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ABSTRACT In the last decade, Human Activity Recognition (HAR) has become a vibrant research area,
especially due to the spread of electronic devices such as smartphones, smartwatches and video cameras
present in our daily lives. In addition, the advance of deep learning and other machine learning algorithms
has allowed researchers to use HAR in various domains including sports, health and well-being applications.
For example, HAR is considered as one of the most promising assistive technology tools to support elderly’s
daily life by monitoring their cognitive and physical function through daily activities. This survey focuses
on critical role of machine learning in developing HAR applications based on inertial sensors in conjunction

with physiological and environmental sensors.

INDEX TERMS Human activity recognition (HAR), deep learning (DL), machine learning (ML), available

datasets, sensors, accelerometer.

I. INTRODUCTION

Human Activity Recognition (HAR) has become a popular
topic in the last decade due to its importance in many areas,
including health care, interactive gaming, sports, and moni-
toring systems for general purposes [1]. Besides, nowadays,
the aging population is becoming one of the world’s primary
concerns. It was estimated that the population aged over
65 would increase from 461 million to 2 billion by 2050.
This substantial increase will have significant social and
health care consequences. To monitor physical, functional,
and cognitive health of older adults in their home, HAR is
emerging as a powerful tool [2]

The goal of HAR is to recognize human activities in con-
trolled and uncontrolled settings. Despite myriad applica-
tions, HAR algorithms still face many challenges, including
1) complexity and variety of daily activities, 2) intra-subject
and inter-subject variability for the same activity, 3) the
trade-off between performance and privacy, 4) computational
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efficiency in embedded and portable devices, and 5) dif-
ficulty of data annotation [3]. Data for training and test-
ing HAR algorithms is typically obtained from two main
sources, 1) ambient sensors, and 2) embedded sensors. Ambi-
ent sensors can be environmental sensors such as tem-
perature sensors or video cameras positioned in specific
points in the environment [4], [5]. Embedded sensors are
integrated into personal devices such as smartphones and
smartwatches, or are integrated into clothes or other spe-
cific medical equipment [6]-[9]. Cameras have been widely
used in the HAR applications, however collecting video
data presents many issues regarding privacy and computa-
tional requirements [10]. While video cameras produce rich
contextual information, privacy issues limitations have led
many researchers to work with other ambient and embed-
ded sensors, including depth images as a privacy-preserving
alternative.

In terms of algorithmic implementation, HAR research has
seen an explosion in Deep Learning (DL) methods, result-
ing in an increase in recognition accuracy [5], [7]. While
DL methods produce high accuracy results on large activity
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FIGURE 1. (a) Distribution of published papers in HAR research area, for DL vs. CML implementations. (b) The average recognition accuracy of published

papers, for DL vs. CML implementations.
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FIGURE 2. Distribution of published papers per year in HAR research based on (a) CML and (b) DL.

datasets, in many HAR applications Classic Machine Learn-
ing (CML) models might be better suited due to the small
size of the dataset, lower dimensionality of the input data,
and availability of expert knowledge in formulating the prob-
lem [11]. The increasing interest in HAR can be associated
with growing use of sensors and wearable devices in all
aspects of daily life, especially with respect to health and
well-being applications. This increasing interest in HAR is
evident from the number of papers published in the past five
years, from 2015 to 2019. As Figure 1.(a) shows, among
a total of 149 selected published papers on HAR, 53 were
based on DL models, and 96 were based on CML mod-
els. During the same time period were published 46 sur-
veys and 20 articles proposing not ML-based methodologies
(e.g., threshold models). Figure 1.(b) shows the average activ-
ity recognition accuracy, among the 53 DL-based papers and
the 96 CML-based papers, that as visible (93% DL-based
and 92.2% CML-based) present almost the same recognition

VOLUME 8, 2020

quality. In addition, Figure 2 shows the distribution of the
published HAR papers over the past five years in terms
of (a) CML and (b) DL models. It shows that the num-
ber of CML-based HAR models was, except 2019, greater
than the number of DL-based HAR models. In this article,
we will review both DL-based and CML-based methodolo-
gies. We will limit our review to non-image-based sensors,
to limit the scope. Interested readers are encouraged to read
references on vision-based HAR [10], [12]-[14].

Figure 3 presents the standard workflow in designing
HAR-based methodologies. When developing HAR-based
application, the first step is to determine the type of sen-
sor and device that is used to collect data (device iden-
tification). The second step is to determine the details of
the data collection process, including the annotation process
and possibly any necessary preprocessing (data collection).
The third step includes identifying the appropriate machine
learning model and training the model, typically a supervised
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FIGURE 3. Standard workflow for implementing HAR based application.

machine learning model on annotated data (model selection
and training). However, as shown in Figure 3 (indicated by the
backwards arrow), the selected model can also influence the
preprocessing data step. In the final step, the model is evalu-
ated in terms of the activity recognition metrics such as accu-
racy, precision, recall, and other metrics (model evaluation).
In this work, we use accuracy as a comparison metric between
the various articles due to the fact that it is the only common
metric. Not all articles present the results obtained in terms
of precision, recall, sensitivity, F1-Score, Area Under the
Curve (AUC) or Receiver Operating Characteristics (ROC)
curve, despite being more representative metrics, especially
with unbalanced data. Using this workflow as a reference, this
article provides an overview of the state-of-the-art in HAR by
examining each phase of the process. Finally, we are particu-
larly interested in accelerometer sensors because they have
shown excellent results in HAR applications and because
their use in conjunction with other sensors is rising rapidly.
The proliferation of accelerometer sensors is strongly related
to their ability to measure directly the movement of the human
body. In addition, using accelerometer sensors is affordable,
and the sensors can be integrated into most wearable elec-
tronic objects people own.

The rest of the paper is organized as follows: Section II
provides a brief overview of the existing surveys on HAR
from 2015 to 2019, Section III describes the article selec-
tion criteria, Section IV will provide background material on
CML, DL, and existing sensors/wearable devices. Section V
will introduce the definition of human activity, followed by
categorization of the published works in terms of sensor
and device (Section VI). Section VII will present available
datasets for HAR research activity. Section VIII will review
published papers based on the model and evaluation metrics.
Section IX will discuss the limitations and challenges of
existing HAR research, followed by a discussion on future
research direction in Section X. Finally, Section XI reports
some concluding remarks.

