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ARTICLE INFO ABSTRACT

Keywords: A series of papers published by Bernard and colleagues in the late 1970s and early 1980s, dubbed the “accuracy
Networks studies,” called into the question the validity of self-reported perceived communication in the study of networks,
Accuracy

showing that such reports explain only about 20 % of the variance in directly observed communication. Ques-
tions remain about how well the kinds of organizations studied reflect typical formal organizations, the studies’
short observation periods, and manual observation methods. This study revisits the accuracy studies using a
unique dataset comprising 144 weeks of network surveys and machine classification of 7,000 h of audio re-
cordings to measure observable communication in a software engineering unit employing 54 people. Results
show that correlations between perceived and observed communication over the weeks studied have a lower
average than that reported in the accuracy studies but vary considerably from week to week. It also replicates
results of earlier research showing that participants tend to overreport communication when they perceive a
strong structural relationship to the alters they are rating. This study solidifies our knowledge about network self-
reports using a stronger data foundation than prior research employed. Its results, along with the previous
research, suggest that perceived communication is not so much a flawed measure of observable communication
as it is a related, yet distinct phenomenon. This highlights the need for developments in theory and modeling that
articulate the relationship between perceived and observed communication, and Network Reticulation Theory is
suggested as a viable approach.

Perceived Communication
Observable Communication
Situational

Bias

Interest in networks has exploded in recent yearslargely due to the
rise of social media and the availability of graph data associated with it.
However; the study of networks has a long history; dating back to at least
the middle of the 20thcentury; in the social sciences in general and in
organizational studies in particular. Studies in this genre describe the
structure of communication relationships in social and organizational
contexts as a way of discovering how information flows; how one’s
position in the network affects resources available; how organizational
processes work; and how they can be improved

Communication networks in social/organizational contexts are
typically measured with sociometric surveys. In such surveys, partici-
pants estimate their communication with others using counts, Likert-
type scales or ranks. Researchers initially assumed that these self-
reports were an accurate estimate of communication that occurred.
Then beginning in the late 1970s, Bernard and colleagues published a
series of studies (Bernard et al., 1984, 1982, 1979; Bernard and Kill-
worth, 1977; Killworth and Bernard, 1976, 1979; Killworth et al., 2006)
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calling this assumption into question.

The “accuracy studies,” as they have come to be known, adminis-
tered sociometric surveys to participants to measure their perceived
communication with others (using either ranks or scales). They then
employed three primary schemes for objectively observing communi-
cation in organizational contexts. In the first, they used unusual situa-
tions in which participants’ communication was logged, including
hearing-impaired TTY users, HAM radio operators, and users of an
electronic collaboration system (EIES). All three datasets observe
mediated rather than face-to-face communication. The first two orga-
nizations are informal and leaderless. As described in the study, mem-
bership in EIES groups is self-initiated and leadership is informal as well.
None of these organizations can be unambiguously mapped to Min-
tzberg’s (1989) formal organization types, and the researchers admitted
that they might be considered “exotic” (Bernard et al., 1982, p. 35). In
the second, they used non-participant observation in naturalistic orga-
nizational settings (a fraternity, an office, and a tech company) in which


mailto:steve.corman@asu.edu
www.sciencedirect.com/science/journal/03788733
https://www.elsevier.com/locate/socnet
https://doi.org/10.1016/j.socnet.2020.12.010
https://doi.org/10.1016/j.socnet.2020.12.010
https://doi.org/10.1016/j.socnet.2020.12.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2020.12.010&domain=pdf

S.R. Corman et al.

Table 1

Summary of correlation/accuracy results from the accuracy studies.

Author(s)

Accuracy or perceived/
observed correlations

Method of measuring observed
communication

Killworth and
Bernard

42 % of participants could
rank their first communicant

Logs of communication between
hearing impaired TTY users

(1976) first, second, third or fourth.
Average correlation (per
Bernard and Killworth, 1977)
wasr = 0.523

Average correlation across

four contexts was r = 0.382

Bernard and
Killworth
(1977)

Logs of hearing-impaired TTY
users and HAM radio operators;
walk-through observation of an
office and tech firm.
Walk-through observations of a
fraternity

Bernard et al.
(1979)

At the clique level, cognitive

data differs 160 % from the

behavioral clique structure it

was intended to represent.

Bernard et al. Percent accuracy was 36 %64
(1982) %

Logs of the Electronic
Information Exchange System
(EIES) at the New Jersey
Institute of Technology
Actual shortest paths in the
network

Correlation between actual
and conceptual paths was r =
0.50

Killworth
et al. (2006)

an observer walked through the setting every 15 min for a period of days
and recorded cases where people were observed interacting. In the third,
Killworth et al. (2006) measured a network with traditional sociometric
surveys and then asked participants to estimate the first step in a
small-world chain, given a particular network member as a target.

