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Abstract— The Clock Drawing Test, where the participant is 

asked to draw a clock from memory and copy a model clock, is 

widely used for screening of cognitive impairment. The digital 

version of the clock test, the digital clock drawing test (dCDT), 

employs accelerometer and pressure sensors of a digital pen to 

capture time and pressure information from a participant’s 

performance in a granular digital format. While visual features 

of the clock drawing test have previously been studied, little is 

known about the relationship between demographic and 

cognitive impairment characteristics with dCDT latency and 

graphomotor features. Here, we examine dCDT feature clusters 

with respect to sociodemographic and cognitive impairment 

outcomes. Our results show that the clusters are not significantly 

different in terms of age and gender, but did significantly differ 

in terms of education, Mini-Mental State Exam scores, and 

cognitive impairment diagnoses. 

 
Clinical Relevance— This study shows that features extracted 

from digital clock drawings can provide important information 

regarding cognitive reserve and cognitive impairments. 

I. INTRODUCTION 

The 2019 American College of Surgeons Geriatric Surgery 
Verification Program recommends perioperative cognitive 
screening for older adults [1]. Early identification of cognitive 
impairment in perioperative medicine is essential to limit the 
risks of developing delirium and post-operative cognitive 
deficits, particularly in older populations [1]. The clock 
drawing test (CDT) is easy to use and a validated perioperative 
cognitive screening tool (Figure I) [2-5]. Participants are asked 
to draw the clock face to show a specific time, usually 11:10 
(command condition) followed by copying a model of the 
clock (copy condition). Easily administered at bedside, the 
CDT is quick and efficient, making it well-suited for 
perioperative settings. Nonetheless, there are several 
drawbacks to using the conventional CDT. First, scoring relies 
on subjective judgment of the final product only. Second 
temporal and motor information during performance cannot be 
recorded using the traditional pen and paper task. The digital 
clock drawing test (dCDT), which uses digital pen technology, 
makes it possible to capture timing, pressure of the pen while 
drawing, and other features (Figure II) [6, 7]. Pen positioning 
on paper is captured with ±0.005 spatial and 12 milliseconds 
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temporal accuracy. This newly available information also 
yields data assessing latency and graphomotor variables of 
interest providing additional insight into the neurocognitive 
domains underlying test performance [8]. Several recent 
studies have shown the feasibility of using dCDT test to study 
putative cognitive impairments in patient groups [6, 9]. 
However, the relationship between demographic and cognitive 
impairment characteristics with dCDT latency and 
graphomotor features remain unknown. Here, we compare the 
distribution of demographic and cognitive impairment 
characteristics by group by clustering graphomotor and 
latency data captured from dCDT. 

II. METHODS 

A. Dataset 

We collected our data from two cohorts of participants 
diagnosed with dementia or Parkinson disease (PD), and a 
control cohort of healthy participants. Participants were asked 
to perform the clock drawing task using aforementioned digital 
pen technology to capture the pen movement. Only command 
condition dCDT data was considered for this project. We also 
obtained their demographics and Mini-Mental State 
Examination (MMSE) [10] scores.  

B. Analysis 

We extracted 29 features that we identified from relevant 
literature (Table I) [6, 7, 9, 11, 12]. To impute continuous 
features, we use Multiple Imputation using Chained Equations 
(MICE) algorithm [13], using example values from 
participants with similar profiles with respect to other 
variables. Next, we used the Uniform Manifold 
Approximation and Projection (UMAP) [14] method for 
dimensionality reduction and transformed data into 2 
dimensions.  

We used the K-means clustering algorithm to detect clusters 
using the extracted dCDT features. We also used Hopkins 
statistics to check for clustering tendency of the data and used 
the average Silhouette metric for detection of the optimal 
number of clusters [15, 16]. The silhouette metric evaluates 
how well the data points are matched to other points in their 
cluster and how different are from points in other clusters. The 
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average Silhouette method calculates the Silhouette metric for 
different numbers of clusters and determines the optimal 
number of clusters as the one with the highest average 
Silhouette. Next, we compared the profiles of the participants 
in the three detected clusters in terms of demographics and 
diagnosis. Kruskal-Wallis and Chi-square tests were sued to 
compare the distribution of studied variables. The analyses 
were performed using R 3.6.2.  

III. RESULTS 

Our dataset consists of 316 participants (Table I): 166 
(52.5%) healthy Control participants, 70 (22.2%) Dementia 
patients, and 80 (25.3%) non-demented participants with 
Parkinson’s disease (PD). Age, gender, education and MMSE 
scores were significantly different between the three classes. 
Dementia patients were generally older (73.9±13.1 years 
compared with 64.9±13.3 control participants and 68.8±6.4 for 
participants with PD). Dementia patients also had fewer years 
of education (12.8±2.7 compared with 15.9±2.6 for control 
participants and 16.6±2.5 for PD participants, and lower 
MMSE scores (23.3±3.2 compared with 28.6±1.3 for control 
participants and 28.5±1.3 for PD participants). Distribution of 
gender was similar between dementia patients and control 
participants, while there were fewer female Parkinson patients. 

Figure III shows the resulting two dimensions after using 
UMAP for dimensionality reduction. Silhouette metric and 
elbow method were used for determining the optimal number 
of clusters using K-means clustering algorithm. Both 
Silhouette metric found three clusters as the optimal number 
of clusters detected in the dataset (Figure IV). Visual 

inspection of the resulting clusters in two dimensions also 
shows separation between the clusters (Figure V). Next, we 
compared the demographic variables of age, gender, and 
education between the three clusters. Education, unlike age 
and gender, was significantly different between the three 
clusters (p-values: 1.8 e-6, 0.377, and 0.735, respectively; 
Figure VI and Table III). To compare the clusters in terms of 
cognitive performance, we compared the distribution of 
MMSE scores and cognitive impairment diagnoses among the 
three clusters, both being different (p-values: 1.4 e-5 and 3.9 
e-6, respectively, Table III, Figure VII, VIII). 

