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Objectives: Identify alterations in gene expression unique to systemic
and kidney-specific pathophysiologic processes using whole-genome
analyses of RNA isolated from the urinary cells of sepsis patients.
Design: Prospective cohort study.

Setting: Quaternary care academic hospital.

Patients: A total of 266 sepsis and 82 control patients enrolled
between January 2015 and February 2018.

Interventions: \Whole-genome transcriptomic analysis of messenger
RNA isolated from the urinary cells of sepsis patients within 12 hours
of sepsis onset and from control subjects.

Measurements and Main Results: The differentially expressed
probes that map to known genes were subjected to feature selec-
tion using multiple machine learning techniques to find the best
subset of probes that differentiates sepsis from control subjects.

Using differential expression augmented with machine learning
ensembles, we identified a set of 239 genes in urine, which show
excellent effectiveness in classifying septic patients from those with
chronic systemic disease in both internal and independent external
validation cohorts. Functional analysis indexes disrupted biological
pathways in early sepsis and reveal key molecular networks driving
its pathogenesis.

Conclusions: We identified unique urinary gene expression profile in
early sepsis. Future studies need to confirm whether this approach
can complement blood transcriptomic approaches for sepsis diagno-
sis and prognostication.
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ribonucleic acid; sepsis; urine
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epsis, a dysregulated host immune response to infection

leading to acute organ dysfunction, continues to be a sig-

nificant challenge for the healthcare system (1). The intro-
duction of the Surviving Sepsis Campaign (2) led to a decrease
in hospital mortality rates, yet total sepsis deaths continue to rise,
and its treatment carries significant resource consumption (3).
Identification of altered molecular profiles and biochemical path-
ways in septic patients has generated enthusiasm for the discovery
of novel blood biomarkers (4). Multiple studies have examined
the gene expression of immune cells in the blood from sepsis
patients (5), and the U. S. Food and Drug Administration recently
approved the first diagnostic test for sepsis based on expression of
four genes in peripheral blood (6).

Urine is a readily available biofluid that does not require
invasive collection, yet its wealth of molecular information is
underutilized. The kidney is one of the most commonly affected
organs in sepsis with profound effect on outcomes (7) with both
systemic and local inflammations playing a role in the patho-
physiology of sepsis-induced renal injury (8). The kidney filters
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150L of circulating plasma daily to produce 1.5L of urine where
highly concentrated potential biomarkers, such as metabolites,
proteins, and nucleic acids, reflect both renal and systemic
pathologies (9). Immune and renal cells appearing in the urine
in response to systemic or renal inflammations have been used as
prognostic markers in lupus, systemic vasculitis, and glomerular
diseases (10-15) but not in sepsis. Previous work with urine in
sepsis has focused on protein biomarkers of acute kidney injury
(16, 17), whereas urinary RNA has been tested mainly for the
diagnosis of transplant rejection and urologic cancers (18-20).
We tested the hypothesis that application of machine learning
(ML) for whole-genome transcriptomic analysis of RNA isolated
from the urinary cells of septic patients can be used to identify
alterations in gene expression unique to systemic and kidney-
specific pathophysiologic processes in sepsis. This work is not
intended to provide a diagnostic tool for sepsis. The authors only
want to highlight that cells leaching into the urine due to sepsis
are enriched with molecular information capable of discerning
sepsis from noninfected controls. Figure 1A shows how sepsis-
associated kidney injury can lead to leaching of immune cells
and pathogen/damage-associated molecular patterns into the
urine from blood.

