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c-Hole bonding interactions (e.g., tetrel, pnictogen, chalcogen,
and halogen bonding) can polarize n-electrons to enhance cyclic
[4n] n-electron delocalization (i.e., antiaromaticity gain) or cyclic
[4n + 2] w-electron delocalization (i.e., aromaticity gain). Examples
based on the ketocyclopolyenes: cyclopentadienone, tropone, and
planar cyclononatetraenone are presented. Recognizing this
relationship has implications, for example, for tuning the electronic
properties of fulvene-based n-conjugated systems such as
9-fluorenone.

This paper discusses the reciprocal relationship between o-
hole bonding and (anti)aromaticity in heterocycles. We
recently reported that intermolecular hydrogen bonding inter-
actions can be used to modulate aromaticity and antiaromati-
city in m-conjugated ring compounds,”” and now show, in
light of the recognized similarity between hydrogen bonding
and o-hole bonding,® that interactions such as tetrel,*”
pnictogen,®’ chalcogen,'®™* and halogen'*"” bonding inter-
actions also can perturb the (anti)aromatic characters of
n-conjugated ring compounds such as cyclopentadienone,
tropone, and planar cyclononatetraenone in the same way.
o-Hole interactions like tetrel, pnictogen, chalcogen, and
halogen bonding (Y---X-R) are highly directional noncovalent
interactions that form between a negative site (Y, e.g., a Lewis
base or anion) and the electron-deficient region of a co-
valently-bonded group 14-17 atom (X)."® ' The R group gener-
ally includes one or more electron-withdrawing groups, and a
o-hole forms due to an uneven distribution of atomic charge
on X. c-Hole interactions are predominantly electrostatic,”***
although the relevance of polarization, dispersion, and charge
transfer effects have been recognized.”**® Strong tetrel, pnicto-
gen, chalcogen, and halogen bonding interactions were found
to display donor-acceptor orbitals interactions.?® Heavier and
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more polarizable atoms can exhibit pronounced c-holes and
form very strong c-hole interactions.

Even though tetrel, pnictogen, chalcogen, and halogen
bonding arise as a result of a polarized ¢-bond, these bonding
interactions can indirectly polarize the n-system of an interact-
ing Lewis base. For example, c-hole bonding between the
oxygen lone pair of a C=O Lewis base and an X-R group
increases negative charge on the oxygen atom and enhances
the resonance contribution of a polarized n-bond (i.e., C'-07),
as shown by previous examples of C=O activation via c-hole
bonding.*>*' In this paper, we relate the strengths of c-hole
interactions of C=0 groups to the effects of (anti)aromaticity
gain in ketocyclopolyene compounds, using the formally [47]
antiaromatic cyclopentadienone (four ring n-electrons), [4n + 2]
aromatic tropone (six ring m-electrons), and [4n] antiaromatic
planar cyclononatetraenone (eight ring n-electrons)**>* as
models for the interacting Lewis base.

In cyclopentadienone, 1, C'-O~ polarization from c-hole
bonding enhances antiaromatic character of the five mem-
bered ring (i.e., increased cyclic [4n] m-electron delocaliza-
tion),*® and the corresponding c-hole bonding interaction is
weakened (see Fig. 1a, resonance structure in green, resem-
bling a cyclopentadienyl cation). In tropone, 2, C*-O~ polariz-
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Fig. 1 lllustration of (anti)aromaticity gain on the strengths of c-hole
bonding in (a) cyclopentadienone, (b) tropone, and (c) cyclononatetraenone.
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ation from o-hole bonding enhances aromatic character in the
seven membered ring (i.e., increased cyclic [4n + 2] n-electron
delocalization),>®?°3% and the corresponding c-hole inter-
action is strengthened (see Fig. 1b, resonance structure in red,
resembling a tropylium cation). In planar cyclononatetrae-
none, 3, C'-O~ polarization from o-hole bonding enhances
antiaromatic character in the nine membered ring (ie.,
increased cyclic [4n] n-electron delocalization),®® and just as in
1, the corresponding o-hole interaction is weakened (see
Fig. 1c, resonance structure in green). Fig. 1 illustrates the reci-
procal relationships between o-hole bonding and (anti)aroma-
ticity gain in 1, 2 and 3.

We evaluated a series of tetrel, pnictogen, chalcogen, and
halogen bonded complexes, in which ¥ = 1-3, and X-R =
GeH;F (a), AsH,F (b), SeHF (c), and BrF (d). Geometry optimiz-
ation for all monomers, 1-3, and complexes, 1(a-d), 2(a-d),
and 3(a-d) were performed at ®B97XD/def2-TZVP employing
Gaussian16.>® The choice of functional was selected based on
benchmark studies of the XB18 and XB51 set using different
DFT functionals.”® Vibrational frequency analysis verified the
nature of the stationary points. Cyclononatetraenone, 3, has a
non-planar minimum, but the symmetry constrained Cy form
is used here to model a formally eight n-electron antiaromatic
ring. Planar cyclononatetraenone, 3, and complexes 3(a-d)
have imaginary frequencies corresponding to distortion of the
nine membered ring from planarity (see details in the ESIT).
Single point c-hole interaction energies (AE;,) for the com-
plexes, 1(a-d), 2(a-d), and 3(a-d), were carried out at MP2/
def2-TZVP.

