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a b s t r a c t

Surgeons perform two primary tasks: operating and engaging patients and caregivers in

shared decision-making. Human dexterity and decision-making are biologically limited.

Intelligent, autonomous machines have the potential to augment or replace surgeons.

Rather than regarding this possibility with denial, ire, or indifference, surgeons should

understand and steer these technologies. Closer examination of surgical innovations and

lessons learned from the automotive industry can inform this process. Innovations in

minimally invasive surgery and surgical decision-making follow classic S-shaped curves

with three phases: (1) introduction of a new technology, (2) achievement of a performance

advantage relative to existing standards, and (3) arrival at a performance plateau, followed

by replacement with an innovation featuring greater machine autonomy and less human

influence. There is currently no level I evidence demonstrating improved patient outcomes

using intelligent, autonomous machines for performing operations or surgical decision-

making tasks. History suggests that if such evidence emerges and if the machines are

cost effective, then they will augment or replace humans, initially for simple, common,

rote tasks under close human supervision and later for complex tasks with minimal

human supervision. This process poses ethical challenges in assigning liability for errors,

matching decisions to patient values, and displacing human workers, but may allow sur-

geons to spend less time gathering and analyzing data and more time interacting with

patients and tending to urgent, criticaldand potentially more valuabledaspects of patient

care. Surgeons should steer these technologies toward optimal patient care and net social

benefit using the uniquely human traits of creativity, altruism, and moral deliberation.
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Introduction
Fig e Past, present, and projected future innovations in

surgery use progressively more computer autonomy and

less human influence, augmenting or replacing previous

methods once a cost-effective performance advantage is

achieved with a new innovation. (Color version of figure is

available online.)
Surgeons perform two major, primary tasks: conducting op-

erations and engaging patients and caregivers in shared

decision-making. Unfortunately, human dexterity and

decision-making are biologically limited. Technical errors are

the leading cause of preventable harm in surgical patients;

diagnostic and judgment errors follow second.1 Individual

surgeon skill is highly variable, fine motor dexterity degrades

with age and fatigue, and technical skills affect patient out-

comes.2-5 Time constraints and uncertainty impose reliance

on cognitive shortcuts that lead to judgment errors, which

surgeons themselves identify as the most common cause of

major errors.6-8

Innovations in minimally invasive surgery and surgical

decision-making have improved surgeons’ abilities to perform

operations and exercise sound judgment.9-12 As technologies

improve, these innovations rely less on human input and

more on intelligent, autonomous machines, that is, computer

systems that learn to perform human tasks and cognitive

functions with some degree of independence.13,14 Currently,

intelligent machines can perform manual tasks and make

decisions with remarkable efficacy.15-18 History suggests that

these abilities will continue to improve.19 If there comes a

time when machines perform surgeon’s tasks with greater

efficacy and lower cost, thenmarket and patient demandmay

havemachines assume these roles. Rather than regarding this

possibility with denial, ire, or indifference, surgeons should

seek to understand and steer these technologies toward

optimal patient care and net social benefit.

Innovation curves

Innovations in minimally invasive surgery and surgical

decision-making follow classic S-shaped curves with three

phases: (1) introduction of a new technology, (2) achievement

of a performance advantage relative to existing standards,

and (3) arrival at a performance plateau, followed by

augmentation or replacement with an innovation featuring

greater machine autonomy and less human influence (Figure,

Table).

Minimally invasive surgery innovations

Fatigue, imprecision, and variability in technical skill can

adversely affect surgeons and their patients.2-5 Technological

advances in minimally invasive surgery improve surgeons’

abilities to perform manual dexterity tasks and harbor the

potential for autonomous robotic surgery.9,10,20,21

Rigid endoscopy
Endoscopy was first used to inspect the cervix more than 1000

y ago.22 Following a long period of technological stagnation,

Phillip Bozzini used a wax candle to illuminate a urologic

endoscope, which was branded a “toy” by his contempo-

raries.23 Problems with thermal injuries from light sources

were overcome through use of platinum wires heated with

electric currents or light sources encased in metal catheters

with ice water cooling. Subsequent development of separate
ocular and sheath components allowed of insertion of in-

struments to perform diagnostic procedures.24,25 However,

interventions were limited by the inability to triangulate in-

struments and vision, and the intra-abdominal contents could

not be inspected. When Hans Christian Jakobaeus dissemi-

nated his work regarding the use of a trocar to establish

pneumoperitoneum, the transition to laparoscopic surgery

began.

