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Surgeons perform two primary tasks: operating and engaging patients and caregivers in
shared decision-making. Human dexterity and decision-making are biologically limited.
Intelligent, autonomous machines have the potential to augment or replace surgeons.
Rather than regarding this possibility with denial, ire, or indifference, surgeons should
understand and steer these technologies. Closer examination of surgical innovations and
lessons learned from the automotive industry can inform this process. Innovations in
minimally invasive surgery and surgical decision-making follow classic S-shaped curves
with three phases: (1) introduction of a new technology, (2) achievement of a performance
advantage relative to existing standards, and (3) arrival at a performance plateau, followed
by replacement with an innovation featuring greater machine autonomy and less human
influence. There is currently no level I evidence demonstrating improved patient outcomes
using intelligent, autonomous machines for performing operations or surgical decision-
making tasks. History suggests that if such evidence emerges and if the machines are
cost effective, then they will augment or replace humans, initially for simple, common,
rote tasks under close human supervision and later for complex tasks with minimal
human supervision. This process poses ethical challenges in assigning liability for errors,
matching decisions to patient values, and displacing human workers, but may allow sur-
geons to spend less time gathering and analyzing data and more time interacting with
patients and tending to urgent, critical—and potentially more valuable—aspects of patient
care. Surgeons should steer these technologies toward optimal patient care and net social
benefit using the uniquely human traits of creativity, altruism, and moral deliberation.

© 2020 Elsevier Inc. All rights reserved.

* Corresponding author. Department of Surgery, Edward R. Woodward Professor & Chair University of Florida, PO Box 100286 1600 SW
Archer Road, Room 6174, Gainesville, FL 32610-0286. Tel.: 352-265-0622; fax: +1 352 265-0701.
E-mail address: gib.upchurch@surgery.ufl.edu (G.R. Upchurch).
0022-4804/$ — see front matter © 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2020.03.046


mailto:gib.upchurch@surgery.ufl.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.03.046&domain=pdf
www.sciencedirect.com/science/journal/00224804
http://www.JournalofSurgicalResearch.com
https://doi.org/10.1016/j.jss.2020.03.046
https://doi.org/10.1016/j.jss.2020.03.046
https://doi.org/10.1016/j.jss.2020.03.046
https://doi.org/10.1016/j.jss.2020.03.046

LOFTUS ET AL @ AUTOMATION IN SURGERY 93

Introduction

Surgeons perform two major, primary tasks: conducting op-
erations and engaging patients and caregivers in shared
decision-making. Unfortunately, human dexterity and
decision-making are biologically limited. Technical errors are
the leading cause of preventable harm in surgical patients;
diagnostic and judgment errors follow second.’ Individual
surgeon skill is highly variable, fine motor dexterity degrades
with age and fatigue, and technical skills affect patient out-
comes.”” Time constraints and uncertainty impose reliance
on cognitive shortcuts that lead to judgment errors, which
surgeons themselves identify as the most common cause of
major errors.®®

Innovations in minimally invasive surgery and surgical
decision-making have improved surgeons’ abilities to perform
operations and exercise sound judgment.®? As technologies
improve, these innovations rely less on human input and
more on intelligent, autonomous machines, that is, computer
systems that learn to perform human tasks and cognitive
functions with some degree of independence.'*'* Currently,
intelligent machines can perform manual tasks and make
decisions with remarkable efficacy.”'® History suggests that
these abilities will continue to improve.'® If there comes a
time when machines perform surgeon’s tasks with greater
efficacy and lower cost, then market and patient demand may
have machines assume these roles. Rather than regarding this
possibility with denial, ire, or indifference, surgeons should
seek to understand and steer these technologies toward
optimal patient care and net social benefit.

Innovation curves

Innovations in minimally invasive surgery and surgical
decision-making follow classic S-shaped curves with three
phases: (1) introduction of a new technology, (2) achievement
of a performance advantage relative to existing standards,
and (3) arrival at a performance plateau, followed by
augmentation or replacement with an innovation featuring
greater machine autonomy and less human influence (Figure,
Table).