Il. EXISTING SURVEYS

Since HAR is emerging as an important research topic, many
surveys have been published in the past few years. Among the
initial 293 published papers that we identified, 46 were survey
papers published since 2015. The existing survey papers can
be categorized based on the data sources and the activity
recognition algorithm. The most widely used data sources
are a) inertial, physiological and environmental devices, and
b) video recording devices. In terms of the HAR algorithm,
most algorithms are based on CML models and more recently
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DL algorithms. Among such 46 survey papers, we excluded
23 papers which were exclusively video-based HAR papers.
Our survey paper provides unique contribution to the review
of literature by providing, a broad vision of the evolution of
HAR research in the past 5 years. Unlike existing surveys,
we do not solely focus on the algorithmic details, rather we
will also describe the data sources (aka sensors and devices)
are used in this context. We are particularly interested in
accelerometer sensors because they have shown excellent
results in HAR applications and because their use in con-
junction with other sensors such as physiological sensors or
environmental sensors is rising rapidly. The proliferation of
accelerometer sensors is strongly related to their ability to
directly measure the movement of the human body. In addi-
tion, using accelerometer sensors is affordable, and the sen-
sors can be integrated into most wearable devices. Recently,
Wang. J and colleagues [15] (2019) survey existing literature
based on three aspects: sensor modality, DL models, and
application scenarios, presenting detailed information of the
reviewed works. Wang. Y and colleagues [2] (2019) present
the state-of-the-art sensor modalities in HAR mainly focusing
on the techniques associated with each step of HAR in terms
of sensors, data preprocessing, feature learning, classifica-
tion, activities, including both conventional and DL methods.
Besides, they present the ambient sensor-based HAR, includ-
ing camera-based, and systems combining wearable and
ambient sensors. Sousa Lima et al. [16] (2019) provide a com-
plete, state-of-the-art outline of the current HAR solutions in
the context of inertial sensors in smartphones, and, Elbasiony
and Gomaa [17] (2019) introduce a detailed survey on multi-
ple HAR systems on portable inertial sensors (Accelerometer,
Gyroscopes, and Magnetometer), whose temporal signals are
used for modeling and recognition of different activities.
Nweke et al. [18] (2019) provide a detailed analysis of
data/sensors fusion and multiple classification systems tech-
niques for HAR with emphasis on mobile and wearable
devices. Faust et al. [19] (2018), studied 53 papers focused
on physiological sensors used in healthcare applications such
as Electromyography (EMG), Electrocardiogram (ECG),
Electrooculogram (EOG), and Electroencephalogram (EEG).
Ramasamy Ramamurthy and Roy [20] (2018) presented an
overview of ML and data mining techniques used for Activ-
ity Recognition (AR), empathizing with the fundamental
problems and challenges. Finally, Morales and Akopian [21]
(2017) provide an overview of the state-of-the-art concerning:
relevant signals, data capturing and preprocessing, calibrating
on-body locations and orientation, selecting the right set of
features, activity models and classifiers, and ways to evaluate
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TABLE 1. Existing HAR surveys.

Reference Publication Main Used # Start/End # Reviewed
Year Focus Keywords Keywords Year Papers
[15] 2019 DL based HAR DL, Activity Recognition, Pattern Recogniton, Pervasive Com- 4 2013/2019 77
puting
2] 2019 HAR in Health- HAR, Wearables sensors, DL, Features, Healthcare 5 2005/2019 258
Care
[16] 2019 Inertial Sensors  HAR, activity recognition, smartphones, mobile phones, in- 10 2006/2019 149
in  Smartphones ertial sensors, accelerometer, gyroscope, ML, classification
based HAR algorithms, DL
[17] 2019 Temporal Signals HAR, ML, Inertial measurement unit, Accelerometer, Gyro- 6 2001/2019 48
based HAR scope
[18] 2019 HAR on multi  Activity detection, Data fusion , DL, Health monitoring, Mul- 6 2005/2019 309
data system tiple classifier systems, Multimodal sensors
[22] 2018 Smartphones DL, Mobile and wearable sensors, HAR, Feature representa- 4 2005/2018 275
based HAR tion
[19] 2018 DL for health on DL, Physiological signals, Electrocardiogram, Electroen- 6 2008/2017 53
physiological sig-  cephalogram, Electromyogram, Electrooculogram
nals
[20] 2018 ML based HAR active learning, activity recognition, data mining, DL, ML, 7 2007/2018/87
transfer learning, wearable sensors
[23] 2018 HAR for Ageing Senior citizens, Activity recognition, Internet of Things, Intel- 6 2010/2018 43
ligent sensors, Aging, Task analysis
[24] 2017 DL for healthcare DL, health care, biomedical informatics, translational bioinfor- 6 2012/2017 119
matics, genomics, electronic health records
[25] 2017 Time Series  Artificial Neural Networks, DL, Time-Series 3 2007/2017 60
based DL
[26] 2017 DL based HAR DL, Activity Recognition, Video, Motion 4 2010/2017 24
[27] 2017 Video and Iner- HAR, Activity recognition, 3D action data, Depth sensor, 7 2010/2017 78
tials based HAR Inertial sensor, Sensor fusion, Multimodal dataset
[21] 2017 HAR with Smart-  Accelerometer, Gyroscope, Activity Recognition (AR), Smart- 4 2010/2017 64
phones phone
[28] 2017 Smartphones AR, Sensors, Smartphone, Activity of Daily Living, 7 2005/2017 39
based HAR Aceelerometer, Survey, Processing
[29] 2017 Smartphones State-of-the-art, Energy efficient wearable sensor networks, 3 2007/2017 88
based HAR Human context recognition
[30] 2017 HAR general artificial intelligent, human body posture recognition, feature 4 201072017 13
overview extraction, classification
[31] 2017 Wearable based  Human activity monitoring, Human Computer Interface, Wear- 7 2005/2016 85
HAR able sensors, Smart sensors, Multimodal interface, Biomedi-
cal, Shared control architecture
[32] 2016 DL for healthcare ~ Bioinformatics, DL, health informatics, ML, medical imaging, 7 2010/2016 145
public health, wearable devices
[33] 2016 Wearable based  Wearable, sensors, survey, activity detection, activity classifi- 5 2005/2016 225
HAR cation, monitoring
[34] 2016 Smartphone AR, Sensors, ADL 3 2001/2015 138
based HAR
[35] 2015 Wearable based online AR, real time, smartphones, mobile phone, mobile 8 2008/2014 T4
HAR phone sensing, HAR review, survey, accelerometer
[36] 2015 HAR in Health- MEMS sensor technologies, human centered applications, re- 9 2011/2014 128

Care

search activity in Italy, healthcare, rehabilitation, physical ac-
tivities, sport science, safety, environmental sensing

the usability of a HAR system. Moreover, it covers the detec-
tion of repetitive activities, postures, falls, and inactivity.

Table 1 summarizes 23 surveys on HAR methods sorted
by chronological order from 2019 to 2015. It should be noted
that all these surveys, including those not taken into con-
sideration (video-based), had not reported their systematic
review process (e.g., using Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses (PRISMA)). In Table 1,
Column five, we report the start/end publication year of the
reviewed papers and Column six their approximate number
of reviewed articles. Most of these HAR reviews focus on
data management methods and activity recognition models.
To the best of our knowledge, no existing survey article is
(1) presenting a comprehensive meta-review of the existing
surveys, (2) providing a comprehensive overview of different
sensors, (3) reporting and comparing performance metrics,
and (4) reporting on dataset availability and popularity.
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Ill. SELECTION CRITERIA

We used Google Scholar to search for studies published
between January 2015 to September 2019. All searches
included the term ‘““human activity recognition,” or “HAR”
in combination with “deep learning”, ““machine learning,”
“wearable sensors,” and “<name>' sensor”. All these pub-
lished papers where found by using the combination of
keywords mentioned above. Our keywords produced a total
of 249110 records, among which we selected 293 based on
the quality of the publication venue. The chosen articles
were selected from the following publishers: Institute of
Electrical and Electronics Engineers (IEEE), Association for
Computing Machinery (ACM), Elsevier, and Sensors. The
average number of citations was 46, and the distribution of the

1e.g., accelerometer, gyroscope, magnetometer, barometer, light, Global
Positioning System (GPS)
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TABLE 2. Distribution of the selected published articles for year by
including the following keywords: “Human Activity Recognition (HAR),
Sensor <Name>, Wearable sensors”.

Year 2015 2016 2017 2018 2019 | Total
Total # of Papers 52 60 45 90 46 293

Records identified Removing video-
on Google scholar >  based methods
(n=293) (n=167)
—> 91 excl. —> 4 excl.

Removing articles
on payment and

Removing articles
that do not use the

surveys accelerometer
(n=202) (n=163)
—> 4 excl. —> 14 excl.

Records after applying
inclusion/exclusion
criteria
(n=149)

Removing books
(n=198)

31 excl.

FIGURE 4. PRISMA-based flowchart of the retrieval process.

papers for each year is shown in Table 2. Figure 4 shows our
retrieval process based on PRISMA template for systematic
reviews [37]. First, we excluded all surveys papers and not
accessible papers ( e.g., requiring paid access) (91 excluded).
Next, we excluded all books (4 excluded) and all vision-based
papers (31 excluded). Finally, we excluded all the papers that
do not use accelerometers (4 excluded), and all the papers per-
forming activity recognition different from daily life human
activities, such as swimming, riding horses, driving, publica-
tions prior to 2015, and papers using non-machine learning
techniques such as simple thresholding (4 excluded). As a
result, 149 were eligible, as Figures 1 and 4 show.