Electrostatic potentials V(r), calculated with a p(r) = 0.001
au (electrons bohr?)*!' contour at ®B97XD/def2-TZVP, identi-
fied the locations of the most positive electrostatic potentials
(Vs,max) corresponding to the o-holes of the X atoms of X-R:
GeH;F (Vs max = +40.6 keal mol™"), AsH,F (+41.6 kcal mol ™),
SeHF (+46.9 kcal mol™*), and BrF (+50.7 kcal mol™), following
the order: halogen > chalcogen > pnictogen > tetrel (see Fig. 2,
region colored in blue).

Computed interaction energies (AE;,,) for halogen, chalcogen,
pnictogen, and tetrel bonding interactions in 1(a-d), 2(a-d), and

+25 keal mol”!

GeHgF AsHoF
Vs max = 40.6 kcal Mol Vg mae = 41.6 keal mol”!

—25 kcal mol!

SeHF BrF
Ve max = 46.9 keal mol Vg sy = 50.7 keal mol”!

Fig. 2 Computed electrostatic potential maps for GeHFs, AsH,F, SeHF,
and BrF based on a 0.001 au contour surface. Blue color indicates posi-
tive potential, red color indicates negative potential. Vs mnax shows the
most positive electrostatic potential corresponding to the c-hole.
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Table 1 Computed c-hole interaction energies, AE;n; (kcal mol™), for 1
(a—d), 2(a—d) and 3(a—d), at MP2/def2-TZVP//wB97XD/def2-TZVP

AEint AEint AEint
la -5.3 2a -7.4 3a =5.5
1b -5.9 2b -8.1 3b —-6.1
1c -8.1 2¢ -11.3 3c -8.5
1d -9.2 2d -13.0 3d -9.4

3(a-d) (see Table 1) follow the same order: halogen (c-hole
bonding to BrF) > chalcogen (c-hole bonding to SeHF) > pnic-
togen (o-hole bonding to AsH,F) > tetrel (c-hole bonding to
GeHj;F) interactions, correlating to the magnitude of the posi-
tive electrostatic potentials of the o-holes. Accordingly, com-
puted natural population analysis (NPA) charge based on
natural bond orbital (NBO) computations®® at the ®B97XD/
def2-TZVP level for the oxygen atoms of 1 (—0.563), 2 (—0.645),
and 3 (—0.450) become increasingly negative upon o-hole
bonding: 1a (-0.600), 1b (-0.603), 1c (—0.612), and 1d
(—0.611) (see Fig. 1a), 2a (—0.693), 2b (—0.696), 2¢ (—0.705),
and 2d (-0.702) (see Fig. 1b), 3a (—0.477), 3b (—0.478), 3c
(—0.482), and 3d (—0.459) (see Fig. 1c).

Direct comparisons of the AE;, values of 1(a-d), 2(a-d),
and 3(a-d) show a consistently lower o-hole bonding inter-
action energy for the cyclopentadienone and cyclononatetrae-
none complexes, 1(a-d) and 3(a-d), compared to the tropone
complexes, 2(a-d) (see Table 1). This can be explained by the
effects of antiaromaticity gain in the five and nine membered
ring, in 1(a-d) and 3(a-d), (i.e., increased cyclic [4n] n-electron
delocalization) in contrast to aromaticity gain in the seven
membered ring in 2(a-d) (ie., increased cyclic [4n + 2]
n-electron delocalization) (see Fig. 1). In concert, the C=0---X-
R distances for 1(a-d) and 3(a-d) are shorter compared to
those of 2(a-d) (see Fig. 3).

Computed dissected NICS(0),., values indicate that the
four m-electron antiaromatic 1 (NICS(0),,, +19.4 ppm)
becomes more antiaromatic upon tetrel (ANICS(0).., =
+3.3 ppm, 1a), pnictogen (ANICS(0),,, = +3.8 ppm, 1b), chalco-
gen (ANICS(0),,, = +4.4 ppm, 1c), and halogen (ANICS(0),,, =
+5.9 ppm, 1d) bonding (see Table 2). In contrast, the formally
six m-aromatic 2 (NICS(0),,, = —6.7 ppm) becomes more aro-
matic upon tetrel (ANICS(0),,, = —3.2 ppm, 2a), pnictogen
(ANICS(0),, = —3.7 ppm, 2b), chalcogen (ANICS(0).,, =
—4.4 ppm, 2c), and halogen (ANICS(0).,, = —5.4 ppm, 2d)
bonding (see Table 2). Like 1(a-d), the planar eight n-electron
antiaromatic 3 (NICS(0),,, = +22.7 ppm) becomes more antiaro-
matic upon tetrel (ANICS(0),,, = +4.0 ppm, 3a), pnictogen
(ANICS(0)z, +4.6 ppm, 3b), chalcogen (ANICS(0),,
+5.8 ppm, 3c), and halogen (ANICS(0).., = +8.0 ppm, 3d)
bonding (see Table 2). Negative ANICS(0),., values indicate
aromaticity gain upon o-hole bonding. Positive ANICS(0)y,,
values indicate antiaromaticity gain upon c-hole bonding. The
tub-shaped cyclononatetraenone minimum shows little to no
change in ring bond length upon o-hole bonding (see geome-
tries and discussion in the ESIT).