Minimally invasive surgery innovations

Fatigue, imprecision, and variability in technical skill can
adversely affect surgeons and their patients.’” Technological
advances in minimally invasive surgery improve surgeons’
abilities to perform manual dexterity tasks and harbor the
potential for autonomous robotic surgery.”'%?%?!

Rigid endoscopy

Endoscopy was first used to inspect the cervix more than 1000
y ago.”” Following a long period of technological stagnation,
Phillip Bozzini used a wax candle to illuminate a urologic
endoscope, which was branded a “toy” by his contempo-
raries.”® Problems with thermal injuries from light sources
were overcome through use of platinum wires heated with
electric currents or light sources encased in metal catheters
with ice water cooling. Subsequent development of separate

Surgical innovations replace human influence
with intelligent machine autonomy
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Fig — Past, present, and projected future innovations in
surgery use progressively more computer autonomy and
less human influence, augmenting or replacing previous
methods once a cost-effective performance advantage is
achieved with a new innovation. (Color version of figure is
available online.)

ocular and sheath components allowed of insertion of in-
struments to perform diagnostic procedures.’*?> However,
interventions were limited by the inability to triangulate in-
struments and vision, and the intra-abdominal contents could
not be inspected. When Hans Christian Jakobaeus dissemi-
nated his work regarding the use of a trocar to establish
pneumoperitoneum, the transition to laparoscopic surgery
began.

Laparoscopic surgery

Kurt Semm described laparoscopic management of gyneco-
logic disorders in the 1970s.”” These techniques were applied
to general surgery when Erich Miihe performed a laparoscopic
cholecystectomy in 1985. He obtained pneumoperitoneum
with a Veress needle, introduced pistol grip instruments
though a large trocar with side-view optics and other small
incisions, and removed the gallbladder though the large
trocar.’® He was ridiculed for performing “Mickey Mouse
surgery”, and his technique was summarized as “small
brain—small incision.””’ Philippe Mouret, another pioneer of
laparoscopic cholecystectomy, remarked that he felt the
“weight of medico-legal responsibility for having innovated in
a classic operation, which had reached a stage of near
perfection.””® Mouret’s concerns were valid. In an early pro-
spective observational study, the incidence of common bile
duct injury was 5.5%, compared with 0%-0.25% for open cho-
lecystectomy during the same era.”” The learning curve was
short and steep.’® As laparoscopic cholecystectomy gained
acceptance and adoption, its safety and efficacy improved, as
evidenced by decreased mortality, pneumonia, wound
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Table — Phases of innovation in minimally invasive surgery and surgical decision-making.

Surgical
innovations

Phases of innovation

Introduction of new
technology

Achievement of a performance
advantage

Arrival at a performance
plateau

Minimally invasive
surgery
Rigid endoscopy

Laparoscopic
Surgery

Robotic Surgery

Autonomous
microrobots

Surgical decision-
making
Additive risk

scores

Regression
modeling

Machine learning

Reinforcement

Visualization of internal structures
through natural orifices

Trocar used to establish
pneumoperitoneum

Computed tomography-guided
brain biopsy

Ingestible robot repairs a gastric
defect in 5 min
Single static variable thresholds

can yield high sensitivity

Estimates relationships between
inputs and outputs

Computer learns from data rather
than conforming to rules

Recommends optimal actions for

Light sources, sheaths for
instrument insertion

Improved outcomes for select
procedures, higher costs than open
surgery
Improved outcomes for select
procedures, higher costs than
laparoscopic and open surgery

Has not yet been demonstrated

Risk scores using multiple
variables can achieve good
accuracy

Patient-specific predictions may
affect preoperative risk reduction
strategies

Improved predictive accuracy,
opportunities for phenotype
discovery

Has not yet been demonstrated

Inability to triangulate, limited
working space

Minimal advantages for natural
orifice laparoscopy

Requires skin and fascial defects to
insert instruments

Have not yet been observed

Can underestimate risk for adverse
outcomes among high-risk
patients

Inability to accurately represent
complex, nonlinear associations

Predictions and phenotypes
indirectly inform decision-making

Have not yet been observed

learning discrete choices and states

infection, and hospital length of stay.” However, attempts to
make further clinically significant improvements on modern
laparoscopic surgery have had limited success.*’ As laparo-
scopic surgery reached a performance plateau, robotic surgery
gained acceptance and adoption.

