
Compositional Testing of Internet Protocols

Kenneth L. McMillan
Microsoft Research, Redmond

Email: kenmcmil@microsoft.com

Lenore D. Zuck
Department of Computer Science, UIC

Email: lenore@cs.uic.edu

Abstract—We introduce a methodology of Network-centric
Compositional Testing (NCT) to develop formal wire specifications
of Internet protocols and to test protocol implementations for
compliance to a common standard. We use formal specifications
to generate automated testers for implementations of the pro-
tocol, based on randomized constraint solving using an SMT
solver. This makes it possible to resolve ambiguities in informal
standards documents using knowledge inherent in the implemen-
tations, while at the same time testing the implementations for
compliance to the developing formal specification. Because the
testing is compositional, it allows us to detect cases when the
specification is either too weak or too strong, and to refine
the specification accordingly. We apply the methodology to
QUIC, a new Internet secure transport protocol currently in the
process of IETF standardization and intended as a replacement
for the TLS/TCP stack and a foundation for HTTP/3. In the
process of specifying QUIC, we discovered numerous errors in
implementations, as well as issues in the standard itself. These
include an off-path denial of service attack and an information
leak similar to the “heartbleed” vulnerability in OpenSSL. The
paper describes the formal foundations of the methodology, and
summarizes its specific application to QUIC.

Index Terms—Specification based conformance testing, Net-
work Protocols, Light-weight Formal Methods, QUIC

I. INTRODUCTION

Internet protocols are developed in the form of RFCs:

English-language documentation that provides extensive guid-

ance for implementers of the protocol, but is nonetheless

ambiguous and broadly open to interpretation. The primary

mechanism for resolving these ambiguities and validating the

correctness of the protocol design is to produce multiple inde-

pendent implementations, and to test these implementations for

interoperability. As a result, these implementations represent

a kind of commentary on the standard document, providing

concrete interpretations where the language may be vague,

unclear or contradictory.

While effective, this methodology leaves something to be

desired from the point of view both of clear standardization

and of implementation compliance. First, the knowledge im-

plicit in the implementations is not captured in any precise

and rigorous way. Second, since the implementations do not

represent the full diversity of behaviors that the protocol

allows, interoperability testing provides very limited test cov-

erage of protocol behaviors. Third, because actual protocol

compliance is never tested, interoperability is not sufficient to

guarantee that current implementations will be interoperable

The work of the L. D. Zuck was partially supported by NSF awards CCF-
1564296 and CCF-1918429

with future implementations meeting the standard. The result is

that implementations in the wild become the de facto standard.

This effect has important security consequences, as illustrated

by the history of SSL/TLS. Non-compliant implementations of

this protocol in the wild led to numerous vulnerabilities, due

for example to vulnerable work-arounds in clients [1]–[3].

In this paper, we argue that it is important to develop an un-

ambiguous formal statement of a protocol standard, in a form

that allows implementations to be effectively tested for actual

compliance to the standard, and not just for interoperability.

Moreover, it is necessary to test implementations in adversar-
ial environments and not just in the benign environment of

other existing implementations.

We introduce a methodology we call Network-centric Com-

positional Testing (NCT) to serve this purpose. In NCT, formal

specifications are used to generate automated testers for im-

plementations of the protocol, based on randomized constraint

solving using an SMT solver. Randomized generation is highly

effective in producing adverse stimulus, that is, behaviors in

which messages occur outside of the expected order, or with

unusual combinations of parameter values. This makes it pos-

sible to resolve ambiguities in informal standards documents

using knowledge inherent in the implementations, while at

the same time testing the implementations adversarially for

compliance to the developing formal specification.

By ‘network-centric’, we mean that the specification de-

scribes the protocol in terms of its behaviors as observed
on the wire and not as an abstract implementation of the

protocol. This allows us to test the protocol compositionally.

That is, any assumptions made on the input of one process

in the protocol are treated as guarantees on the output of

other process. Without compositionality, we cannot infer from

the fact that implementations pass all tests that they will

interoperate correctly when composed. Moreover, while mon-

itoring protocol traces using a formal specification allows us

to discover cases where the specification is too strong (i.e., it

rejects a legal protocol behavior) compositional testing can

reveal cases where the specification is too weak. That is,

suppose the specification of an output of a protocol node is

too weak. This same specification is used to generate inputs

for its peer. Thus, we can detect the weakness by the fact that

the peer misbehaves or flags a protocol error on a generated

input.

NCT addresses two primary challenges in network protocol

specification. First, its compositional rule (Sec. II) is applicable

to testing protocols on the Internet. Notably, it supports

161

2019 IEEE Secure Development (SecDev)

978-1-5386-7289-1/19/$31.00 ©2019 IEEE
DOI 10.1109/SecDev.2019.00031

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

protocols with an arbitrary number of participants, in an

environment in which there are no pre-established channels or

process identities. Second, we introduce optimized algorithms

for randomized constraint solving, and corresponding specifi-

cation strategies, that are suitable for generating test traffic

with complex message structures and large data transfers

(Sec. III,IV). The methodology can thus be applied to protocol

implementations that are not cleanly layered, and require us

to test the complete protocol stack, with its attendant deeply

nested encapsulation of messages.

To evaluate NCT, we applied it (Sec. VI) to QUIC, a new

Internet secure transport protocol introduced by Google as

a replacement for the TLS/TCP stack, and currently in the

process of IETF standardization. Because QUIC has been

selected as the foundation for HTTP/3, the next official version

of the hypertext transfer protocol, it is reasonable to expect

that the protocol will soon carry a significant portion of

Internet traffic. In the process of developing a network-centric

specification for QUIC, the adverse stimulus produced by

randomized testing revealed numerous errors in the current

implementations, as well as issues in the standard itself,

that were not discovered by directed tests or interoperability

testing. These include an off-path denial of service attack and

an information leak similar to the “heartbleed” vulnerability

in OpenSSL. By exposing previously unseen implementation

behaviors, we discovered vulnerabilities, even though we did

not explicitly search for them. For this reason, we think the

methodology may also be valuable to security teams explicitly

searching for vulnerabilities.

Related work. There are numerous approaches to verification

or adversarial testing of network protocol implementations.

Many of these do not check compliance to a common formal

protocol standard (e.g., [4]–[7]).1 This includes some interest-

ing recent work applying white-box testing to QUIC [8]. Tech-

niques that do address formalization and compliance include

model-based testing (MBT) [9]–[11] and its precursors in the

area of protocol conformance testing [12]. These methods

assume that specifications are finite-state machines (FSMs)

or can be effectively restricted to be finite-state. They use

systematic exploration of the FSM as a heuristic for adver-

sarial test generation. NCT differs from these methods in two

primary respects. First, it is compositional, with the benefits

we noted above. Second, it does not assume the specification

is an FSM. This is crucial for protocols such as QUIC that

are inherently not finite-state, and allows us to capture all

aspects of the protocol needed for full interoperation with real

implementations. This is in contrast to, e.g., [2], [10], [11],

which capture only certain finite-state aspects of a protocol.

Another effort that infers protocol specifications experi-

mentally from implementations is the Network Semantics

Project [13] which has developed a formal specification of

TCP. In this work, the formal specification is used to monitor

1Note that [6] formally proves security properties of a reference implemen-
tation, but does not prove compliance to a common standard.

traces captured on the wire. It is not used for test generation

and is not compositional.

II. COMPOSITIONAL TESTING FOR INTERNET PROTOCOLS

In compositional reasoning, we have a system that consists

of a collection of processes communicating in some way. Each

process has a local specification that determines its allowed

input/output behavior. This is also called the guarantee of the

process. In addition, each process is allowed to make assump-
tions about its environment (that is, the other processes in the

system). As observed originally by Chandy and Misra [14],

because the processes are interconnected, the assumptions of

one process are the guarantees of the other processes. To avoid

making a circular argument, we have to define carefully the

assumptions that a process may make about its environment.

For example, we say that the correctness of a given output

produced by a process may depend on the the correctness of

inputs received in the past, but not those that will be received

in the future.

A typical rule for compositional reasoning (as used in [15])

looks like this:

〈φ2〉 π1 〈φ1〉
〈φ1〉 π2 〈φ2〉

〈true〉 π1 ‖ π2 〈φ1 ∧ φ2〉
(1)

Here the triple 〈φ〉π〈ψ〉 means that, if the environment of

process π satisfied the assumption φ always in the past, process

π guarantees property ψ at the present moment. The premises

of the rule state that each process maintains its guarantee

so long as the other does (in fact, one step longer). From

these premises, we can conclude that neither guarantee is ever

violated when we compose the two processes together, since

neither guarantee can be the first to be false.

In a compositional testing approach [16], [17], rather than

formally verify the premises of Rule 1, we simply test the

actual artifacts π1 and π2. For each process, we generate inputs

satisfying its assumption, and we check that the resulting

behavior satisfies the guarantee. Rule 1 provides a formal

proof, but the premises of this proof are tested empirically.