MATERIALS AND METHODS

Participants
Sepsis patients were prospectively recruited between January 2015
and August 2017 from a prospective longitudinal cohort of surgi-
cal patients with sepsis at the University of Florida Health (UFH)
(NCT02276066) that examines the immunologic mechanisms of
chronic critical illness in sepsis. For the control group, we used
preoperative urine samples from patients prospectively recruited
between July 2015 and February 2018 to a prospective observa-
tional study (Network Analysis of Urinary Molecular Signature
Complements Clinical Data to Predict Postoperative Acute Kidney
Injury [NavigateAKI]; NCT02114138), characterizing the urinary
molecular response to surgical stress among patients undergoing
high-risk vascular surgery at UFH (Supplementary Fig. S1 http://
links.Iww.com/CCX/A265). The study protocols were finalized
(21) and ethics approvals were obtained from the UF Institutional
Review Board (IRB201400611 and IRB201400127) prior to the
recruitment of patients. All study participants were provided writ-
ten informed consent. There was no overlap of patients between the
two cohorts. The informed consent form for Navigate AKI permits
the usage of these data in a limited way in other research projects.
The inclusion criteria for the sepsis cohort were admission
to the surgical ICU, greater than or equal to 18 years old, and a
diagnosis of sepsis (clinically adjudicated by attending physician
and investigators according to the American College of Chest
Physicians consensus criteria [22]) with subsequent initiation of
the computerized sepsis protocol (23). Excluded patients fell into
three categories: 1) patients taking immunosuppressive drugs or
with a history of autoimmune diseases, 2) patients with advanced
liver or heart disease, and 3) patients whose primary cause of sep-
sis was end-stage renal disease or urinary tract infection. All con-
trol patients were adjudicated as having no evidence of infection
prior to surgery by attending surgeons and investigators.

2 www.ccejournal.org

All relevant clinical data were prospectively collected. Severity
of illness was defined within the first 24 hours using the Sequential
Organ Failure Assessment (SOFA) score (21). Patient outcomes,
including hospital and 12-month mortality, were prospectively
recorded for both studies (24). The first blood and urine samples
for experimental analyses were collected within 12 hours of sepsis
onset for sepsis patients and within 4 hours prior to scheduled
surgery for control patients.

Discovery and Validation Cohorts

The discovery cohort consisted of RNA isolated from 238 patients
recruited between January 2015 and March 2016 (Supplementary
Fig. S1 http://links.Iww.com/CCX/A265). The validation cohort
consisted of RNA isolated from 110 patients recruited between
February 2017 and February 2018. Complete data were available
for 146 sepsis and 32 control patients in the discovery cohort and
41 sepsis and 32 control patients in the validation cohort. This
sample size enabled us to ensure that for at least 85% of probes, we
have power greater than 80% to detect a two-fold change between
the mean expressions for sepsis and control patients using a two-
sided independent ¢ test with Bonferroni adjustment at a family-
wise type 1 error of 0.05.

Processing of Urine Samples and RNA Purification

Using standardized protocols to separate cell pellets from urine
supernatant (Fig. 1A), approximately 50 mL of urine was collected
in sterile manner at the bedside and processed within 2 hours of
collection. We used previously described protocols to isolate total
cellular RNA from the urinary cell pellet containing all cellular ele-
ments. In brief, the 50 mL of urine was spun down at 1,500 g for 30
minutes at 4°C. The pellet was collected, lysed using 1-mL rolling
liquid transporter lysis buffer with 10-uL p-mercaptoethanol from
the kit, and processed according the manufacturer’s protocol. Total
RNA was extracted using the RNeasy mini kit (Qiagen, Leusden,
The Netherlands) (250) Catalog Number—74106 according to the
manufacturer’s protocol. To determine the quality of isolated cel-
lular RNA, we measured the quantity (absorbance at 260 nm) and
purity (ratio of absorbance at 260 and 280nm). An RNA sample
was classified as having passed quality control if the optical den-
sity 260:280 ratio was between 1.5 and 2.2 and final concentration
was at least 8.7 ug/mL (25) (Supplementary Table S1 http://links.
lww.com/CCX/A275).