IV. BACKGROUND

The main objective of HAR algorithms is to recognize human
activity based on data gathered by wearable and environmen-
tal sensors [15], [38]. The recognition of these activities is
mainly based on CML and DL algorithms. Recently, the use
of a wide variety of sensors, has generated interest in sensor
fusion techniques. This section introduces basic ML and DL
concepts, wearable/environmental sensors market evolution,
and sensor fusion techniques.

A. MACHINE LEARNING OVERVIEW
Machine Learning (ML) is a branch of Artificial Intelligence
(AI), for developing algorithms that can identify and infer
patterns given a training dataset [39]. Such algorithms fall
into two major classes:

o Supervised learning,

o Unsupervised learning.
The goal of supervised learning is to create a mathematical
model based on the relationship between input and output
data and to use the model for predicting future unseen
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data points. In unsupervised learning, the goal is to iden-
tify patterns in input data without any knowledge of the
output [4]. Typically, one or more preprocessing steps will
be also required, including feature extraction, vectorization/
segmentation, normalization or standardization, and
projection [40].

Some of the most common supervised CML algorithms
are: Naive Bayes (NB), k-Means Clustering, Support Vector
Machine (SVM), Linear Regression, Logistic Regression,
Random Forests (RF), Decision Trees (DT) and k-Nearest
Neighbours (k-NN). DT’s classify data instances by sort-
ing them based on the features/data values. Each node rep-
resents a feature to be classified, and each branch repre-
sents a value that the node can assume. NB classifiers are
probabilistic classifiers based on applying Bayes’ theorem
with strong independence assumptions between the features.
SVMs are based on the notion of a margin-either side of
a hyperplane that separates two data classes. Maximizing
the margin, thereby creating the most significant possible
distance between the separating hyperplane and the instances
on either side, has been proven to reduce an upper bound
on the expected generalization error. Finally, K-NN is a
CML algorithm that stores all available cases and classi-
fies new cases based on a similarity measure (e.g., distance
functions as Euclidean, Manhattan, Minkowski) [39]. Fur-
thermore, since HAR imposes specific constraints, such as
reduced latency, memory constraint, and computational con-
straints, these classifiers, except for SVM, are appropriate
for low-resource environments given their low computational
and memory requirements.

Among unsupervised and particularly clustering algo-
rithms, the most well-known algorithms are k-Means, Hier-
archical clustering, and Mixture models. K-Means clustering
aims to partition groups of samples into k clusters based on
a similarity measure (intra-group) and dissimilarity measure
(inter-groups). Each sample belongs to the cluster with the
nearest cluster centers or cluster centroid, serving as a clus-
ter prototype. Hierarchical Clustering Analysis is a cluster
analysis method that seeks to build a hierarchy of clusters
where clusters are combined/split based on the measure of
dissimilarity between sets. A mixture model is a probabilistic
model for representing subpopulations of observations within
an overall population [4]. These techniques are particularly
suitable when working with datasets lacking labels or when
the measure of similarity/dissimilarity between classes is a
primary outcome [41]-[43].

B. DEEP LEARNING OVERVIEW

On the other side, in recent years, DL algorithms have
become popular in many domains, due to their superior per-
formance [4]. Since DL is based on the idea of the data
representation, such techniques can automatically generate
optimal features, starting from the raw input data, without
any human intervention, making it possible to identify the
unknown patterns that otherwise would remain hidden or
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unknown [44]. However, as already mentioned, DL models
also present some limitation [45]:
o Black-box models, interpretation is not easy and
inherent,
« Require large datasets for training,
« High computational cost.

input image

feature maps feature maps feature maps feature maps ;
(256x256) (128x128) (128x128) (64x64) output

(256x256)

pling convolution
L layer | layer | layer 1 layer

subsampling fully
1 connected |

con

FIGURE 5. Example of a Convolutional Neural Network (CNN) for image
classification [44].

Because of such limitations, in some areas still CML meth-
ods are preferred, especially when the training dataset is
quite small, or when fast training is a requirement. Some of
the most common DL algorithms are: Convolutional Neural
Network (CNN), Recurrent Neural Networks (RNNs), Long
Short-Term Memory Networks (LSTMs), Gated Recurrent
Unit (GRU), Stacked Autoencoders, Temporal Convolutional
Network (TCN) and VAriational Autoencoders (VAE) [46].
Nowadays, CNNss are a prevalent tool, especially in the image
processing research community. CNN’s impose local connec-
tivity on the raw data extracting more important features by
viewing the image as a collection of local pixel patches. Fur-
thermore, a one-dimensional time series can also be viewed
as a collection of local signal segments. Figure 5 shows an
example of CNN architecture with two convolutional lay-
ers, each followed by a pooling layer. Instead, RNNs are a
proper alternative when data is represented sequentially as
time-series data and designed to deal with such long-range
temporal dependencies. While one-dimensional sequences
can be fed to a CNN, the resulting extracted features are shal-
low. Only closely localized relations between a few neighbors
are factored into the feature representations. LSTM’s are an
RNN variant. Standard RNNs are comprised of intercon-
nected hidden units, each unit in a Gated RNN is replaced by
a special cell that contains an internal recurrence loop and a
system of gates that controls the flow of information. Figure 6
shows an RNNs that operates by sequentially updating a
hidden state H, based not only on the activation of the current
input X; at time ¢, but also on the previous hidden state H;_1,
updated by X;_1, H;—>. The final hidden state after processing
an entire sequence contains information from all its previous
elements. LSTM and GRU models are successful RNN vari-
ants, also known as Gated RNNs. Basic RNNs are comprised
of interconnected hidden units. Each unit in a Gated RNN
is substituted by a cell that includes an internal recurrence
loop and a system of gates that manages the information flow.
Gated RNNs have shown advantages in modeling sequential
dependencies in long-term time-series [44].
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FIGURE 6. Extended representation of a Recurrent Neural Network (RNN)
for an example with an input sequence of length three, three hidden
units, and a single output [44].
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FIGURE 7. (a) Distribution of published papers in HAR research area
categorized by the sensor data source, and, (b) average activity
recognition accuracy obtained from the papers using such sensors.

C. SENSORS

Sensors and wearable devices surround us in our daily life.
The most common types of sensors used in activity recog-
nition are accelerometers, mainly due to their small size and
low cost. Figure 7 illustrates the prevalence of accelerometer
sensors used in HAR. In many cases, accelerometers are
used in conjunction with others sensors including gyroscopes,
magnetometers, compasses, pressure sensors, body tempera-
ture sensors, electromyography, oximetry sensors, and elec-
trocardiographs. Many other kinds of sensors have been used
in different applications. For example, the Global Positioning
System (GPS) sensors or WiFi are used to determine the
user’s location [47], microphones and Bluetooth are used
to analyze human interactions [48], and CO;, sensors are
employed to estimate the air quality [49]. The size of these
sensors are constantly decreasing, such that they are being
integrated into clothes [50], smart glasses [51] and other
wearable objects [52]. In more advanced applications, objects
in the daily environment are enriched with Radio Frequency
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Identification (RFID) tags. The tags make it possible to infer
the user’s in-house activities (e.g., preparing coffee, doing
laundry, washing dishes) [53].