For testing Internet protocols, however, the rule above is

significantly inconvenient. The main reason is that Internet

protocols involve an arbitrary number of processes distributed

across a network. For example, a server may connect to an

arbitrary number of clients, or a peer-to-peer protocol may

connect an arbitrary number of peers. When we generalize

Rule 1 to an unbounded collection of processes, we find that

each process now makes an unbounded number of assumptions

(that is, it assumes that all other processes in the network

follow their local specifications). For purposes of formal proof,

this may not be problematic. However, if we wish to generate

test inputs that satisfy this infinite collection of properties, we

have a problem.

Our approach to this problem is to replace the infinite collec-

tion of local specifications with a single global specification φ
that fully describes the protocol. That is, φ determines, for any

global trace of protocol messages, whether the protocol has

162

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

been followed. Of course, no one local process can guarantee

this global property. Rather, we define what it means for a

single process πi to cause the failure of the global property.

This occurs when a single output produced by πi changes the

status of the property from true to false. We interpret the triple

〈φ〉 πi 〈φ〉 to mean that πi does not cause the specification

φ to be falsified. If all the local processes have this property,

then the specification must hold. Our local testing problem is

now to generate inputs for πi that do not cause φ to fail, and

to check that the resulting outputs of πi do not cause φ to fail.

In the sequel, we will formalize these notions.

A more subtle reason to use a global specification is that a

global specification can be monitored on the network. Local

specifications, as in Rule 1, assume that the communications

of each process can be identified. On the Internet, however,

we cannot reliably identify the source of messages. In fact,

the purpose of many protocols is precisely to establish the

identity of communicating parties. In particular, we cannot

assume a one-to-one correspondence between processes and

network addresses since a process may use many addresses,

and these may change over time (i.e., the process may be

mobile). Moreover, the same address may be used by many

processes at different times, or even at the same time in the

case of malicious processes that ‘spoof’ addresses. A network

address thus provides a heuristic for ‘best effort’ delivery of a

message to an intended recipient, but the network provides

no guarantees regarding the parties that ultimately observe

a message. For this reason, it is useful to write a protocol

specification as a global property that does not refer to the

source of messages, but only describes the messages that may

be sent by any process at a given time. We will refer to such

specifications as process-oblivious.

There are two other important testing-related issues that

determine the form of our compositional reasoning system.

For purposes of assume/guarantee testing, we must effectively

be able to use our specifications as both generators of inputs

and checkers of outputs of processes. This motivates the use

of a deterministic guarded command formalism for property

specification instead of, for example, a temporal logic or non-

deterministic labeled transition systems. Moreover, rather than

decompose the system into a collection of disjoint processes,

we decompose it into a collection of overlapping subsets of

processes called locales. As we will see, this allows us to

generate tests in cases where some system components lack

formal specifications but do have concrete implementations.

All of these aspects distinguish our system from prior compo-

sitional systems such as [14], [16], [18], [19].

Example 1. As a running example, we will use a toy protocol

among an arbitrary number of clients and servers. A client,

say Alice, sends a request message to a server, say Bob, that

contains a fresh nonce value N that acts as a connection

identifier, and a data value D. The server simply echoes this

information in a response message. Our specification requires

that request messages be consistent, in the sense that no two

requests with the same connection identifier have different data

values, and responses match previous requests.

A. Processes

In our model, processes communicate values via channels.

Each channel is an output of exactly one process, but it

may be an input of many processes. Communication over

channels is synchronous, so that a value is received at the

same instant in which it is transmitted. To model asynchronous

communication over a network, we will use an explicit process

to model the network.

Let C be a (possibly infinite) set of channels. We model the

content of a message on a channel c ∈ C by a valuation of a

set of parameters Vc. Each parameter v ∈ Vc has an associated

range Rv . A value of channel c maps every parameter v ∈ Vc

to an element of Rv . We denote the set of such mappings by

Rc.

An event is a pair (c, V), where c ∈ C and V ∈ Rc. An

event corresponds to transmission of a value on a channel. A

trace over a set of channels C ⊆ C is a finite sequence of

events (c1, V1), . . . , (ck, Vk) where ci ∈ C for 1 ≤ i ≤ k.

A trace represents an I/O behavior of a process. We write

Traces(C) for the set of traces over C. We will call a trace

over the full set of channels C simply a trace.

A process is a triple (I,O, T), where I ⊆ C is the input

set, O ⊆ C is the output set and T is a prefix-closed set of

(I∪O)-traces. (A set of sequences is prefix closed if for every

sequence in the set, all its prefixes are also in the set.)

Example 2. Each process π in our model of the toy protocol

has a single input channel RCVπ and a single output channel

SNDπ . All channels have three parameters: a message type M
ranging over the set {REQ, RSP}, a connection identifier N and

a data value D (where N and D are, say, natural numbers).

As a shorthand, we write a send event as SNDπ(M,N,D) and

a receive event as RCVπ(M,N,D). Some example traces of a

client process A are:

SNDA(REQ, 42, 0), RCVA(RSP, 42, 0), SNDA(REQ, 43, 1), RCVA(RSP, 43, 1)
RCVA(REQ, 42, 0), RCVA(RSP, 43, 1), SNDA(REQ, 44, 2)

The first trace shows the normal client sequence, in which a

request is followed by a corresponding response, then another

request/response cycle begins. The second trace shows that

the client may receive unexpected messages, which it ignores.

Some example traces of a server B are:

RCVB(REQ, 42, 0), RCVB(REQ, 43, 1), SNDB(RSP, 43, 1), SNDB(RSP, 42, 0)
RCVA(REQ, 42, 0), RCVB(RSP, 42, 1), SNDB(REQ, 42, 1)

Again, the first is a normal sequence. In the second, the server

receives two conflicting requests. Finally, consider a process

Net representing the network. The inputs of Net are the send

channels SNDπ , while the outputs are the receive channels RCVπ .

Some example traces of Net are:

SNDB(REQ, 42, 0), RCVB(REQ, 42, 0), RCVA(RSP, 43, 1)
SNDB(REQ, 42, 0), SNDB(REQ, 42, 0), SNDB(REQ, 42, 0)

The network provides no guarantees about delivery, except that

it will not invent messages. �

163

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

The projection of a trace t onto a set of channels C ⊆ C,

denoted t ↓ C is the subsequence of t consisting of all events

(c, V) such that c ∈ C.

Suppose that, for i = 1, 2, πi = (Ii, Oi, Ti). The processes

π1 and π2 are composable if O1∩O2 = ∅. If the two processes

are composable, then their composition, written π1 ‖ π2, is

defined by the process (I,O, T) where:

• I = (I1 ∪ I2) \ (O1 ∪O2)
• O = (O1 ∪O2)
• T = {t ∈ Traces(I∪O) | t ↓ (Ii∪Oi) ∈ Ti for i = 1, 2}

Example 3. Consider the composition A ‖ Net ‖ B, where A
is a client and B is a server. The input set of this composition

is empty, while its output set is {SNDA, RCVA, SNDB , RCVB}. An

example of a trace of the composition is:

SNDA(REQ, 42, 0), RCVB(REQ, 42, 0), SNDB(RSP, 42, 0), RCVB(RSP, 42, 0)

Notice that the projection of this trace onto the alphabet

of each of the three processes is trace of that process. For

example, the projection onto A is:

SNDA(REQ, 42, 0), RCVA(REQ, 42, 0)

which is a trace client, while the projection onto B is:

RCVB(REQ, 42, 0), SNDB(RSP, 42, 0)

which is a server trace. Moreover, the entire trace is a trace

of Net, since every received message was previously sent. �
The ‖ operator is commutative/associative. We generalize

the notion of composition to sets of processes. Let Π be an

indexed family of processes πi = (Ii, Oi, Ti), where i ranges

over a (possibly infinite) set, such that the processes in Π are

pair-wise composable. The parallel composition ‖ Π is the

process (I,O, T) where I = (∪iIi) \ (∪iOi), O = ∪iOi, and

T is the set of traces t in Traces(I ∪ O) such that for every

i, the projection of t onto Ii ∪Oi is a Ti-trace.

B. Specifications

We express a safety property in the form of a machine that

accepts a language of finite traces of events. This machine is

represented using a parameterized form of guarded commands

called actions. An action has a guard that determines whether

a given event is allowed in a given state, and an update that

modifies the state deterministically as a function of the event.

A set of actions, combined with an initial state, accepts a

prefix-closed language of finite sequences of events.

The state of a safety specification is represented by a

collection of function and relation symbols. A state is thus

a first-order structure, giving a valuation of these symbols.

The values of the function and relation symbols capture

information about the history of events. The guard is a first-

order logic formula over the event parameters and the state

symbols. It determines when an event is enabled in a given

state. This will allow us to generate events that satisfy the

guards using an SMT solver.

Let Σ be a signature of sorted first-order symbols. A state
is a Σ-structure, that is, a valuation of the state symbols. We

will write structs(Σ) for the set of all Σ-structures. We also

assume a special constant symbol p̂
∈ Σ of a sort that ranges

over channels.

