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Patients and physicians make essential decisions regarding diagnostic and therapeutic interventions. These
actions should be performed or deferred under time constraints and uncertainty regarding patients’ di-
agnoses and predicted response to treatment. This may lead to cognitive and judgment errors. Rein-
forcement learning is a subfield of machine learning that identifies a sequence of actions to increase the
probability of achieving a predetermined goal. Reinforcement learning has the potential to assist in surgical
decision making by recommending actions at predefined intervals and its ability to utilize complex input
data, including text, image, and temporal data, in the decision-making process. The algorithm mimics a
human trial-and-error learning process to calculate optimum recommendation policies. The article pro-
vides insight regarding challenges in the development and application of reinforcement learning in the
medical field, with an emphasis on surgical decision making. The review focuses on challenges in
formulating reward function describing the ultimate goal and determination of patient states derived from
electronic health records, along with the lack of resources to simulate the potential benefits of suggested
actions in response to changing physiological states during and after surgery. Although clinical imple-
mentation would require secure, interoperable, livestreaming electronic health record data for use by
virtual model, development and validation of personalized reinforcement learning models in surgery can
contribute to improving care by helping patients and clinicians make better decisions.

© 2020 Elsevier Inc. All rights reserved.

Introduction

Patients and physicians make essential decisions regarding diag-
nostic and therapeutic interventions. These actions should be per-
formed or deferred under time constraints and uncertainty regarding
patients’ diagnoses and predicted response to treatment. This may
lead to cognitive and judgment errors. The uncertainty regarding
patients’ diagnoses and predicted response to treatment may lead to
cognitive and judgment errors. Reinforcement learning is a subfield of
machine learning that identifies a sequence of actions to increase the
probability of achieving a predetermined goal. Reinforcement
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learning has the potential to assist in surgical decision-making. The
trail-and-error learning approach recommends specific actions at
predefined intervals and its ability to utilize complex input data,
including text, image, and temporal data, in the decision-making
process.! This review seeks to describe the challenges in develop-
ment and application of reinforcement learning in health care, and in
surgery in particular (Fig 1), for the applications themselves have
previously been summarized by Yu et al,? Loftus et al,' and Liu.

Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning (ML)
that identifies a sequence of actions to increase the probability of
achieving a predetermined goal. It is a technique for developing
powerful solutions in a variety of health care domains, where diag-
nosing decisions or treatment regimens are usually characterized by a
sequential decision-making procedure.” A RL problem s solved through
a trial-and-error learning process, emulating human learning behavior.
A RL agent (part of algorithm suggesting actions) interacts with an
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Fig. 1. Reinforcement learning framework and challenges in development of reinforcement learning models.

environment (patient/surgical session observed from electronic health
records) to maximize the cumulative reward resulting from its actions.
Generally, RL problems are modeled and solved using a Markov deci-
sion process (MDP), guided by Bellman’s equation.* There are 4 com-
ponents: (1) a state that represents the environment at each time step;
(2) an action the agent takes at each time step that influences the next
state; (3) a transition probability that provides an estimate for reaching
different subsequent states, which reflects the environment in which an
agent interacts; and (4) a reward function, which is the observed
feedback given a state-action pair (Fig 1).

Applications of reinforcement learning in health care

In recent times, the reinforcement learning approach is being
studied in health care to produce optimum policies to suggest in-
terventions and recommend actions to omit human-level bias and
errors. It has the ability to mimic a human-like learning approach and
can use electronic health records to develop treatment policies,
intervention suggestion systems, and action recommendation sys-
tems, and it has the potential to improve care by helping clinicians
make better decisions. The robustness of recent RL algorithms help
the developed systems adapt to even sudden changes in patient
physical states. Yu et al’> discussed the broad applications of RL
techniques in health care domains. One of the main applications is in
dynamic treatment regimens, which provide sequential clinical
decision-making (eg, drug dosage, intervention time, or treatment
type) for individual patients with long-term care. Komorowski et al®
used 48 variables to describe patient state, including demographics,
comorbidities, vital signs, and laboratory values. They aggregated
data for each patient every 4 hours, clustered each description into
750 discrete, mutually exclusive groups to create a state space, and
applied a policy iteration RL algorithm to learn the optimal dosing
policy for intravenous fluid and vasopressors that will maximize the

90-day survival probability. Prasad et al® extracted records of patients
with ventilator support every 10 min and applied the RL-based fitted
Q-Iteration (FQI) method to optimize the mechanical ventilation
(MV) and sedation weaning time. Another major application is the
automation of medical diagnoses, where a diagnosis is formulated
through a sequential decision-making process. Ling et al’ proposed a
novel approach for clinical diagnosis inferencing that applied deep Q-
learning (DQN) to learn the optimal policy to obtain a final diagnosis
through iterative search through candidate diagnoses from an
external resource (Wikipedia and Mayo Clinic). Other applications
include health resource scheduling and allocation,® optimal process
control,” and drug discovery and development'® (Table I).