These sensors are becoming more and more prevalent in
our daily life [29]. Shipments of wearable devices, includ-
ing smartwatches, basic watches, and wrist bands, reached
34.2 million units during the second part of 2019, up 28.8%
year over year [54]. Companies as Xiaomi, Apple, Huawei,
Fitbit, or Samsung are pushing forward with new products
capturing 65.7% of the market, an almost 12% more than
2018 [54]. Smart devices lend themselves to increasingly
complex innovations in sensing and actuation. For example,
when acceleration and inertial sensors are available, HAR
algorithms can be implemented. Furthermore, by includ-
ing additional electronic modules, such as Bluetooth Low
Energy (BLE) and Wireless Local Area Network (WLAN)
antennas or GPS, wearable devices can be used for real-time
alerting and determining location to report risky situations
and identify activity [55]. In addition to smartphones and
smartwatches, other types of data collection and sensing
systems with communication capabilities are adding to the
Internet of Things (IoT).

D. SENSOR FUSION TECHNIQUES

Each type of sensor provides benefits and disadvantages.
For example, an accelerometer can measure acceleration, but
cannot accurately evaluate velocity or positional changes.
Similarly, the gyroscope can detect angular velocities, and the
magnetometer can measure the magnetic field value. How-
ever, most sensors can easily be deceived by environmental
noise, hardware noise, or external inputs, resulting in impreci-
sion and uncertainty. Sensor fusion techniques address these
limitations by combining input from various sensors. The use
of multiple sources (heterogeneous or homogeneous) com-
bined with data fusion techniques provides several advan-
tages, including 1) noise reduction, 2) reduced uncertainty,
3) increased robustness of the fusion phase, 4) robustness
to interference, and 5) integration of prior knowledge of the
perceived signals [56], [57]. Generally, as the number of
sensors increases, the fusion step becomes more challenging.
The most common sensor fusion methods are typically based
on Bayesian estimation, Kalman Filters, and Particle Filtering
techniques [58]. Nowadays, it is possible to implement these
techniques directly at the hardware level inside the sensing
modules, standardizing the application input and simplify-
ing application development, maintenance, and extensibility.
In the future, the use of sensor fusion techniques will span
a wide range of applications [27]. Sensor fusion techniques
address these limitations by combining the input from various
sensors. The use of multiple sources (heterogeneous or homo-
geneous) combined with data fusion techniques provides
several advantages, including 1) noise reduction, 2) lower
uncertainty, 3) higher robustness, 4) robustness to interfer-
ence, 5) integration of prior knowledge of the perceived
signals [56], [57]. Generally, the more the number of sensors,
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the more challenging is the fusion step. The most common
sensor fusion methods are typically based on Bayesian,
Kalman Filter and Particle Filtering techniques [58]. Further-
more, nowadays, these techniques are directly imprinted at
the hardware level inside the sensing modules, standardizing
the application input and simplifying application develop-
ment, maintenance, and extensibility. In the future, the use
of sensor fusion techniques will span a wide range of appli-
cations, given the specific functionality of each sensor and
the need to obtain accurate and robust estimations [27].

V. HUMAN ACTIVITY

The definition of Activities of Daily Life (ADL’s) is broad.
ADL’s are the activities that we perform daily, such as eating,
bathing, dressing, working, homemaking, enjoying leisure
and all of these activities involving physical movement. Our
review of HAR scientific literature presents an overview of
the most studied ADL’s.

Among all ADL’s, the most popular activities in HAR
research are walking, running, standing, sitting, walking
upstairs and walking downstairs. However, other type of
activities have been explored in the past few years, including
complex activities, such as the different phases of cook-
ing [59], house cleaning [4], [59]-[61], driving [62]-[65],
smoking [66], swimming [67], or biking [6], [43], [64], [68].
Several studies focus on activities performed on specific loca-
tions, such as sitting on the ground, lying on bed [69]-[71],
walking/standing in the elevator [71]-[74], walking/running
on a treadmill, walking in a parking lot, exercising on a
stepper [71], or exercising on a cross trainer [71], [75]. Other
detailed movement recognition involves specific movements
of the arms, such as carrying/reaching an object, releasing it,
frontal elevation, and other activities that people can perform
in relation to other objects [76]-[78]. A major area of HAR
research involves the aging of population and the increas-
ing of the number of people with physical and cognitive
function impairments. Many HAR models are being used
to help users recognize and avoid risky situations, such as
falls in elderly people [79]-[85] or Freezing of Gait (FoG)
in Parkinson’s disease [38]. Furthermore, activity tracking
devices are becoming very popular for monitoring ADLs.
Those devices are able to approximate physiological and
physical parameters such as heart rate, blood pressure, steps,
level changes, and calories consumed. Advanced devices
can recognize sleeping and the neurological stages of sleep
(i.e., cycling through nREM (stages 1-4) and REM) [86];
furthermore, all the stored information can be used as input
to HAR algorithms.

VI. DATA SOURCE DEVICES IN HAR

The first step of the HAR workflow includes identification
of the data source sensor/device to be used, and, as shown
in Figure 7.(a), small, low-cost and non-invasive sensors
such as accelerometers, gyroscopes, and magnetometers are
the most commonly used and appropriate sensors in HAR.
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TABLE 3. Sensor based paper categorization.

. Average Average Average
Source Sensor | Article Reference # Activities | # Datasets | # Subjects
Accelerometer | [4], [6]-[9], [32], [42], [43], [56]-[61], [63], [68]-[85], [87]-[176], [176]-[190] 12.84 1.32 45.38
Gyroscope [4], [71-19], [32], [42], [43], [56]-[58], [60], [69], [71]-[74], [76]-[80], [82], 14.22 1.33 43.74
[871-[911], [93], [95], [99]-[101], [107], [110], [111], [113]-[120], [122]-[125],
[127]1-[129], [137]-[139], [142]-[145], [147], [148], [150]-[152], [154], [155],
[157], [159], [160], [162], [164]-[166], [173]-[175], [179], [182], [184]-[186],
[190], [191]
Magnetometer [71, [8], [56], [60], [69], [71], [73], [741, [76], [771, [82], [89], [90], [111], [116], 17.45 1.44 84.25
[119], [124], [125], [134], [136], [137], [143], [148], [150], [152], [166]
Other [71, [43], [56], [60], [63], [72]-[74], [76], [77], [79], [80], [87]-[98], [107], 21.09 2.09 29.45
[125], [152], [154], [164], [184]

Other={temperature, humidity, light, presence, WiFi, Bluetooth, ECG, EMG, GPS, compass, heart rate, barometer, strech, audio}

TABLE 4. Device based paper categorization.

. . Average Average Average
Source Device | Article Reference # Activities | # Datasets | # Subjects
Standalone [4], [6], [32], [56]-[58], [60], [63], [68]1-[72], [76]-[78], [83]-[851, [88], [891, 15.63 1.48 26.9
[94], [96]-[98], [100], [102]-[104], [106]-[108], [111], [112], [114]-[116],
[118]-[121], [124]-[126], [131]-[133], [136]-[140], [144]-[146], [148], [151],
[153], [157], [158], [160], [162]-[164], [166], [167], [170], [171], [183], [189]
Smartphone [71-191, [321, [42], [43], [59], [61], [73], [74], [791-[821, [871, [90]-[931, [991], 10.55 1.18 65.59
[101], [105], [109], [110], [113], [114], [122], [123], [127]-[130], [134], [141]-
[143], [149], [150], [152], [154]-[156], [159], [161], [165], [168], [169], [172]-
[176], [176]-[182], [184]-[188], [190], [191]
Smartwatch [71, [43], [591, [62], [74], [75], [871, [90], [95], [117], [135], [1471, [149], [152], 17.4 1.28 32
[154], [185]
Other [76], [79], [871-[89], [911, [97], [98], [107], [152], [154] 7 1 22

Other ={ temperature, humidity, light, PIR, WiFi, Bluetooth, heart rate, barometer, strech, audio, medical devices }

As depicted in Figure 7.(a), 149 papers used accelerometers,
83 used gyroscopes in addition to accelerometers, and 27 used
a magnetometer in addition to the accelerometer. Therefore,
all the selected papers use at least one accelerometer or at
least one accelerometer in combination with other sensors.
Furthermore, Figure 7.(b) shows the average activity recog-
nition accuracy obtained form combination of such device.