Robotic surgery

In 1985, a robotic brain biopsy platform, using stereotactic
coordinates derived from computed tomography brain scans,
successfully navigated a robotic arm to its target.’”*® Ten
years passed before results from human studies were re-
ported.>® Subsequent technological improvements offered
high magnification three-dimensional views, minimization or
elimination of hand tremors, instruments that articulate to
extreme angles, comfortable ergonomics, and platforms
allowing surgeons to operate more than two robotic arms thus
obviating the need for skilled assistants. Robotic surgery has a
short, steep learning curve—similar to laparoscopy—and
surgeons have reported lower blood loss, shorter hospital
length of stay, fewer complications, and earlier return to work
relative to laparoscopic and open approaches across several
surgical specialties, but with higher operative costs and
limited high-level evidence demonstrating significant perfor-
mance advantages.'’?%?"*3¢ In a large randomized trial,
robotic-assisted rectal cancer resection yielded no significant
advantages over laparoscopic resection.’” Machine learning
models can assess robotic operative performance and predict
patient outcomes.*®*° Further technological advances could

offer haptic feedback, eye-tracking cameras, visualization of
subsurface anatomy, predictive navigation, and virtual con-
straints that protect anatomic structures such as vessels and
nerves, offering potential advantages for the safe, effective
performance of technically demanding tasks.*’ A recent pilot
randomized trial demonstrated the feasibility of robot-
assisted lymphovenous microanastomosis (8 mm diameter
or less) for women with breast cancer—related lymphedema.*!
Compared with manual techniques, there were no significant
differences in lymphedema-related outcomes at 1- and 3-mo
follow-up. Autonomous robots can perform end-to-end su-
tured bowel anastomoses with significantly higher leak pres-
sures than laparoscopic and open anastomoses sewn by
surgeons.’® However, in addition to cost constraints, many of
the factors that hinder laparoscopic surgery also hinder ro-
botic surgery, such as the need to create skin and fascial de-
fects to insert instruments, incurring risk for injury during
trocar and instrument insertion, wound infection, and hernia.
Autonomous microrobots could mitigate these risks.

Autonomous microrobots

In the 1966 film Fantastic Voyage, scientists shrink a submarine
and drive it through blood vessels to remove clot from an
injured colleague’s brain, popularizing a notion credited to
Albert Hibbs: “it would be interesting in surgery if you could
swallow the surgeon.” Emerging technologies suggest that
autonomous surgical microrobots are feasible. In 2016, an ETH
Zurich team described a hydrogel microrobot that propels
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itself through viscous solutions with corkscrew motions by
whipping a flagellum-like tail.*” The same year, a MIT team
described a biodegradable origami-like robot that folds into an
ingestible pill, unfolds in the body, sticks to tissues by friction,
and moves in response to external magnetic fields by redis-
tributing its weight.” In a 3D-printed silicone representation
of a human esophagus and stomach, the microrobot dislodged
a battery embedded in the stomach wall and patched the
defect in approximately 5 min. Other groups have used bull
sperm and cardiac myocytes for propulsion, magnetic field-
guided steering, DNA-protein orientations that allow robots
to maneuver autonomously in response to their environment,
and magnetotactic bacteria loaded with nanoliposomes that
hone to hypoxic signals.***® The authors are unaware of any
studies reporting the use of autonomous microrobots for
surgery on humans, much less a performance advantage over
current technologies. However, history and emerging evi-
dence suggest that as technologies improve, autonomous
microrobots have the potential to transform surgery.*’

Surgical decision-making innovations

Surgeons frequently engage patients in high-stakes shared
decision-making under both time constraints and uncertainty
imposed by acute surgical disease and busy clinic schedules.
These circumstances promote reliance on dogma and heu-
ristics, which can lead to bias, cognitive errors, and prevent-
able harm.®*® Innovations in surgical decision-making can
mitigate these challenges.