Laparoscopic surgery
Kurt Semm described laparoscopic management of gyneco-

logic disorders in the 1970s.25 These techniques were applied

to general surgery when ErichMühe performed a laparoscopic

cholecystectomy in 1985. He obtained pneumoperitoneum

with a Veress needle, introduced pistol grip instruments

though a large trocar with side-view optics and other small

incisions, and removed the gallbladder though the large

trocar.26 He was ridiculed for performing “Mickey Mouse

surgery”, and his technique was summarized as “small

brainesmall incision.”27 Philippe Mouret, another pioneer of

laparoscopic cholecystectomy, remarked that he felt the

“weight of medico-legal responsibility for having innovated in

a classic operation, which had reached a stage of near

perfection.”28 Mouret’s concerns were valid. In an early pro-

spective observational study, the incidence of common bile

duct injury was 5.5%, compared with 0%-0.25% for open cho-

lecystectomy during the same era.29 The learning curve was

short and steep.30 As laparoscopic cholecystectomy gained

acceptance and adoption, its safety and efficacy improved, as

evidenced by decreased mortality, pneumonia, wound

https://doi.org/10.1016/j.jss.2020.03.046
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Table e Phases of innovation in minimally invasive surgery and surgical decision-making.

Surgical
innovations

Phases of innovation

Introduction of new
technology

Achievement of a performance
advantage

Arrival at a performance
plateau

Minimally invasive

surgery

Rigid endoscopy Visualization of internal structures

through natural orifices

Light sources, sheaths for

instrument insertion

Inability to triangulate, limited

working space

Laparoscopic

Surgery

Trocar used to establish

pneumoperitoneum

Improved outcomes for select

procedures, higher costs than open

surgery

Minimal advantages for natural

orifice laparoscopy

Robotic Surgery Computed tomography-guided

brain biopsy

Improved outcomes for select

procedures, higher costs than

laparoscopic and open surgery

Requires skin and fascial defects to

insert instruments

Autonomous

microrobots

Ingestible robot repairs a gastric

defect in 5 min

Has not yet been demonstrated Have not yet been observed

Surgical decision-

making

Additive risk

scores

Single static variable thresholds

can yield high sensitivity

Risk scores using multiple

variables can achieve good

accuracy

Can underestimate risk for adverse

outcomes among high-risk

patients

Regression

modeling

Estimates relationships between

inputs and outputs

Patient-specific predictions may

affect preoperative risk reduction

strategies

Inability to accurately represent

complex, nonlinear associations

Machine learning Computer learns from data rather

than conforming to rules

Improved predictive accuracy,

opportunities for phenotype

discovery

Predictions and phenotypes

indirectly inform decision-making

Reinforcement

learning

Recommends optimal actions for

discrete choices and states

Has not yet been demonstrated Have not yet been observed
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infection, and hospital length of stay.9 However, attempts to

make further clinically significant improvements on modern

laparoscopic surgery have had limited success.31 As laparo-

scopic surgery reached a performance plateau, robotic surgery

gained acceptance and adoption.

Robotic surgery
In 1985, a robotic brain biopsy platform, using stereotactic

coordinates derived from computed tomography brain scans,

successfully navigated a robotic arm to its target.32,33 Ten

years passed before results from human studies were re-

ported.34 Subsequent technological improvements offered

highmagnification three-dimensional views, minimization or

elimination of hand tremors, instruments that articulate to

extreme angles, comfortable ergonomics, and platforms

allowing surgeons to operatemore than two robotic arms thus

obviating the need for skilled assistants. Robotic surgery has a

short, steep learning curvedsimilar to laparoscopydand

surgeons have reported lower blood loss, shorter hospital

length of stay, fewer complications, and earlier return to work

relative to laparoscopic and open approaches across several

surgical specialties, but with higher operative costs and

limited high-level evidence demonstrating significant perfor-

mance advantages.10,20,21,35,36 In a large randomized trial,

robotic-assisted rectal cancer resection yielded no significant

advantages over laparoscopic resection.37 Machine learning

models can assess robotic operative performance and predict

patient outcomes.38,39 Further technological advances could
offer haptic feedback, eye-tracking cameras, visualization of