Table 3 and Table 4 respectively show the sensor/device
type and provide references to the papers using such sen-
sors/device. Besides, Table 3 and Table 4 show in Columns
Three to Five, the average number of recognized activ-
ities, average number of tested datasets and the aver-
age number of testing subject. These tables illustrate the
importance of sensors like accelerometer, gyroscope, and
magnetometer. However, other type of sensors as environ-
mental sensors (temperature [7], [60], [76], [79], [87]-[89],
humidity [79], [87], light [60], [90], Passive Infrared
Sensor (PIR) [88]), radio signals (WiFi and Blue-
tooth [56], [62], [87]), medical equipment (ECG [56], [77],
EMG [72]) or other type of build in sensors (GPS [7], [43],
[87], [90]-[93], compass [91], [93], heart rate [89], [94]-[96],
barometer [67], [73], [80], stretch [63], [97], audio [62], [90],
[91], [98]) are common in HAR.

In addition to the direct measurements that such sen-
sors provide, the indirect usage of the measurements in
form of smart metrics is promising (e.g., energy harvest-
ing of the system [192] or the Received Signal Strength
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Indicator (RSSI) [56]) in order to recognize human activity
related to direct measurements from the body or environmen-
tal variations. Furthermore, the importance of smartphones
and smartwatches in HAR is increasingly clear, mainly due
to their explosion among consumers and given that these
devices currently contain many of the aforementioned sen-
sors. Finally, as shown in Figure 8.(a), among all the reviewed
published papers, the proposed HAR methods are based
mostly on standalone devices. However, the total number of
smartphone- and smartwatch-based methods are higher than
those based on standalone devices. Figure 8.(b) shows that
in terms of recognition accuracy methodologies based on
smartphone and smartwatch devices are in line with those
obtained from standalone devices. Moreover, smartphones
and smartwatches [193], unlike standalone devices, provide
computational capabilities that make it possible to directly
execute HAR models on the wearable device, and in many
cases, they have a very high cost (e.g., devices used in the
medical field).

VIl. DATA
The second step of the HAR workflow regards the collected
data type. Such data can mainly be categorized as follows.
« Inertial sensors data such as accelerometers, gyroscopes,
magnetometer, or compass,
« Physiological sensors data such as ECG, EMG, Heart
Rate, or blood pressure,

210823



IEEE Access

F. Demrozi et al.: HAR Using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey

TABLE 5. Data source used in HAR paper.

Data Type Article Reference

Average
# Activities

Average
# Datasets

Average
# Subjects

Inertial

[4], [6]-9], [32], [42], [43], [56]-[61], [63], [68]-[85], [87]-[191] 12.88 1.32 45.54

Physiological [71, [56], [72], [77], [89], [94]-[96]

12.71 1.57 11

Environmental

[71, [60], [73], [76], [79], [80], [87]-[91], [98], [192] 20.76 1.47 19.59
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FIGURE 8. (a) Distribution of published papers in HAR research area
categorized by the device data source, and (b) Average activity
recognition accuracy obtained by the identified devices.

« Environmental sensors data such as temperature, pres-
sure, CO»>, humidity, or PIR.

A. INERTIAL SENSORS DATA

Accelerometer, gyroscope, and magnetometer sensors with
a maximum of nine degrees of freedom are commercially
available at a very low cost. Besides, acceleration and angu-
lar velocity are the most common data used to characterize
human activity. This is reinforced by what we described
in the previous section, given that accelerometers and the
gyroscopes are the most widely used devices in HAR. Such
inertial sensors are widely used in clinical and healthcare
applications [194].

B. PHYSIOLOGICAL SENSORS DATA

Physiological sensors perceive physiological signals, which
in contradiction with other sources of emotional knowledge
(facial, gestures, and speech), providing essential advantages.
Those signals are mostly involuntary and, as such, are quite
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insensitive to deception. They can be used to continuously
measure the affective events. [195] The most used physiologi-
cal signals are brain electrical activity, heartbeat, muscle elec-
trical activity, blood pressure, and skin conductance acquired
by the following external data acquisition system: Elec-
troencephalogram (EEG), Electrocardiogram (ECG), and
Electromyography (EMG).

C. ENVIRONMENTAL SENSORS DATA

The environmental data covers all the collection of data rep-
resenting the state of the environment, including temperature,
humidity, pressure, or brightness. However, measuring the
status of the environment goes beyond environmental mea-
sures. It can also include more complex measures related
to people and objects inside the environment. For example,
recognizing the number of people inside the environment and
their position or the actions performed on a certain object
inside the environment could be useful in many application
scenarios related to human assistance, healthcare, and service
delivery.

Table 5 shows the categorization of the revised articles
based on the type of data, where Column One and Two show
the data type and the reference to the articles using such data
types. Columns Three to Five respectively show the average
number of recognized activities, average number of tested
datasets, and average number of testing subjects. However,
as we discussed earlier, the largest amount of data on daily
life is collected via electronic devices, such as smartphones,
smartwatches, activity trackers, smart thermostats and video
cameras. As shown in Figure 8, the use of smart devices like
smartphone and smartwatch is outnumbering the use of stan-
dalone devices. It should be noted that the standalone column
identifies all those devices other than smartphones and smart-
watches as for example, clinical and dedicated instruments,
such as Actigraph (Actigraph, Florida/USA), or Bioharness3
(RAE Systems by Honeywell, California/USA). Further-
more, during the data collection step, sometimes activities
are performed in a controlled manner (aka scrippted). That is
because human movement patterns are very hard to recognize
due to the large inter-subject and intra-subject variability.
Such variability entails a considerable difficulty in devel-
oping a methodology that manages to generalize among all
subjects. Also, the lack of data collected from a very large
number of subjects does not help researchers find a solution
to this problem.

With regard to such issue, Table 6 shows some of the best
known and open source datasets for HAR studies.

VOLUME 8, 2020



F. Demrozi et al.: HAR Using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey

IEEE Access

TABLE 6. Publicly available datasets for HAR research.

Dataset

Activities

# Activities Data Sources # Subjects  Citations

WISDM v1 [196]

walking, jogging, upstairs, downstairs, sitting, standing

6 Smartphone accelerome- 26 1939

ter(controlled environments)

Opportunity] [197]

Start, groom, relax, prepare coffee, drink coffee, prepare sand-
wich, eat sandwich, cleanup, break, open and close: fridge,
dishwasher, drawers, door 1, door 2, on/off lights, drink stand-
ing, drink sitting

18 23 body sensors 12 object sensors 4 367
21 ambient sensors

UCI-HAR [198]

walking, upstairs, downstairs, sitting, standing, laying

6 Samsung Galaxy S II accelerome- 30 635
ter, gyroscope

USC-HAD [199]

walking: forward, left, right, upstairs, downstairs, running for-
ward, jumping, sitting, standing, sleeping, elevator up, elevator
down

12 MotionNode accelerometer 14 180

Skoda [200]

write notes, open engine hood, close engine hood, check door
gaps, open door, close door, open/close two doors, check trunk
gap, open/close trunk, check steering wheel

10 20 accelerometers 1 38

PAPAM?2 [201]

lying, sitting, standing, walking, running, cycling, nordic walk-
ing, watching TV, computer work, car driving, ascending
stairs, descending stairs, vacuum cleaning, ironing, folding
laundry, house cleaning, playing soccer, rope jumping

18 3 colibri wireless inertial measure- 9 397
ment units (accelerometer, gyro-
scope, magnetometer)

Daphnet [202]

freeze (gait block), no freeze (any activity different from gait
block)

