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ABSTRACT

A deep learning procedure has been examined for automatic segmentation of

3D tomography images from fiber-reinforced ceramic composites consisting of

fibers andmatrix of the same material (SiC), and thus identical image intensities.

The analysis uses a neural network to distinguish phases from shape and edge

information rather than intensity differences. It was used successfully to seg-

ment phases in a unidirectional composite that also had a coating with similar

image intensity. It was also used to segment matrix cracks generated during

in situ tensile loading of the composite and thereby demonstrate the influence of

nonuniform fiber distribution on the nature of matrix cracking. By avoiding the

need for manual segmentation of thousands of image slices, the procedure

overcomes a major impediment to the extraction of quantitative information

from such images. The analysis was performed using recently developed soft-

ware that provides a general framework for executing both training and

inference.
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GRAPHIC ABSTRACT

Introduction

X-ray micro-CT imaging has become a valuable tool

for analysis of structural materials, both for visual-

izing complex 3D microstructures and for imaging

internal defects and damage introduced during

manufacture or service [1–10].

In the case of fiber-reinforced composites (polymer

or ceramic matrices), useful mechanical properties

are achieved by arranging high strength fibers in

sometimes complex 3D arrangements and sur-

rounding them with a matrix [11]. The performance

and reliability of these composites are dependent on

the internal fiber architecture and the nature of

damage caused by external loads. During the past

10 years, synchrotron micro-CT imaging has been

used to measure internal fiber architectures, includ-

ing statistical deviations from the ideal (or intended)

architecture, and provide the input needed to build

numerical models for life prediction in both ceramic

and polymer matrix composites [1, 4–7]. It has also

been used with in situ mechanical loading and/or

heating to detect and image the initiation and

development of internal damage [2–6, 12], a critical

step in guiding and validating life prediction and

processing models.

In most studies, the identification and representa-

tion of image features of interest has been done

manually. The large amount of data involved makes
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this a daunting and time-consuming task, which is a

major impediment to the extraction of quantitative

information from the images (a single experiment

typically produces multiple 3D images, each con-

sisting of more than 2000 slices). Automation of the

process would enable more widespread and efficient

use of such data.

The first step in automating the process involves

image segmentation, the labeling of image pixels

according to their constituent materials. Having all of

the pixels labeled permits use of standard image

processing routines to compute quantitative param-

eters, such as fiber volume fractions and fiber orien-

tations, as well as visualize the spatial distribution of

internal cracks and voids. Substantial progress has

been made in developing and evaluating the accu-

racy of various automated algorithms for segmenta-

tion. The approaches range from simple thresholding

to more sophisticated techniques involving k-means

clustering, statistical region merging, and parallel

Markov random fields [13, 14], which are able to

avoid some of the errors invariably introduced by

noise and reconstruction artifacts in real images. In a

recent study, Czabaj et al. [15] used a synthetic tem-

plate-matching technique combined with multi-tar-

get tracking to determine accurate locations of

individual fibers in a graphite/epoxy composite with

multidirectional reinforcing fibers, with very few

errors. However, all of these approaches depend to

some extent on intensity differences between the

phases being separated. Consequently, they become

less effective in composite materials with low con-

trast between fibers and matrix, or more complex

microstructures (especially with multiple phases in

the matrix) and intricate internal pores.

Ceramic composites consisting of SiC fibers in a

SiC matrix have been developed for high-tempera-

ture applications in turbine engines, aerospace

propulsion and nuclear power generation. These

composites present an extreme challenge for auto-

mated image segmentation, since the fibers and

matrix show no gray-level contrast. An example is

shown in Fig. 1. This composite was made by taking

a single straight tow of SiC fibers (* 500 filaments),
coating the fibers with a thin layer of BN (* 500 nm
thickness), then forming the matrix by chemical

vapor infiltration of SiC. The BN layer is visible in

Fig. 1a as a dark ring around each fiber. An envi-

ronmental barrier coating (EBC) of alumina and silica

was then applied to the exterior of the rod-shaped

composite using a slurry deposition process. The CVI

process used to form the SiC matrix invariably traps

voids among the fibers, which are visible in Fig. 1a.

Several regions are also visible where the EBC had

infiltrated into voids that were connected to the sur-

face of the composite. Despite the fact that there is no

difference in gray levels between the fibers, matrix,

and EBC, these three phases are easily discriminated

visually in the section normal to the fibers (Fig. 1a).