subsurface anatomy, predictive navigation, and virtual con-

straints that protect anatomic structures such as vessels and

nerves, offering potential advantages for the safe, effective

performance of technically demanding tasks.40 A recent pilot

randomized trial demonstrated the feasibility of robot-

assisted lymphovenous microanastomosis (8 mm diameter

or less) for womenwith breast cancererelated lymphedema.41

Compared with manual techniques, there were no significant

differences in lymphedema-related outcomes at 1- and 3-mo

follow-up. Autonomous robots can perform end-to-end su-

tured bowel anastomoses with significantly higher leak pres-

sures than laparoscopic and open anastomoses sewn by

surgeons.18 However, in addition to cost constraints, many of

the factors that hinder laparoscopic surgery also hinder ro-

botic surgery, such as the need to create skin and fascial de-

fects to insert instruments, incurring risk for injury during

trocar and instrument insertion, wound infection, and hernia.

Autonomous microrobots could mitigate these risks.

Autonomous microrobots
In the 1966 film Fantastic Voyage, scientists shrink a submarine

and drive it through blood vessels to remove clot from an

injured colleague’s brain, popularizing a notion credited to

Albert Hibbs: “it would be interesting in surgery if you could

swallow the surgeon.” Emerging technologies suggest that

autonomous surgical microrobots are feasible. In 2016, an ETH

Zurich team described a hydrogel microrobot that propels

https://doi.org/10.1016/j.jss.2020.03.046
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itself through viscous solutions with corkscrew motions by

whipping a flagellum-like tail.42 The same year, a MIT team

described a biodegradable origami-like robot that folds into an

ingestible pill, unfolds in the body, sticks to tissues by friction,

and moves in response to external magnetic fields by redis-

tributing its weight.15 In a 3D-printed silicone representation

of a human esophagus and stomach, themicrorobot dislodged

a battery embedded in the stomach wall and patched the

defect in approximately 5 min. Other groups have used bull

sperm and cardiac myocytes for propulsion, magnetic field-

guided steering, DNA-protein orientations that allow robots

to maneuver autonomously in response to their environment,

and magnetotactic bacteria loaded with nanoliposomes that

hone to hypoxic signals.43-46 The authors are unaware of any

studies reporting the use of autonomous microrobots for

surgery on humans, much less a performance advantage over

current technologies. However, history and emerging evi-

dence suggest that as technologies improve, autonomous

microrobots have the potential to transform surgery.47

Surgical decision-making innovations

Surgeons frequently engage patients in high-stakes shared

decision-making under both time constraints and uncertainty

imposed by acute surgical disease and busy clinic schedules.

These circumstances promote reliance on dogma and heu-

ristics, which can lead to bias, cognitive errors, and prevent-

able harm.8,48 Innovations in surgical decision-making can

mitigate these challenges.

Additive risk scores
One of the simplest ways to support decisions is risk stratifi-

cation by additive scores using static variable thresholds. High

blood levels of C-reactive protein are associated with anasto-

motic leak following colorectal surgery. Postoperative day 3 C-

reactive protein levels less than 172 mg/L has 97% negative

predictive value for anastomotic leak, ruling out leak in nearly

all cases, but a positive predictive value of only 21%, such that

high levels lack clinical utility.49 Incorporating multiple vari-

ables can improve predictive performance. Strate et al.50,51

used seven risk factors to predict severe acute lower intesti-

nal bleeding (0 risk factors ¼ low risk [9%], 1-3

factors ¼ moderate risk [43%], �4 factors ¼ high risk [84%]).

