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Abstract—Pain and physical function are both essential
indices of recovery in critically ill patients in the Intensive Care
Units (ICU). Simultaneous monitoring of pain intensity and
patient activity can be important for determining which anal-
gesic interventions can optimize mobility and function, while
minimizing opioid harm. Nonetheless, so far, our knowledge
of the relation between pain and activity has been limited
to manual and sporadic activity assessments. In recent years,
wearable devices equipped with 3-axis accelerometers have been
used in many domains to provide a continuous and automated
measure of mobility and physical activity. In this study, we
collected activity intensity data from 57 ICU patients, using
the Actigraph GT3X device. We also collected relevant clinical
information, including nurse assessments of pain intensity,
recorded every 1-4 hours. Our results show the joint distribution
and state transition of joint activity and pain states in critically
ill patients.

I. Introduction
After an Intensive Care Unit (ICU) stay, almost 50% of

patients described the perceived level of pain, at rest and
during commonly performed procedures, between moderate
and severe [1], [2], [3]. Typically, opioids and other pain-
relief medications are prescribed to alleviate their pain and
to maximize patient comfort. Nonetheless, a unilateral ap-
proach based on minimizing pain is increasingly seen as an
insufficient for optimizing long-term patient outcomes. For
example, early mobility has been shown to be associated
with improved patient outcomes such as shorter length of
stay. Existing studies that examine the relation between pain
and activity, typically rely on nurse-assessed activity scales,
e.g. the PUMP-PLUS scale or other mobility assessment
scales [4], [5]. Such information, while helpful, are assessed
sporadically and can be subjective, while not taking into
account activity information in between nurse visits. Fur-
thermore, mobility assessment is not part of routine clinical
care in all ICUs, further complicating investigation of activity
in critically ill patients. In recent years, wearable devices
equipped with accelerometer sensors have been used in many
domains to measure activity intensity in a more objective and
continuous manner [6], [7], [8]. Several previous studies have
used accelerometers in the ICU to assess activity, however
they have not been used for examining the relation between
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pain and activity. In this prospective observational study,
we examined the relation between granular activity data and
pain for the first time. We collected activity information of
57 patients using the Actigraph GTX3X device. Pain and
other relevant clinical information were also collected from
Electronic Medical Record (EMR) data.

II. Background
After an ICU stay, almost 50% of patients described

the perceived level of pain, at rest and during commonly
performed procedures, between moderate and severe [1], [2],
[3]. Currently, clinical pain decisions are generally oriented
towards minimizing pain intensity. An overly narrow empha-
sis on pain intensity can lead to poor functional outcomes
and may contribute to the ongoing opioid crisis [9]. Recent
efforts including ERAS (Enhanced Recovery After Surgery)
and function-oriented pain assessments highlight this need
by moving beyond simple indices of pain intensity [10].
Simultaneous monitoring of pain intensity and function will
allow clinicians to make decisions to optimize function that is
impaired by pain, rather than just making decisions based on
pain intensity alone. A common sensor for recording motor
activities is the triaxial accelerometer. A triaxial accelerom-
eter is a sensor that estimates the acceleration along the x,
y, and z axes and from which velocity and displacement
can also be determined. Accelerometers, nowadays, are used
as motion detectors, body-position, and posture sensing, and
generally in the human activity recognition context [11], [12]

III. Methodology
In this study, we examined the distribution and state

transition of joint pain and activity states in critically ill
patients. We recruited 57 patients, and we measured their
activity intensity using wearable Actigraph GTX3X device.
The following sections provide details of subject recruitment,
data preprocessing, and our association analysis.

A. Subject Recruitment
The subjects were recruited from the pool of critically ill

patients admitted to the Shands Hospital at University of
Florida. The study was approved under IRB 201400546. All
patients provided written informed consent. Pain intensity
was assessed using the Defense and Veterans Pain Rating
Scale (DVPRS) [13], where each patient was asked to assess
their pain intensity using a 0-10 scale. DVPRS was used
as part of standard clinical practice and provides additional
visual and contextual cues related to pain intensity. In the
ICU, DVPRS is typically administrated every hour as part
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TABLE I
Example of motor activity data captured from a tri-axial

accelerometer.