IV. DISCUSSION 

In this study, we examined the distribution of demographic 
variables (age, gender, and education) in clusters formed using 
graphomotor and related features extracted from digital clock 
drawing in participants with different clinical diagnoses. 
Results show that while age and gender are not significantly 
different between the clusters, education, MMSE scores, and 
cognitive diagnoses were significantly different between the 
participants in these clusters. Results suggest education can be 
considered as an index of cognitive reserve and was 
significantly different between the three cohorts, with 
dementia patients having significantly fewer years of 
education compared to participants with PD and healthy 
controls. Our work had several limitations. The cohort of  

 Table I Features extracted from pen movement data. 

total completion time Average pressure 
Minute-hand 

length/hour-hand 
length 

time in air 
Standard deviation of 

pressure 
Pre-first-hand latency 

Time on paper Average velocity 
Post-clockface 

latency 

strokes per minute 
Standard deviation of 

velocity 
Anchoring 

total number of 
strokes 

Average 
velocity/average 

pressure 
Inter-digit latency 

pen-up length Clockface area 
Inter-digit interval 

count 

Pen-down length Minute-hand length 
At least one digit 

missing 

Pen-up length/pen-
down length 

Hour-hand length Any digit over 12 

Any repeated digit Average digit height Average digit width 

 

TABLE II DISTRIBUTION OF VARIABLES AMONG DIAGNOSIS GROUPS. 

Variable 
All 

(N=316)  

Control (N=166) 

Mean (SD) 

Dementia (N=70) 

Mean (SD) 

Parkinson’s disease (N=80) 

Mean (SD) 
p-value 

Age 67.9 (12.4) 64.9 (13.3) 73.9 (13.1) 68.8 (6.4) 2.4 e-7 

Gender, Female N (%) 159 (50.3) 91 (54.8) 39 (55.7) 29 (36.3) 0.014 

Education 15.4 (3.0) 15.9 (2.6) 12.8 (2.7) 16.6 (2.5) 3.7 e-16 

MMSE 27.4 (2.9) 28.6 (1.3) 23.3 (3.2) 28.5 (1.3) <2.2 e-16 

Figure I Example of Copy and Command clockfaces in the dCDT test. 

 
Figure II Program interface used in scoring the clocks. 
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Figure V Three clusters using K-means clustering algorithm 

 
patients diagnosed with Parkinson’s disease were all in early 
stages of the disease. As a result, the demographics and MMSE 
scores of the healthy control participants and Parkinson’s 
disease patients were not significantly different. Future work 
needs to examine the differentiation power of clustering 
algorithms with more general PD populations with varying 
levels of disease duration. Moreover, different cognitive 
phenotypes of Parkinson’s disease (i.e. cognitively well, low 
memory, and low executive function) as well as different 
subtypes of dementia need to be further examined for stratified 
clustering and analysis, since different cognitive domains 
might be affected differently in each subtype. Another 
limitation was that the variety in data collection settings might 
affect the pressure data captured by the pen, and needs to be 

further investigated. In our future work, we plan to apply our 
methodology to a larger cohort with more detailed cognitive 
diagnoses and neuropsychology performance variables to 
better understand how the dCDT may be used for cognitive 

Figure III UMAP representation of the data in two dimensions. 

Figure IV Optimal number of clusters using K-means 

clustering algorithm and average Silhouette. 

 
Figure VI Distribution of demographics -gender (A), age (B), and 

education (C) - among the detected clusters. 

 
Figure VIII Distribution of diagnosis among the clusters. 

 
Figure VII Distribution of MMSE scores across the clusters. 
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impairment screening. Additionally, we plan to investigate the 
enhancement of classification models by using multimodal 
models using clock images in addition to the pen movement 
time series data. 
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TABLE III DISTRIBUTION OF VARIABLES AMONG DETECTED CLUSTERS. 

Variable 
All 

(N=316)  

Cluster 1 (N=38) 

Mean (SD) 

Cluster 2 (N=106) 

Mean (SD) 

Cluster 3 (N=172) 

Mean (SD) 

p-

value 

Age 67.9 (12.4) 67.9 (14.5) 68.5 (14.1) 67.5 (10.7) 0.377 

Gender, Female N 
(%) 

159 (50.3) 18 (47.4) 51 (48.1) 90 (52.3) 0.735 

Education 15.4 (3.0) 14.0 (3.1) 14.6 (2.9) 16.1 (2.8) 1.8 e-6 

MMSE 27.4 (2.9) 25.6 (3.7) 27.0 (3.0) 28.1 (2.3) 1.4 e-5 

Diagnosis 

Control: 166 (52.5) 

Dementia: 70 (22.2) 

Parkinson’s disease: 80 
(25.3) 

Control: 12 (31.6) 

Dementia: 20 (52.6) 

Parkinson’s disease: 6 
(15.8) 

Control: 54 (50.9) 

Dementia: 28 (26.4) 

Parkinson’s disease: 24 
(22.6) 

Control: 100 (58.1) 

Dementia: 22 (12.8) 

Parkinson’s disease: 50 
(29.1) 

3.9 e-6 
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