External validation demonstrated good discrimination with

area under receiver operating characteristic curve of 0.75.51

Clinicians can use these predictions to guide decisions

regarding the urgency of diagnostic testing and the utility of

close patient monitoring. Low-risk patients may be appro-

priate candidates for outpatient management, avoiding un-

necessary use of inpatient resources. However, additive risk

scores can underestimate risk for adverse outcomes among

high-risk patients. Regressionmodeling techniques were used

to identify static variable thresholds and generate scoring

systems for many additive risk scores; direct application of

regression modeling may be less prone to prediction errors

among high-risk patients.52

Regression modeling
Regression modeling estimates relationships between pre-

dictor and outcome variables to predict outcomes or explain
associations. The National Surgical Quality Improvement

Program Surgical Risk Calculator uses data from over four

million surgeriesdincluding procedure type, demographics,

and comorbiditiesdto predict outcomes such as morbidity,

mortality, hospital length of stay, and discharge disposition

within 30 d of surgery.11 The calculator makes accurate,

patient-specific predictions and may increase the likelihood

that patients will participate in risk reduction strategies, for

example, prehabilitation.12 Among 150 preoperative patients

who reviewed their surgical risk calculator results, 70% stated

that they would participate in prehabilitation and 40% stated

that they would delay surgery to participate. Patients often

want to be knowledgeable, engaged members of the health-

care team; without the use of decision-support tools, such as

the National Surgical Quality Improvement Program calcu-

lator, this desire is often unfulfilled, and an opportunity to

augment shared decision-making is lost.53-55 Despite these

advantages, data from 4 million surgeries may be insufficient

to represent rare but important pathophysiology in a cohort of

more than 60 million patients undergoing surgery in the

United States each year, and regression model accuracy may

suffer from an inability to accurately represent the complex,

nonlinear associations among predictor variables.56 Machine

learning techniques are adept at this task.

Machine learning
In 1970, Dr. William Schwartz wrote in theNew England Journal

of Medicine, “Computing science will probably exert its major

effects by augmenting and, in some cases, largely replacing

the intellectual functions of the physician.”57 Schwartz held

that human disease is too broad and complex to be explained

and interpreted by rules; machine learning algorithms learn

from data rather than conforming to rules.58 Fifty years later,

computers have not replaced physicians’ intellectual func-

tions but have demonstrated potential to augment decisions

with varying levels of autonomy. Machine learning models

can predict risk for several postoperative complications with

accuracy greater than that of physicians but often lack elec-

tronic and clinical workflow integration, limiting their use in

routine clinical practice.59,60

Supervised algorithms learn from data labeled by humans,

then classify or make predictions on new unseen data; un-

supervised algorithms create their own output catego-

riesdoften agnostic of any human-attributed

labelsdallowing discovery of patterns and associations. Su-

pervised algorithms can predict sepsis more than 24 h before

onset with area under receiver operating characteristic curve

0.83.61 However, predictions are only as useful as the out-

comes they predict. Seymour et al.62 suggest that the overly

broad definition of sepsis impairs the development of targeted

interventions. They used unsupervised learning to phenotype

sepsis patients, assigning points on a scatterplot as cluster

centroids, assigning all other points to the nearest centroid,

then iteratively recalculating centroids and cluster assign-

ments to form the tightest clusters possible. This method

identified four unique sepsis phenotypes, potentially repre-

senting subgroups with different responses to targeted ther-

apies. These techniques require time-intensive hand-crafted

feature engineering using human domain knowledgewhereas

deep models autonomously learn feature representations

https://doi.org/10.1016/j.jss.2020.03.046
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from raw data. Deep models can use electronic health record

data to predict mortality among intensive care unit patients

with greater accuracy than the sequential organ failure

assessment score, even when limited to the same input data

used to calculate sequential organ failure assessment.63 Deep

learning and statistical modeling can also use characters,

words, and other expressions of natural language as model

inputs. This technique, termed natural language processing,

can generate oncologic decision-support tools predicting

germline mutations.64,65 This approach can leverage the

availability of large volumes of genetic data and medical

literature to produce personalized cancer prevention man-

agement strategies.66 Deepmodel interpretation mechanisms

elucidate the relative importance of individual input features

in determining model outputs, providing opportunities to

assess whether associations between inputs and outputs are

biologically plausible.63,67 Despite these advantages, pre-

dictions and classifications can only indirectly inform discrete

choices facing clinicians, limiting their clinical utility. Rein-

forcement learning directly informs discrete choices.