2 3 accelerometers (ankle, upper leg, 10 319
trunk)

mealth [203]

standing still, Sitting and relaxing, lying down, walking, climb-
ing stairs, waist bends forward, frontal elevation of arms, knees
bending (crouching), cycling, jogging, running, jump front and
back

12 chest (accelerometer, gyroscope, 10 120
magnetometer, ECG) right wrist
(accelerometer, gyroscope, magne-
tometer) and left ankle (accelerom-
eter, gyroscope, magnetometer)

HHAR [6]

biking, sitting, standing, walking, stair up and stair down

6 accelerometer, gyroscope from 8§ 9 204
smartphone and 4 smartwatches

WISDM v2 [196]

walking, jogging, upstairs, downstairs, sitting, standing

6 Smartphone accelerometer (un- 563 1939

controlled environments)

DSADS [204]

Sitting, standing, lying on back and on right side, ascending
and descending stairs, standing in an elevator still and moving
around in an elevator, walking in a parking lot, walking on a
treadmill with a speed of 4 km/h (in flat and 15 deg inclined
positions), running on a treadmill with a speed of 8 km/h,
exercising on a stepper, exercising on a cross trainer, cycling
on an exercise bike in horizontal and vertical positions, rowing,
jumping, and playing basketball

19 5 units on torso, right arm, left arm, 8 394
right leg, left leg 9 sensors on each
unit (x,y,z accelerometers, X,y,z gy-
roscopes, X,y,z magnetometers)

REALDISP [205]

walking, jogging, running, jump up, jump front and
back, jump sideways, jump leg/arms open/closed , jump
rope, trunk twist (arms outstretched), trunk twist (el-
bows bent), waist bends forward, waist rotation, waist
bends (reach foot with opposite hand), reach heels
backwards, lateral bend (10 to the left + 10 to the right),
lateral bend with arm up (10 to the left + 10 to the right),
repetitive forward stretching, upper trunk and lower
body opposite twist, lateral elevation of arms, frontal
elevation of arms, frontal hand claps, frontal crossing of
arms, shoulders high-amplitude rotation, shoulders low-
amplitude rotation, arms inner rotation, knees (alternat-
ing) to the breast, heels (alternating) to the backside,
knees bending (crouching), knees (alternating) bending
forward, rotation on the knees, rowing, elliptical bike,
cycling

33 accelerometer, gyroscope, magne- 17 80
tometer, 4D quaternions on 9 posi-
tions: left calf, left thigh, right calf,
right thigh, back, left lower arm, left
upper arm, right lower arm, right
upper arm

UniMiB
SHAR [82]

standing up from laying, lying down from standing, standing
up from sitting, running, sitting down, downstairs, upstairs,
walking, jumping

17 Smartphone accelerometer 30 75

ActiveMiles [206]

Activities of daily life

7 Smartphone accelerometer and gy- 10 72
roscope in uncontrolled environ-
ments

WARD [207]

stand, sit, lie down, walk forward, walk left-circle, walk right-
circle, turn left, turn right, upstairs, downstairs, jog, jump, push
wheelchair

13 5 motion sensors (accelerometer, 20 194
gyroscope) 2 on the wrists, one on
the waist, and 2 on the ankles

Column One refers to the name and the article proposing

the dataset. Column Two presents the activity labeled in
the dataset, Column Three shows the number of activities.
Column Four shows the number and type of the used sensing
devices. Column Five and Column Six show the number of
subjects from whom the data was collected and the number
of citations that the dataset received by September 2019. Such
datasets are largely based on accelerometer, gyroscope, and
magnetometer sensor data. Most of such sensors are embed-
ded into smartphones and smartwatches, and the number of
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activities in these datasets ranges from two [202] to thirty-
three [205] (Table 6). The most common studied activities
are primary activities of daily life, such as walking, running,
sitting, standing, walking upstairs, walking downstairs, and
sleeping.

D. PREPROCESSING AND FEATURE EXTRACTION

The mentioned data sources generate time-series information
identifying the status of the device. However, data is charac-
terized by noise, which makes it difficult to be used in their
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TABLE 7. Most used time and frequency domain features.

Time Domain Features

[[ Frequency Domain Features

1) maximum, 2) minimum, 3) mean, 4) standard deviation, 5) root mean square,
6) range, 7) median, 8) skewness, 9) kurtosis, 10) time-weighted variance, 11)
interquartile range, 12) empirical cumulative density function, 13) percentiles
(10, 25, 75, and 90), 14) sum of values above or below percentile (10, 25, 75,
and 90), 15) square sum of values above or below percentile (10, 25, 75, and 90),
16) number of crossings above or below percentile (10, 25, 75, and 90), 17) mean
amplitude deviation, 18) mean power deviation, 19) signal magnitude area, 20)
signal vector magnitude, 21) covariance, 22) simple moving average of sum of
range of a signal, 23) sum of range of a signal, 24) sum of standard deviation of
a signal, 25) maximum slope of simple moving average of sum of variances of a
signal, 26) autoregression.

1) fast fourier transform (FFT) coefficients, 2) discrete fourier transform (DFT),
3) discrete wavelet transform (DWT), 4) first dominant frequency, 5) ratio
between the power at the dominant frequency and the total power, 6) ratio
between the power at frequencies higher than 3.5 Hz and the total power, 7) two
signal fragmentation features, 8) DC component in FFT spectrum, 10) energy
spectrum, 11) entropy spectrum, 12) sum of the wavelet coefficients, 13) squared
sum of the wavelet coefficients and energy of the wavelet coefficients, 14) auto-
correlation, 15) mean-crossing rate, 16) spectral entropy, 17) spectral energy, 18)
wavelet entropy values, 19) mean frequency, 20) energy band

TABLE 8. Preprocessing and feature extraction on the reviewed papers.

ML Noise Timg Frequel.my Papers #of Average Averag§
Model Removal Domain Domain Reference Papers Number Recognition
Features Features of Features Accuracy
CML X X X [76], [78], [79], [93], [166] 5 0 94%
CML X v X [61], [95], [109], [124], [131], [134], [138], [140], [148], 18 19 92%
[157], [1591, [165], [167], [184], [185], [188], [209], [210]
CML X v v [9], [69], [80], [84], [85], [91], [113], [114], [116], [122], 20 56 90%
[135], [136], [142], [144], [145], [177], [186], [208], [211],
[212]
CML v X X [58], [151] 2 0 94%
CML v X v [63], [187] 2 68 88%
CML v v X [571, [70], [74], [87], [96], [162], [168], [169], [174], [183] 10 13 92%
CML 4 v v [6], [59], [68], [72], [75], [82], [92], [101], [110], [117], [118], 27 89 93%
[127], [128], [132], [133], [155], [158], [161], [163], [171],
[173], [175], [178], [179], [182], [189], [190]
CML v - - [42], [121], [156], [164] 4 0 89%
CML X - - [4], [43], [60], [94], [98], [170] 6 0 90%
DL X X X [71, [321, [73], [771, [811, [891, [971, [99], [100], [104], [105], 34 0 93%
[107], [112], [115], [119], [120], [129], [130], [137], [139],
[141], [143], [146], [149], [153], [160], [176], [181], [191],
[213]-[217]
DL X X v [90], [106], [218] 3 341 92%
DL X v X [8], [83] 2 9 93%
DL X v v [56], [711, [125], [154] 4 20 92%
DL v X X [88], [102], [103], [108], [111], [126], [150], [180] 8 0 90%
DL v v v [123], [147], [152], [172] 4 285 90%