Additive risk scores

One of the simplest ways to support decisions is risk stratifi-
cation by additive scores using static variable thresholds. High
blood levels of C-reactive protein are associated with anasto-
motic leak following colorectal surgery. Postoperative day 3 C-
reactive protein levels less than 172 mg/L has 97% negative
predictive value for anastomotic leak, ruling out leak in nearly
all cases, but a positive predictive value of only 21%, such that
high levels lack clinical utility.** Incorporating multiple vari-
ables can improve predictive performance. Strate et al.”%°*
used seven risk factors to predict severe acute lower intesti-
nal bleeding (0 risk factors = low risk [9%], 1-3
factors = moderate risk [43%], >4 factors = high risk [84%]).
External validation demonstrated good discrimination with
area under receiver operating characteristic curve of 0.75.°"
Clinicians can use these predictions to guide decisions
regarding the urgency of diagnostic testing and the utility of
close patient monitoring. Low-risk patients may be appro-
priate candidates for outpatient management, avoiding un-
necessary use of inpatient resources. However, additive risk
scores can underestimate risk for adverse outcomes among
high-risk patients. Regression modeling techniques were used
to identify static variable thresholds and generate scoring
systems for many additive risk scores; direct application of
regression modeling may be less prone to prediction errors
among high-risk patients.”

Regression modeling
Regression modeling estimates relationships between pre-
dictor and outcome variables to predict outcomes or explain

associations. The National Surgical Quality Improvement
Program Surgical Risk Calculator uses data from over four
million surgeries—including procedure type, demographics,
and comorbidities—to predict outcomes such as morbidity,
mortality, hospital length of stay, and discharge disposition
within 30 d of surgery.'" The calculator makes accurate,
patient-specific predictions and may increase the likelihood
that patients will participate in risk reduction strategies, for
example, prehabilitation.’> Among 150 preoperative patients
who reviewed their surgical risk calculator results, 70% stated
that they would participate in prehabilitation and 40% stated
that they would delay surgery to participate. Patients often
want to be knowledgeable, engaged members of the health-
care team; without the use of decision-support tools, such as
the National Surgical Quality Improvement Program calcu-
lator, this desire is often unfulfilled, and an opportunity to
augment shared decision-making is lost.”*> Despite these
advantages, data from 4 million surgeries may be insufficient
to represent rare but important pathophysiology in a cohort of
more than 60 million patients undergoing surgery in the
United States each year, and regression model accuracy may
suffer from an inability to accurately represent the complex,
nonlinear associations among predictor variables.”® Machine
learning techniques are adept at this task.

Machine learning
In 1970, Dr. William Schwartz wrote in the New England Journal
of Medicine, “Computing science will probably exert its major
effects by augmenting and, in some cases, largely replacing
the intellectual functions of the physician.””” Schwartz held
that human disease is too broad and complex to be explained
and interpreted by rules; machine learning algorithms learn
from data rather than conforming to rules.*® Fifty years later,
computers have not replaced physicians’ intellectual func-
tions but have demonstrated potential to augment decisions
with varying levels of autonomy. Machine learning models
can predict risk for several postoperative complications with
accuracy greater than that of physicians but often lack elec-
tronic and clinical workflow integration, limiting their use in
routine clinical practice.”®®°

Supervised algorithms learn from data labeled by humans,
then classify or make predictions on new unseen data; un-
supervised algorithms create their own output catego-
ries—often agnostic of any human-attributed
labels—allowing discovery of patterns and associations. Su-
pervised algorithms can predict sepsis more than 24 h before
onset with area under receiver operating characteristic curve
0.83.°* However, predictions are only as useful as the out-
comes they predict. Seymour et al.®” suggest that the overly
broad definition of sepsis impairs the development of targeted
interventions. They used unsupervised learning to phenotype
sepsis patients, assigning points on a scatterplot as cluster
centroids, assigning all other points to the nearest centroid,
then iteratively recalculating centroids and cluster assign-
ments to form the tightest clusters possible. This method
identified four unique sepsis phenotypes, potentially repre-
senting subgroups with different responses to targeted ther-
apies. These techniques require time-intensive hand-crafted
feature engineering using human domain knowledge whereas
deep models autonomously learn feature representations
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from raw data. Deep models can use electronic health record
data to predict mortality among intensive care unit patients
with greater accuracy than the sequential organ failure
assessment score, even when limited to the same input data
used to calculate sequential organ failure assessment.®® Deep
learning and statistical modeling can also use characters,
words, and other expressions of natural language as model
inputs. This technique, termed natural language processing,
can generate oncologic decision-support tools predicting
germline mutations.®*®® This approach can leverage the
availability of large volumes of genetic data and medical
literature to produce personalized cancer prevention man-
agement strategies.®® Deep model interpretation mechanisms
elucidate the relative importance of individual input features
in determining model outputs, providing opportunities to
assess whether associations between inputs and outputs are
biologically plausible.®*®” Despite these advantages, pre-
dictions and classifications can only indirectly inform discrete
choices facing clinicians, limiting their clinical utility. Rein-
forcement learning directly informs discrete choices.