However, in the section parallel to the fibers (Fig. 1b),

the fibers and matrix cannot be distinguished.

In this paper, we examine the application of an

image segmentation method based on deep learning

that is capable of segmenting images such as Fig. 1

automatically. This deep learning method relies on

artificial neural networks to perceive the shape and

edge information cues that enable visual discrimina-

tion in images such as Fig. 1a. Several other studies

have explored application of deep learning to image

segmentation in other fields. Haberl et al. [16] built a

cloud-based tool (CDeep3M), which they bench-

marked with images of biomedical systems obtained

with several techniques. Sinchuk et al. evaluated both

variational1 and deep-learning-based segmentation

approaches using images with low resolution and

low (but nonzero) contrast from a carbon-epoxy

composite [17]. The deep learning method used here,

based on the software Dragonfly from ORS,2 which

runs locally on a workstation, is generalized, flexible,

and straightforward to apply. It is also robust, even

with images of low or zero contrast between phases

on interest, as in Fig. 1a.

Methods

Material and imaging

The image slices in Fig. 1 are from an X-ray CT image

of a rod-shaped SiC–SiC composite test specimen,

fabricated as described above,3 with diameter of

approximately 2 mm. A series of CT images were

also obtained from a second specimen of the same

1 The variational method for segmentation at the fiber tow
scale begins with a prior geometric model of the weave
topology that is iteratively matched to the lCT image via an
optimization process [47].
2 Object Research Systems, Montreal, Canada (free of charge
for non-commercial use) [23].
3 The test specimen was supplied by Prof. G Morscher: further
details of the fabrication method are given in [48].
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composite, while the specimen was subjected to ten-

sile loads parallel to the fibers (in the vertical direc-

tion), using an in situ test rig [2, 18] mounted on a

synchrotron micro-tomography beamline (BL 8.3.2 at

the Advanced Light Source at Lawrence Berkeley

National Laboratory). For these images, a parallel

white-light beam was used, with an exposure time of

40 ms for each of 1025 radiographs collected during a

scan time of 1.5 min. Baseline images were also col-

lected from both specimens beforehand with the

specimen mounted outside the test rig, thereby

allowing the scintillator to be positioned closer to the

test specimen to minimize near-field diffraction

effects. The baseline images were obtained using a

monochromatic beam (17 keV), with an exposure

time of 500 ms for each of 1025 radiographs, collected

over 15 min. For each scan, a set of 1025 radiographs

were collected and converted to a reconstructed 3D

CT image using inverse Radon transforms imple-

mented in Xi-cam, a software platform that builds on

previous tomography toolkits TomoPy and gridrec

[19]. Each reconstructed image in the baseline scan

consisted of 2160 slices with a voxel size of 0.62 lm
and total image height * 1.7 mm, while the images
obtained with the specimen mounted in the test rig,

had voxel size of 0.58 lm and total image height *
1.3 mm. The composite was scanned at 12 overlap-

ping vertical positions (tiles) that can be stitched

together to assemble an image stack of a 15 mm

vertical test section of the composite. The

reconstructed images were reduced from 32-bit to

8-bit for faster subsequent processing. No filters or

any other image post-processing steps were con-

ducted on the reconstructed images.

Deep learning strategy for image
segmentation

Neural networks have been used recently to solve

demanding image segmentation problems from other

scientific domains as in medical imaging, face

detection, and autonomous driving [20, 21]. When the

network models are structured with multiple suc-

cessive artificial neurons, the method is generally

referred to as deep learning. Convolutional neural

networks (CNNs) are a special case of deep learning

where one or more layers of the network perform

convolution operations; the specific convolution ker-

nels are not programmed, but are learned from the

input images by the deep-learning engine to extract

the relevant features of an image that become useful

discriminators in segmenting materials in complex

images [22]. Further discussion of image texture

decoding and discrimination, made possible by

CNNs, is given in ‘‘Appendix A’’.