Reinforcement learning
In reinforcement learning, an agent learns that specific ac-

tions under certain conditions lead to rewards and penalties,

using this knowledge to identify actions that achieve an ulti-

mate goal. Two characteristics distinguish reinforcement

learning from machine learning: (1) trial-and-error search to

identify the best action and (2) delayed reward, that is

choosing actions that achieve the ultimate goal rather than

short-term rewards.68 For example, a model developed by

Komorowski et al.16 recommends vasopressor doses and

intravenous fluid volumes for septic patients, assigning re-

wards and penalties relative to 90-d survival. The model

favored higher vasopressor doses and lower intravenous fluid

volumes, consistent with evidence that volume overload

harms sepsis patients and that a one-size-fits-all approach to

resuscitation is suboptimal.69,70 On retrospective analysis,

when actions taken by clinicians were concordant withmodel

recommendations, mortality was slightly less than 20%. As

clinician actions deviated from model recommendations,

mortality significantly increased, up to 60%. Notably, clini-

ciansmay have deviated frommodel recommendations based

on data not available to the model (e.g. physical exam find-

ings, symptoms), and the same findings contributed to a

worse prognosis, making clinician decision-making seem less

effective. Therefore, available evidence does not support

causal inference between model recommendations and

decreased mortality.

For more complex decision-making scenarios in high-

volume, high-dimension datasets, exhaustive searches for

optimal actions can be prohibitive or impossible, but deep

representation of the agent’s environment can mitigate these

challenges. The Go board game has 32,490 possible first

moves.71 A deep reinforcement model first learned from a

human Go expert, then defeated the European Go champion

five games to zero. Subsequently, a completely autonomous

model trained on self-play only defeated the human input

model 100 games to zero.17 Similar approaches have the po-

tential to transform surgical decision-making, but in the

absence of high-level evidence for medical applications, this
potential remains theoretical.72 In addition, reinforcement

learning models require large training data sets to maintain

effective sample sizes in sequential decision-making tasks,

and such data are not available for many surgical diseases,

especially rare ones.73

Lessons learned from automotive innovations

The automotive industry adopts intelligent, autonomous

machine innovations that achieve performance advantages

according to consumer demands and business advantages.

Similarmarket forceswill likely drive surgery towardmachine

autonomy. Currently, there is no level I evidence demon-

strating that intelligent, autonomous machines improve pa-

tient outcomes compared with existing standards for

performing operations or surgical decision-making tasks,

specifically (see the Supplement describing an Embase, MED-

LINE, and PubMed search performed by the authors 10/30/

2019). These technologies remain on the initial, flat portion of

the innovation S-curve (Figure). However, if future hospitals

can purchase robotic surgical platforms that autonomously

perform operations with lower costs and higher quality than

human surgeons, or deep reinforcement learning models that

consistently make better decisions than clinicians, then it

seems likely that these technologies will gain adoption. His-

tory suggests that intelligent, autonomous machines will

initially be used for simple, common, rote tasks under close

human supervision and then for complex tasks with minimal

human supervision. Automation of programmable tasks may

allow surgeons to spend less time gathering and analyzing

data and more time interacting with patients and tending to

urgent, criticaldand potentially more valuabledaspects of

patient care.

Lessons learned from automotive innovations reveal op-

portunities to capitalize on the performance advantages of

new technologies without disenfranchising the people that

use and benefit from them. When robotic arms largely

replaced human assembly line workers in performing rote

mechanical tasks, automobile prices fell within reach of the

middle class, but many assembly line workers lost their jobs.