They compared the perceived and observed measures, or in some
cases structures derived from dyadic linkages (like cliques or shortest
paths). They reported either the percentage of cases that agreed or
correlations between the two measures. Their measures and results are
summarized in Table 1. The correlations between perceived and
observed communication ranged from 0.14 <r < 0.58 with a mean of r
= 0.45 across studies. In studies where percent agreement was
measured, that value ranged from 36 % to 64 %. If perceived and
observed communication behaved like different measures of the same
underlying construct, we would expect correlations greater than 0.70
(similar to the correlations between items loading on the same factor in
scaling studies), and higher levels of percentage agreement than the 50
% observed in previous studies. Clearly, based on these results, it is not
reasonable to assume that perceived communication is an accurate
estimator of communication that took place. Bernard et al. (1984) put it
more strongly, claiming that “what people say about their communi-
cations bears no useful resemblance to their behavior” (p. 499).

There is evidence that factors other than actual memories of inter-
action influence the perception of network links. Using a laboratory-
simulated organization, Corman and Bradford, 1993 tested contextual
factors that could contribute to inaccuracy. They found that a perceived
social relationship with the group (measured as the number of others
with whom a participant reported a relationship) was correlated with
commission errors (overreporting communication with others), r =
-0.26, p < 0.05, and communication load (number of speaking turns
observed for a participant in one session) correlated with omission er-
rors (under-reporting communication with others), r = 0.79, p < 0.05.
Johnson and Miller (1986) found that participants’ perceptions of
network connections had a moderate relationship to objective measures
of networks that indicated coresidence and exchange relationships.
Interestingly coresidence and exchange networks were not highly
related to each other.

Research outside the context of organizational networks also con-
cludes that people are not good at recalling their behaviors. Boase and
Ling (2013) reported significant correlations in the range 0.23 < r <
0.74 between self-reported and logged telephone and SMS use. Singh
and Jain (2017), studying similar call data, reported correlations in the
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range 0.07 < r < 0.69. Menon (1993) reported correlations between
actual and reported frequency of several behaviors in the range 0.13 <r
< 0.93. Kobayashi and Boase (2012), using an app to log voice, SMS, and
Gmail activity of Android phone users, found correlations in the range
0.04 < r < 0.48 between logged and self-reported behavior. They also
found that participants overreported communication in general. Brewer
(2000) concluded that “across a variety of relations, people forget a
substantial proportion of their social contacts when asked to recall them.
Even studies with relatively weak test-retest designs show noteworthy
levels of forgetting” (p. 40). In a review of literature, Schwartz (1990)
agreed, concluding that “respondents will usually base their answers on
some fragmented recall from which they attempt to infer a plausible
estimate using various inference strategies” (p. 116). Thus, studies in
other behavioral contexts indicate that self-reported behavior consis-
tently explains a small amount of variance in observed behavior, like
that reported in the accuracy studies.

Critics of the accuracy studies (Burt and Bittner, 1981; Freeman and
Romney, 1987; Freeman et al., 1987; Kashy and Kenny, 1990; Kimball
Romney and Weller, 1984; Romney and Faust, 1982; Webster, 1992)
analyzed and compared structures derived from perceived and observed
communication data using techniques like analysis of structural equiv-
alence and nonmetric multidimensional scaling. They found that struc-
tures derived from perceived measures exhibit stronger correlations
with similar structures derived from the observed measures, explaining
around 50 % of the variance. Based on this finding they concluded that
self-reports are an acceptable form of data when the objective is to study
structural characteristics of networks, even if there are errors in the
individual reports. Corman and Bradford, 1993 pointed out that this is a
dispute between methodological individualism, which favors explanation
of social phenomena via characteristics and behaviors of people making
up social groups, and methodological holism, which studies social struc-
ture via emergent properties of collections of individuals.

We argue that the critics’ response, while helpful in showing how
useful information can be recovered from perceptual data, does not
resolve the accuracy issue. First, much organizational network research
takes the individualism approach and is used to explain how messages
flow between specific dyads. Second, individuals make decisions about
communicating with others based on their perceptions of relationships
with those others (Corman, 1990; Corman and Scott, 1994a; Singh and
Jain, 2017), so understanding how their perceptions differ from objec-
tive observations and what factors influence these differences—i.e. the
methodological situationalism approach described by Corman and Brad-
ford, 1993—is important for theorizing how networks grow and change.
Third, even using the holism approach, observed communication still
explains at best only half the variance in perceived communication.
Thus, the accuracy problem is still relevant, notwithstanding the higher
association between more abstract structures derived from perceived
and observed communication data.

There are methodological criticisms of the accuracy studies as well.
The observed communication data from these studies rely either on
situations in which participants maintain logs or on manual observation
and coding of interaction. The former is an unusual situation and most
communication in organizations is not logged. The latter is limited in
terms of getting access to perform observations, the observability of
interaction when such opportunities are found, and the resources
available for doing the observation and coding. In addition, we do not
know how valid the observational schemes used in these studies are.
Finally, the observations in the more formal organizations were limited
in time. The “office” dataset was collected over four days, and the “tech”
was collected over one week. The longest observation period was for the
“EIES” dataset (a period of 4-5 months) but as already noted that study
observed mediated communication in a subnetwork of a larger
organization.