Microarrays

Biotin-labeled sense strand complementary DNA was prepared
from 300 ng of total RNA per sample using an Affymetrix GeneChip
Whole Transcript Sense Target Labeling Assay per standard proto-
col (more details of which are provided in Supplementary Methods
http://links.Iww.com/CCX/A264). Hybridization to GeneChip
Human Transcriptome Array 2.0 (Affymetrix, Thermo Fisher
Scientific, Santa Clara, CA) was carried out at 45°C for 16 hours, and
the arrays were scanned on an Affymetrix GeneChip Scanner 3000
7G using the Affymetrix GeneChip Command Console software,
which produced a set of files with extensions .DAT, .CEL, .JPG, and
XML for each array. Image analysis and probe quantification were
performed using the Affymetrix software that produced raw probe
intensity data in the Affymetrix CEL files. Transcriptome Analysis
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Figure 1. Workflow. A, Workflow for isolation of urinary markers. B, Conceptual workflow from data acquisition to (30)
analysis. FC = fold change, FDR = false discovery rate, ID = identity, LIMMA = linear models for microarray analysis,

Hochberg false discovery rate (FDR)
. Probes with an FDR of less

RFE-SVM = recursive feature elimination with support vector machine, ROC = receiver operating characteristics. than or equal to 0.01 and an absolute

Console Version 4.0.1 (Thermo Fisher Scientific, Santa Clara, CA)
was used for microarray signal summarization and normalization
(Fig. 1B) using robust multiarray average (26). The final microarray
dataset consisted of log2 transformed expression values for 67,528
probes of which 33,494 were mapped to one or more known genes
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fold change greater than or equal to
2 were considered differentially expressed. Gene expression pat-
terns were elucidated using Euclidean distance heatmaps with
ComplexHeatmap (31). The ingenuity pathway analysis (IPA)
software (http://www.ingenuity.com) was used to identify signifi-
cantly enriched biologic functions, pathways, molecular networks,
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and regulatory molecules concerning the differentially expressed
genes (Fig. 1B).

The differentially expressed probes were subjected to feature
selection using an ensemble of four ML algorithms deployed in par-
allel (random forest [32], recursive feature elimination using sup-
port vector classifier [33], logistic regression with lasso [34], and
Boruta [35]) to find the best subset of probes that differentiate sep-
sis from control subjects (Fig. 1B). For random forest, we ranked
selected probes by their importance score (the set was truncated
when the cumulative importance of the model upon inclusion of the
next probe did not increase by 0.1%) to select 200 probes. Recursive
feature elimination recursively dropped low-importance features
from the support vector machine algorithm to select 200 probes.
Lasso used L1-regularization (36) on the coefficients obtained from
logistic regression to select 266 probes. Boruta selected 49 probes at
the end of 100 iterations based on rankings provided by an internal
random forest (37). Each of the methods was parameterized inside
a five-fold cross validation design (Supplementary Table S2 http://
links.lww.com/CCX/A276). To obtain the final feature set from
the ensemble, we used a voting strategy that retained probes that
appear in at least two, three, or all four algorithms (Supplementary
Methods http://links.lww.com/CCX/A264).

The final subset of probes was validated using independent
validation cohort normalized separately from discovery cohort to
prevent any information leakage. We employed three ML mod-
els (support vector machine, random forest, and logistic regres-
sion) that were trained and tuned on the discovery cohort. We
calculated multiple performance metrics including area under
curve, sensitivity, specificity, accuracy, and positive and negative
predictive values. The 95% ClIs for every performance metric in
each model were estimated by bootstrapping the validation cohort
without replacement 100 times.

We used R, version 3.4.2 (R Foundation for Statistical Computing,
Vienna, Austria) and Python language, version 2.7 (Python Software
Foundation, Fredericksburg, VA) as programming software and
SAS, version 9.4 (SAS Institute, Cary, NC) for descriptive analyses.
PubMed was searched using text mining to identify articles that
match this final subset of genes to the keyword “sepsis” using the
R package “rentrez” (38). The resulting articles were reviewed by
authors (S. Bandyopadhyay, K.E, H.V.B., A.B.) to provide an over-
view of biologic functions of identified genes in sepsis. Boruta was
implemented using “BorutaPy” package in Python. An automated
analytic framework for the entire process in Figure 1B was imple-
mented using Bioconductor (Version 3.7, Bioconductor Project,
Roswell Park Comprehensive Cancer Center, NY) in R and scikit-
learn (Version 0.19.2) (39) in Python and is available on Github at
https://github.com/Prisma-pResearch/Urinary-signature-of-sepsis-.