Subject Date Time Axis x Axis y Axis z Magnitude
ID Ax Ay Az Vm

31 02/29/2017 14:31:23.100 0 0 0 0
31 02/29/2017 14:32:23.100 10 23 42 49
31 02/29/2017 14:33:23.100 70 59 82 123

of clinical routine care. The frequency of pain assessment
can change depending on patient’s condition. For example,
sleeping patients might not be disturbed, or if patient has
received medication to manage severe pain, pain might be
assessed more frequently to observe also the medication
effect. Finally, relevant clinical information such as length
of stay were included.
We recruited 57 patients in the surgical ICU at the

quaternary academic University of Florida Health Hospital.
For each patient, activity intensity information was collected
using the Actigraph GTX3X device, which is a lightweight
device (< 40 g), equipped with a 3-axial accelerometer
sensor. Up to three Actigraph GTX3X devices were placed
on the wrist, arm, and ankle. At patient request, or de-
pending on the underlying medical conditions, injuries, or
discomfort, one or two Actigraph devices were removed.
In this study, we examined data from wrist placement. We
initially recruited 91 patients. Due to Actigraph removal
or unexpected ICU transfers, the final dataset included 57
patients who had complete wrist data. Table I shows data
representation of the activity information. Columns one to
three show the participant ID, date (mm/dd/year) and time
(hh : min : sec.ms). Columns four to six show the activity
count values (Ax, Ay, Az) for the x, y, and z-axes of the
Actigraph. Finally, column seven shows the vector magnitude
obtained by applying Equation (1).

Vm =

√
A2
x + A2

y + A2
z (1)

TABLE II
The Defense and Veterans Pain Rating Scale (DVPRS) scale

and the discrete data binning intervals. Pn refers to a
specific level for the given binned schema.

Level Descriptive (1) Binning (2) Binning (3) Binning (4) Binning
Category Schema PA Schema PB Schema PC Schema PD

0 No Pain P1 P1 P1 P1
1 Mild P1 P1 P2 P2
2 Mild P1 P1 P2 P2
3 Mild P1 P1 P2 P3
4 Mild P1 P1 P2 P3
5 Moderate P2 P2 P3 P4
6 Moderate P2 P2 P3 P4
7 Severe P2 P3 P4 P5
8 Severe P2 P3 P4 P5
9 Severe P2 P3 P4 P6
10 Severe P2 P3 P4 P6
Nr. Categories 2 3 4 6

B. Data Preprocessing
To prepare our dataset for analysis, we performed sev-

eral preprocessing tasks. The first step included removing

incomplete observation windows, in which either pain or
activity information are missing. In this case, this step will
dismiss activity data that is not within an hour of any
pain assessment. At the end of this processing step, only
intervals containing joint pain and activity information will
be preserved (± 1 hour). This will allow us to construct joint
pain and activity states required for our analysis.

1) Discrete Data Binning: In the literature, numerical
pain scores are sometimes converted to the binned descriptive
scores for ease of analysis (e.g. 0-2 = no pain, 3-6 = moderate
pain, and 7-10 = severe pain) c[14]. This will facilitate under-
standing the transitions between different activity/pain states.
For example, this will allow as to determine if most patients
transition from a 〈lowactivity, severepain〉 state (non-ideal)
to 〈highactivity,mildpain〉 state (ideal). Such information
could have implications in terms of understanding patient
pain trajectory and could be used for adjusting the physical
therapy and other interventions. In this study, we applied
four discrete binning approaches for pain intensity to perform
sensitivity analysis of our methodology (Table II). The same
discrete data binning approach was performed on activity
data. Since there is not a well-defined activity threshold
for critically ill patients, we took a data-driven approach.

TABLE III
Discrete data binning of activity levels. For sensitivity

analysis, we will use two different binning schemas.

Binning
Schema (1)

Activity Category AE Description
Value 6 Median A1 Low
Value > Median A2 High

Binning
Schema (2)

Activity Category AF Description
Value 6 Q1 A1 Low

Q1 < Value 6 Q3 A2 Average
Value > Q3 A3 High

Table II shows our binning schemas based on (a) Median
(b) first quartile (Q1), and (c) third quartile (Q3), resulting
in:
• AE : two levels based on the median of activity vector
magnitude value;

⟨P1,A1⟩
Mild Pain

Low Activity

⟨P1,A2⟩
Mild Pain

High Activity

⟨P2,A1⟩
Moderate Pain

Low Activity

⟨P2,A2⟩
Moderate Pain
High Activity

⟨P3,A1⟩
Severe Pain
Low Activity

⟨P3,A2⟩
Severe Pain
High Activity

⟨P1,A1⟩
Mild Pain

Low Activity

⟨P1,A2⟩
Mild Pain

High Activity

⟨P2,A1⟩
Severe Pain
Low Activity

⟨P2,A2⟩
Severe Pain
High Activity

Pain 

Category 

PA

Pain 

Category 

PB

Activity Category AE

Activity Category AE

(a)