Operationally, CNNs can behave as image trans-

form engines that take an input image and return a

more useful output, such as a segmented image. The

CNN architecture can be thought of as a formula of

linear weights applied to the image pixel intensities,

Figure 1 a Transverse and b Longitudinal sections of CT image

of SiC–SiC composite. The fibers and matrix can be identified

visually through shape and surrounding recognition in the

transverse section but not in the longitudinal section. Line A–A0

in a indicates location of longitudinal section in b.
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often combined through multiple network layers in a

nonlinear fashion. The coefficients encoded in the

neural network itself are learned from training data

that couples example input images with example

output images [22]. The iterative process of learning

the weights that can reliably transform input images

into output images is termed training; and it is the

most computationally demanding phase of the deep-

learning cycle. The segmented training data can be a

selection of image slices that have been manually

segmented to identify a material composition (or

label) for each pixel. The trained model can then

automatically segment the remaining unsegmented

image slices. This process of using the trained model

to transform the remaining unseen image slices is

termed inference, and it is less computer intensive

than the training phase.

The convolutional neural network model used in

this work was designed using an online tool-sharing

community repository, Infinite Toolbox, and the

associated Dragonfly 4.1 software [23], which pro-

vides an interface where users can use manual seg-

mentation tools, connect parameters, and execute

network training (see ‘‘Appendix B’’). Whereas the

design of the network model itself and the tuning of

various network parameters requires some expertise

in neural network architectures, the application

(training and inference) does not. Network parame-

ters that need to be assigned include: (1) a ‘‘patch

size’’ (in the training stage the images are split into a

set of smaller 2D square patches that capture the

features of interest in the image [24]); (2) a ‘‘stride-to-

input ratio,’’ which defines the positions of the

neighboring patches; (3) a ‘‘batch-size’’ which defines

the number of patches evaluated in each batch prior

to updating the coefficients of the network model; (4)

the number of epochs (an epoch is one training iter-

ation, involving a pass over all batches of the training

set); and (5) selection of a loss function (or cost

function), to evaluate how far the output of the model

deviates from the target output [25, 26] and an opti-

mization algorithm to find optimal weights for the

coefficients of the CNN [27, 28]. In the present work,

the number of training slices and values of network

parameters were selected after making trial runs with

several combinations of parameters judged to be

reasonable based on previous experience, until the

quality of inference on unseen data was adequate

(98% accuracy) with reasonable training time.

Results

CMC microstructure segmentation

Training data and parameters

For the training data, 17 of the 2160 transverse image

slices from a baseline CT scan of the composite were

selected and segmented manually to identify each

pixel with one of four material phases: fibers, matrix,

pores, and environmental barrier coating (EBC), in

addition to empty space surrounding the composite.

The image slices were oriented normal to the axis of

the rod-shaped composite test specimen. In this ori-

entation, the visual distinction between fibers and

matrix is straightforward because of the presence of

the thin dark coating of BN on each fiber (the BN

itself, which was of sub-pixel thickness, was not

segmented as a separate phase). The time taken for

manual segmentation was approximately 1–3 h per

slice.

The segmented image slices were used to train a

neural network architecture FCDenseNet [29, 30],

selected from the Dragonfly toolbox. The data from

the image slices were divided into patches, with 80%

of the patches being used for the training itself and

the remaining 20% of the patches being retained for

validation, to provide an unbiased evaluation of how

accurately the trained model is capable of segmenting

the images correctly. The trained model achieved

85% accuracy after 200 epochs and 98% accuracy after

300 epochs, (accuracy defined as the percentage of

pixels with the material phase correctly identified).

The computer time required for training depends on

network complexity, the number of training images,

the number of epochs required to achieve a satisfac-

tory accuracy for each training image, and the per-

formance of the hardware being used. In this work,

each epoch required 10 min using an Nvidia Quadro

P4000 graphics processing unit (GPU). This translates

to 50 computer hours of training.

Segmentation results

After the training stage, the model was applied to

segment the remaining (previously unseen) 2143

transverse image slices from the same CT scan,

thereby producing a fully segmented image stack.

The model succeeded in segmenting all four phases

at a rate of 29 image slices per minute (approximately
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75 min for the complete CT image). The accuracy of

the segmentation output was assessed visually by

comparing randomly selected segmented slices with

the corresponding original images.