RESULTS

Patient Cohorts

Compared with control patients, sepsis patients were younger
but had similar comorbidity burden (Table 1). None of the
control patients experienced sepsis within 7 days of surgery.
Supplementary Table S3 http://links.lww.com/CCX/A277 shows
the different surgery types control patients were scheduled for.
Proportion of patients who had preexisting kidney disease within
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sepsis and control cohorts was not significantly different. The
groups did not differ in the SOFA score obtained on the day of
urine sampling although sepsis patients had higher biomarkers
of infection, as expected. For control patients, SOFA scores were
obtained on the day of the surgery and included both preopera-
tive and postoperative evaluations. The initial urine samples were
collected within a median of 7 hours (range 3-11hr) of sepsis
onset. We excluded patients whose primary cause of sepsis was
urinary tract infection, because these patients had a significantly
higher total RNA mass that is indicative of a greater urinary cell
count. The p value of a single-tailed ¢ test assuming equal vari-
ance between the two groups was 0.008. F test showed that the two
groups have equal variance with an F value of 2.41E-6, whereas the
F critical is 1.714. Furthermore, we did sensitivity analysis, which
showed that the differentially expressed gene sets with and with-
out urinary tract infection (UTI) patients are nearly identical. If
the UTI sepsis patients are added, eight genes, namely, ADGRE2,
ADGRES5, IFITM1, IFRD1, KLHL2, LYST, MAPK14, and STX11,
are added to the previous list of 1,048 differentially expressed
genes, making the change insignificant.

The Acute Urinary Molecular Response to Sepsis

Within 12 hours of sepsis onset, we identified a distinct transcrip-
tomic profile in the urinary cells retrieved from the fresh pellet
with 2,434 (3.6%) of 67,528 probes being differentially expressed
compared with control patients (FDR < 0.01 and absolute fold
change > 2) (Supplementary Fig. S2 A-C http://links.lww.com/
CCX/A266). Majority of probes were up-regulated (1,186 probes
for 905 genes) compared with controls with a good separation in
a principal component analysis (Supplementary Fig. S2D http://
links.lww.com/CCX/A266).

The IPA functional analysis showed up-regulation of pathways
related to innate immunity, actin cytoskeleton, cell cycle, protein
synthesis, and presence of reactive oxygen species in sepsis. Nuclear
factor of activated T cells in regulation of immune response, cell
division cycle 42 signaling, neuroinflammation signaling pathway,
fragment crystallizable gamma receptor-mediated phagocytosis in
macrophages and monocytes, integrin and hypoxia signaling were
the top five up-regulated canonical pathways in sepsis patients.
The peroxisome proliferator-activated receptor alpha/retinoid X
receptor alpha pathway was significantly down-regulated (Fig. 24).
We used pathway overlap graph that connects pathways that
have at least 10 molecules in common to reveal the presence of
four major different clusters of genes related to innate immunity,
cell cycle and metabolism, cell morphology, and motility and
hypoxia (Supplementary Fig. S3 http://links.Iww.com/CCX/
A267). Biofunctions concerning infection, cellular movement,
and migration and leukocyte quantity, migration, invasion, and
proliferation were significantly up-regulated in sepsis patients,
whereas cell death, apoptosis, and necrosis were down-regulated
compared with control preoperative patients (Fig. 2B). Interferon-
gamma, interleukin (IL)-1 beta, tumor necrosis factor, IL-6, and
IL-5 were identified as key upstream regulators for the 1,048
genes (Supplementary Table S4 http://links.lww.com/CCX/
A278). The primary gene coexpression network was associated
with lipid metabolism and molecular transport (Supplementary
Fig. S$4 http://links.lww.com/CCX/A268). Approximately 23% of
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TABLE 1. Clinical Characteristics of Patients in Discovery and Validation Cohorts
Discovery Cohort Validation Cohort