A Σ-action is a tuple α = (Λ,Σa, γ, τ), where:

1) Λ ⊆ C is a set of channels,

2) the parameter signature Σa such that Σa = Vc for all

c ∈ Λ,

3) the guard γ is a first-order formula over Σ ∪Σa ∪ {p̂},

4) the update τ is a function from structs(Σ ∪ Σa ∪ {p̂})
to structs(Σ).

Notice that (2) implies that all of the channels associated to

an action must have the same parameter set. Given a Σ-action

α = (Λ,Σa, γ, τ), an α-event is an event (c, V) where c ∈ Λ
and V is a Σa-structure. An α-event e = (c, V) is enabled in

a state s if 〈s, V, p̂ �→ c〉 |= γ. Here we use 〈s, V 〉 to denote

the structure s augmented by an assignment V .

Given an α-action as above, an α-transition is a triple

(s, e, s′), where s and s′ are states, e = (c, V) is an α-event

enabled in s, and τ〈s, V, p̂ �→ c〉 = s′.
A specification is a triple (Σ, s0,A) where Σ is a first-order

state signature, the initial state s0 is a Σ-structure and A is a

set of Σ-actions such that the channel sets of distinct actions

are disjoint.

Example 4. In the specification of our toy protocol, the state

signature Σ consists of a ternary relation S that records the set

of messages (M,N,D) that have been sent on the network. In

the initial state, the relation is empty. We will write an action

(Λ,Σa, γ, τ) in the form Λ(Σa) : γ → τ , where τ is expressed

as a sequence of assignments that update the state symbols.

The actions of our toy specification are:

SND(M,N,D): (∀x.(S(M,N, x) ⇒ x = D))
∧ (M = RSP ⇒ S(REQ, N,D))

→ {S(M,N,D) := true}
RCV(M,N,D): S(M,N,D) → {}

The guard for send events says two things about sent messages.

First, the values must be data-consistent, that is, if a sent mes-

sage shares a type and connection id with previous message,

it must also have the same data. The second is that a response

message must match a previously sent request. Upon a send

event, the relation S is updated to indicate that the message

was sent. We require of the network that receive events must

match prior send events, but nothing else (i.e., messages may

be duplicated or reordered). �
Let φ be a safety specification (Σ, s0,A). A transition of φ

is an α-transition of any action α ∈ A. A run of φ is a finite

sequence of transitions t0, t1, . . . where each ti = (si, ei, si+1)
and s0 is the initial state. A trace of φ is the sequence of events

e0, e1, . . . corresponding to some run t0, t1, . . . If t is a trace

of φ, we write t |= φ. If π = (I,O, T) is a process, we write

π |= φ to indicate that for all t ∈ T , t |= φ.

Note that, since the update function of a specification is

deterministic, we can easily check whether t |= φ. That is, a

trace defines a unique run, and we have only to verify that the

guards along this run are satisfied. Without determinism, we

164

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

might have to consider an infinite collection of possible runs to

determine that t
|= φ. Because we need to use φ operationally

as a checker, we require that it be deterministic. This does

not mean, however, that the processes in our system must be

input-output deterministic.

Using deterministic acceptors as specifications has other

advantages. Given two safety specifications φ and φ′, we can

use standard automata-theoretic constructions to build safety

specifications corresponding to φ ∧ φ′ and φ ⇒ φ′.

C. Compositional Proofs

We now introduce our notion of assume/guarantee speci-

fication. Intuitively, we intend the specification 〈ψ〉 π 〈φ〉 to

mean that, if process π violates property φ, then property ψ
must have been violated in the past. That is, a π must maintain

the guarantee φ so long as the environment maintains the

assumption ψ. However, because our specifications are global,

applying to all events in the system, we must be careful about

what we mean by “π violates φ”. We intend this to mean that

the cause of the failure of φ is an output of π.

Let π = (I,O, T) be a process. We say that trace t is π-

terminal if t ends in an event (c, V) such that c ∈ O.

Definition 1: Let φ and ψ be specifications and π =
(I,O, T) a process. We say that 〈φ〉 π 〈ψ〉 holds when, for

every π-terminal trace t such that t ↓ (I ∪O) ∈ T and t
|= ψ,

there exists a strict prefix t′ of t such that t′
|= φ ∧ ψ.

Notice that the triple 〈φ〉 π 〈φ〉 means essentially that π is

not the cause of the failure of φ. That is, π is not the first

process whose output causes φ to be false. We say a process

is closed if its input set is empty. In a closed system, if no

process is the cause of the failure of φ, then φ always holds.

We can express this idea with the following inference rule:

Theorem 1: The following inference rule is sound, provided

π1 ‖ π2 is closed:
〈φ〉 π1 〈φ〉
〈φ〉 π2 〈φ〉
π1 ‖ π2 |= φ

(2)

Proof. Assume a trace t of π1 ‖ π2 that violates φ, and is a

shortest such trace. Since π1 ‖ π2 is closed, t must be either

π1- or π2-terminal. Without loss of generality, assume it is

π1-terminal. By assumption, every strict prefix of t satisfies

φ. This contradicts 〈φ〉 π1 〈φ〉. �
This idea of assigning the cause of a property failure to a

process can be extended to subsets of processes. A localization
L of a set of processes Π is a set of subsets Li ⊆ Π such that

∪iLi = Π (that is, it is a union-decomposition of Π). The

sets Li are called locales. In a closed system, every event is

the output of at least one locale. Thus, if no locale causes a

property φ to fail, then φ must always hold. We can formalize

this idea with the following proof rule:

Theorem 2: Given a composable set of processes Π, such

that ‖ Π is closed, and a localization L of Π, the following

inference rule is sound:

for all � ∈ L: 〈φ〉 ‖ � 〈φ〉
‖ Π |= φ

(3)

Proof Let t be trace of ‖ Π that violates φ and is a shortest

such trace. Every strict prefix of t satisfies φ. Since every

process is in at least one locale, it follows that there is some

locale � ∈ L such that t is ‖ �-terminal. This contradicts 〈φ〉 ‖
� 〈φ〉. �
Example 5. Locales are useful in compositional testing if we

have some component of a system for which a strong enough

specification cannot be obtained. This is a very common

situation, for example, when using third-party libraries. As

an example, suppose we have a system of three processes

A,B,C with corresponding output channels OA, OB , OC . In

our specification φ, the guard for OC events is too weak

(perhaps it is just true) to act as an assumption for processes

A and B. We can still verify this system compositionally by

reasoning as follows:

〈φ〉 A ‖ C 〈φ〉
〈φ〉 B ‖ C 〈φ〉
A ‖ B ‖ C |= φ

That is, we include the unspecified process C in both locales.

This allows A and B to rely on unspecified properties of C.

In this proof, we say C is “self-specified”. �

D. Mirrors

In order to test whether the triple 〈φ〉 π 〈φ〉 holds, we

will construct a process called a mirror. We can think of this

process as the most general environment of π that does not

cause φ to fail. The mirror is a process whose outputs are the

complement of the outputs of π. Outputs of the mirror must

follow the specification φ. However, if process π causes φ to

fail, the mirror may thereafter produce any output, since the

blame for the failure falls to π. We can think of the mirror

as a test generator for π: it can produce any input for π that

satisfies the input assumptions of π.

Let π = (I,O, T) be a process, and φ a specification. A

π-failure of φ is any trace t such that t
|= φ and the shortest

prefix t′ of t such that t′
|= φ is π-terminal. Denote the set of

π-failures of φ by Failures(π, φ). The φ-mirror of π, denoted

Mπ
φ is a process (I ′, O′, T ′) where:

• I ′ = O,

• O′ = C \O,

• T ′ = Failures(π, φ) ∪ {t | t |= φ}.

The following theorem shows how we can use a mirror

process to test a triple 〈φ〉 π 〈φ〉:
Theorem 3: Let φ be a specification and π a process. Then

〈φ〉 π 〈φ〉 holds iff Mπ
φ ‖ π |= φ.

Proof Forward implication. Suppose toward a contradiction

that t is a trace of Mπ
φ ‖ π and t
|= φ. Trace t must be a

π-failure of φ (by the definition of mirror). Moreover, its pro-

jection onto the inputs and outputs of π is a trace of π (by the

definition of composition). Trace t thus contradicts 〈φ〉 π 〈φ〉.
Reverse implication. Suppose toward a contradiction that there

is a shortest π-terminal trace t of such that t
|= φ and whose

projection onto the inputs and outputs of π is a trace of π.

This contradicts Mπ
φ ‖ π |= φ. �

165

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

Because of the guarded command form of safety speci-

fication φ, the mirror process is not difficult to construct.

The mirror process keeps track of the specification state. At

each input or output event, it updates the state according

to the update function τ . To produce an output event, it

non-deterministically chooses an event on an output channel

satisfying the guard γ. However, if an input fails to satisfy

the appropriate guard, it goes to a special state from which all

output events may be generated.

