is comparable to 

the RMSE of the cross-validation set (6.1 kBT). There is an uncertainty of 1-3 kBT associated with 

INDUS HFEs; thus, the 3D CNN RMSE is approximately twice the error of INDUS. The HFEs 

of the test set are also predicted with near-perfect rank-ordering and a Pearson’s R of 0.97. These 

results imply generalizability of the 3D CNN beyond the training data. Finally, we note that the 

number of learned parameters in the chosen 3D CNN is 524,208 and the training data include 
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48,000 density matrices. The ratio of learned parameters to training examples is thus 10.9, 

implying that the 3D CNN is overparameterized as is frequently done with neural networks. This 

ratio is comparable to prior studies using CNNs, for which ratios of parameters to training 

examples range from ~171 to ~5052, 54, and lies in the “interpolating” regime (corresponding to a 

ratio > 10) in which most model neural networks operate and which permits accurate 

generalization to test set data73. The cross-validation and regularization performed during model 

training avoids overfitting the data and leads to accurate test set predictions.  

  

Figure 7: Validation and test set predictions. Parity plot for best-performing 3D CNN (Nt = 30 with the 

hydrogen representation and 180 ps of data per prediction). Prediction accuracy is comparable for 5-fold 

cross-validation of the training set and for the independent test set, indicating model generalizability. 

Confidence bars indicate the standard deviation computed from four independent samples.  
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Figure 6: Hydration free energies for chemically heterogeneous SAMs. (A) Sample patterns for a SAM 

with a mole fraction of 25% polar end groups. The “checkered” and “separated” patterns are shown along 
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with examples for five different values of the Ising parameter, J. (B) CNN-predicted HFE as a function of 

the fraction of polar ligands for a set of mixed hydroxyl-tridecanethiol and tridecanethiol SAMs. Each point 

is the average of the HFEs computed for 3 separate SAM patterns generated using the same value of J. (C) 

Comparison of CNN-predicted and INDUS-calculated HFEs for the checkered and separated patterns.  

 Application of 3D CNN to predict HFEs for chemically heterogenous SAMs 

Having trained and tested 3D CNN generalizability using idealized SAMs of varying 

hydrophobicity, we next demonstrate the use of the new model to predict HFEs for a set of 

chemically heterogeneous “real” SAMs. These SAMs consist of binary mixtures of two ligands: 

tridecanethiol, which is nonpolar, and hydroxyl-tridecanethiol, which is polar and identical to the 

hydroxyl-terminated ligand used for the idealized SAM with k = 1. The hydrophobicity of mixed 

SAMs constructed from these two ligands is sensitive to the mole fractions of the two components 

(i.e., the SAM composition) and their relative spatial positioning (i.e., the SAM patterning) 

influencing hydrophobicity. Prior studies have shown a complex dependence of interfacial 

hydrophobicity on SAM composition and patterning that is difficult to predict a priori due to 

nonadditive contributions to hydrophobicity from the polar and nonpolar ligands34, 35, 44. We thus 

leveraged the computational efficiency of the 3D CNN to screen a range of SAM compositions 

and patterns to reveal the consequent impact on hydrophobicity. 

 We constructed mixed SAMs containing 64 total ligands with 0, 0.25, 0.5, 0.75, and 1.0 

mole fractions of the polar component following the approach used to construct idealized SAMs 

(see Methods). Unlike the single-component idealized SAMs, the pattern must be determined for 

each mixed SAM. We first generated two patterns representing opposite extremes: a “checkered” 

pattern, in which polar and nonpolar ligands were distributed in a checkerboard-like arrangement 

to achieve as uniform an arrangement as possible, and a “separated” pattern, in which polar and 

nonpolar ligands were distributed in two distinct domains (Figure 8A). To obtain patterns between 

these extremes that are not manually generated, we determined ligand positions using a Monte 