raw state. The presence of noise is handled by preprocess-
ing the raw data to eliminate this interference and prepare
the data for being feed to the recognition models [35]. The
preprocessing is one of the most important phases in HAR
and presents different noise management techniques, such as
digital and statistical filters, data normalization, and feature
extraction. The features extraction step explores basically two
domains: time and frequency domain. Time-domain features
are the most used because they are cheaper than the frequency
domain features because of the transform from time to fre-
quency domain [35]. Since standard classification models
are not suitable for raw data, this phase is anticipated by a
segmentation step during which time-series sensor data is
segmented before extracting features. Besides, many method-
ologies maintain an overlapping part between two consecu-
tive segments. This part provides the model with knowledge
of the previous context. Table 7 presents an overview on the
most commonly used time and frequency domain features.
Table 8 presents a categorization of the reviewed papers
based on the utilization of noise removal, time domain, and
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frequency domain features extraction techniques. Columns
One to Four show: the machine learning category (CML or
DL), if any noise removal technique is used, if time-domain or
frequency-domain features were extracted. Column Five con-
tains the references to the papers, and Column Six, the num-
ber of papers using such configuration. Finally, Columns
Seven and Eight show the average number of used features
and the average activity recognition accuracy. Concerning
the CML-based models, as shown, most of the reviewed
articles (Tab. 8, row 7) make use of both time and frequency
domain features, and the raw data was initially pre-processed
with noise removal techniques. Instead, Tab. 8, row 3 shows
articles that use time and frequency domain features with-
out applying any noise removal technique. However, other
methodologies (Tab. 8, rows 8 and 9) do not make use of
any features extraction technique, and in some cases, the
presence of noise is not considered, as in [4], [43], [60],
[94], [98], [170]. In [4], [60] and [170], the methodologies
are based on the mining of temporal patterns and their sym-
bolic representation, or as in [43] were, authors make use of
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clustering technique, discriminating between different human
activities. About the results obtained in terms of accuracy,
the methodologies that make use of noise removal methods
and feature extraction in the time and frequency domain show
promising results as also shown by the number of methodolo-
gies that make use of this configuration.

Furthermore, concerning the DL-based methodologies,
since DL networks perform automatic feature extraction
without human intervention, unlike traditional machine-
learning algorithms, the majority of them do not make use
of any Noise Removal and Feature Extraction step as shown
in Tab. 8, rows 10 and 14. The achieved average accu-
racy, among all these 34 articles, was 93%. Besides, other
DL-based articles do make use of time-domain (Tab. 8,
row 12) features, frequency domain (Tab. 8, row 11) and
both time and frequency domain (Tab. 8, rows 13 and 14)
features. DL-based models eliminate the latency due to the
need to process data with the above techniques. However,
such models require a more considerable amount of data than
ML models and longer training times.

Concerning the Noise Removal step, 48 CML-based arti-
cles and 12 DL-based articles make use of different noise
removal techniques. Among all such techniques the most used
ones are: z-normalization [75], [120], min-max [70], [127],
and linear interpolation [102], [111] are the most used nor-
malization steps, preceded by a filtering step based on the
application of outlier detection [70], [117], [163], Butter-
worth [82], [101], [117], [123], [127], [128], [152], [155],
[174], [189], median [74], [101], [117], [127], [132], [147],
[155], [182], [183], high-pass [92], [96], [117], [128], [169],
[173], [208], or statistical [58] filters.

VIIl. CLASSIFICATION MODEL AND EVALUATION

The third and fourth step of the HAR workflow includes
identification and evaluation of the classification model that
is used for activity recognition. As shown in Figure 1 and
Figure 2, CML models still enjoy great popularity com-
pared to those based on the relatively more recent and
more advanced models such as the DL models. We point
out that many articles made use of different classification
models and not just one model for achieving better per-
formance, and as mentioned in Section I we use accu-
racy as a comparison metric between the various articles.
This beacouse accuracy is the only common metric among
them.

A. DEEP LEARNING (DL) BASED METHODOLOGIES

The DL models, as shown in Figure 1 comprised 54 papers
of the 149 papers we reviewed. Figure 9 shows (a) the distri-
bution of DL models among the 54 articles, (b) the average
accuracy, and (c) the average number of recognized daily
life activities for each model. The most popular model is
the Convolutional Neural Network (CNN), which was ref-
erenced in 30 papers [7], [32], [73], [77], [81], [88], [90],
[99], [100], [104], [106], [108], [112], [119], [120], [125],
[126], [141], [143], [146], [147], [149], [150], [153], [154],
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FIGURE 9. a) Distribution of Deep Learning Models mostly used in HAR,
b) Average activity recognition accuracy of Deep Learning Models mostly
used in HAR, and c) Average number of activities of Deep Learning
Models mostly used in HAR.

[160], [180], [191], [214], [215]. The CNN models obtained
an average accuracy of 93.7% in activity recognition over
an average number of 11 activities of daily life. The second
most used model was the Long Short-Term Memory (LSTM)
model, which was used in 17 papers [7], [83], [89], [102],
[107], [112], [125], [130], [137], [139], [152], [153], [172],
[176], [213], [216], [218]. It obtained an average accuracy
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of 91.5% over an average number of 17 activities of daily life.
Recurrent Neural Network (RNN) were used in [8], [56],
[89], [112], [129], [213], [216], [217], over an average num-
ber of 14 obtaining an average accuracy of 95%. Finally,
the rest of the papers (indicated by Other in Figure 9)
where based on models such as Autoencoders [71], [123],
Inception Neural Networks (INN), or the other frame-
works [105] for a total of 7 papers with an average accuracy
of 91.1% and an average number of 17 activities of daily
life.

B. MACHINE LEARNING (ML) BASED METHODOLOGIES
Among the 149 reviewed papers, as shown in Figure 1,
95 presented an HAR methodology based on classical ML.
Figure 10 shows (a) the distribution of these models, (b) the
obtained average accuracy and (c) the average number of
recognized activities of daily life. Among the different types
of classical ML models, the most commonly used model
was the Support Vector Machine (SVM) model [4], [6], [58],
[60], [69], [78], [79], [82], [85], [92], [95], [109], [118],
[127], [131], [132], [136], [138], [142], [145], [155], [168],
[169], [171], [173], [182], [184], [186], [187], [189], [190],
[209]-[212] which was used in 35 papers, achieving an
average accuracy of 92.3% over an average of 12 activi-
ties. The second most used model is the classical k-Nearest
Neighbor (kNN) model [4], [6], [42], [60], [61], [69], [78],
[79], [92], [95], [96], [113], [118], [122], [127], [136],
[142], [145], [162], [164], [169], [173], [186], which was
used in 23 papers, achieving an average accuracy of 93.7%
over an average of 12 activities of daily life. The third
and fourth most used model are the Decision Tree (DT)
model [6], [78], [85], [94], [95], [113], [136], [142], [145],
[159], [165], [173], [177]1, [178], [184], [185], [193], [208],
[210], [212], which was used in 19 papers, obtaining an
average accuracy of 94.2% over an average of 8 activities of
daily life, and the Random Forest (RF) [6], [57], [69], [72],
[78]-[801, [82], [92], [93], [95], [96], [175], [185], [212],
which was used in 15 papers, obtaining an average accuracy
of 93.3% over an average of 10 activities of daily life. The
fifth most used model is the Neural Networks (NN) [4], [78],
[92], [98], [114], [136], [142], [145], [148], [157], [173],
[183]-[185], which was used in 14 papers, obtaining an
average accuracy of 93.5% over an average of 8 activities of
daily life. Other used models are the Naive Bayes (NB) [4],
[42], [94], [122], [136], [142], [159], [169], [171], [184],
[185], [210], the Dynamic Bayesian Network (DBN) [101],
[103], [166], Hidden Markov Models (HMM) [68], [69],
[151], [179], [182], [208], Extreme Learning Machine
(ELM) [153], [154], Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), Quadratic Discrimi-
nant Analysis (QDA) [84], [109], [134] and many others [9],
[43], [59], [70], [74]-[76], [82], [110], [116], [117], [121],
[124], [128], [133], [135], [140], [144], [156], [158], [161],
[163], [170], [174], [188]. It is noteworthy that some of the
articles have tested their approaches using different models.
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FIGURE 10. a) Distribution of CML Models mostly used in HAR,

b) Average activity recognition accuracy of CML Models mostly used in
HAR, and c) Average number of activities of CML Models mostly used
in HAR.