Reinforcement learning

In reinforcement learning, an agent learns that specific ac-
tions under certain conditions lead to rewards and penalties,
using this knowledge to identify actions that achieve an ulti-
mate goal. Two characteristics distinguish reinforcement
learning from machine learning: (1) trial-and-error search to
identify the best action and (2) delayed reward, that is
choosing actions that achieve the ultimate goal rather than
short-term rewards.®® For example, a model developed by
Komorowski et al.'® recommends vasopressor doses and
intravenous fluid volumes for septic patients, assigning re-
wards and penalties relative to 90-d survival. The model
favored higher vasopressor doses and lower intravenous fluid
volumes, consistent with evidence that volume overload
harms sepsis patients and that a one-size-fits-all approach to
resuscitation is suboptimal.®*’® On retrospective analysis,
when actions taken by clinicians were concordant with model
recommendations, mortality was slightly less than 20%. As
clinician actions deviated from model recommendations,
mortality significantly increased, up to 60%. Notably, clini-
cians may have deviated from model recommendations based
on data not available to the model (e.g. physical exam find-
ings, symptoms), and the same findings contributed to a
worse prognosis, making clinician decision-making seem less
effective. Therefore, available evidence does not support
causal inference between model recommendations and
decreased mortality.

For more complex decision-making scenarios in high-
volume, high-dimension datasets, exhaustive searches for
optimal actions can be prohibitive or impossible, but deep
representation of the agent’s environment can mitigate these
challenges. The Go board game has 32,490 possible first
moves.”” A deep reinforcement model first learned from a
human Go expert, then defeated the European Go champion
five games to zero. Subsequently, a completely autonomous
model trained on self-play only defeated the human input
model 100 games to zero.”” Similar approaches have the po-
tential to transform surgical decision-making, but in the
absence of high-level evidence for medical applications, this

potential remains theoretical.”? In addition, reinforcement
learning models require large training data sets to maintain
effective sample sizes in sequential decision-making tasks,
and such data are not available for many surgical diseases,
especially rare ones.”?

Lessons learned from automotive innovations

The automotive industry adopts intelligent, autonomous
machine innovations that achieve performance advantages
according to consumer demands and business advantages.
Similar market forces will likely drive surgery toward machine
autonomy. Currently, there is no level I evidence demon-
strating that intelligent, autonomous machines improve pa-
tient outcomes compared with existing standards for
performing operations or surgical decision-making tasks,
specifically (see the Supplement describing an Embase, MED-
LINE, and PubMed search performed by the authors 10/30/
2019). These technologies remain on the initial, flat portion of
the innovation S-curve (Figure). However, if future hospitals
can purchase robotic surgical platforms that autonomously
perform operations with lower costs and higher quality than
human surgeons, or deep reinforcement learning models that
consistently make better decisions than clinicians, then it
seems likely that these technologies will gain adoption. His-
tory suggests that intelligent, autonomous machines will
initially be used for simple, common, rote tasks under close
human supervision and then for complex tasks with minimal
human supervision. Automation of programmable tasks may
allow surgeons to spend less time gathering and analyzing
data and more time interacting with patients and tending to
urgent, critical—and potentially more valuable—aspects of
patient care.