To our knowledge, the accuracy problem has never been studied in a
typical organizational context over an extended period, using ubiquitous
observation. It may well be that there is variation in accuracy even when
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using the same organization, participants, and observation methods. We
also do not know how adequate observational schemes like those used in
the accuracy studies are, compared to more ubiquitous observation.
Studies like the one reported here are increasingly called for owing to
the replication crisis in social science (Shrout and Rodgers, 2018). But
there is a theoretical issue here as well: If research shows that perceived
networks are not straightforward indicators of observable behavior,
then there will be a need to develop and test theory designed to explain
how they are different and how they are related.

This study is designed to address shortcomings of the original ac-
curacy studies using rigorous, and more detailed observations than were
available when the original accuracy studies were done. It uses a unique
dataset described below to test the hypothesis:

H1l. Communication as reported by participants is an accurate pre-
dictor of observable communication between those participants.

To reflect existing approaches to this hypothesis, we test H1 at both
the dyadic and structural levels.

The data we have available also afford the opportunity to evaluate
and replicate the findings by Corman and Bradford, 1993 that partici-
pants with higher communication load tend to under-report their
communication with others, and that participants tend to overreport
communication when they perceive a strong structural relationship to
the others they are rating. Using the week as the unit for cataloging load,
we hypothesize that:

H2. Weeks with higher average load among participants will exhibit
lower correlations between perceived and observed communication
than weeks with lower average communication load among
participants.

The rationale for hypothesis 2 is rooted in the fact that participants’
perceptions of the network are shaped by interacting with others and by
observing others interact. When communication load is relatively low,
participants have more cognitive resources available to keep track of
interactions. But as load increases, these cognitive resources are
increasingly taxed. Higher communication load can therefore obscure
participants’ ability to track their own interactions as well as in-
teractions between others in the network.

H2 deals with errors of omission, but there is also the possibility of
errors of commission. Based on perceived/observed discrepancies in the
overall sample, we predict:

H3. Participants who have stronger structural relationships with
others will over report communication with those others, relative to
what is observable.

When participants are formally related to one another, as when they
are assigned to the same work unit or are in superior-subordinate re-
lationships, they are likely to form expectations that they will commu-
nicate. As a result, when asked to recall communication relationships,
they are likely to overestimate their communication with other partic-
ipants who are formally related to them.

Methods
Setting

The setting for this research is the Software Factory (SF), a service
unit at a large southwestern university providing software engineering
services for funded research projects and university technology spinouts.
SF had directors and work was led by a professional software engineer
who managed student programmers using industry-standard engineer-
ing processes and were organized in forma, project-based teams. These
characteristics put it squarely in the category of a professional organi-
zation (Mintzberg, 1989). It operated for 144 weeks from late 2002 to
early 2005, and had 79 participants, including the manager, employees,
clients and researchers. Over this time, SF worked on 31 separate
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projects, developing applications for the social sciences, natural sci-
ences, and education, and for internal use (such as an activity reporting
system). This study used only records from the 54 SF employees, because
only employees made entries in a code repository and activity reporting
system, data we used to test H2 and H3.

Data collection

In addition to developing applications for external clients, SF was
established with another purpose, to support social science research on
networks. Employees consented to participate and contributed to regu-
lar and ongoing data collection. Whenever in the facility, participants
wore portable digital audio recorders fitted with lapel microphones.
When the participant logged in, a system turned on their recorder and
wrote a time stamp. When participants left the facility, they would
connect their recorder to the logging system, which would download
and store their recording. Over the study period we collected about
7,000 h of these recordings.

Other data were periodically collected. Participants completed
weekly sociometric surveys. They were presented with a list of other
participants, and for each would report their frequency of communica-
tion with that person over the previous week, using a seven-point Likert
scale anchored with “(almost) never” and “(almost) constantly.” Other
data includes recordings of group meetings, regular interviews with
participants, notes from periodic non-participant observation, records
from a code repository indicating lines inserted/deleted/changed by
specific participants, and records from an activity reporting system that
tracked hours spent by employees on various tasks and projects.

Because this study collected sociometric data including voice re-
cordings and other personal data, we designed protocols to ensure
informed consent and privacy of participants. These included verbal and
written explanations of the study and data to be collected and pro-
tections for participants, which were acknowledged in written consent
agreements from participants. We assured them we would not share data
with any other researchers for a minimum of five years after completion
of the study, and after that period we would only release data that could
be anonymized. They were also allowed to request destruction of data
collected about them within the past month (though no employee ever
made such a request). These protocols were approved in a full-board IRB
review.

Audio recording analysis

We used a simple speech activity detector combined with inter-
recording correlations to build a classifier to detect interaction be-
tween participants. The idea behind this method is that if two people are
interacting at a normal conversational distance, their voices will appear
on both recorders, generating a high correlation between the two audio
signals (Corman and Scott, 1994b) when properly time-aligned. We
determined a minimum number of audio segments required to establish
the validity of the classifier (compared to human raters) by using the
confidence interval equation (Neyman, 1937), with an error margin
(variance per sample) of 5% and an estimated population proportion of
0.8. Calculations showed that the minimum number of samples required
was 64 ten-minute segments.