Carlo algorithm with an Ising model energy function in which the Ising parameter, J, controls the 

positions of nonpolar and polar ligands. A large positive value of J leads to patterns similar to the 

manually generated “separated” pattern whereas a large negative value of J leads to patterns similar 

to the “checkered” pattern. We do not expect the hydrophobicities of SAMs generated with large 

positive or negative values of J to correspond exactly to the hydrophobicities of SAMs with 
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manually generated patterns because an Ising model does not generate “perfect” patterns  (for 

example, a perfectly smooth boundary between polar and nonpolar ligands, or a perfectly 

checkered SAM), thus enabling comparisons to the manually generated patterns. We generated 

patterns using the Ising model with 6 values of J between -3 and 3 for each mole fraction 

(excluding 0 and 1) in addition to the uniform and mixed extremes. Three independent patterns 

were generated for each mole fraction and value of J, leading to a total of 71 “real” SAMs. Figure 

8A shows example mixed SAM patterns generated with this methodology. More details about the 

Ising model for SAM preparation are detailed in Section S9 of the SI. Each SAM was equilibrated 

for 5 ns and then simulated for another 800 ps to generate data for CNN analysis.  

 Figure 8B shows CNN-predicted HFEs as a function of the mole fraction of polar ligands 

and J for the mixed SAMs. Each point is the average of the HFE predictions for three 

independently generated patterns, excluding the uniform and separated patterns that were 

constructed without the Ising model. Increasing the mole fraction of polar ligands increases the 

HFE, reflecting the intuitive trend that more polar surfaces are less hydrophobic. The HFE roughly 

plateaus for the “checkered” pattern at a mole fraction of 0.75, in general agreement with the 

plateau of the HFE for the idealized hydroxyl SAMs at large values of k (Figure 3). As expected, 

the SAM pattern substantially impacts the HFE. SAMs in which the polar and nonpolar groups are 

separated (the separated pattern and large positive values of J) have a lower HFE than SAMs in 

which the polar and nonpolar groups are uniformly distributed (the checkered pattern and large 

negative values of J). These differences lead to an envelope of HFEs for a given mole fraction and 

highlight the ability of the CNN to determine variations in hydrophobicity associated with SAM 

patterns that would not be predicted by a simple linear combination model (discussed in SI Section 

S10.4).  The trends are in agreement with previous studies which found that surfaces with clusters 

of polar groups appear more hydrophobic than surfaces with uniformly distributed polar groups34, 

35, 44. However, HFEs are not monotonic in J, and in particular we observe non-monotonic changes 

in the HFEs with respect to mole fraction for J  = 1. We hypothesize that these deviations arise 

due to defects in the underlying SAM pattern because the Ising model for small positive values of 

J produces a disordered boundary between the polar and nonpolar ligands (an example shown in 

Figure S11). Previous studies have shown that slight variations in the spatial positioning of 

nonpolar and polar groups can significantly impact HFEs, suggesting that defects may have a large 
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impact on hydrophobicity35, 44. The effect of defects on the HFE are an avenue for exploration in 

future work. 

 For comparison to the CNN-predicted results, we calculated HFEs using INDUS for the 6 

mixed SAMs with the “checkered” and “separated” compositions. Figure 8C compares the CNN-

predicted HFEs for these surfaces to the INDUS-calculated HFEs. Both techniques produce 

envelopes that exhibit similar trends: like the CNN-predicted HFEs, INDUS-calculated HFEs are 

larger for the checkered pattern compared to the separated pattern and the HFE of the checkered 

pattern roughly plateaus for large mole fractions. The CNN-predicted envelope is compressed 

relative to the INDUS-calculated envelope, with HFEs for large mole fractions underpredicted and 

HFEs for small mole fractions overpredicted (as discussed further in SI Section S10). This 

compression is expected as there is less training data for the extremes of the HFEs (Figure 3) which 

can bias predictions towards the mean of the data74. Predictions of these values might be improved 

by adding additional surfaces at these extremes or by including unphysical systems designed to be 

more hydrophobic (e.g., SAMs lacking van der Waals interactions) or more hydrophilic (e.g., 