Lessons learned from automotive innovations reveal op-
portunities to capitalize on the performance advantages of
new technologies without disenfranchising the people that
use and benefit from them. When robotic arms largely
replaced human assembly line workers in performing rote
mechanical tasks, automobile prices fell within reach of the
middle class, but many assembly line workers lost their jobs.
As in the industrial revolution, there was a lag time between
incorporation of autonomous machines and redistribution of
the human workforce. Perhaps if this transition were antici-
pated, a smoother transition could be achieved. Anticipating a
similar transition in surgery seems prudent. Eventually, the
automotive industry evolved to use human effort and exper-
tise in designing and overseeing robotic arm assembly lines.
Automotive workforces also pivoted toward tasks requiring
creativity, long-term planning, and moral deliberation, which
are especially relevant in designing self-driving cars that
sense the environment and respond accordingly. Responses
are programmable and have important moral implications.
Awad et al.”* created online simulations in which participants
identify preferences for how self-driving cars should behave
when distributing harm in unavoidable collisions, for
example, the car can maintain its course and hit a jaywalking
teenager or swerve and crash, harming its elderly passenger.
The authors collected data on nearly 40 million decisions by
participants in 233 countries and found significant cross-
cultural variation in preferences for moral dilemmas facing
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self-driving cars, precluding a one-size-fits-all approach to
morally sound programming.

Moral and ethical dilemmas also challenge the adoption of
intelligent, autonomous machines in surgery. Management of
a patient with both pulmonary edema and prerenal azotemia
could proceed with either diuresis or volume resuscitation.
The tradeoff between respiratory failure requiring mechanical
ventilator support versus renal failure requiring renal
replacement therapy depends in part on the desires and
values of the patient and their caregivers. An autonomous
reinforcement learning platform trained to optimize an arbi-
trary endpoint such as 90-d mortality could make a recom-
mendation or decision that is medically sound, but contrary to
patient values. Also, algorithms trained on biased data sets
are likely to produce biased outputs, as demonstrated for
crime recidivism predictions.”® Similar problems could occur
in machine learning healthcare applications. For example,
associations between cardiovascular risk factors and adverse
cardiovascular events differ by race and ethnicity; a model
trained on data from the Framingham Heart Study, which
primarily included white subjects, could produce racially and
ethnically biased outputs.”® Algorithms used for allocating
liver transplants may disenfranchise female organ recipient
candidates by prioritizing serum creatinine, which is lower
among women.”’ Therefore, investigators must align training
data set and target population demographics and other
characteristics that have potential to introduce bias. In addi-
tion, judicial systems have limited experience assigning lia-
bility for errors made by intelligent machines and
differentiating between human and machine error. In making
a critical management decision for a life-threatening post-
operative complication, a surgeon could be privy to history
and physical exam information that is unavailable to an
autonomous decision-support platform, take a different
course of action than recommended by a model with proven
efficacy, and be subject to unwarranted scrutiny when the
patient suffers a poor outcome. Similarly, robotic surgical
platforms with virtual constraints intended to protect
anatomic structures could delay or prevent a surgeon from
gaining control of an injured blood vessel, harming a patient
and pitting human versus machine in assigning liability. Sur-
geons must meet these challenges with creativity, altruism,
moral deliberation, and emotional intelligence, that is, the
ability to recognize emotional states and act accordingly.
These traits remain inaccessible to machines. The surgeon’s
role may evolve to interpreting decision-support tools and
offering wisdom for patients and caregivers facing complex,
high-stakes surgical decisions, using and overseeing semi-
autonomous and fully autonomous surgical instruments and
robotic platforms in the operating room and ensuring the safe
and effective integration of intelligent, autonomous machines
with surgical care.

Conclusions

As technologies improve, intelligent, autonomous machines
may gain the capacity to augment or outperform humans in
operative and decision-making tasks. History suggests that
intelligent, autonomous machines will be used in surgery

initially for simple, common, rote tasks under close human su-
pervision and then for complex tasks with minimal human su-
pervision. Automation of programmable tasks may allow
surgeons to spend less time gathering and analyzing data and
more time interacting with patients and tending to urgent,
critical—and potentially more valuable—aspects of patient care.
This process poses ethical challenges in assigning liability for
errors, distributing harm, and displacing human workers. Sur-
geons should assume active roles in guiding these technologies
toward optimal patient care and net social benefit, channeling
human creativity, moral deliberation, and altruism.
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