In our analysis, a total of 75 ten-minute (or 3000 15-second) audio
segments from random working days and between random dyads were
coded by human raters to develop a “gold-standard” for validation. To
establish reliability, two trained coders coded a subset of nine randomly
selected 10-minute audio segments. Coder training consisted of a review
of the tasks, purpose, and audio detection tool functions. The two coders
discussed, refined, and applied coding rules for identifying what sounds
did and did not constitute conversation. Krippendorff’s alpha for cate-
gorical data (Hayes and Krippendorff, 2007) was used to establish reli-
ability. For the full set of audio segments o = 0.93, suggesting a high
level of inter-rater agreement.
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Table 2
Results of the simulation to validate our imputation method.

Trial Correlation SD Observed SD Imputed SD Difference
1 0.88 1.69 1.57 0.12
2 0.89 1.71 1.63 0.07
3 0.87 1.76 1.61 0.14
4 0.85 1.58 1.47 0.11
5 0.91 1.85 1.75 0.10
6 0.90 1.83 1.73 0.10
7 0.91 1.81 1.67 0.13
8 0.92 1.86 1.81 0.06
9 0.90 1.67 1.58 0.09
10 0.90 1.82 1.73 0.09
Average 0.89 1.76 1.66 0.10

To add rigor to this assessment, we conducted a follow-up analysis to
test whether inter-rater agreement was inflated by silence in audio
segments. We removed all 15-second segments identified as silence
before re-calculating reliability. For this test, « = 0.85 suggesting we
maintained high inter-rater agreement. After establishing reliability, 66
additional 10-minute segments were divided equally and independently
coded by each coder. In total, 75 10-minute audio segments were coded
to be used to validate the detection system.

Using this data, we developed a machine classifier using simple
speech-feature-based threshold and cross-correlation technique to
detect communication, trained on these coded segments. The receiver
operating characteristic curve (ROC) was constructed to measure the
performance of the classifier, which plots the true positive against the
false positive rate (Powers, 2011). The ROC is a probability curve and
the area under the curve (AUC) represents the degree of separability.
The ROC-AUC of the system was evaluated to be 0.88, which means that
the system was able to reproduce the coded data with a probability of
0.88. More technical information about this method is available on
request from the authors; see the Appendix for further details on
development and testing of the classifier.

After establishing the validity of the classifier, we applied it to our
entire recording dataset. We computed for each week, for each pair of
participants, the number of minutes they were observed interacting to
produce edges of a valued, directed network. The resulting dataset
contains 6330 edges, with mean edge weight of 110.01 min (s.d.
124.74).

Survey imputation

Most employees did not have a perfect record of completing the so-
ciometric surveys, leading to gaps in the data. We chose to impute
missing values in some of these cases. Due to a lack of payroll records,
we do not know if the gaps were due to a participant simply skipping the
survey or being away for a time. We assumed that any gaps of more than
four weeks were not due to just skipping the survey, and we did not do
imputation in these cases. We also did not do imputation of more than
one missing survey around the time of Christmas break, since most of the
employees were off at this time. For the remaining cases we imputed
missing values as the average of the values for the preceding and
following surveys for a given participant. The survey data contains
24,862 valued, directed edges, 7934 (31.9 %) of which were imputed. Of
the imputations we performed, 63.5 % of the values were in gaps of one
week, 24.1 % were in gaps of two weeks, 9.5 % were in gaps of three
weeks, and 2.9 % were in gaps of four weeks.

Imputation based on averages such as we have done can reduce
variance in the variable of interest. Multiple imputation techniques are
typically used to guard against this; however, we know of no existing
procedures for multiple imputation of valued networks over time (see
Huisman and Steglich, 2008, for a method for binary networks). To
determine whether our imputed values are likely to differ significantly
from those that would have been observed, we conducted a simulation
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to compare actual observations with imputed values, computed as if the
actual observations were missing. To reflect the distribution of gaps
noted above, we randomly selected 320 samples of gap size one, 125 of
gap size two, 50 of gap size three, and 14 of gap size four, for a total of n
= 720 cases. For each case we randomly selected an ego and alter. Then
from all weeks where ego rated alter, we randomly selected a set of
consecutive weeks to include a “before” observation, one or more gap
observation(s), and an “after” observation. For each case, we computed
the average of the before and after values and recorded this value paired
with the actual gap observations, then computed the correlation be-
tween the actual observations and their imputed values.

Results of ten runs of this simulation are shown in Table 2. The
average correlation between the actual observations and their matching
imputed values over ten trials is r = 0.89 (1> = 0.79). The average
standard deviation of the imputed values is about 5% lower, but given
that only 31.9 % of the values were imputed in the actual dataset, we
believe this should have a negligible effect on correlations between
perceived and observed communication in our main analysis.