Typical results are shown in Fig. 2, which com-

pares equivalent transverse and longitudinal slices

from the raw and segmented CT images. Comparison

of the transverse slices, where the different phases in

the raw slice can be distinguished visually, indicates

that the accuracy of the segmentation appears quali-

tatively to be high. Comparison of the longitudinal

slices indicates that the fibers, matrix, and voids are

clearly distinguished in the longitudinal slice from

the segmented CT image, whereas in the equivalent

slice from the raw CT image none of these phases can

be distinguished visually.

Although the accuracy of training the model on the

target images reached 98%, this does not guarantee

error-free segmentation when running the automated

segmentation on unseen images. Occasional isolated

regions where the phase identification was incorrect

were found in the segmented transverse image slices.

An obvious example is shown in Fig. 3a, where an

area of EBC was mistakenly labeled as matrix.

Figure 2 Transverse and Longitudinal sections of CT image of unidirectional CMC before (a, c, d) and after (b, d, f) deep-learning

segmentation into the four phases indicated. e, f are enlargements of area indicated in c, d.
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Viewing this area in a longitudinal section (Fig. 3d)

reveals that the error is confined to a single transverse

slice (the error appears on the longitudinal section as

horizontal row of pixels that differ in phase from the

pixels above and below). This type of error can be

readily identified; several other examples are visible

in Fig. 3d. Other less obvious isolated clusters of

mislabeled pixels were also found in a small fraction

of the slices.

Post-segmentation processing and quantification

Once the CT image is segmented by the deep-learn-

ing model, various post-segmentation image pro-

cessing routines can be used to render the

information in forms that help in visualizing the 3D

arrangements of the different phases of the composite

and to extract quantitative information on the

microstructural characteristics. An example is shown

in Fig. 4, where surface meshes of each of the seg-

mented phases (fibers, pores, matrix, and EBC) are

displayed both as separate entities and in combina-

tion. Such surface renderings allow simple visual

inspection of microstructural characteristics such as

the fiber architecture and porosity distribution. The

volume fractions of each of the phases are readily

calculated; the results are given in Fig. 4. The sup-

plementaryVideo#1.mpg provides further 3D visual-

ization of the surface meshes in Fig. 4.

Two distinct populations of pores exist in the

composite: those in the environmental barrier coating

and those within the CVI SiC matrix (Fig. 5). The

matrix pores are typical of composites with matrices

formed by CVI, in which regions between groups of

fibers become closed off as the matrix builds up,

thereby blocking further access by the CVI reactant

gases. The restricted access of infiltrating gas as the

matrix builds up is also responsible for the thickness

of the layer of SiC deposited on the fibers being larger

near the exterior of the composite than in the central

regions (Fig. 5). The matrix pores are all extremely

elongated parallel to the fibers, with many being

interconnected and most being completely sealed by

the matrix. However, some of the pores that appear

to be closed in the transverse image slices over most

of the length of the scanned section of the composite

were open at one end to the exterior surface of the

composite after the CVI infiltration was completed.

Figure 3 Example of incorrect phase identification in automated segmentation.
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Figure 4 CT image of SiC–SiC composite after deep learning segmentation. Volume fractions of the different phases can be accurately

estimated from the segmented volumes.

Figure 5 Transverse section

color coded to indicate

thickness of CVI SiC matrix

material around fibers. Matrix

pores are black; EBC pores are

blue. Matrix pores are closed

to the outside. EBC pores that

appear to be surrounded by

fibers and matrix (dashed

arrows) are open to the

surrounding EBC at locations

above or below this image

slice.
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This allowed some of the EBC slurry to enter those

pores.

The pores in the EBC are mostly not connected to

each other or to the external surface. Two types of

pores are evident: pores that are roughly equiaxed

and contained completely within the EBC; and larger

pores between the EBC and the adjacent surface of

the SiC/SiC composite, which resulted from shrink-

age-induced debonding between regions of the EBC

and the CVI SiC matrix during sintering of the EBC

(Fig. 5).

Segmentation of matrix cracks

When an axial tensile force above a critical value was

applied to the composite test specimen using the

in situ test rig, multiple cracks formed in the matrix

and EBC, with crack surfaces nearly perpendicular to

the fiber direction [1, 2, 18, 31, 32]. The cracks could

be seen in longitudinal slices of CT images (Fig. 6a).