Theorem 3 gives us a way to test compositionally that

a protocol implementation satisfies its specification φ. We

decompose the system into locales. For each local �, we need

to verify the corresponding premise of Theorem 2. That is,

letting π =‖ �, we must verify 〈φ〉 π 〈φ〉. To do this using

Theorem 3, we construct the mirror process Mπ
� . We compose

it with π to to obtain Mπ
� ‖ π. We will call this process the

test process. We then enumerate the traces of the test process

and check that each satisfies φ. If this is true for all locales,

we know that the system as a whole satisfies its specification.

Of course, since the set of traces is in general infinite, this is

not practical. Instead, we settle for checking a finite sample

of the traces. The next section deals with how to generate this

sample.

Example 6. Consider testing an implementation of our

toy protocol. We start with server process B. The φ-mirror

for B generates outputs that satisfy φ, so in particular these

messages are always data-consistent. Since B simply echoes

requests with responses, its outputs are also data-consistent,

and moreover they always match previous requests. Thus, we

can verify 〈φ〉 B 〈φ〉. Consider client A. The client must

guarantee data consistency of its outputs, but unfortunately

this is impossible, since A cannot see all the requests of

other processes. The test process generates, for example, the

following trace that violates φ:

SNDE(REQ, 42, 0), SNDA(REQ, 42, 0)

In fact, our system does not satisfy its specification. The

problem is that there are failures, such as the above, that cannot

be blamed on any single process. In Subsec. V-B, we will see

a solution to this problem.

III. RANDOMIZED TESTING

To sample the behaviors of the test process, we need to

resolve the non-deterministic choices of this process in some

way. There are several sources of non-determinism in the test

process. First, the mirror has a choice among all output events

satisfying the their action guard. We will call this specification
choice. Second, if both the mirror and the process π under

test are enabled to produce outputs, there is a choice of which

process will execute next. We will call this interleaving choice.

Third, process π may itself have internal non-deterministic

choice.

There are many possible approaches to resolving the non-

determinism. For example, we might try to systematically

explore some finite subsets of the test process’ behavior as

in [20] or use white-box methods to improve coverage as

in [5]. Our approach, however, is to use simple Monte Carlo

sampling. In other words, we will replace non-deterministic

choices with probabilistic choices. As we will see later,

this may be as effective as more systematic approaches for

complex Internet protocols.

For specification choice, we assume that a user supplies

a target probability distribution over events. We have a dis-

tribution pC over channels, and for each channel c ∈ C, a

distribution pc over the parameter space Rc that gives the

probability of a parameter valuation when the event label is c.
Thus, the probability of an event (c, V) is pC(c) ·pc(V). Since

the space of parameter valuations is not finite, there is no

general notion of a uniform distribution. If a parameter ranges

over the natural numbers, for example, we may choose an

exponential distribution.

Suppose the mirror process is in a state defined by the

Σ-structure M. We can construct a characteristic set of

constraints χM whose unique model, up to first-order dis-

tinguishability, is M. This is a reasonable assumption, since

the reachable state structures are finite (though the state space
is not).

The sampling problem is this: Given a Σ-action α =
(Λ,Σa, γ, τ) and a Σ-structure M, draw randomly from the

set of Σa-structures an assignment (valuation) V such that

〈M, V 〉 |= γ. This is equivalent to drawing randomly from

the models of χM∧γ, projected onto Σa. We define the ideal

distribution over the models of χ as pχ(φ) = pc(φ|χ). Thus,

the probability of any parameter valuation V given a channel

c is pc(V)/pc(χ) if V |= χ and zero otherwise.

A simple approach to draw from the ideal distribution would

be to choose V randomly according to pc, and then to reject

any sample that does not satisfy χ (this is called rejection

sampling). For typical protocol specifications, however, the

rate of accepted samples may be negligible.

Unfortunately, in practice it is difficult to do better than re-

jection sampling if one wants to achieve a precise distribution.

There exist precise methods to sample uniformly from clausal

Boolean formulas, but they are costly [21]. MCMC methods

are also used [22] but they require a large number of samples

to converge to the desired distribution. This is not practical

in our application, since the distribution is conditional on the

specification state, which does not repeat. Thus, the cost of

MCMC sampling cannot be amortized over a long sequence

of samples.

Given that the choice of the ideal distribution is heuristic at

best, and given the importance of achieving a high sampling

rate in testing, it is more practical to think of the ideal

distribution as a guide rather than a requirement. Here, we

propose a simple and practical approach that uses the ideal

distribution as a guide, applying an SMT solver. The method

does not provide an approximation bound because we wish

to trade off speed of sampling (and therefore of testing) for

accuracy of the distribution. This point bears repeating: it does
not make sense to expend exponential computational resources
to closely approximate an arbitrary distribution, as this will

166

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

ultimately lower rather than increase the test coverage. For

this reason, although the problem of conditional sampling

with a precise distribution is well studied, we chose to take a

heuristic approach. Having said this, while we show here that

that our approximate approach is effective in practice, we do

not explore the trade-off of distribution accuracy vs speed as

it effects bug finding ability and leave this question for future

research.

Sampling with SMT. While there is some degree of

randomness in models produced by an SMT solver, this

randomness is insufficient to produce an adequate diversity of

test inputs, hence we do not rely on randomness in the SMT

solver itself. Instead, to generate a sample, we first draw a

parameter valuation from pc. If the sample does not satisfy χ,

instead of rejecting it, we apply an SMT solver that produces

UNSAT cores to find a nearby sample that does satisfy χ. The

algorithm for this is shown in fig. 1. We define a function

SOLVERANDOM that given a constraint set χ and a vocabu-

lary Σ, returns a satisfying assignment over Σ drawn roughly

according to the ideal distribution pχ. We start by drawing a

sample from the base distribution pc at line 3. This model

is then translated into a characteristic set of constraints C
using a function StructureToConstraints. We prefer to have

fine-grained constraints. For example, if a symbol a represents

an array of length n whose value in the model is a, then we

produce a corresponding set of characteristic constraints of

the form select(a, i) = a[i] for i = 0 . . . n − 1. At line 5 we

ask the SMT solver whether χ is consistent with the model

constraints. If not, our sample did not satisfy χ. We consult an

unsatisfiable core returned by function UnsatCore. This gives

a heuristically small subset U of C that is inconsistent with

χ. If U is empty, χ must be unsatisfiable, so we give up and

return a special value ⊥. Otherwise, we randomly choose one

constraint from the UNSAT core to remove from C and repeat.

When χ∧C is satisfiable, we return the projection (↓) of the

satisfying assignment onto Σ as our sample.

1 function SOLVERANDOM(χ,Σ)
2 //draw a model of χ over signature Σ, approximately distributed by pχ
3 choose M ∈ structs(Σ) randomly, from distribution p
4 C ← StructureToConstraints(M)
5 while χ ∧ C is unsatisfiable:
6 U ← UnsatCore(χ,C)
7 if U = ∅ return ⊥
8 choose u ∈ U uniformly at random
9 C ← C \ {u}

10 choose M′ s.t. M′ |= χ ∧ C
11 return M′ ↓ Σ

Fig. 1. SOLVERANDOM: Randomize constraint solving with SMT and
UNSAT core

In practice, this procedure produces a distribution of events

that is far from ideal. It is fast, however, and we found it

to generate a diversity of tests sufficient to uncover many

protocol implementation errors that were not discovered by

other means.

Finally, recall that there are two other sources of non-

determinism in the test process: interleaving choice and inter-

nal choice of process π. For the former, we select which of the

two processes to execute (π or its mirror) according to a fixed

distribution. If the chosen process is not enabled to produce an

output, we reject the sample and try again. In this scenario it is

generally not possible to determine whether the process under

test will eventually produce output. A pragmatic approach

(also used in [9]) is simply to wait for a pre-determined time

and if no output occurs, assume no output is enabled. For

internal choice of π (for example, thread scheduling choice)

we assume this is not under control of the tester and let the

underlying system resolve the choices.
Randomized compositional testing has a key property that

we will call soundness. That is, if the system violates the

specification, then for some locale there is a local test that

reveals the failure (by Theorems 2 and 3). Since the failing

traces are finite, if the sampling distribution is everywhere non-

zero, there is a finite probably of producing the failure. Thus in

an infinite sequence of trials, we will eventually see the failure

with probability one. We do not, of course, test infinitely.

Nonetheless the fact that we do not rule out any failures is

important heuristically, since it means that all failures are

exposed to an adversarial test environment. Non-compositional

approaches, such as MBT, do not have this property.

IV. DEPENDENT FIELD EXTRACTION

Modern SMT solvers are powerful tools. Unfortunately,

they are not powerful enough to generate messages in a

complex protocol such as QUIC at a speed sufficient for testing

purposes. For example, we found that generating even a single,

relatively simple, packet in the QUIC protocol required several

minutes. This is because protocol states are large structures.