Analysis

To analyze the correspondence between the perceived and observed
data, we created adjacency matrices for each week for both data types by
dividing the edge data for the perceived and observed networks into
weekly segments and aggregating edges for the week. To account for
possible differences in the way participants used the perceived
communication scales, we transformed their ratings into z-scores per
participant (i.e., we standardized each participant’s ratings based on the
mean and standard deviation of their ratings across all alters and ad-
ministrations). We used these values in a correlation analysis for each
week. We included only participant pairs where both survey responses
and recording observations were available for the week in question and
where there were at least three nodes in the resulting network. This
resulted in 120 pairs of weekly networks, with a minimum of three
nodes, a maximum of 12, and an average node count of 7.43 (s.d. 2.22).

To test dyad-level accuracy, we analyzed each pair of adjacency
matrices with the Quadratic Assignment Procedure (QAP; Krackhardt,
1988) as implemented in UCINET. QAP computes a standard observed
correlation between the elements of the two matrices. It then conducts a
simulation, randomly permuting the two matrices 1000 times, each time
re-computing the correlation to yield a distribution. QAP does not pro-
duce a standard parametric significance test; indeed, it cannot because
the observations are not independent. Instead it tests the chances of
obtaining a larger correlation than the one observed, given multiple
random re-orderings of the two adjacency matrices. We considered a
QAP correlation to be significant if the probability of obtaining a
simulated correlation greater than or equal to the observed correlation
was p < 0.05.

Regarding structural similarity, early accuracy studies (Killworth
and Bernard, 1976, 1979) used triad census (Holland and Leinhardt,
1975) to compare patterns of coordination and cohesion between
recalled networks and observed networks. Both studies found more
transitive triads in perceived networks than in observed networks, and
Kilworth and Bernard (1979) report a r = 0.46 correlation between
perceived and observed triad counts, suggesting some degree of struc-
tural similarity. In our study, a triad census would not be a represen-
tative measure of structural equivalence. Neither the perceived nor the
observed network contain isolates, and both networks have a relatively
high graph density, leading to little variance in transitivity. Therefore, a
structural measure that incorporates additional sources of variance such
as edge weights is better suited to an assessment of structural similarity
in our case. In this study, we measure network cohesion using correla-
tion transitivity (Dekker et al., 2017) to compare perceived and
observed networks for 121 weeks of the observation period. Correlation
transitivity measures the correlation between edge weights (amount of
communication) and the proportion of transitive ties in the network
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Fig. 1. Distribution of correlations between perceived and observed measurements over all weeks, in r = 0.05 ranges.

(transitive network structure). Like other calculations of transitivity,
positive values are interpreted as the network having a greater preva-
lence of collective coordination, and negative values are interpreted as a
tendency towards brokering or gatekeeping.

Critics of the accuracy studies have also assessed the influence of
communication volume on structural similarity. For example, Romney
and Faust (1982) revisit Bernard et al. (1982) with a follow-up analysis
using multidimensional unfolding to assess structural similarity between
rank-ordered perceived communication and observed communication.
They use adjacency matrix marginals that represent total interaction
volume for each network actor to compare perceived and observed
networks using Coombs’s multidimensional unfolding (Coombs, 1958)
to normalize their data and allow for direct comparison. They report a
correlation of r = 0.74 for their projected data, suggesting that the
assessment of structural similarity may add an additional degree of
context to the interpretation of accuracy studies.

Romney and Faust had all participants rank their degree of
communication with all other participants. In our study we do not have a
census of rank data for each participant for each week, making an
analysis identical to that of Romney & Faust impossible. However,
assessing the degree of similarity between standardized adjacency ma-
trix marginals for communication volume for each week offers a com-
parable method to assess structural similarity. For 121 weeks of data, we
used correlation analysis to assess the degree of similarity between ad-
jacency matrix marginals. Edge weight marginals were standardized to
allow for direct comparison across perceived and observed networks.

To test H2 we computed correlations between the QAP correlations
and the average communication load (i.e. among participants included
in the networks for that week) for that week. We operationalized load
two different ways: average hours recorded in the activity reporting
system, and average insertions/deletions/changes that the participant
made in the code repository (another measure of how much work they
did and therefore how much they are likely to communicate). Neither
system was in place until the 24th week of operation, so these tests are
based on data from 97 weeks of observation.

To test H3, we computed standardized perceived and observed
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measures for each participant pair and summed the difference between
these across the study period. We then computed two different measures
of structural relationships for these same pairs. One was the sum over
the project of the number of times one participant reported being paired
with another for a programming task in the activity reporting system.
The second was the one-mode projection (for participants) of the two-
mode network linking participants to projects in the activity reporting
system. The link weights of this network represent the number of times a
pair of participants reported working on the same project.

Results

In the test of H1 at the dyadic level, QAP correlations were signifi-
cant for 51 (58.1 %) of the 121 weeks included in the analysis. The range
of observed correlations was -0.86 < r < 0.93. The average correlation
over all the weeks was r = 0.25 (SD = 0.27), and for the significant
weeks it was r = 0.32 (s.d. 0.14). The average variance explained is 6.25
%, and 15.36 %, respectively. The distribution of the values of the
correlations within 0.05 ranges is shown in Fig. 1. The bulk are within
the range 0.00 < r < 0.45.