Because of the presence of the thin BN coatings on the

fibers, the cracks did not propagate through the

fibers. Instead, debonding occurred along the BN

coating between the fibers and matrix, while the

matrix cracks bypassed the fibers. As the force was

further increased, fiber fracture occurred at dis-

tributed locations and the opening displacements of

the matrix cracks increased. Being able to track the

evolution and spatial distribution of such cracks is

key to understanding the relation between mechani-

cal properties of the composite and microstructural

features such as the spatial distribution of fibers.

If the crack opening is sufficiently large, the cracks

can be segmented simply based on pixel intensity

contrast between the matrix and the empty space

between the crack surfaces. However, for crack

opening displacements smaller than about 10 lm (as
in Fig. 6a), the image consists of overlapping

bright/dark phase-contrast fringes from the edges of

the crack [18], which precludes a simple intensity-

based segmentation. These fringes exist even when

the crack opening is much smaller than the resolution

of the image. In addition, the images are affected by

intact fibers bridging the crack. The opening dis-

placements of the crack surfaces are dependent on

the applied load and microstructural properties of

the composite, including frictional sliding forces

between the fibers and matrix [33–35]. In ceramic

composites of interest for high-temperature applica-

tions, the crack openings in the initial stages of

Figure 6 Longitudinal section with cracks before (a) and after (b) deep-learning segmentation. Segmented cracks labeled in yellow.
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damage evolution fall within the range where simple

intensity-based segmentation is not possible.

The results of applying the deep-learning proce-

dure to detect matrix cracks in longitudinal image

slices are shown in Figs. 6 and 7 (cracks found in the

EBC surrounding the composite were not labeled as

they were mostly generated during processing owing

to shrinkage). The training was done using a set of

112 image slices from a CT scan obtained while a

tensile stress of 90 MPa was applied to the test

specimen. Manual segmentation of cracks was far

less time consuming than manual segmentation of

the material components in the transverse slices,

taking approximately 5 min to segment all of the

cracks in each longitudinal slice. The training stage

was also much faster. Training of a U-net [36] CNN

for 88 epochs, achieved an accuracy of 99% in

approximately 7 h of computer time (20% of the

manually segmented trained data were used for

validation). The model then took 30 min to segment

the cracks in an entire stack of longitudinal slices. A

typical image slice before and after segmentation is

shown in Fig. 6. A 3D view of the cracks from the full

stack is shown in Fig. 7. Further 3D renderings of the

cracks are given in supplementaryVideo#2.mpg.

In unidirectional ceramic composites with uniform

distributions of fibers and matrix, the matrix cracks

extend through the entire cross section of the com-

posite and form in a near-periodic array, while the

fibers remain intact, forming bridges between the

crack surfaces [1, 2, 18, 31, 32]. However, in the

composite specimens used in this study, the fiber

distribution is very nonuniform and the CVI matrix,

which was formed by deposition of SiC on the fibers,

is correspondingly nonuniform (Fig. 6). As a result,

there are many regions in a given transverse cross

section where there are isolated islands consisting of

groups of fibers or single fibers surrounded by

matrix. When loaded in the axial direction, these

islands act as independent composites, with no cor-

relation of the axial positions of matrix cracks

between different islands. Therefore, the 3D view of

the cracks from the full image stack (Fig. 7) shows

many cracks of limited lateral extent, rather than a

few cracks that extend through the entire cross sec-

tion, as seen in other similar composites with more

uniform fiber distributions [1–3].

Discussion

Accuracy of microstructural segmentation

The accuracy of the deep-learning segmentation

method employed here is dependent on three sources

of error. One is in the quality of the original CT image

data, as affected by the resolution of the image, near-

field diffraction effects, the presence of noise, and the

possible presence of artifacts. In the present study,

this source of error does not appear to be a limitation

in the segmentation of fibers, matrix, EBC coating,

Figure 7 3D renderings of

the composite in Fig. 6, with

cracks highlighted in green.
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and voids. However, we did not attempt to segment

the thin BN coating on the surfaces of the fibers,

which has thickness smaller than the voxel size.

A second source of error arises from the manual

segmentation process that must be used to provide

the training images. This is the most tedious step of

the process, and there will inevitably be some inad-

vertent errors in labeling among the large number of

pixels (2560 9 2560) in each image slice, as well as

some judgment errors for pixels located at the

boundaries of two phases. The first of these might be

expected to occur at single isolated pixels and have

minimal effect on the final trained model. The second

might be expected to affect only the exact location of

the boundaries within a distance determined by the

pixel size or the image resolution.