Sepsis Patients Control Patients Sepsis Patients Control Patients
Variables (n = 145) (n=32) P (n=41) (n=32)

Baseline characteristics

Female sex, n (%) 67 (46) 9(28) 0.076 17 (41) 16 (50) 0.488
Age, yr, mean (sb) 59 (15) 70 (9) <0.001 55 (18) 64 (11) 0.019
Race, n (%) 0.457 0.175
White 130 (90) 30(94) 37 (90) 27 (84)
African American 12 (8) 1(3) 4(10) 2 (6)
Other 3(2) 1(3) 0(0) 3(9)
Body mass index, median (25—75th) 29 (25-34) 26 (22-32) 0.064 29 (256-40) 27 (24-34) 0.114
Comorbidities, n (%)
Charlson comorbidity index, median (25-75th) 1 (0-3) 1(0-1) 0.084 1 (0-92) 1 (0-92) 0.826
Chronic kidney disease 19 (13) 7 (22) 0.267 6 (15) 7 (29) 0.5478
Hypertension 102 (70) 23 (72) 1 29 (71) 27 (84) 0.264
Diabetes 43 (30) 6(19) 0.277 9(22) 10 (31) 0.427
Chronic pulmonary disease 51 (35) 12 (38) 0.84 9 (22) 9 (28) 0592
Congestive heart failure 23 (16) 5(16) 1 6 (15) 8 (25) 0.37
Interfacility hospital transfer, n (%) 72 (50) 10 (31) 0.078 16 (39) 7 (29) 0.136
Time between sepsis onset and sample 7(3-11) NA 7 (4-12) NA

collection (hr), median (25—75th)
Acuity at the time of sampling

Sequential Organ Failure Assessment score, 6 (3-8) 5(3-8) 0.269 6 (3-7) 6 (5-8) 0.939
median (25-75th)

Primary sepsis source, n (%)

Intra-abdominal sepsis 61 (42) NA 18 (44) NA
Pneumonia 31 (21) NA 8 (20) NA
Necrotizing soft-tissue infection 26 (18) NA 7Q7) NA
Surgical site infection 19 (13) NA 1(2) NA
Others 8 (6) NA 7(17) NA

Sepsis severity on enrollment, n (%)
Sepsis 2 criteria

Sepsis/severe sepsis 112 (77) NA 33(80) NA
Septic shock 33(23) NA 8 (20) NA
Sepsis 3 criteria
Sepsis 108 (74) NA 392 (78) NA
Septic shock 28 (19) NA 5(12) NA
Lactate (mmol/L), median (25—75th) 1.8 (1.3-2.9) 0.7 (0.6-1) <0.001 1.7 (1.2-25) 19 (1.1-46) 0.747
Serum creatinine (mg/dL), median (25-75th) 1.0 (0.7-1.5) 1.1 (09-1.3) 0676 1.1 (09-17) 09(.7-1.1) 0.08

WBC count (thou/cu mm), median (25—-75th) 17 (12-29) 10(8-15) < 0.001 19 (14-26) 10(8-16) < 0.001

Outcomes

Hospital mortality, n (%) 11 (8) 1(3) 0.697 6 (15) 0 (0) 0.032
Days in ICU, median (25-75th) 8(4-18) 6(4-10) 0245 10 (6-15b) 5(3-11) 0.064
Days in hospital, median (25-75th) 18 (9-28) 11(6-16) 0016 17 (11-30) 9 (7-16) < 0.001

NA = not available.
2Other primary sepsis source includes catheter-related bloods, empyema, bacteremia, and esophageal perforation.
Significance level is set to be 0.05.
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1,048 genes were cross-referenced with sepsis-related literature in
PubMed (Fig. 2C) with greater than 150 citations associated with
each of the top five cited genes.

Immune and Kidney Cell-Specific Transcripts in the
Urine

IRIS deconvolution methodology was used to examine leu-
kocyte populations in the urine cell pellet in the early sepsis.