To test H1 at the structural level, we calculated correlation transi-
tivity for 121 weeks of perceived and observed networks. The relation-
ship between the perceived and the observed networks based on
correlation transitivity is r = 0.29 (p < 0.05) which echoes the findings
of previous studies and suggests some degree of structural similarity. We
also tested whether correlation transitivity varies to a significant extent
between recalled networks and observed networks. The t-test shows a
significant mean difference between the series (per M = 0.56, obs M =
0.69, p < 0.05) suggesting that the degree of transitive structure is
higher in the observed network on average. To check whether measures
of correlation transitivity are stationary throughout the observation
period, we tested for significant correlations with time. Only the
perceived network correlates to the point of significance (r = .36, p <
.05). The partial correlation between perceived and observed networks
that controls for time is r = 0.34 (p < 0.05) suggesting that the relative
agreement between the two series is not excessively influenced by time.
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Fig. 2. Distribution of standardized perceived-observed differences over all edges.
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Edge weight marginals for communication volume were calculated
for 121 weeks of perceived and observed networks. For out-bound ties,
the correlation between the perceived and the observed networks is r =
0.26, p < .05, and for inbound ties is r = 0.41, p < .05. In follow up, we
used partial correlations controlling for time to check for stationarity
throughout the observation period. For both perceived and observed
networks, inbound and outbound communication volume negatively
and significantly correlated with time in the range -0.26<r < -0.16. The
partial correlation between perceived and observed networks (0.27 <r
< 0.38) suggests that the relative agreement between these series is not
excessively influenced by time. These results, at both the dyadic and
structural levels, lead us to reject H1.

To test H2, we computed correlations between two average load
measures and the perceived/observed correlations from the QAP tests
for each week. Correlation with activity report hoursisr = 0.11, n.s. The
correlation with code insertions/deletions/changes is r = -0.08, n.s.
Based on these results we reject H2.

To test H3, we converted the survey responses (perceived commu-
nication) and minute counts (observed communication) to z-values per
participant, then computed the integer value of (Zperceived - Zoberved) * 10.
The distribution is shown in Fig. 2. The mode is zero, indicating that the
largest number of cases had no difference between the perceived and
observed values. The distribution is not normal (W = 0.81, 93 d.f., p <
0.001). It has left skewness of 1.49, indicating that participants over-
report communication with others more than they under-report.

We correlated these values, summed over the study period for all
pairs of participants, with the edge weights in the one-mode (partici-
pant) projection of the two-mode network linking participants with
projects. The correlation with the standardized perceived-observed
difference was r = 0.40, p < 0.01. We also correlated the perceived/
observed difference with the number of times one participant reported
being paired with another. Here the correlation was r = 0.36, p < 0.01.
These results support H3. We note that the project and partner measures
were themselves correlated, r = 0.55, p < 0.01.

Discussion

This research revisited the network accuracy studies using a unique
dataset. We collected data over an extended period of 144 weeks in a
naturalistic organizational setting. This resolves the methodological
criticisms noted above that results of the accuracy studies may have
been influenced by unusual contexts where communication is routinely
logged or by the sampling methods used to do manual observation in
previous research. The extended observation period also allows us to
assess the extent to which perceived/observed correlations vary over
time under similar observational circumstances.

Our first hypothesis predicted that communication, as reported by
participants, is a valid predictor of observable communication between
those participants. Two approaches exist in the literature for testing this
hypothesis, one analyzing the association between perceived and
observed measurements at the dyadic level, and another looking at the
structural similarity of networks derived from the dyadic data.
Regarding the former, QAP correlations between weekly adjacency
matrices recording perceived and observed communication were sig-
nificant for only about 70 % of the weeks. Correlations averaged r = 0.25
for all weeks, and r = 0.32 for significant weeks. These correlations are
somewhat lower than those reported in the accuracy studies, where
correlations averaged r = 0.45 across studies. They also fall within the
ranges reported by other studies reported above looking at behavior
recall outside network contexts.

Importantly, this study also shows that there is considerable varia-
tion in perceived/observed correlations across the weeks studied, with a
standard deviation of 0.32. Since all the correlations were based on the
same overall set of participants and the same perceived/observed
measures, this variation cannot be due to measurement techniques or
changes in participants. This means that the results in the accuracy
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studies might also have differed from what was observed, had the data
been collected during different time periods.

At the structural level, we observed significant relationships between
perceived and observed networks in terms of correlation transitivity (r =
0.29), and edge weight marginals (rinpound = 0.26, T'outbound = 0-41).
Values for correlation transitivity were significantly lower for perceived
networks (M = 0.56) than for observed networks (M = 0.69). Overall
then, we find that almost one-third of the weeks do not have significant
dyadic correlations, and for the weeks that do, perceived and observable
measures share about 26 % of their variance. The structural level mea-
sures show slightly lower values with shared variance of up to 17 %, but
even at this level we cannot conclude that reports by participants of
perceived communication accurately predict communication that can be
observed.