The third source of error is mislabeling of pixels at

the inference stage, owing to limitations in the accu-

racy of the coefficients of the network model. The

accuracy of the model is dependent on some of the

parameters set in the training stage (number of

training images, number of iterations patch size and

locations, batch size). Up to a certain limit, the error

rate generally decreases as the number of training

images and iterations increases, so there is a trade-off

of accuracy of the network model with computer time

needed for training. However, excessive iterations

can lead to overfitting of the weights in the model

and poor performance in segmentation of unseen

images. The error functions were evaluated for both

the training patches and the patches set aside for

validation after each epoch to ensure that both errors

trended down in successive epochs, thus ensuring

that overfitting of the model was avoided (overfitting

of the model being signaled by the validation error

increasing). In the present study, an error rate of 2%

was achieved with 300 epochs, using training

parameters judged to be reasonable based on previ-

ous experience with other applications. A more sys-

tematic study to optimize the choice of training

parameters and quantify the trade-off of computa-

tional time and error rate is under way.

The most obvious errors in the segmented images

are of the type shown in Fig. 3, where an area of EBC

was mistakenly labeled as matrix. In many (but not

all) examples examined, the error was confined to a

single transverse slice, as in Fig. 3. Since we have

prior knowledge that there are no thin platelets of

any phase in these composites, these patches of the

segmentation can be dismissed as erroneous. Such

errors could be detected and corrected automatically

through use of a search routine that searches the

segmented transverse image slices for platelets of

pixels labeled with a different phase than the pixels

above and below. A more general approach that

would likely avoid such errors, albeit with higher

computational cost, would be to use recently devel-

oped 3D CNN models [37, 38], and capable of pro-

cessing multiple consecutive image slices

simultaneously.

With the error rate achieved in this study, the

volume fractions of each of the phases could be

computed from the segmented image stack with high

accuracy. Moreover, the spatial distributions of the

phases were displayed with very few noticeable

errors. Thus, the segmented images would be suit-

able for various post-processing routines for extract-

ing other quantitative information, such as fiber

tracking to determine whether the fibers within a

fiber tow are intertwined relative to one another. This

can be done by extracting the center lines of the

segmented fibers and inspecting the spatial coordi-

nate variance in X–Y, evaluated over the Z-axis to

determine the straightness of the fiber, as demon-

strated in the template matching technique by Czabaj

et al. [15].

Matrix cracks

Observations of the longitudinal slices after being

segmented for matrix cracks by the CNN model in

the inference stage (see supplementaryVideo#3.mpg)

show that the model succeeded in labeling all of the

cracks that could be identified by visual inspection.

However, there were some errors where additional

crack labels were incorrectly assigned in voids and in

air surrounding the composite. These errors occurred

where there were image artifacts associated with

phase contrast effects. Examples are visible as hori-

zontal streaks outside the lower right side of the

composite in Fig. 6, between the outside edge of the

EBC and the edge of the micrograph. These errors can

be readily removed by a post-segmentation algorithm

that removes all the labeled cracks that fall within the

segmented phases of voids or outside air. The mis-

labeling in the voids or outside air are found only in

isolated patches and are not considered to affect the

visualization of crack planes. Mislabels were elimi-

nated in Fig. 7 and the supplementaryVideo#2.mpg.
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The accuracy of crack segmentation is dependent

on the same sources of errors mentioned in the pre-

vious section. Whereas the quality of the original CT

image data, as affected by the resolution of the image,

near-field diffraction effects, the presence of noise,

and the presence of artifacts, was not a limiting factor

for microstructural segmentation, it is likely the

dominant factor in identification and segmentation of

cracks that form during the initial stages of damage

evolution. In the manual segmentation stage of

training, some of these cracks are challenging to

identify visually and distinguish from other image

features, making them more susceptible to judgment

error.