Knowledge Gaps
Challenges in reward formulation

As described in detail by Yu et al,” formulating the reward function
for reinforcement learning is one of the most challenging aspects of
applying such models in health care, especially for intraoperative ap-
plications. Reward functions are used to generate a reward score R,
for taking an action q; at state S; at a given timepoint t to transition to
state Sy, ;. Formulation of a reward function requires a comprehensive
understanding of both short- and long-term goals, as well as how the
states and environment are defined. Most RL algorithms are tested and
evaluated in the context of gaming or robotics, where such information
is readily available. However, in health care applications, the reward
functions must be generated by attributing numeric values that indi-
cate the degree of benefit or harm from state changes derived from
vital signs, clinical notes, clinical images, laboratory data, demographic,
and socioeconomic information.

For example, Komorowski et al° trained a fluid and vasopressor
dosing algorithm for sepsis in ICU patients solely on the basis of
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Summary of relevant studies addressing RL challenges in health care application

Authors Population Sample size Algorithms Study Objective Major Finding
Komorowski Septic patients 96,000 SARSA algorithm Reduce 90-day mortality by Developed system was able to propose
et al (2018)° in ICU suggesting appropriate IV fluid IV and vasopressor dosage for every 4-h
and vasopressor dose window utilizing clustered
physiological states
Prasad et al ICU patients 6,883 Deep Q Network Develop optimum weights to Produced a more optimal way of
(2017)° successfully discharged guide short-term reward generating short-term rewards weights
after stay function design to develop improved ICU action policy
Ling et al Not applicable Not applicable ~ Deep Q-network Infer the patient’s diagnoses Formulated the process of a differential
(2017)7 from the clinical narrative and diagnosis as a reinforcement learning
external knowledge problem and demonstrated the
effectiveness in determining the correct
diagnosis compared to various
nonreinforcement learning-based methods
Huang et al Not applicable Not applicable  Q-learning Optimize resource allocation in ~ Proposed approach that outperformed
(2011)8 the business some heuristic or hand-coded
strategies
Nguyen et al Not applicable Not applicable Deep Reinforcement Learn tensioning policies for Proposed tensioning policy
(2019)° Learning surgical soft tissue cutting tasks  outperformed the state-of-the-art
method with respect to both accuracy
and reliability
Popova et al Not applicable Not applicable ~ Deep Neural Network Design targeted chemical Formulated chemical library design as a
(2018)'° combined with Deep libraries of compounds with reinforcement learning problem and
Reinforcement Learning desired properties demonstrated the novelty and synthetic
accessibility of generated chemicals
Dai et al Outpatients Not mentioned Deep Neural Network Develop robust treatment Formulated a reward function as based
(2020)"! combined with Deep suggestion method using on the I,-norm distance between
Reinforcement Learning imaging information as states previous and current health conditions
(using image data)
Yu et al ICU patients 8,600 Supervised Actor Critic Develop optimum policy of Developed a system utilizing short-
(2020)'? algorithm controlling patient mechanical term goals to predict the necessity of

ventilation and sedative dosage
during ICU stays

mechanical ventilation and appropriate
sedative dose

ICU, intensive care unit; SARSA, state-action-reward-state-action.

minimizing the probability of 90-day mortality, ignoring any short-
term indicators of health such as blood pressure or volume status.
Although patient mortality increased as the actions of the physician
and agent became more disparate, it is unclear if reward functions
based exclusively on death are effective in such high mortality
environments. On average, the algorithm suggested higher doses of
vasopressors and IV fluids. Also, mortality was lowest when
physician and model recommendation matched.

Dai et al'! developed a more sophisticated approach to state
representation and reward policy formulation by creating a 9-
dimensional state representation using multiple deep neural net-
works and a reward function based on the squared distance between
h* and h, where h is the target health state and h* is the resulted state
from a simulation designed using deep neural networks. Although
this approach holds promise in creating more generalizable state
definitions and reward functions, the authors reported limited model
optimization, resulting in unreliable treatment suggestions.

Yu et al'? developed a supervised version of RL using an actor-critic
approach. The actor-critic approach uses an actor to suggest best action
(policy optimization), and a critic evaluates the action qualities
(computing quality of suggested action).”> Their aim was to train an
algorithm to recognize when MV is warranted in ICU patients and
recommend the optimal dose of propofol to keep the patient stably
sedated while on MV. They used 13 vital signs along with age and
weight to define the state and used only short-term changes in vital
sign stability as the basis for the reward function.

In an effort to better define best practices for short-term reward
function formulation in RL problems, Prasad et al® studied strate-
gies for deriving reward weights that were better tailored to a given
context. They reported a larger effective sample size (owing to their
approach, which requires less data to converge compared with
other techniques) after their optimized reward function approach
was applied; however, there is a lack of knowledge as to how

overall RL performance is improved through such tactics. Notably,
their approach was highly dependent on the level of “correctness”
of the physicians’ actions used in the training.