Our tests of H2 fail to replicate the results of Corman and Bradford,
1993. Results showed that the workload of the participants, operation-
alized as hours logged in the activity reporting system or code repository
activity, was not significant predictor of the perceived/observed corre-
lations in a given week. This is at least partly because employees did not
always log hours in the metrics reporting system, and SF work involved
much more than writing code (i.e., researching solutions, planning, code
reviews, etc.). The tests of H3 do replicate the findings of Author,
showing that the more one participant is formally connected with
another, either through co-work on projects or partnering relationships,
the more they tend to overestimate communication with that other.
Finally, we note that there is a general bias toward overreporting. The
error distribution shown in Fig. 2 is showing that participants over-
reported more than they under-reported. This is consistent with results
reported by Kobayashi and Boase (2012) in the context of mobile phone
use.

Limitations

Four limitations of this study deserve mention. First, our method for
detecting communication from audio recordings only looked at the
presence of a common voice signal on two recordings. We may have mis-
classified some cases as communication where, for example, one person
was talking on the phone in the vicinity of another person being
recorded. Given the number of recordings, it was not practical to verify
that these cases marked an actual conversation, but our coders indicated
that such cases were rare. Second, we did not replicate all the structural
equivalence methods used by the critics of the accuracy studies because
of differences in data.

A third limitation has to do with the generalizability of our findings,
given that they are based on a single organization. We believe the di-
versity of SF projects, the ubiquity of the observations, the extended
period over which they were gathered, and the difficulty of reproducing
this effort over many organizations makes the generalizability concerns
tolerable. Our findings differ from those of previous studies, but not
radically so, easing concerns the SF is an outlier organization.

Finally, we did not have access to data on all possible sources of
communication load for the test of H2. For example, we do not have
participants’ email messages or telephone logs. However, SF was located
in one large, open office setting so participants could easily communi-
cate without using email or telephone, so we do not believe these are
likely large sources of load.

Implications

There are three take-aways from this study. First, correlations re-
ported here are somewhat lower than those reported in the accuracy
study. At the dyadic level, perceived communication accounts for 6.25
% (all weeks) to 15.36 % (QAP-significant weeks) of the variance in
observable communication. At the structural level, perceived structures
account for up to 17 % of the variance in observed structures, depending
on the measure used. This value is lower than many structure-level
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correlations reported by accuracy study critics; however, we note that
the way our data were collected and compiled precluded exact repli-
cation of some of the critics’ methods.

Second, there is considerable variation in dyadic correlations over
the many weeks we studied. For about 42 % of the weeks we studied,
correlations did not exceed the QAP threshold for significance. Those
that were significant varied over a range of up to 20 % of variance
explained. Unlike the accuracy studies, we studied the same organiza-
tion with the same members (except for normal turnover) using the same
methods, so these differences must be due to something other than
methodological artifacts. An intriguing possibility is that variation in
accuracy is the outcome of social forgetting that allows the organization
to be more adaptive.

Third, some of these differences are due to situational factors. A
heavier workload among participants included in a given week’s anal-
ysis is not associated with a lower perceived-observed correlation for the
same week. However, participants do tend to overreport communication
with others with whom they share assignments to projects or are
frequently partnered for tasks. In other words, self- reports are biased
toward formal structural relationships.

When all is said and done, the conclusion of Bernard et al. (1984),
that perceived network data bears no useful resemblance to communi-
cation that occurs, may be going too far. Our results show significant
correlations for about half of the weeks. Perceived communication ex-
plains up to about one-sixth of the variance in observed interaction, and
in many research contexts (for example a social psychology study) that
would be considered a useful amount. In many cases, participants
accurately report their communication or differ from what can be
observed by small amounts, and there are sometimes large correlations
between perceived and observed communication at the network level.
However, the correlations vary over a wide range from week to week,
and that situational factors like organizational structures bias
self-reports.

The “no useful resemblance” conclusion of Bernard and colleagues
assumes that the lack of high correlations means perceived network
measures are simply flawed indicators of corresponding observed
network measures. But if that were true, we would expect more
consistent correlations across studies as well as less variation from week
to week in the longitudinal results presented here. On the other hand, we
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would expect variation in correlations if perceptions were one of the
influences—but not the only influence—on observable behavior.

This points to the importance of developing and testing theory that
more fully explains the relationship between perceived and observable
communication. One example is network reticulation theory (NRT;
Author; Fan et al., 2020). Using a structurational approach, NRT argues
that perceived networks are structures in a latent domain of social re-
lations. When we ask participants about their perceived network re-
lationships with others, this is what we are measuring. Perceived
networks are activated by focused activity in an organizational setting,
aimed at accomplishing some task, goal, or requirement, and leading to
behavior in an observable domain of social interaction. In any activity
demand, it might be that an existing strong relationship is activated, and
this is probably the norm. However, circumstances (time pressures,
availability of members, etc.) might dictate that a weaker relationship
be activated or that a new one be formed, leading to a mismatch between
perceived and observed behavior at that time.