If we feed all of the constraints in the characteristic formula

of such a large structure into the SMT solver, the solver will

choke. To avoid this problem, we need to write our guards in

such a way that there are just a few essential random choices to

be made, from which the remaining parameters can be derived

deterministically. The random choices must depend on only a

small part of the protocol state to avoid flooding the solver

with too much data.
As an example, imagine that our protocol has messages

called frames. Each frame has three fields: a beginning marker

bgn, an ending marker end, and a payload array pyld that holds

the segment of a long stream of bytes data that falls between

these markers. We might write the guard of the frame action

like this:

bgn < end ∧ end < len(data) ∧ len(pyld) = end − bgn
∧ ∀i. i < len(pyld) ⇒ pyld[i] = data[i]

Suppose that data is part of the protocol state. Once we choose

bgn and end, the value of pyld is determined. Moreover, the

possible values of bgn and end depend only on the length
of data. We could exploit these facts to optimize the solving

process if they were more apparent in the form of the guard.

Suppose we rewrite the guard like this:

bgn < end ∧ end < len(data)∧
∧ pyld = segment(data, bgn, end)

167

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

Here, segment is a function interpreted in the solver’s theory

that returns a segment of an array. Now it is clear that we

can use our SMT solver to solve the first two conjuncts, while

ignoring the content of data. Then we can satisfy the last

conjunct by simply computing pyld directly without using a

solver.

In the remainder of this section, we present an algorithm that

uses this idea to efficiently solve constraints in the appropriate

form. We call we this approach dependent field extraction.

A. Modular constraint solving

The algorithm for constraint solving using dependent field

extraction is shown in fig. 2. It takes as arguments a struc-

ture M (a state of the specification), a set Σa of symbols to

solve for (parameters of an action) and a set of constraints C
(the guard of an action) and returns an interpretation Ma of

Σa such that 〈M,Ma〉 |= C.

Informally, we say a term is mutable if we can modify its

value without changing the truth value of formulae not refer-

ring to it. An example of a mutable term is an uninterpreted

constant symbol v. An immutable term would be x+ y, since

its value cannot be modified without modifying the values of

x or y.

To formally define mutability, we need to account for the

presence of quantified logical variables. We say that a formula

or term φ refers to a term t if some non-variable subterm of

φ can be unified with t. For example, the formula g(c) = d
refers to the term g(X) (where X is a variable) because we

can unify g(c) and g(X) by replacing X with c. Given the

constraint g(c) = d, we cannot define g(X) independently,

because the definition we choose might assign g(c) a value

other that d, so might be inconsistent with g(c) = d.

We write Vars(t) for the set of variables occurring free in

term t and say that formula ψ preserves satisfiability of φ if

satisfiability of φ implies satisfiability of φ ∧ ψ.

Definition 2: A term t is mutable if, for all formulas φ not

referring to t, every closed formula of the form ∀Vars(t).(t =
e), where e does not refer to t, preserves satisfiability of φ.

In other words, a mutable term can be defined arbitrarily

while preserving satisfiability of φ, so long as φ does not refer

to that term. Note that in the definitional formula ∀Vars(t).(t =
e), we require that e not refer to t so that the definition is

not circular. As an example, if g is an uninterpreted function

symbol and X is a variable, then g(X) is mutable. Some terms

with interpreted functions are also mutable. An important

example is the term f(v) where f is a destructor of an

inductive datatype and v is a some uninterpreted constant.

For example, say v is constant of a record type, and f(v)
represents the f field of record v. We wish to define f(v) = e
for some value e. We can start with any model of formula φ
and change the value of the f field of v to e. If φ does not

refer to f(v) this leaves the truth value of φ unchanged. In

particular, we will not change the evaluation of a term f(w)
representing the f field of record w.

We assume we have several procedures at our disposal.

The procedure Mutable recognizes some syntactic class of

mutable terms (for example, constants or destructors applied

to constants). The procedure UpdateStruct takes a model of

a set of constraints, and updates it so that t = e, where e is

some value, provided t is mutable and not referred to in φ.

For example, for a field reference f(v), we set the f field of

constant symbol v to e. The procedure StructureToConstraints,

used also in SOLVERANDOM of Sec. III, converts a structure Σ
to a characteristic formula.

Algorithm SOLVE in Fig. 2 first, calls a procedure Par-
tialEval to partially evaluate the constraints in the given

state interpretation Σ. This replaces any subterm that can be

evaluated to a literal by its value. For example, in a structure

that maps v to 0, the term g(v+1) partially evaluates to g(1).
This is an important optimization because it can eliminate

dependencies on large structures in the state. As an example,

in a structure that maps a to the array [0, 1, 2], the term len(a)
partially evaluates to 3. Thus, partial evaluation may eliminate

references to large data structures such as arrays. Then the

algorithm searches at line 4 for a constraint c of the form

t = e where t is mutable. For simplicity, we only handle the

case where t is a ground term. If t does not unify with any

non-variable subterms of the remaining constraints or e, we

call SOLVE recursively to solve the remaining constraints. We

then evaluate term e in the resulting model Ma and update

Ma so that t = e, using the procedure UpdateStruct. We know

this can be done because t is mutable.

1 function SOLVE (M,Σa,C)
2 // find an interpretation Ma of Σa s. t. M,Ma |= C
3 C ← PartialEval(M,C)
4 choose c ∈ C of the form t = e such that
5 Mutable(t) and ¬UnifiesWithSubterms(t, (C \ {c}) ∪ {e}):
6 Ma ← SOLVE (M,Σa,C \ c)
7 if Ma 	= ⊥:
8 return UpdateStruct(Ma,t,Eval(M∪Ma,e))
9 else: // if there is no such c

10 χ ← StructureToConstraints(M ↓ vocab(C))
11 Ma ← SOLVERANDOM(C ∪ χ)
12 if Ma 	= ⊥:
13 return Ma ↓ Σa

14 return ⊥

Fig. 2. Solve constraints using field extraction

On the other hand, if we do not find a constraint that we

can extract, we continue, at line 10, to solve the full constraint

set C. We remove from M the valuations of any symbols on

which the constraints do not depend. Here, vocab(C) refers

to the set of uninterpreted symbols in C. This may eliminate

large data values such as the data array in our example. Then

we convert Σ to a characteristic formula using the procedure

StructureToConstraints. At line 11, we apply SOLVERANDOM

to produce a model of this formula. Assuming it is satisfiable,

we return the model projected on the action parameters Σa (at

line 13.)

Consider again our example. Partial evaluation replaces the

term len(data) by a numeral (say, 42). The algorithm extracts

the definition pyld = segment(data, bgn, end) because pyld is

mutable and not referred to in the remaining constraints bgn <

168

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

end ∧ end < 42. It then recurs on these constraints. Since

this removes the last dependence on data, its interpretation

is removed from the state structure. Now the constraint can

be easily solved. Returning from the recursive call, we then

evaluate the term segment(data, bgn, end) and update pyld to

this value. This approach can result in a large improvement in

solving performance.

V. TESTING PRAGMATICS

In this section, we consider some additional issues that arise

in applying NCT in practice.

A. The test shim

Thus far, we have tacitly assumed we have a way to

compose the mirror process with the collection of processes

in a locale. In practice, this may be a non-trivial problem. The

processes in the locale consist of software, expressed in some

programming language and interpreted by a physical machine,

likely with the assistance of a good deal of additional software,

including a language run-time and an operating system. We

need some way to translate between the abstract events of our

specification and real occurrences in this physical system (for

example, instances of API calls, or signals on a wire). We will

call this translation process a shim.

One approach to making a shim would be to replace the run-

time environment of the software components being tested by

a virtual or simulated environment. For example, suppose the

software is written in C and communicates over the network

using calls to the Unix sockets API. We could simulate these

calls with calls into the shim that would translate send calls

into abstract send events, and abstract receive events into the

return values of receive calls. There are significant difficulties

in this approach, however. For one, implementations may

be written in different languages and use different system

API’s. This means we may need a different shim for each

implementation.

A much simpler approach would be to test the software

through the real physical network. In this approach the shim

handles receive events of a process by sending it a message

over the network, and interprets messages received over the

network from the process as send events of that process. It is

reasonable to ask, however, whether this testing procedure is

sound. That is, is it not possible that delays or duplications

introduced by the physical network (or a loop-back interface

in the operating system) will mask a protocol violation, or

perhaps cause one?

We will argue informally that, under reasonable assump-

tions, compositional testing via the network is sound. We

assume a network model in which the network guarantees only

not to invent messages. We can think of this network as a

composition of two groups of processes, reception processes

denoted by Rcpi, and delivery processes denoted by Dlv i.

For each input channel Inpi of the network, the reception

process Rcpi inputs messages on Inpi and outputs them on

a commit channel Commit i. For each output channel Outi of

the network, the delivery process Dlv i inputs messages from

all of commit channels and output them to Outi. See Fig. 3

for an illustration.

Fig. 3. The reception and delivery processes

The reception and delivery processes, like the network as

a whole, promise only not to invent messages. The network

modeled in this way is externally indistinguishable from the

network model without the commit events.

Suppose that instead of using φ to specify the message send

events of our processes, we specify the imaginary commit

events. When we decompose the system into locales, we in-

clude in the locale of each process its corresponding reception

and delivery processes. Our test process is the same as before,

except that now the mirror is communicating with the test

process through processes that arbitrarily delay and duplicate

messages, in other words, processes that act like a network.