Generalization of deep learning image
segmentation

The image segmentation challenge addressed in this

study, involving low (or zero) contrast X-ray images

from SiC–SiC composites, is not unique to these

materials. For example, low-contrast images are typ-

ical of biological materials. The deep-learning solu-

tion described here, which was successful in

segmenting phases that showed identical image

intensities, is not restricted to any particular material

system. It provides a general framework, described in

more detail in ‘‘Appendix B,’’ for executing both the

training and inference stages of the deep learning

cycle. In all applications of deep learning for image

segmentation [39], this involves the following steps:

manually labeled ground truth images are first

paired with unprocessed images; then those images

are presented to a deep-learning model that can

accept them as training data; then, the trained model

is used to process never-before-seen images. The

general framework is not restricted to use of any

particular neural network: it includes the capability

to select from a list of commonly available neural

networks and provides tools for preparing the

ground truth images, for presenting those data to the

deep learning model, and for analyzing the unseen

images. Most importantly, it provides a workflow to

iterate and tune simple deep-learning models that

can be used without having to perform any pro-

gramming or needing any expertise in the arcane

details associated with the standard deep-learning

frameworks. On the other hand, it also provides

options that give expert users and programmers the

flexibility to tune advanced parameters and derive

and implement new deep learning models of varying

network architectures.

Since previous deep-learning image segmentation

studies have all relied directly on programming for

their deep-learning solutions to solve specific appli-

cations, the availability of this tool can be expected to

expand the use of deep-learning methods for seg-

mentation beyond those with expertise in deep-

learning language libraries.

Conclusion

A deep-learning image segmentation procedure was

used successfully to segment 3D X-ray CT images

from a fiber-reinforced ceramic composite, in which

the fibers, matrix and an environmental barrier

coating showed identical image intensities. This was

achieved with reasonable run times on a local

workstation, thus demonstrating a practical solution

to the problem of dealing with the large amount of

data involved in such images and the resulting bar-

rier to extraction of quantitative information.

In transverse slices of the segmented image, the

identification of the various phases was consistent

with visual identification from the original image,

enabled by shape and edge information. In longitu-

dinal image slices, the phases could not be distin-

guished visually in the original image, whereas in the

segmented image they were clearly distinguished.

The deep-learning method was also effective for

automated segmentation of matrix cracks produced

by in situ loading of the composite. The segmented

images were amenable to post-segmentation image

processing to render the distributions of phases and

cracks in forms that help in visualizing their distri-

butions in 3D space and to extract quantitative

information on the microstructural characteristics.

The results demonstrated that a nonuniform distri-

bution of fibers in a unidirectional composite has a

large effect on the nature and distribution of matrix

cracks that form as the initial damage in tensile

loading parallel to the fibers.
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Appendix A: Deep-learning image
segmentation by CNNs

Semantic image segmentation—the labeling of pixels in

an image according to the object they constitute—is a

deep-learningmethod thatwasfirst applied to scientific

imaging with the description of the U-Net architecture

in 2015 [37], although non-scientific applications pre-

date that work [40]. These network models are built as

CNNs, inwhich imagedataare subdivided intopatches

and fed through a network of neurons, which are

arranged in sequential layers. Each neuron in a given

layer receives input fromneurons in the previous layer,

transforms the inputsignal, and thenpasses the result to

a set of neurons in the next layer. The signals are inte-

grated in successive layers of the network, where ulti-

mately higher order neurons may have remarkable

discriminative value by selectively amplifying various

signals from previous layers. CNNs employ convolu-

tion operations as their first layer(s) of neurons. The

coefficients in the convolution kernels are seeded ran-

domly initially andare refined iteratively in the learning

phase, where the output of the CNN is compared with

the manually segmented image (training). The learned

weights of different neurons confer the extreme selec-

tivity which gives the networks their power. Similar to

biological neural networks, these models are able to

interpret texture that is observed in the image and use

that to help distinguish hallmarks of one visual object

from another. The early neurons are able to encode

texture, but not because they are programmed to rec-

ognize specific patterns, edges, gradients, or other

primitive image descriptors. Rather, the coefficients of

the kernels in those early-stage convolutional filters are

learned through the reinforcement process of network

training. Consequently, if a convolutional kernel con-

veys a meaningful signal that can provide discrimi-

natingvalue in the network, itwill be preserved andup-

weighted. CNNs are also used in object detection and

other deep learning enabled computer vision tech-

niques. Further discussion of CNNs can be found in

Refs. [41, 42].

Appendix B: Implementation of deep
learning

To make the deep-learning method easy to apply to a

broad class of image segmentation problems, a gen-

eral framework for executing both the training and

inference stages of the deep-learning cycle was

developed. Both the training and inference tools rely

on software libraries TensorFlow and Keras available

from Google (Mountain View, California USA) [27].