Observable behavior in the domain of social interaction in turn in-
fluences the perceived relationship in the domain of social structure,
strengthening or weakening it. This production and reproduction of
perceived networks in observable interaction over time is a plausible
reason that a given instance of observable behavior might not corre-
spond to a perceived relationship: Circumstances of activation might
have prevented it, or the perceived relationship might have not yet so-
lidified. A complex system drives the communication choices of orga-
nization members, and perceived and observable networks are distinct
yet related elements of that system. Further empirical research is needed
to test this proposition.
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To detect observable communication from audio recordings we used cross channel speech signal analysis to detect communication between
speakers. The basic idea behind this approach is that, if two individuals are speaking, their microphones will pick up each-other’s speech and cross
correlation will be high. The following steps are used for cross channel speech analysis. As a pre-processing step we normalized the data by the mean to
remove DC offset (caused by the analogue parts of the system that add a DC current to the audio signal), that causes significant interference with the
audio signal, especially during signal processing. We investigated preliminary conversation detection performance on the SF data by using a two-stage
approach. The first stage identified continuous segments of speech using an energy and spectral based detector; in the second stage, we use pair-wise
cross-correlation between one speaker’s channel and the remaining channels to detect with whom that person was speaking. We computed the short-
time speech energy and spectral centroid for every 15 s frame and estimated thresholds to detect speech from the two features. Speech portions were
detected using the two thresholds and nonspeech portions were removed. Next, we computed the covariance matrix between energy of the speech
segments from both microphones in a dyad. The covariance matrix represents a proxy for the frequency of interactions between any two individuals.
Two sets of thresholds were estimated based on the diagonal elements of the matrix, (a) Thi, to determine if communication occurred (0 or 1, 2, 3) and
(b) Thy, to determine the direction of communication (1, 2 or 3).

We validated the detections by comparing them to human coder classifications of the audio recordings as indicating network connections. We
extracted 10-minute audio segments from a dyad from random working days. First, we determined the total number of segments required to assess
validity. Based on this we extracted that number of segments through random sampling from the audio corpus. External raters then coded the 15 s
segments regarding whether there was talk or silence in the segment and who was talking to whom. The specific classifications they could make were:
Silence/noise (0), Employee 1 speaking (1), Employee 2 speaking (2), Both employees speaking (3). We determined the minimum number of audio
segments required to assess validity using the confidence interval equation,
p1—p) €))
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Fig. Al. Receiver operating characteristics curve for communication detection; Area under curve (AUC) = 0.88.

Table A1

Confusion matrix for the best detection model. Each element is shown in terms of number of 15 s segments.
Coder
Class 0 1 2 3
0 1390 183 227 74

Tool 1 51 201 32 105

2 70 14 309 98
3 16 42 50 138

where N is the minimum number of samples, p is the estimated population proportion and € is the margin of error. With an error margin (variance per
sample) of 5% and ap of 0.8, the minimum number of samples required is 64. In our analyses, a total of 75 ten minutes audio segments from random
working days and between random dyads were used for communication validation. As Fig. Al indicates, there was 88 % agreement between the coders
and the automated detection (see next section for more details).

In the pair-wise communication detection, the four main classes were, “Silence/noise” (0), “Employee 1 speaking” (1), “Employee 2 speaking” (2), and
“Both employees speaking” (3). The receiver operating characteristics (ROC) curve (see Fig. A1) was used to illustrate the communication detection
accuracy (0 or 1, 2, 3). The ROC curve was constructed by varying the threshold Th;, and the optimum value of Th; was determined. Threshold Thy was
determined after constructing confusion matrices for various Thy values. The threshold parameters for the best model were Th; = 2.53¢° and Thy =
2.02¢°. We have shown the confusion matrix of the best detection model (80 % training, 20 % testing) in Table A1l.

Our method produced a communication detection rate (AUC: 0.88), and on reviewing the results, we noticed that most of the false positives
resulted because of the presence of other employees. Thus, in case of a communication scenario with more than two employees, the correlation
weights will be high for any dyad with the speaker in it, while the correlation weights between other employees will be relatively low. For any focal
individual, the correlation weights between that individual will be high with anyone they address, while those between other speakers who might be
detected in the background is lower.

Short-time speech energy and spectral centroid

We denote x;(n)n=1, ..., W, as the sequence of audio samples of the i-th frame, where W, is the length of the frame. Short-time energy distinguishes
voiced speech from unvoiced speech and evaluates the amplitude variation and power of the signal for each frame. It is calculated as,

Wi,

E@i) = |x(n) [ @

n=1

Let X;(k)k =1, ..., Wy, be the magnitude of the DFT coefficients of the i-th audio frame. Spectral centroid is a measure of the center of gravity of the
spectrum of the signal frame. A higher value of spectral centroid corresponds to a brighter sound. It is calculated as:

W,
_ SR ,
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