(b)

Fig. 1. Example State Distribution Matrix (SDM) shows the relative
distribution of 〈Pain, Activity〉 states.
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State 

Distribution 

Matrix

State Transition Matrix

⟨P1,A1⟩
Mild Pain

Low Activity

⟨P1,A2⟩
Mild Pain

High Activity

⟨P2,A1⟩
Severe Pain
Low Activity

⟨P2,A2⟩
Severe Pain
High Activity

Fig. 2. Example State Transition Matrix (STM) shows the relative
probability of transition from state 〈Pi , A j 〉 to state 〈Pk , Al 〉.

• AF : three levels based on the first quartile (Q1), median,
and third (Q3) quartile of activity vector magnitude
value.

C. The Association between Pain and Activity
To examine the association between pain and activity,

initially, we considered the relationship between 2-levels
activity (AE ) and pain (PA) data:
1) State 1: 〈Mild Pain , Low Activity〉: Resting, seda-

tion, reducing physical activity to avoid pain,
2) State 2: 〈Mild Pain , High Activity〉: Functional,

recovering,
3) State 3: 〈Severe Pain , Low Activity〉: Critical,
4) State 4: 〈Severe Pain , High Activity〉: Agitated, pain

due to physical activity (e.g. physical therapy).
The state pairs can be at higher granularity using discrete
binning schema with more levels. For lack of space, in our
analysis we will show only the association between between
2-levels activity (AE ) and pain (PA) data. Examples of both
matrices can be seen in Figure 1 and Figure 2.
State Distribution Matrix (SDM). This matrix shows what
percentage of time is spent in each of these states for all
patients. In particular, for pain level Pi and activity level Aj ,
this shows what percentage of time is spent in state 〈Pi, Aj〉,
when normalized for all states.
State Transition Matrix (STM). This matrix shows the proba-
bility of transition from state 〈Pi, Aj〉 to state 〈Pk, Al〉, when
normalized for all transitions. Transition are formed when a
new pain assessment is available.

IV. Results
This section will discuss the relationship between per-

ceived pain and the amount of activity.

A. Dataset
Starting from the dataset presented in Section III-A, since

the patient’s data were sampled at different frequency, we
up-sampled all the data to windows of 60 seconds (0.016

TABLE IV
Cohort characteristics.

All Participants (N=57)
Max Age 95
Min Age 21
Age(Std) 63.5 (17.3)

Under 63 (%) 21 (37%)
Over 63 (%) 36 (63%)
Male (%) 36 (63%)
Female (%) 21 (37%)

Caucasian (%) 51 (89%)
Afro-American (%) 4 (7%)

Other (%) 2 (4%)
Hispanic (%) 1 (2%)

Not-Hispanic (%) 56 (98%)

Hz). In total, the dataset presents approximately a total of
4000 hours of recorded data for a total of 240000 samples.
Table IV shows cohort characteristics of recruited subjects,
the majority of the patients (61%) were enrolled in the
study for less than four days and the time period between
two consecutive pain assessments ranged from 10 minutes
to 12 hours, with a median of 3 hours. Each pain sample
is associated with the previous time window, of 1 hour,
of activity data. Furthermore, the discharge outcomes are
categorized as discharged to home and still hospitalized.

In particular, in 24 (42%) cases, the subjects were dis-
charged from the hospital and sent home or to home care.
In the remaining 33 (58%) cases, the subjects continued
hospitalization in other wards or hospitals. Throughout the
dataset, there are time windows of variable length presenting
zero motor activity . On average, 5.8% of the data could
correspond to time windows during which the subject did
not wear the device. The non-wear time was considered as
the time interval >2 hours with zero activity.

B. Experimental Results
We constructed the SDM and STM matrices with and

without stratification according to gender, patient outcome
(home discharge, other outcomes), and age (6 63, > 63).

1) No Stratification: Figure 3 and Figure 4 shows the
resulting SDM and STM matrices without any stratification
for all the patients. In particular, Figure 3 presents the results
for two levels of pain (PA) and activity (AE ). Figure 4
presents the results for three levels of pain (PB) and activity
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Fig. 3. Results for all patients without stratification, SDM and STM on
two levels of pain and activity.
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Fig. 4. Results for all patients without stratification, SDM and STM on
three levels of pain and two levels of activity.