43,44
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Fig. 3 Optimized geometries for (a) 1(a—d), (b) 2(a—d), and (c) 3(a—d) at ®B97XD/def2-TZVP. Note more pronounced C=0O bond lengthening in the

c-hole bonded tropone complexes 2(a—d).

Table 2 Computed ANICS(0),, (in ppm) values for 1(a—d), 2(a—d) and
3(a—d), computed ANICS(0),,, values are derived by comparing the
computed NICS(0),., values for 1(a—d), 2(a—d) and 3(a—d), to that of 1
(NICS(0),z, = +19.4 ppm), 2 (NICS(0),,, = —6.7 ppm), and 3 (NICS(0),., =
+22.7 ppm) respectively. Positive ANICS(0),,, values indicate antiaroma-
ticity gain, negative ANICS(0),., values indicate aromaticity gain

ANICS(0),.., ANICS(0)z, ANICS(0),..,
1a +3.3 2a -3.2 3a +4.0
1b +3.8 2b -3.7 3b +4.6
1c +4.4 2¢ —4.4 3¢ +5.8
1d +5.9 2d —5.4 3d +8.0

Dissected NICS(0),.,*>** analyses were computed at PW91/
def2-TZVP. NICS(0),., computations were performed by placing
NICS points at the ring centers of 1-3 and extracting contri-
butions only from the shielding tensor component perpen-
dicular to the ring plane (zz) of all of the localized m-molecular
orbitals (two C=C and one C=O0 =n-bonds in 1, three C=C and
one C=O0 n-bonds in 2, four C=C and one C=O0 =n-bonds in 3).
ANICS(0),., values were calculated by computed ring NICS
(0),z, values in the five, seven, and nine membered rings of the
1(a-d), 2(a-d), and 3(a-d) complexes, minus the computed
ring NICS(0),,, values of the 1, 2, and 3 monomers.

n-Conjugated systems containing cyclopentadienone cores
are useful organic electronics components, and the ability to
modify their antiaromatic characters through o-hole bonding
interactions may have practical implications for their elec-
tronic properties.

9-Fluorenone, for example, contains a cyclopentadienone
core fused to two benzenoid rings, and is extensively used as a
precursor to synthesize a variety of organic electronics

This journal is © The Royal Society of Chemistry 2020

materials (see Fig. 4). Computed NICS(0),,, values at the ring
centers of the six (6MR) and five (5SMR) membered rings of
fluorenone (6MR: —23.1 ppm, —23.1 ppm, 5MR: +22.8 ppm)
display increasing paratropicity as the C=0O group engages in
tetrel (6MR: —22.0 ppm, —22.7 ppm, 5MR: +24.3 ppm), pnicto-
gen (6MR: —22.0 ppm, —22.6 ppm, 5MR: +24.3 ppm), chalco-
gen (6MR: —21.7 ppm, —22.1 ppm, 5MR: +24.9 ppm), and
halogen (6MR: —20.7 ppm, —21.9 ppm, 5MR: +26.3 ppm)
bonding. Following increased antiaromatic character in
9-fluorenone upon o-hole bonding, the computed HOMO-
LUMO gap for 9-fluorenone (3.61 eV) decreases when the exo-
cyclic C=0 bond forms tetrel (3.47 V), pnictogen (3.46 eV),
chalcogen (3.41 eV), and halogen (3.36 eV) bonding.
Accordingly, the LUMO energy level for 9-fluorenone (—4.82
eV) lowers upon tetrel (—5.21 eV), pnictogen (—5.21 eV), chalco-
gen (—5.28 eV), and halogen (—5.39 eV) bonding. When two
BrF groups form halogen bonding interactions to the carbonyl
site of 9-fluorenone, the n-conjugated core shows even more
pronounced paratropicity (6MR: —19.9 ppm, —19.9 ppm, 5MR:
+28.2 ppm), the HOMO-LUMO gaps become narrower (3.21
eV), and the LUMO energy levels lower even more (—5.71 eV).
o-Hole bonding interactions are finding an increasing
number of applications in many areas of organic chemistry,
e.g., protein-ligand interactions, foldamer design, anion-

QQ

Fig. 4 Effects of 6-hole bonding on the resonance form of fluorenone.
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sensing, and crystal engineering. Here, we highlight the effects
of o-hole bonding interactions on tuning (anti)aromaticity in
ketocyclopolyenes, and their immediate consequence for
tuning the electronic properties of fulvene-containing
n-conjugated systems. Remarkably, c-hole interactions are
useful, not only for organizing the assembly of organic elec-
tronic components,*® but also for tuning the electronic pro-
perties of extended z-conjugated systems, especially for those
with formal [4n] antiaromatic character. We note also recent
works discussing a relationship between the aromatic ring
current of metalloporphyrins and the effects on halogen
bonding interactions.®
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