Deconvolution identified up-regulation of marker genes for neu-
trophils and monocytes and down-regulation for T-lymphocytes
(Fig. 3, A and B and Supplementary Table S5 http://links.lww.
com/CCX/A279). We calculated an average expression of the sig-
nature transcripts of each immune subset and used it as a proxy for
the relative amount of that cell type in the urine pellet. Cell propor-
tions by in silico deconvolution demonstrated significant increases
in neutrophils and monocytes in septic patients (Supplementary
Fig. S5A http://links.lww.com/

A

Role of NFAT in Regulation of the Immune Response
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CCX/A269). Applying simi-
lar methodology on previously
described signature transcripts
for different nephron segments,
we identified the up-regulation
of marker genes for tubular epi-
thelial cells from the collect-
ing duct (Fig. 3, C and D and
Supplementary Table S6 http://
links.Iww.com/CCX/A280). Cell
proportions demonstrated sig-
nificant increases in epithelial
cells from all nephron regions in
sepsis patients (Supplementary
Fig. S5B http://links.Iww.com/
CCX/A269). Flow cytometry of
the urine samples from 10 ran-
domly selected septic patients
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5.1

2109s-7

Direction of demonstrated the presence of
Regulation in both CD4 + (3.3% of all cells) and
Diseases and Functions -log(p-value) Sepsis CD8 + T cells (0.7% of all cells),
Viral Infection ~ 9.6 CD14 + macrophages (0.7% of all
Cell movement ~ cells), and CD19 + B cells (1.6%
Migration of cells ~ of all cells) (Supplementary Fig.
Leukocyte migration ~ S$6  http://links.lww.com/CCX/
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Figure 2. Pathways and biofunctions in the acute response to sepsis (within 12hr of sepsis onset), compared with
control patients. A, Ingenuity pathway analysis (IPA) of differentially expressed probes showed up-regulation of pathways
mainly related to innate immunity, actin cytoskeleton, cell cycle and protein synthesis, and presence of reactive oxygen
species in sepsis. The few pathways that were down-regulated in sepsis patients mainly corresponded to peroxisome
proliferator-activated receptor pathway. p values are calculated by IPA software using the right-tailed Fisher exact test

to measure likelihood that pathways or functions are overrepresented by molecules in dataset. B, Ingenuity disease and

biofunction analysis of differentially expressed probes in sepsis patients.
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validation cohort using random
forest, support vector machine,
and logistic regression models
whose hyperparameters  were
tuned on the discovery cohort.
The support vector machine
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Figure 2. (Continued) C, Genes with the highest number of publications cross-referenced in
PubMed with the term “sepsis” Among 1,048 genes that were described by the differentially
expressed probes, 23% were cross-referenced in PubMed. Genes that were cross-referenced with
at least 50 PubMed references are shown here. AES = amino enhancer of split protein, AHR =
aryl hydrocarbon receptor, APP = amyloid precursor protein, CAST = calpastatin, CD14 = cluster
of differentiation 14, CD68 = cluster of differentiation 68, Cdc42 = cell division control protein

42 homolog, CSF3R = colony stimulating factor 3 receptor, CXCR4 = chemokine (C-X-C motif)
receptor 4, EIF2 = eukaryotic initiation factor 2, Fcy = Fc gamma, fMLP = N-Formyl-methionyl-
leucyl-phenylalanine, FOS = FBJ murine osteosarcoma viral oncogene homolog B, HIF1A =
hypoxia-inducible factor 1 alpha subunit inhibitor, HLA-B = major histocompatibility complex, class
| B, ICAM1 = intercellular adhesion molecule 1, IL-1B = interleukin-1 beta, IL-8 = interleukin-8,
iNOS = inducible nitric oxide synthase, ITCH = E3 ubiquitin-protein ligase itchy homolog, MSN =
moesin, NFAT = nuclear factor of activated T-cells, NFE2L2 = nuclear factor, erythroid 2 like 2,
NFKBIA = NF-kappa-B inhibitor alpha, PISK/AKT = phosphoinositide 3-kinase/protein kinase B,
PPARa = peroxisome proliferator-activated receptor alpha, PTGS2 = prostaglandin-endoperoxide
synthase 2, RELA = V-rel avian reticuloendotheliosis viral oncogene homolog A, RXRa. = retinoid
X receptor alpha, STAT3 = signal transducer and activator of transcription 3 (acute-phase response
factor), TGFB1 = transforming growth factor beta 1, TLR2 = toll-like receptor 2, TREM1 =
triggering receptor expressed on myeloid cells 1, UBC = ubiquitin C, VIM = vimentin.