(AE ). 31% of subjects show an association between mild
pain levels and low activity levels. 39% of subjects show an
association between mild pain levels and high activity levels.
14% of subjects show an association between severe pain
levels and low activity levels. About 16% of subjects show
an association between severe pain levels and high activity
levels. Furthermore, based on results showed from the STM
we make the following observation:

• The values on the diagonal are relatively larger than
the values of the remaining cells in the respective rows.
Thus, the probability of transitioning from one state to a
different state is lower than the probability of remaining
in the same state;

• The values on the lower triangular of the matrix
show relatively higher values than those on the up-
per triangular. The probability of transitioning from
a state of 〈highactivity, severepain〉 to a state of
〈lowactivity, lowpain〉 is greater than the probability
of transitioning from a 〈lowactivity, lowpain〉 to a state
of 〈highactivity, severepain〉, 7% overall compared to
5% once marginal probablity is computed over all such
states.

• The probability of transitioning from a mild pain state
to a severe pain state is lower than the probability of
transitioning from a low activity state to a high activity
state, 7% overall compared to 14,5% once marginal
probablity is computed over all such states;

• The probability of transitioning from a severe pain state
to a mild pain state is higher than that of transitioning
from a high activity state to a low activity state, 16,75%
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Fig. 5. SDM and STM on two levels of pain and activity differentiating
by gender, 21 female patients.
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Fig. 6. SDM and STM on two levels of pain and activity differentiating
by gender, 36 male patients.

overall compared to 12,25% once marginal probablity is
computed over all such states;

• The probability of transitioning from a severe pain state
to a mild pain state is higher than that of transitioning
from a mild pain state to a severe pain state, 16,75%
overall compared to 8,25% once marginal probablity is
computed over all such states.

2) Gender Based Results: Figure 5 and Figure 6 show the
result when stratified by gender. Figure 5 shows the results
taking into account only 21 female subjects among the overall
57 subjects of the ICU dataset. Figure 6 shows the results of
taking into account the remaining 36 male subjects. For both
females and males, the SDM shows that the state distribution
probability is almost the same. In particular, both low and
severe pain is related to high activity. Furthermore, the STM
upper triangle (Figure 5) related to the female group shows
that the probability of transitioning from a mild pain state
to a severe pain state is lower compared to the case of male
subjects (Figure 6), 7,25% overall compared to 8,25%.
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Fig. 7. Results obtained differentiating by outcome, 24 subjects discharged
to home care.

3) Outcome and Age based results: Finally, Figure 7,
Figure 8, Figure 9, and Figure 10 show the SDM and STM
matrices results stratified by discharge outcomes and age.
Also, in these tests, we see that both high and mild pain levels
are associated with a high activity level. This relationship
(42% / 16%) is mainly observed in subjects over the age
of 63. Furthermore, this group shows a lower probability of
remaining in a state of severe pain (49%) than that (60%)
shown by subjects under the age of 63. In the same way, we
observe that the subjects discharged from the hospital, during
the period of hospitalizations, show a higher probability of
remaining in the same state of severe pain 56%) than that
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Fig. 8. Results obtained differentiating by outcome, 33 subjects who
continued hospital treatments.
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Fig. 9. Results obtained differentiating by age, 21 patients older than 63
years.

P
2
: 

S
ev

er
e 

P
a

in
  
  
  
 P

1
: 

M
il

d
 P

a
in

 

A1 A2

Low Activity          High Activity
⟨P1,A1⟩ ⟨P1 ,A2⟩ ⟨ P2 ,A1⟩ ⟨P2,A2⟩

⟨P
2
 ,A

2
⟩

⟨P
2
,A

1
⟩

⟨P
1
,A

2
⟩

⟨P
1
,A

1
⟩

Fig. 10. Results obtained differentiating by age, 36 patients younger than
63 years.

shown by patients who remained hospitalized (52%) even
after data collection.

V. Discussion

In this study, we examined the relation between sates
formed from granular activity and pain data, and we also
examined the transition amongst such states. Our results
show an association between mild pain levels and high
activity levels for majority of patients (39%). Nonetheless,
the remaining patients exhibit either severe pain or low
activity levels, which shows the need for joint optimization of
pain management routines and early mobilization of patients.
The observed patterns deserve additional analyses and explo-
ration to determine the nature of the observed correlations,
including under the context of additional clinical and patient-
oriented outcomes. In our future studies, we plan to examine
these pain/activity state transitions in temporal manner, over
the course of patient hospitalization.