Testing through the physical network can be thus be viewed as

simulating the imaginary reception and delivery processes in

our network model. The physical network will not, of course,

simulate all possible reorderings of messages allowed by the

model. However, by adding random reorderings in the network

we can simulate all possible message arrival orders with non-

zero probability and thus maintain soundness. Provided we

specify the protocol in a way that allows for arbitrary delays

and duplications, it is sound to test implementations of the

protocol in situ, through a physical network or operating

system. This greatly simplifies the problem of testing many

implementations of the same protocol.

B. Background assumptions

Often, in specifying of a protocol, we must make some

assumptions that are not justifiable within the model we are

using. An example of this is symmetry breaking. To establish

identities of processes on a network, or to avoid deadlocks,

we may assume that processes have access to some source of

randomness and that two processes will make the same random

choices with negligible probability (e.g., [23], [24] and IEEE

1394.). We cannot prove that two processes do not choose the

same nonce value. Rather, we wish to ignore system executions

in which they do.

Such assumptions do not fit into our compositional frame-

work because, when they fail, there is no single process that we

can blame. For this reason, we will augment our compositional

rule with a background assumption β. We can express the idea

169

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

that a process φ does not cause φ to fail without breaking the

background assumption by this triple:

〈β ∧ φ〉 π 〈β ⇒ φ〉
The implication on the right allows π to produce any output

that violates β, because we do not care about such traces. The

new rule for closed systems is:

for all � ∈ L: 〈β ∧ φ〉 ‖ � 〈β ⇒ φ〉
‖ Π |= β ⇒ φ

(4)

That is, if a locale can only cause the property to fail by

violating the background assumption, then all traces of the

composition that do not violate the assumption must satisfy

the property.

Example 7. Recall Ex. 6 in which we could not rule out

requests from different processes having the same connection

id. Obviously, no single client process can enforce this require-

ment, since the client cannot see the messages of all other

clients. Rather, we assume that the connection ids are large

random numbers, and thus we wish to ignore traces in which

two clients choose the same connection id. We can express

this assumption as a safety property with a state relation U
that records the set of pairs (c,N) such that nonce N has been

used on channel c. The background assumption β is expressed

using the following actions:

SND(M,N,D): (∀c.(U(c,N) ⇒ c = p̂))
→ {U(p̂, N) := true}

RCV(M,N,D): true → {}
Here, we use the special symbol p̂ that represents the channel

on which the event occurs. Thus, this specification is not

process-oblivious. With this β, the mirror process of a client is

prevented from generating connection ids that conflict with the

client, and the checker ignores cases where the client produces

a conflicting id. Thus, we can prove compositionally that the

clients and servers together implement protocol specification

φ under assumption β. �

VI. SPECIFYING AND TESTING QUIC

We now illustrate the application of the NCT methodology

described above using a case study on the QUIC transport

protocol. Here, we describe QUIC and the case study only to

the extent necessary to illustrate the application of the various

aspects of the methodology, such as locales and the dependent

fields optimization. A full account of the QUIC case study can

be found in [25].

The case study was designed to test several hypotheses:

(A) that Internet protocols such as QUIC require a testing

regimen that is adversarial and checks protocol compli-

ance;

(B) that this can be provided effectively by a specification-

based testing approach using a safety specification, and

(C) that a suitable specification can be distilled in practice

from standards documents and compositional testing of a

collection of implementations.

An explicit non-goal of the study is to produce a full or com-

plete specification of QUIC. The function of the specification

in the case study is to aid in finding bugs in implementations

of QUIC.

A. An introduction to QUIC

QUIC can be thought of as a stack of protocols, each of

which provides one aspect of the overall transport service.

At the bottom of the stack, UDP provides datagram ser-

vices. Above this the packet protection layer provides secrecy

by encrypting QUIC packets, which are encapsulated into

UDP datagrams. Above this, the packet protocol provides

loss detection using sequence numbers. The frame protocol
provides (among other things) ordered stream data. Sequences

of frames are encapsulated in packets. Each data frame carries

a stream identifier, a sequence of bytes, and the offset of those

bytes within the stream. This allows the stream data to be

reconstructed at the receiving end in spite of datagram re-

ordering and supports multiple independent streams. Above

the frame protocol, the security handshake protocol, which is

a modified version of TLS 1.3, exchanges handshake messages

using the frame protocol. Once a shared secret has been

established by the handshake protocol, keys can be derived for

encryption and decryption by the protection layer. Finally, at

the top is the application layer in which peers send and receive

reliable, secure, authenticated data streams. See Figure 4.

UDP

Client Server

UDP

Protection Protection

Packet Packet

Frame Frame

Security (TLS) Security (TLS)

Application Application

Fig. 4. QUIC protocol layers. Arrows represent dependencies between layers.

The basic unit of communication in QUIC is the connection.

A connection is a point-to-point channel that provides multiple

independent data streams. A connection is established when a

client sends an initial packet to a server. This packet provides

a connection identifier (CID) to the server, a string of bytes

that uniquely identifies the connection. It also contains a frame

with the first security handshake message. The server responds

with its own initial packet, containing the server’s CID and

the second handshake message. Subsequent handshake packets
are protected with handshake keys derived from the initial

messages. Once the handshake is complete, session keys are

available and transmission of session data commences. QUIC

packet types are thus partitioned into four encryption levels
using different keys: initial, handshake, 0-RTT (for early data)

and 1-RTT (for normal data with forward secrecy).

170

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

In addition to CID’s, QUIC packets contain unique sequence

numbers that are used to detect packet loss. A peer sends

acknowledgment (ACK) frames to indicate packet sequence

numbers that it has received. A packet that is not acknowl-

edged is considered lost after some time. Rather than retrans-

mit the packet, the peer retransmits its frames, as needed, in

subsequent packets with different sequence numbers. Clients

can migrate to new network addresses. Before using the new

address, the server validates that the client actually controls

the new address using special frames. Additional CID’s can

be issued to prevent connection tracking by attackers. The draft

protocol, as of version 17, has 20 frame types that are used

for various purposes: data transmission, loss detection, flow

control, connection state management, management of CID’s

and so forth.

B. A formal safety specification for QUIC

Our formal safety specification for QUIC is written as a

collection of actions in the Ivy language [26]. These actions

describe events at each layer of the protocol. This decision

was crucial for performance of test generation. That is, in

principle, we could have specified only the UDP datagrams

that appear on the network (or more properly, their cleartext

content). However, generation of these events using an SMT

solver would be too slow for testing purposes. By breaking

large events into smaller events at higher protocol layers and

applying dependent field extraction, we make test generation

practically feasible.

The most interesting actions are at the packet and frame

layer. The packet action has three parameters: the source

and destination endpoints (IP address and port number) and

the packet content. The packet content is expressed as a

record having various fields representing the encryption level,

source and destination CID’s, sequence number and payload,

the last represented as an array of frames carried by the

packet. The guard of the packet action specifies, for example,

correct use of CID’s and sequence numbers. It also defines

the payload field to be a sequence of frames enqueued by

the frame protocol for the given encryption level. That is,

these records are communicated from the frame protocol to the

packet protocol via the specification state. This is one example

of the use of dependent field extraction. By delegating the

production of frames to separate frame protocol actions and

defining the packet payload appropriately, we avoid sending

the actual frames to the SMT solver. To use this optimization,

it was crucial to specify events at multiple layers. The update

function of the packet action records various needed history

information, such as which sequence numbers have been used

and which frames have been transmitted in packets.

Each frame type in the frame protocol is a specified by

a corresponding action. As an example, a frame action of

STREAM type carries application data. The parameters of this

action are the frame content, the source and destination CID’s

and the encryption level. The stream frame record contains a

stream id field as well as length and offset fields indicating

that range of data within the stream that is begin transmitted.

The guard contains a variety of requirements. For example,

the source and destination CID’s must be connected, and the

encryption level must be ‘1-RTT’ (that is, STREAM frames

must be sent only with 1-RTT encryption). We also require

that the necessary encryption keys have been generated by the

security layer. Crucially, the data bytes contained in the frame

must match the corresponding bytes at the application layer.

We omit a variety of other requirements here. The update

of the action enqueues the frame for eventual transmission

in a packet and performs and stores some additional history

information.

Another use of dependent fields occurs in the STREAM

frame action. As in Sec. IV, we define the data in the frame

as a segment of the application data in the protocol state. This

prevents this large array from slowing the SMT solver and

allows our tester to fetch HTML files from the real server

(and allows the corresponding client tester to serve files).

The protocol layer actions behave like interleaving parallel

processes, sharing data through the specification state. For

example, the security handshake protocol exchanges messages

with the frame protocol via shared state symbols and also

shares computed cryptographic secrets with the protection

layer.

Overall, our current formal safety specification of the QUIC

wire protocol consists of 52 data type declarations, 45 state

symbols (the functions and relations in the state signature Σ)

and 30 actions. The data type declarations are primarily record

types that represent packets, frames, TLS messages and the

like, as well as basic types for entities like CID’s and sequence

numbers. The state symbols carry a wide variety of protocol

history information, for example, the association between

client and server CID’s, the used and acknowledged sequence

numbers for each connection, the IP addresses used by the

client, the handshake and application data transmitted, the

status of streams, the flow control parameters and so on.