IX. DISCUSSION

In this paper, we provided an overview of the current HAR
research. HAR is a critical research area in activity recog-
nition, pervasive computing, and human assistive environ-
ments. In the last decades, with the rise of new technologies
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FIGURE 11. Availability of datasets used to evaluate the proposed
methodologies.

and with growing needs such as aging population, HAR is
becoming even more essential. In recent years, DL-based
HAR methods have produced excellent results in terms of
recognition performance. However, CML-based approaches
are still widely used, and they generate outstanding results
without the computational costs. However, in recent years,
the reproducibility of ML models has become increasingly
important. Based on our research, for 78% of the proposed
HAR methodologies, the results are not fully reproducible
due to proprietary datasets. This results in barriers for the
research community for the identification of the best models
and benchmarking the results. As shown in Figure 11, starting
from the initial 293 papers and after the removal of surveys
and on payment articles, among a total of 142 datasets, only
30 datasets are publicly available, some of which are shown
in the Table 6.

Furthermore, the lack of public heterogeneous datasets
reduces the possibility of creating HAR models with better
generalization capabilities. This is because the data used in
the investigated papers are collected primarily in a controlled
environment. This problem is exacerbated by the inter-subject
and intra-subject variability absent in such scripted datasets,
as most proposed HAR models are only tested on a limited
number of activities and captured in a single controlled envi-
ronment. Among the 149 analyzed HAR models, 87 models
were tested on a single dataset, with the remaining 62 tested
on more than one dataset. As shown in Figure 12, we found
that 28 HAR methodologies were tested on two datasets,
21 HAR methodologies on three datasets, less than 10 HAR
methodologies on 4-6 datasets, and only one methodol-
ogy [219] was tested on a total of 14 datasets. This situation
shows the challenge of identifying a methodology superior to
the others.

Another significant issue concerns the interpretability
of the results, mainly related to papers presenting similar
methodologies and tested on the same dataset, claiming to
achieve almost the same results in terms of activity recogni-
tion accuracy. Such an issue is related to tests performed using
commercial tools, lack of open source code, and authors who
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do not publicly provide their source code. Besides, the het-
erogeneity of the data and the definition of a HAR method-
ology that can recognize the activities carried out by people
with different physical and motor characteristics collides with
the data sources used for data collection. As we have seen,
a variety of sensors and devices are used for data collection.
However, the proposed methodologies are usually very rigid
regarding the data source. Specifically, it becomes difficult
to have a methodology tested on a particular individual by
making use of a particular sensor(s) and subsequently chang-
ing the sensor model. Various sensors have different tech-
nical characteristics, which also entail their specific state,
e.g., the measurement error or the noise that a specific sensor
presents.

Regarding the HAR models, Figure 9 and Figure 10 show
that CML models are still used more widely than complex
DL-based models. This is because CML models require a
smaller amount of training data, as well as lower computa-
tional requirements. In addition, DL models are inherently
difficult to interpret. Nonetheless, DL. models have a unique
ability to recognize more complex activities, while maintain-
ing high accuracy. In addition, they do not require a data
preprocessing stage. Figure 13 shows a suggested workflow
for developing HAR applications based on:

« the number of activities to be recognized,

o the amount of available (labeled) data,

« local or remote computation.
We observed that the selection of the precise DL or CML
model is primarily based on the computational requirements
and the amount of available training (labeled) data. In terms
of the sensors, the most widely used used, if not indis-
pensable, sensor is the accelerometer, which can be used in
conjunction with other sensors such as the gyroscope or the
magnetometer.

X. FUTURE RESEARCH DIRECTION
Based on reviewed papers, a few possible research direc-
tions are noted below. One of the main limitations of HAR
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algorithms is the lack of standardized methodologies that can
generalize to heterogeneous set of activities performed by a
diverse set of users. As a potential solution, transfer learning
could reuse the knowledge acquired in one problem to solve
a similar problem. For example, knowledge acquired based
on a specific inertial sensor positioned on a specific body
location can potentially be reused with a different sensor
location or with a different type of inertial sensor. The extent
to which transfer learning can be helpful in various scenarios,
is not investigated in a comprehensive manner and needs to
be further studied. Sensor fusion also provides a promising
path. In particular, merging different sensors could address
issued related to reliability and accuracy of a single sensor
and could also enrich collected information. When data from
one modality is not reliable, the system could switch to a
different sensor modality to ensure robust data collection.
Another research direction is fine-grained activity recogni-
tion based on examining daily object interactions. This will
allow us to recognize sub-actions and sequence of actions and
will provide much richer context information to downstream
applications. Sensor fusion can also be helpful when a large
number of inertial sensors or proximity sensors are attached
to daily objects. To further advance the progress in this
area, we provide a set of recommendations. First, developing
benchmark datasets should be a priority for the HAR com-
munity. New HAR models should be compared with avail-
able HAR models on benchmark data to show improvement.
Furthermore, creation of datasets with an adequate number
of subjects and diverse set of activities is strongly recom-
mended. Fine-grained activity recognition also could bene-
fit from large-scale, standardized benchmarks. Researchers
working on HAR algorithms should also pay attention to
hardware and system issues, besides solely developing and
improving HAR algorithms. On-device computation should
be a primary goal, as well as analysis of memory, CPU,
and battery consumption, to explore the trade-off between
resource utilization and recognition accuracy. Finally, posi-
tion and orientation dependence should be extensively stud-
ied; otherwise, the design of position/orientation-dependent
techniques could result in inconsistent and non-robust down-
stream applications.
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XI. CONCLUSION

HAR systems have become a growing research area in
the past decade, achieving impressive progress. In particu-
lar, sensor-based HAR have many advantages compared to
vision-based HAR methodologies, which pose privacy con-
cerns and are constrained by computational requirements.
Activity recognition algorithms based on ML and DL are
becoming central in HAR. Figure 14 summarizes HAR
methodologies between January 2015 and September 2019.
Starting from a meta-review of the existing HAR surveys,
we analyzed the reviewed literature based on the most widely
studied human activities (Section V), the most used elec-
tronic sensors as the data source (Section VII), and the most
known devices that integrate with these sensors (Section VI)
without taking into account the video-based methodologies.
In detail, sensor-based data perceived by physiological, iner-
tial, and environmental sensors were of primary interest.
Device types were also extensively studied, categorizing them
in: a) standalone, b) smartphone, and ¢) smartwatch devices.
For each category, results were shown in terms of the aver-
age number of recognized activities, the average number
of datasets used to test the methodologies, and the average
accuracy. This survey also dis-cussed methodologies based
on accelerometer, gyroscope, and magnetometer. We also dis-
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removal/feature extraction technique), and finally, their DL or CML model. The results are presented in terms of a) average activity recognition accuracy,
b) the average number of studied activities, and c) the average number of datasets used to test the methodology.

cussed the preprocessing approaches and their results based
on feature extraction, noise removal, and normalization tech-
niques. Moreover, we discussed datasets primarily in the
literature, emphasizing publicly available datasets. Finally,
we presented a description of the recognition models most
used in HAR. For this purpose, we have presented the most
widely used DL and ML models and their results, both from
the point of view of quality (accuracy) and quantity (number
of recognized activities). We concluded that HAR researchers
still prefer classic ML models, mainly because they require a
smaller amount of data and less computational power than
DL models. However, the DL models have shown higher
capacity in recognizing many complex activities. Future work
should focus on the development of methodologies with more
advanced generalization capabilities and recognition of more
complex activities. To summarize, Figure 15 shows a Graph-
ical Abstract (GA) of the workflow of this survey.
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