Observational Study

Methods  http://links.lww.com/CCX/A264) and
discovered that several gene products repeatedly
co-occurred in the significant pathways, including
transcription factor p65 (16 of 17 pathways), IL-1B,
protein kinase C delta and prostaglandin-endoper-
oxide synthase 2 (eight of 17 pathways), transform-
ing growth factor beta 1, IL-8, and toll-like receptor 2
(six of 17 pathways) (Supplementary Fig. S10 http://
links.lww.com/CCX/A274).

DISCUSSION
In a single-center prospective cohort of patients with
sepsis, an ensemble of four ML algorithms identified
239 gene expressions unique to systemic immune
and kidney-specific processes using whole-genome
transcriptomic analysis of cellular RNA isolated from
urine samples within 12 hours of sepsis onset. The
functional analysis of these genes displays the up-reg-
ulation of innate immune response, cellular motility
and extravasation, cellular hypoxia, and production of
oxidative species. This pattern resembles gene expres-
sion signatures observed in studies of circulating
immune cells from the blood of septic patients with
activation of the innate immune response (40-42),
up-regulated cellular motility (43), cellular hypoxia
(43), and production of oxidative species (44), and
demonstrates the potential use of urinary immune
cells as an indicator of systemic processes. The overall
pathway activations exhibited by the urinary signature
are comparable with functional analysis using blood
transcriptomics reported in previous studies (45-48).
Immune deconvolution analysis showed the ampli-
fication of gene markers for an array of immune cell
types, particularly monocytes and neutrophils, under-
lining the role of innate immune response in early sep-
sis and confirming the ability to identify immune cell
subsets in the urine. Additionally, the deconvolution
analysis found kidney-specific transcripts in urine
with up-regulation of tubular epithelial cells.

To our knowledge, this study represents the
first urine-based gene expression study in sepsis.
Although a readily available biofluid rich in cells and

performed best across all gene subsets with similar performance
between 233 and 64 probe sets, whereas reduction to the 42 probes
resulted in a decrease in performance (Table 2, Supplementary
Table S7 http://links.Iww.com/CCX/A281 and Supplementary Fig.
87 http://links.Ilww.com/CCX/A271). The functional analysis of
these 239 genes (Supplementary Fig. S8 http://links.Iww.com/CCX/
A272) revealed up-regulation in pathways related to migration and
adhesion of neutrophils and phagocytic cells, IL-8 signaling, and neu-
roinflammation, whereas peroxisome proliferator-activated receptor
alpha/retinoid X receptor alpha pathways remained significantly
down-regulated (p < 0.01) (Supplementary Fig. S9 http://links.Iww.
com/CCX/A273). We investigated the presence of biologically inter-
connected subsets of genes among the 239 genes (Supplementary

Critical Care Explorations

nucleic acids, urine has been underutilized for the development of
biomarkers in sepsis. Previous studies have shown diagnostic and
prognostic potential of urine messenger RNA and micro RNA in
identifying acute and chronic graft rejection in kidney transplant
recipients (18, 49, 50) and in diagnosis and risk stratification of
urologic malignancies (51, 52). Unlike blood, urine can reflect the
kidney response in sepsis, which shows damage associated with
oxidative stress, hypoxia, and inflammation leading to cell death
and epithelial-to-mesenchymal tissue remodeling (53).