C. Creating the test process

Given a specification expressed as a collection of actions,

the Ivy tool can generate a randomized mirror process. This

process is expressed in the C++ language and use the Z3 SMT

solver [27] with Algorithm SOLVERANDOM to generate events

consistent with the specification.

The handshake protocol illustrates a convenient use of

locales, as described in Subsec. II-C. In particular, because we

lacked a sufficiently detailed formal specification of the TLS

1.3 protocol from which to generate events at the security

layer, we instead used an actual implementation of TLS

1.3 [28] as a self-specifying process. For example, when

testing a server implementation, the instances of TLS on the

client side are considered part of the locale, and are executed

concretely. This sacrifices some generality of testing, since the

concrete implementation does not generate all possible TLS

behaviors. On the other hand, it helps greatly to circumscribe

the formal specification effort. The ability to use an off-

the-shelf TLS 1.3 implementation was an important enabling

factor in testing QUIC. In testing clients, we use a background

171

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

APPLICATION
SECURITY

FRAME
PACKET

PROTECTION
UDP

MIRROR SERVER

UDPNET

SHIM

TLS 1.3

Fig. 5. Structure of the test process for QUIC servers. Processes in the locale
are in grey. The shim connects the mirror to the locale and also infers hidden
server events at higher protocol layers.

assumption (Subsec. V-B) to filter out cases where the client

violates the specification by choosing the same nonce CID as

another client.

The shim that connects the mirror process to the concrete

software under test is also written in the Ivy language. We

take the approach described in Subsec. V-A of testing through

the physical network so that we can easily test a variety of

implementations of QUIC. The shim is also used to connect

security layer events in the mirror with concrete API calls of

the TLS 1.3 implementation. The shim has one further task.

That is, the concrete protocol implementations do not expose

protocol events above the UDP layer. Instead of instrumenting

the implementation code to output these events, we infer them

in the shim by inspecting the packets on the wire. That is,

a UDP datagram on the wire allows us to infer the hidden

events that must have occurred in the past at the higher layers.

This inference is straightforward, and is accomplished with

additional 28 lines of Ivy code.

As noted in Sec. III, the user must choose an appropriate

target distribution for sampling out of the space enabled

events. The Ivy tool provides some primitive mechanisms

for doing this. To obtain a diverse sampling of behaviors of

the implementation, it is important to choose this distribution

carefully. For example, we lowered the probability of certain

events, such as CONNECTION CLOSE frames, that tend to

cancel all activity. We also limited the range of connection ids,

since choosing a different connect id for each packet would

result in no progress of the protocol.

The overall structure of the test process is depicted in

Fig. 5. This shows how the mirror process generated by Ivy

is connected to the various processes in the test locale, via

the shim. Interacting with the protocol implementation over

the network, the mirror can generate protocol events at rate of

approximately 10Hz (or < 0.01 Hz without dependent field

extraction).

D. Results

We now consider the results of the interactive process of

developing the protocol specification and testing implementa-

tions against it. We applied the testing methodology to HTTP

servers based on the four chosen implementations of QUIC.

We wrote an initial version of the specification based on

draft versions of the QUIC protocol standards documents [29].

We then tested the various server implementations against

this specification. After analysis, failures of these tests often

indicated errors in the implementations or the draft standard,

but sometimes also indicated errors in our safety specifica-

tion. Consultation with implementers was often required to

determine this. Failure of a guard in checking the process

output sometimes indicates that the guard is in fact too strong,

and that the output should have been allowed. On the other

hand, failure of a process to handle an input (for example, by

flagging a protocol error) sometimes indicates the that guard

that produced that input in the mirror is too weak and needs

to be strengthened to rule it out. Because testing revealed

when the specification is either too weak or too strong, we

were able to use it to develop an adequate specification for

testing QUIC implementations, confirming hypothesis C. In

particular, we found that it was challenging but possible to

keep up with successive draft versions of the protocol as they

were developed.

In addition to protocol compliance errors, we recorded

crashes of the servers and failures to make progress, which

we defined as an anomalously low rate of data transfer

during a test. Over the course of approximately four engineer

weeks of testing, this revealed a total of 27 errors in the

implementations. We also determined, where possible, the root

cause of the errors, and classified the reason for detection of

the errors. These categories are ‘adverse stimulus’, meaning

the the randomized tester produced an unexpected message

order or parameter value, and ‘compliance violation’, meaning

that we detected the error because we monitored the trace with

a formal specification. Of the 23 errors to which we were

able to assign root causes, all were classified as being either

due to ‘adverse stimulus’ (78%) or to ‘compliance violation’

(57%) or both. None were detected by previous directed testing

or interoperability testing. This confirms hypothesis A: it is

important both to test compliance to a common standard,

and to test in an adversarial environment. We also found that

four of the errors were caused at least in part by ambiguities

or contradictions in the draft RFCs and four were possibly

exploitable by an attacker (apart from crashes, which might

also be exploitable in various ways).

This also illustrates an important point about specifications:

a formal specification of a highly complex system need not

and perhaps cannot be fully complete (in the sense of saying

everything about the system that we want to say) or even

fully correct. We should judge a specification by the extent

to which it serves its function. In this case the function is

primarily to expose errors via testing. Our specification of

QUIC is limited to safety properties and leaves some protocol

aspects unspecified, but it is sufficient to interact with real

servers to transfer files on the network without the servers

detecting protocol errors. Moreover, it is strong enough to

detect numerous protocol violations, confirming hypothesis B.

We give two examples of implementation errors we detected

that represent vulnerabilities. One of these is a possible denial-

of-service (DoS) attack by an off-path attacker. We discovered

a trace in which a server ceased at some point to send

any packets (representing a progress failure). Further analysis

revealed that this was caused by a rapid switching of the client

172

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

IP address between two values, which might be simulated by

an attacker. This was determined to be a weakness not just

in the implementation, but also in the standard, which was

subsequently modified to mitigate such attacks. This error was

detected only because the source IP address was randomized

by the tester, producing an adverse stimulus. Another vulnera-

bility we detected is a data leak in one implementation, similar

to the “heartbleed” vulnerability discovered in SSL/TLS [30].

This resulted in arbitrary server memory contents being sent

to the client, and was detected when a server sent incorrect

bytes in a retransmission of a stream frame, violating the

specification. The apparent cause of this was adverse use of

flow control by the randomized tester. It is interesting to note

that, although we tested only for violation of safety properties,

a number of security vulnerabilities emerged from the tests.

One interpretation of this is that our tester, while producing

only legal protocol behavior, nonetheless produced a wide

variety of unexpected stimulus. Pushing the boundaries of the

protocol is in a sense form of attack, and a difficult one to

detect.

VII. FUTURE WORK

Though it is clear that the randomized NCT approach is

effective in exposing previously unseen behaviors of imple-

mentations, there are many ways in which it could potentially

be improved to better explore the space. For example, one

could “fuzz” randomly generated traces to produce new traces,

perhaps using code coverage as a heuristic. This could be

done using white-box methods, as exemplified by the KLEE

tool [5]. In these methods, SMT solvers are used to discover

inputs that drive the implementation along different code paths.

To date, white-box methods have not been very effective in

producing deep errors that require long exchanges of messages

in Internet protocols [8], [31]. However, they might be an

effective adjunct to randomized specification-based testing.

Another promising approach is grey-box testing [32]. This

method essentially performs a random walk in the space of

inputs starting from certain “seed” inputs. Information about

covered paths in the implementation is used to bias the walk.

Traces produces by NCT could be used as such seeds. While

we do not believe that code coverage is a valid measure

of the quality of a test regime, we do expect that coverage

information can be used effectively as a heuristic guide in

NCT to more effectively find bugs.

NCT has the property that it can generate the long legal

sequences of messages that are needed to go deep in the state

space of the implementation. We think this property could be

exploited in many applications, especially in security. That

is, any technique that is used to search for vulnerabilities or

exploits could potentially benefit from having a rich diversity

of starting states. The fact that we accidentally discovered

some vulnerabilities in QUIC and its implementations is

evidence of this. We intend to explore this possibility in the

future. We are also interested in incorporating specific attacker

models into the methodology, and in the question of how

to generalize accidentally discovered attack traces into attack

strategies that can be replayed.

VIII. CONCLUSIONS

In this paper we developed a NCT, a network-centric

methodology for compositional testing. NCT enables one to

apply modular assume-guarantee reasoning principles to the

development of Internet protocols, and to validate implemen-

tations through adversarial testing. Unlike previous composi-

tional approaches, NCT does not use local specifications of

processes. Rather, it is based on single global specification of

the protocol and a notion of causality of failures that assigns

blame for the failure of the specification to a single process.

This allows us to effectively generate tests for protocols

with an unbounded number of participants, and to monitor

specifications on a network. For each process, the global

specification serves as both an assumption and a guarantee.