Challenges in patient state determination

The first step to build a reinforcement learning system in sur-
gery is to define the states, where each state is a complete
description of a patient’s physiological status. It is crucial to collect
and summarize the pertinent health information for each patient
state representation. This summarized information should be
organized or preprocessed into a concise and manageable form to
train the learning agent effectively and efficiently.

A majority of the current work leverages medical data that may
include static traits of patients (eg, demographics such as age, sex,
ethnicity, comorbidities), longitudinal measurements (eg, vital
signs, laboratory values, physiological, pathologic),> and/or medical
images'' This raw data is then transformed into a uniform high-
dimensional vector as the final state representation.” using pre-
defined discretization methods or trainable methods including but
not limited to linear models and deep neural networks. For
example, Komorowski et al’ consolidated thousands of combina-
tions of 48 variables into 750 discrete mutually exclusive states.

Muddling this process are the data quality, inconsistency, noise,
and missingness associated with electronic health records. Although
numerous methods have been proposed to solve these problems, It is
unclear how robust the current state formulation methods are to
such problems, given the effect underlying noise and bias has on the
formulation of patient states. Such an understanding is critical to
building a successful reinforcement learning system in the surgery.

More importantly, most of the current work uses a MDP to model
the patient states and trajectories. In current medical practice a
patient’s physiological state is approximated using readily



4 S. Datta et al. / Surgery xxx (2020) 1—4

measurable or observable properties such as blood pressure; how-
ever, the underlying physiology that dictates the value of these
properties is unobservable. Therefore, a partially observable MDP
(POMDP) approach may be superior because it can theoretically use
unobserved relationships in the determination of patient states.

Challenges in modeling physiological response to agent actions

The complexity of human physiology makes the training and
implementation of reinforcement learning algorithms for surgical
decision-making very difficult, with many unobservable variables
that often get ignored. The dynamic mechanisms in which the human
body responds to stimuli are still not completely understood, making
it difficult to model since such responses often have systematic
components that have varying effects on different parts of the body."*

Technology gaps

Current ML implementations in health care are based primarily on
a centralized model in which data is aggregated and stored in a
central environment, where it is then used for the training and
implementation of chosen ML algorithms. Despite massive in-
vestments in infrastructure, this approach is still far from delivering
true real-time execution due to bandwidth limitations in streaming
clinical data for simultaneous processing of hundreds or thousands of
patients. In addition to the technical costs and limitations, there are
privacy and security concerns due to the constant transmission and
aggregation of protected health information. An alternative approach,
which has been gaining significant traction due to its privacy first
focus, is on device ML. On device ML has many advantages including
reducing network congestion, reducing execution time, and better
protection of protected health information. On device ML has further
been strengthened through a technique known as federated learning,
first proposed by Google in 2016," that allows for on device ML al-
gorithms to share and aggregate knowledge without the sharing and
aggregation of the underlying data.

Future directions

Detailed study of reward function design is critical for properly
guiding the agent toward the desired outcome in a given environ-
ment. The algorithm mimics the human learning approach of trial
and error, an important feature for developing artificial decision-
making algorithms. The goal of this algorithm is to present
improvement in clinical decision-making processes. A fundamental
flaw in much of the work dedicated to addressing this issue is the
assumption of physicians being the gold standard to measure the
correctness of an agent’s actions. One approach to validate the “cor-
rectness” of a physician’s actions would be to randomly sample states
and the actions taken based on those states from a pool of patients
that a physician treated. The actions of the physician in these sce-
narios would then be compared against the actions proposed by a
panel of subject matter experts. Although this approach may be su-
perior in some respects to the reliance on a single physician for the
determination of the most “correct” action, it still fails to address
aspects of medicine that are still intangible to machines such as the
impression that a physician has of a patient and the art of medicine
itself. Patients are highly individual in both personality and physi-
ology eliminating the notion of a one-size-fits-all approach to clinical
decision-making, which necessitates a dynamic approach bespoke to
each patient.'® Given the complex, high-stakes, and often uncertain
nature of surgical decision-making, a collaborative approach to de-
cision making is often warranted where the all stakeholders (physi-
cians, other health care team members, patients, and patients’
families) can collectively design a plan that improves patient

satisfaction and may reduce the costs associated with undesired
treatments.'® Future implementations of reinforcement learning in
surgical settings should incorporate dynamic reward functions to
accept input from both the patient and all members of a perioperative
care team. Such collaborative reward functions can balance the risk
aversion of individual patients and surgeons with the expected
benefits and postoperative care trajectories highlighted by other
team members. By giving the patient increased control over their own
algorithm-influenced clinical care, collaborative and dynamic reward
functions have the potential to increase overall patient satisfaction.
Appropriate use of reinforcement learning in health care and in sur-
gery may improve care by helping patients and clinicians to make
better decisions and have better outcomes.
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