Our study has several unique strengths. We applied an ensem-
ble of ML algorithms to find an optimal subset of genes discrimi-
native of sepsis while preserving relevant nonlinear relationships
among them. This ensemble tuned to discovery cohort yielded

www.ccejournal.org 7
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Figure 3. Immune and kidney cell-specific transcript changes in the acute response to sepsis. A, Inmune cell deconvolution showing the overall percentage
differential regulation of immune cell-specific markers (selected from the 1,622 genes from immune response in silico [IRIS] resource; see Materials and
Methods) between sepsis and control patients. There was predominant up-regulation of neutrophil and monocyte markers, a mixed-response in B cells and
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neutrophils and monocytes are overexpressed in sepsis compared with controls.
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TABLE 2. Performance of Selected Probe Sets on External Validation Data Using Support
Vector Machine

No. of Area Under the Accuracy F1 Score
Probes Curve (95% CI) (95% CI) (95% CI)
233 0.86 0.77 0.81
(0.77-0.93) (0.70-0.88) (0.71-0.90)
64 0.87 0.77 0.76
(0.80-0.93) (0.66-0.85) (0.66-0.86)
42 0.78 0.71 0.73
(0.67-0.88) (0.61-0.82) (0.61-0.83)

Sensitivity Specificity Positive Predictive NPV
(95% CI) [CLL N o)) Value (95% CI) (95% CI)
0.84 0.70 0.77 0.77
(0.72-0.95) (0.51-0.86) (0.67-091) (0.64-0.92)
0.70 0.85 0.85 0.69
(0.55-0.84) (0.70-0.95) (0.72-0.96) (0.563-0.84)
0.70 0.75 0.79 0.66
(0.55-0.84) (0.61-0.93) (0.66-0.93) (0.51-0.83)

NPV = negative predictive value.

very strong classification of sepsis from control subjects in the
external validation cohort using a modest number of genes, thus
confirming our hypothesis that changes in urinary cells may
reflect ongoing systemic processes discovered in transcriptomic
analyses of blood samples (6, 54).

There are some general clinical differences between our discov-
ery and validation cohorts.

This is expected as the validation cohort is a completely inde-
pendent sample collected at a different time point compared with
the discovery cohort. The robust performance of our ML models
on this independent validation cohort proves that our models have
succeeded in extracting a general set of features representing the dis-
ease state compared with some cohort-specific idiosyncrasies. This
is one of the largest sepsis cohorts with complete clinical, immuno-
logic, and molecular characterizations and long-term follow-up of
the patients. We have applied rigorous methodology including the
use of independent validation cohort to improve generalizability of
our results and to overcome the limitation of a modest sample size.

Our study has limitations. The cost to prospectively enroll
critically ill patients, obtain samples within 12 hours of sepsis
onset, and analyze full-genome data was a determining factor for
the limited size of the discovery and validation cohorts. We have
taken multiple steps to ensure that class imbalance in the discov-
ery cohort does not hinder the accuracy of our results including:
1) training using scikit-learn packages with class balancing ability
wherein the ML model is biased toward the class with lower sam-
ples to a degree commensurate with the imbalance and 2) using
a threshold that maximizes the Youden index rather than default
threshold equal to 0.5 for calculating performance metrics.
Although the current results are promising as they show dysregu-
lation of gene expression of key cellular subsets in sepsis, addi-
tional comparisons will need to be made with patients with more
pronounced systemic inflammatory syndrome. Furthermore, our
future work will include evaluating the ability of urinary metabo-
lomics compared with transcriptomics to differentiate sepsis from
noninfected controls and to perform a complete comparison of
pathways activated in urinary transcriptomics against those up-
regulated in blood transcriptomics of sepsis.

CONCLUSIONS

The whole-genome transcriptomic analysis of cellular RNA iso-
lated from the urine samples of septic patients reveals changes in
gene expressions unique to systemic immune and kidney-specific

10 www.ccejournal.org

processes as early as within 12 hours of sepsis onset. Future
studies need to confirm whether this approach can comple-
ment blood transcriptomic approaches for sepsis diagnosis and
prognostication.
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