VI. ACKNOWLEDGMENT
AB and PR were supported by R01 GM110240 from the

NIGMS, and by the National Institute of Biomedical Imag-
ing and Bioengineering (grant R21EB027344-01). PR was
supported by CAREER award, NSF-IIS 1750192, from the
National Science Foundation (NSF), Division of Information
and Intelligent Systems (IIS). PTJ and PR were supported by
R01GM114290 from the NIGMS.

References
[1] G. Chanques, M. Sebbane, E. Barbotte, E. Viel, J.-J. Eledjam, and

S. Jaber, “A prospective study of pain at rest: incidence and charac-
teristics of an unrecognized symptom in surgical and trauma versus
medical intensive care unit patients,” Anesthesiology: The Journal of
the American Society of Anesthesiologists, vol. 107, no. 5, pp. 858–
860, 2007.

[2] J. A. Stanik-Hutt, K. L. Soeken, A. E. Belcher, D. K. Fontaine et al.,
“Pain experiences of traumatically injured patients in a critical care
setting,” American Journal of Critical Care, vol. 10, no. 4, p. 252,
2001.

[3] K. A. Puntillo, L. R. Wild, A. B. Morris, J. Stanik-Hutt, C. L.
Thompson, and C. White, “Practices and predictors of analgesic
interventions for adults undergoing painful procedures,” American
journal of critical care, vol. 11, no. 5, pp. 415–429, 2002.

[4] W. L. Titsworth, J. Hester, T. Correia, R. Reed, P. Guin, L. Archibald,
A. J. Layon, and J. Mocco, “The effect of increased mobility on
morbidity in the neurointensive care unit,” Journal of neurosurgery,
vol. 116, no. 6, pp. 1379–1388, 2012.

[5] L. Malheiro, A. Gomes, P. Barbosa, L. Santos, and A. Sarmento,
“Infectious complications of intrathecal drug administration systems
for spasticity and chronic pain: 145 patients from a tertiary care
center,” Neuromodulation: Technology at the Neural Interface, vol. 18,
no. 5, pp. 421–427, 2015.

[6] C. J. Tipping, M. J. Bailey, R. Bellomo, S. Berney, H. Buhr, L. Denehy,
M. Harrold, A. Holland, A. M. Higgins, T. J. Iwashyna et al., “The icu
mobility scale has construct and predictive validity and is responsive.
a multicenter observational study,” Annals of the American Thoracic
Society, vol. 13, no. 6, pp. 887–893, 2016.

[7] S. G. Trost, P. D. Loprinzi, R. Moore, and K. A. Pfeiffer, “Comparison
of accelerometer cut points for predicting activity intensity in youth,”
Medicine & Science in Sports & Exercise, vol. 43, no. 7, pp. 1360–
1368, 2011.

[8] S. J. Linton, “The relationship between activity and chronic back pain,”
Pain, vol. 21, no. 3, pp. 289–294, 1985.

[9] C. M. Brummett, J. F. Waljee, J. Goesling, S. Moser, P. Lin, M. J.
Englesbe, A. S. Bohnert, S. Kheterpal, and B. K. Nallamothu, “New
persistent opioid use after minor and major surgical procedures in us
adults,” JAMA surgery, vol. 152, no. 6, pp. e170 504–e170 504, 2017.

[10] E. Georgiou, M. Hadjibalassi, E. Lambrinou, P. Andreou, and E. D.
Papathanassoglou, “The impact of pain assessment on critically ill pa-
tients’ outcomes: a systematic review,” BioMed research international,
vol. 2015, 2015.

[11] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity
recognition from accelerometer data,” in Aaai, vol. 5, no. 2005, 2005,
pp. 1541–1546.

[12] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning
for sensor-based activity recognition: A survey,” Pattern Recognition
Letters, vol. 119, pp. 3–11, 2019.

[13] C. C. Buckenmaier III, K. T. Galloway, R. C. Polomano, M. McDuffie,
N. Kwon, and R. M. Gallagher, “Preliminary validation of the defense
and veterans pain rating scale (dvprs) in a military population,” Pain
Medicine, vol. 14, no. 1, pp. 110–123, 2013.

[14] K. M. Prkachin and P. E. Solomon, “The structure, reliability and
validity of pain expression: Evidence from patients with shoulder
pain,” Pain, vol. 139, no. 2, pp. 267–274, 2008.

4538

Authorized licensed use limited to: University of Florida. Downloaded on February 18,2021 at 21:16:50 UTC from IEEE Xplore.  Restrictions apply. 