As in the industrial revolution, there was a lag time between

incorporation of autonomous machines and redistribution of

the human workforce. Perhaps if this transition were antici-

pated, a smoother transition could be achieved. Anticipating a

similar transition in surgery seems prudent. Eventually, the

automotive industry evolved to use human effort and exper-

tise in designing and overseeing robotic arm assembly lines.

Automotive workforces also pivoted toward tasks requiring

creativity, long-term planning, and moral deliberation, which

are especially relevant in designing self-driving cars that

sense the environment and respond accordingly. Responses

are programmable and have important moral implications.

Awad et al.74 created online simulations in which participants

identify preferences for how self-driving cars should behave

when distributing harm in unavoidable collisions, for

example, the car can maintain its course and hit a jaywalking

teenager or swerve and crash, harming its elderly passenger.

The authors collected data on nearly 40 million decisions by

participants in 233 countries and found significant cross-

cultural variation in preferences for moral dilemmas facing

https://doi.org/10.1016/j.jss.2020.03.046
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self-driving cars, precluding a one-size-fits-all approach to

morally sound programming.

Moral and ethical dilemmas also challenge the adoption of

intelligent, autonomous machines in surgery. Management of

a patient with both pulmonary edema and prerenal azotemia

could proceed with either diuresis or volume resuscitation.

The tradeoff between respiratory failure requiringmechanical

ventilator support versus renal failure requiring renal

replacement therapy depends in part on the desires and

values of the patient and their caregivers. An autonomous

reinforcement learning platform trained to optimize an arbi-

trary endpoint such as 90-d mortality could make a recom-

mendation or decision that ismedically sound, but contrary to

patient values. Also, algorithms trained on biased data sets

are likely to produce biased outputs, as demonstrated for

crime recidivism predictions.75 Similar problems could occur

in machine learning healthcare applications. For example,

associations between cardiovascular risk factors and adverse

cardiovascular events differ by race and ethnicity; a model

trained on data from the Framingham Heart Study, which

primarily included white subjects, could produce racially and

ethnically biased outputs.76 Algorithms used for allocating

liver transplants may disenfranchise female organ recipient

candidates by prioritizing serum creatinine, which is lower

among women.77 Therefore, investigators must align training

data set and target population demographics and other

characteristics that have potential to introduce bias. In addi-

tion, judicial systems have limited experience assigning lia-

bility for errors made by intelligent machines and

differentiating between human andmachine error. In making

a critical management decision for a life-threatening post-

operative complication, a surgeon could be privy to history

and physical exam information that is unavailable to an

autonomous decision-support platform, take a different

course of action than recommended by a model with proven

efficacy, and be subject to unwarranted scrutiny when the

patient suffers a poor outcome. Similarly, robotic surgical

platforms with virtual constraints intended to protect

anatomic structures could delay or prevent a surgeon from

gaining control of an injured blood vessel, harming a patient

and pitting human versus machine in assigning liability. Sur-

geons must meet these challenges with creativity, altruism,

moral deliberation, and emotional intelligence, that is, the

ability to recognize emotional states and act accordingly.

These traits remain inaccessible to machines. The surgeon’s

role may evolve to interpreting decision-support tools and

offering wisdom for patients and caregivers facing complex,

high-stakes surgical decisions, using and overseeing semi-

autonomous and fully autonomous surgical instruments and

robotic platforms in the operating room and ensuring the safe

and effective integration of intelligent, autonomousmachines

with surgical care.
Conclusions

As technologies improve, intelligent, autonomous machines

may gain the capacity to augment or outperform humans in

operative and decision-making tasks. History suggests that

intelligent, autonomous machines will be used in surgery
initially for simple, common, rote tasks under close human su-

pervision and then for complex tasks with minimal human su-

pervision. Automation of programmable tasks may allow

surgeons to spend less time gathering and analyzing data and

more time interacting with patients and tending to urgent,

criticaldandpotentiallymorevaluabledaspectsofpatientcare.

This process poses ethical challenges in assigning liability for

errors, distributing harm, and displacing human workers. Sur-

geons should assume active roles in guiding these technologies

toward optimal patient care and net social benefit, channeling

human creativity, moral deliberation, and altruism.
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