These libraries have been integrated into a desktop

software platform for image manipulation and anal-

ysis named Dragonfly (developed and licensed by

Object Research Systems, Montreal, Canada), avail-

able at no cost under non-commercial licensing

terms. Further details on the software integration and

instructions on how to download Dragonfly, the

software described in this paper, can be found on the

main Object Research Systems website [23]. To

download the trained deep-learning models, training

images and raw data used for this work along with

the CMC image data set refer to the Materials Data

Facility repository [43]. Other deep learning models

can be found at the Object Research Systems online

tool-sharing community repository (Infinite Toolbox).

It is an important goal to make the deep learning

solution accessible by non-experts, but provide high-

value flexibility for experts that want to use the same

system. There are no major runtime parameters

associated with the inference stage of deep learning,

so this goal of serving both classes of users is

accomplished in the interface of how users config-

ure and train their models.

When setting up model training, the basic panel

exposes standard parameters: patch size, stride ratio,

and batch size, optimization function, and loss func-

tion. The training for the microstructural segmenta-

tion in ‘‘CMC microstructure segmentation’’ section
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was done using the neural network architecture

FCDenseNet [29, 30], with a patch size of 64 9 64

pixels, stride ratio of 0.5 and batch size 16. The loss

function ‘‘categorical-crossentropy’’ and optimization

algorithm ‘‘Adam’’ were used as the default functions

of the Keras Library. For the segmentation of matrix

cracks, the U-net [36] CNN was used with patch size

of 128 pixels, stride to input ratio 1, batch size 32, loss

function ‘‘categorical crossentropy,’’ and optimization

function ‘‘Adadelta.’’ Initially, a U-Net model was

trained for the microstructural segmentation. How-

ever, the inference results had many errors, so a

model with deeper neural net architecture, FCDen-

seNet, was deployed (with the cost of a much longer

time taken for training). The patch size was set to

64 9 64 since the features of the microstructure, such

as individual fibers, spanned small areas in the

image. For the crack segmentation, a U-net model

proved adequate. The cracks spanned larger hori-

zontal pixel areas in the longitudinal images, thus

allowing use of larger patch size (128 9 128 pixels).

The default optimization function in the Keras library

was used for both models.

To support greater control, an optional advanced

parameters panel that exposes options for additional

logging (including support for TensorBoard), fine

tuning parameters for the optimization function, con-

ditions for early termination of training, and condi-

tions for learning rate reduction. These parameters are

understood to be beyond the scope of non-experts, but

match many of the controls experts would have if they

were directly programming their own solution with

lower level tools. This platform also integrates meth-

ods for data augmentation to reduce the raw training

data that must be manually prepared, and data set

aside for validation during the course of training.

Models that were previously trained can be accessed

for further iterations of training.

In the inference stage, the deep-learning model

behaves as a simple image transform engine, which

can take a single gray-scale image and return a single

segmented image. From the user perspective, the

trained deep-learning model behaves as a simple

image filter. To simplify user interaction, the interface

allows the selection from a library of trained models

that can be applied like any standard image filter. A

preview mode allows viewing of the output from any

of the trained models applied to any single image or

any sub-area of an image. This permits rapid

assessment of whether any of those models is suit-

able for application at hand.

Appendix C: Validation of deep learning

The general application of the deep-learning solution

described here was validated by applying it to a set of

serial-section transmission electron micrographs of

Drosophila melanogaster neurons that has been used as

an image segmentation challenge [44, 45]. These

images have many structural features (plasma

membranes) that are difficult to discriminate with

standard algorithms. The challenge micrographs

include a stack of 30 raw images that have not been

processed and a stack of 20 manually segmented

images to be used as training data for machine

learning technique development. A recent report

documented the successful segmentation of these

micrographs with a CNN called FusionNet [46]. The

FusionNet architecture was reproduced here and

implemented as a model in the new Dragonfly

toolkit. Following training, a set of 10 validation slices

were used to assess the inference quality. Visual

inspection confirmed that proper segmentation of the

plasma membrane was achieved.

Electronic supplementary material: The online

version of this article (https://doi.org/10.1007/s108

53-020-05148-7) contains supplementary material,

which is available to authorized users.
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