This makes it possible to automatically generate randomized

test environments that produce adverse stimulus and, at the

same time, check the implementation’s responses for specifi-

cation compliance. This fulfills the need we identified to test

implementations against a common formal specification, in an

adversarial manner. Moreover, because all assumptions of one

process are guarantees for another, NCT allows to detect when

the specification is too weak and to refine it (in fact, we did

this many times with QUIC). Thus, we can apply the NCT

methodology to distill formal specifications from the protocol

knowledge embodied in the implementations.

To permit randomized generation of complex protocols such

as QUIC, we developed pragmatic techniques for randomized

constraint solving that approximate a desired distribution,

and a method of decomposing the solution process called

‘dependent field extraction’ that makes it possible to generate

protocol traffic in the case of deeply nested message structures

with large data transfers. To enable this, we divided the

specification of QUIC into actions at the various protocol

layers. This methodology allowed us to test the complete QUIC

stack as a black box, a necessity in the case of implementations

that are not cleanly layered.

We saw in the case of QUIC that adverse stimulus generated

by the randomized tester, combined with monitoring by the

formal specification, was very effective in detecting errors in

the implementations that were not detected by other means. As

a side effect, we identified vulnerabilities in both the imple-

mentations and the standard, and exposed cases of ambiguities

and contradictions in the standard that have been remediated.

This shows clearly that a formal specification is a useful tool

in developing and implementing a network protocol.

As we noted, the SSL/TLS ecosystem suffered many diffi-

culties owing to the lack of compliance of implementations in

the wild to an unambiguous common protocol specification.

Our hope is that providing such a specification in a testable
form will be a step in preventing such difficulties in QUIC,

which is planned as the future basis of the World-Wide

Web. We also hope that the form of the specification is

simple enough that future developers of QUIC can use it as

173

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

a reference, though this remains to be seen. In general, we

see this work as a step in the process of integrating formal

specifications as a complement to other approaches in Internet

standardization.

REFERENCES

[1] T. M. Corporation, “CVE-2014-3566,” https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3566, 2014.

[2] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,”
in 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 2015, pp.
535–552. [Online]. Available: https://doi.org/10.1109/SP.2015.39

[3] I. Ristic, “POODLE bites TLS,” December 2014.
[4] H. Lee, J. Seibert, D. Fistrovic, C. E. Killian, and C. Nita-Rotaru,

“Gatling: Automatic performance attack discovery in large-scale dis-
tributed systems,” ACM Trans. Inf. Syst. Secur., vol. 17, no. 4, pp. 13:1–
13:34, 2015.

[5] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in 8th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings. USENIX Association, 2008, pp. 209–224.

[6] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub,
“Implementing TLS with verified cryptographic security,” in 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013. IEEE, 2013, pp. 445–459.

[7] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman,
C. MacCárthaigh, S. Magill, E. Mertens, E. Mullen, S. Tasiran, A. Tomb,
and E. Westbrook, “Continuous formal verification of amazon s2n,” in
Computer Aided Verification - 30th International Conference Part II,
vol. 10982. Springer, 2018, pp. 430–446.

[8] F. Rath, D. Schemmel, and K. Wehrle, “Interoperability-guided testing
of QUIC implementations using symbolic execution,” in Workshop on
the Evolution, Performance, and Interoperability of QUIC (EPIQ 2018).
ACM, December 2018, pp. 15–21.

[9] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson, Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer, ser. Lecture Notes in Computer Science.
Springer Verlag, January 2008, vol. 4949, pp. 39–76.

[10] J. Paris and T. Arts, “Automatic testing of TCP/IP implementations using
quickcheck,” in Proceedings of the 8th ACM SIGPLAN Workshop on
Erlang, Edinburgh, Scotland, UK, September 5, 2009. ACM, 2009, pp.
83–92.

[11] J. Bozic, L. Marsso, R. Mateescu, and F. Wotawa, “A formal TLS
handshake model in LNT,” in Proceedings Third Workshop on Models
for Formal Analysis of Real Systems and Sixth International Workshop
on Verification and Program Transformation, MARS/VPT@ETAPS 2018,
and Sixth International Workshop on Verification and Program Trans-
formation, Thessaloniki, Greece, 20th April 2018. To be published in
EPCT, 2018, pp. 1–40.

[12] B. Neelakantan and S. V.Raghavan, “Protocol conformance testing – a
survey,” in Computer Networks, Architecture and Applications, S. V. R.
et al., Ed. Springer, 1995, ch. 1, pp. 175–191.

[13] S. Bishop, M. Fairbairn, H. Mehnert, M. Norrish, T. Ridge, P. Sewell,
M. Smith, and K. Wansbrough, “Engineering with logic: Rigorous test-
oracle specification and validation for TCP/IP and the sockets API,”
JACM, vol. 1, no. 66, pp. 1–77, 12 2018.

[14] J. Misra and K. M. Chandy, “Proofs of networks of processes,” IEEE
Trans. Software Eng., vol. 7, no. 4, pp. 417–426, 1981.

[15] K. A. Elkader, O. Grumberg, C. S. Pasareanu, and S. Shoham, “Au-
tomated circular assume-guarantee reasoning,” Formal Asp. Comput.,
vol. 30, no. 5, pp. 571–595, 2018.

[16] D. Giannakopoulou, C. S. Pasareanu, and C. Blundell, “Assume-
guarantee testing for software components,” IET Software, vol. 2, no. 6,
pp. 547–562, 2008.

[17] K. L. McMillan, “Modular specification and verification of a cache-
coherent interface,” in 2016 Formal Methods in Computer-Aided Design,
FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016. IEEE,
2016, pp. 109–116.

[18] W. P. de Roever, H. Langmaack, and A. Pnueli, Eds., Compositionality:
The Significant Difference, International Symposium, COMPOS’97, Bad
Malente, Germany, September 8-12, 1997. Revised Lectures, ser. Lecture
Notes in Computer Science, vol. 1536. Springer, 1998.

[19] O. Grumberg and D. E. Long, “Model checking and modular
verification,” ACM Trans. Program. Lang. Syst., vol. 16, no. 3, pp. 843–
871, 1994. [Online]. Available: https://doi.org/10.1145/177492.177725

[20] M. Musuvathi and S. Qadeer, “CHESS: systematic stress testing
of concurrent software,” in Logic-Based Program Synthesis and
Transformation, 16th International Symposium, LOPSTR 2006, Venice,
Italy, July 12-14, 2006, Revised Selected Papers, ser. Lecture Notes in
Computer Science, G. Puebla, Ed., vol. 4407. Springer, 2006, pp. 15–
16. [Online]. Available: https://doi.org/10.1007/978-3-540-71410-1 2

[21] K. S. Meel, M. Y. Vardi, S. Chakraborty, D. J. Fremont, S. A.
Seshia, D. Fried, A. Ivrii, and S. Malik, “Constrained sampling
and counting: Universal hashing meets SAT solving,” in Beyond
NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona,
USA, February 12, 2016., ser. AAAI Workshops, A. Darwiche,
Ed., vol. WS-16-05. AAAI Press, 2016. [Online]. Available:
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12618

[22] N. Kitchen and A. Kuehlmann, “A markov chain monte carlo sampler
for mixed boolean/integer constraints,” in Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26
- July 2, 2009. Proceedings, ser. Lecture Notes in Computer Science,
A. Bouajjani and O. Maler, Eds., vol. 5643. Springer, 2009, pp. 446–
461. [Online]. Available: https://doi.org/10.1007/978-3-642-02658-4 34

[23] D. Lehmann and M. Rabin, “On the advantages of free choice: A
symmetric and fully distibuted solution to the dining philosophers
problem (exended abstract),” in POPL’81, 1981, pp. 133–138.

[24] A. Itai and M. Rodeh, “Symmetry breaking in distributed networks,”
Inf. Comput., vol. 88, no. 1, pp. 60–87, 1990.

[25] K. L. McMillan and L. D. Zuck, “Formal specification and testing of
QUIC,” in Proc. ACM Special Interest Group on Data Communication
(SIGCOMM19). ACM, 2019, to appear.

[26] K. L. McMillan, “Ivy,” http://microsoft.github.io/ivy, Last updated 2019.
[27] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in

Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, 2008,
pp. 337–340. [Online]. Available: https://doi.org/10.1007/978-3-540-
78800-3 24

[28] P. T. team, “picotls,” https://github.com/h2o/h2o/tree/master/deps/picotls,
2019.

[29] Internet-Draft, “QUIC: A UDP-based multiplexed and secure transport
(version 18),” https://tools.ietf.org/id/draft-ietf-quic-transport-18, 2019.

[30] T. M. Corporation, “CVE-2014-0160,” 2014. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1060

[31] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan,
and T. D. Millstein, “Analyzing protocol implementations for
interoperability,” in 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 15, Oakland, CA, USA, May
4-6, 2015. USENIX Association, 2015, pp. 485–498. [On-
line]. Available: https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/pedrosa

[32] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” IEEE Trans. Software
Eng., vol. 45, no. 5, pp. 489–506, 2019. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2785841

174

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 18,2021 at 17:19:11 UTC from IEEE Xplore. Restrictions apply.