SAMs with k > 1) than those studied here to expand the range of HFEs studied. Nonetheless, the 

overall correlation between the values is high (Pearson’s R of 0.95; see SI Figure S14). Since the 

HFE is a relative metric used to rank-order surfaces of varying hydrophobicity, and its relationship 

to experimental quantities is also via linear correlation43, the ability of the CNN to predict the same 

HFE trends as INDUS suggests that CNN-predicted HFEs can be used to screen the 

hydrophobicity of real surfaces (particularly those that lie within the extremes of hydrophobicity) 

with minimal computational cost.  

Conclusions 

In this work, we have presented a machine learning approach that uses a CNN to predict the HFE 

of a functionalized surface based on interfacial water densities obtained from short unbiased MD 

simulations. We computed HFEs for a set of idealized SAMs with varying end groups and surface 

polarities to use as labels for CNN training. We converted interfacial water configurations from 

MD simulations of the same SAMs into input density matrices for CNN analysis and then tuned 

hyperparameters including the network architecture, input data representation, and amount of 

simulation time per HFE prediction. Based on prior studies of interfacial hydrophobicity, we 

hypothesized that a CNN designed to learn spatial correlations (e.g., due to water structure) and 



22 
 

temporal correlations (e.g., due to water density fluctuations) between interfacial water molecules 

would improve prediction accuracy. This hypothesis was validated by showing that the most 

accurate HFE predictions were obtained using a 3D CNN which analyzed input matrices with two 

spatial dimensions and one temporal dimension. The 3D CNN further permitted analysis of both 

oxygen and hydrogen atomic densities to gain insight into factors such as water orientation. 

Generalizability of the 3D CNN was demonstrated through predictions on an independent test set. 

Critically, the 3D CNN reduces the simulation time required to predict the HFE to as little as 200 

ps after SAM equilibration, reducing the computational expense by 1-2 orders of magnitude 

compared to indirect umbrella sampling and enabling the screening of a larger design space. We 

thus applied the 3D CNN to screen a set of “real” SAMs of mixed polar and nonpolar ligands with 

varying patterns to demonstrate that SAMs with uniformly distributed polar and nonpolar ligands 

are less hydrophobic than SAMs with separated ligands. The computational efficiency associated 

with the newly developed 3D CNN will enable the study of hydrophobicity of a wider array of 

patterns in future work to further interrogate the origin of these non-monotonic effects.  

 Future work will extend this approach to other types of chemistries and surfaces, including 

but not restricted to planar and more heterogeneous systems. This machine learning model can 

also be augmented with chemical information (e.g., hydrogen bonds) not explicitly captured in the 

input representations that we have considered. Such chemical information could potentially be 

captured by using physically intuitive and spatially non-restrictive data representations like 

hydrogen bond network graphs, rather than the water density matrices, in conjunction with 

alternative machine learning methods like Graph Neural Networks. Comparison of alternative 

networks and input representations to those studied in this work can further help understand the 

manifestation of hydrophobicity. For example, features that differentiate highly hydrophobic and 

hydrophilic surfaces based on invariants in water structure can be extracted from the trained CNN 

and compared to features recognized by alternative network architectures. Finally, we anticipate 

that this machine learning approach could be extended to predict interfacial behavior (e.g., protein 

binding) by providing input like the electrostatic potential in addition to water structure.  

Supplementary Information 

Additional details on INDUS simulations, values of HFEs of idealized SAMs, parameter tests for 

size of input representation and INDUS cavity size, CNN architecture and loss curves, Pearson’s 
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R for cross-validation (2D and 3D CNN), use of a Gaussian kernel to approximate water 

molecules, details about the Ising model used to generate SAM morphology, results of Ising SAMs 

on varying training data, other observations of HFE predictions made using CNNs 
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