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Abstract
Background: Older adults who experience pain are more likely to reduce their community and life-space mobility (ie, the usualrange of places in an environment in which a person engages). However, there is significant day-to-day variability in painexperiences that offer unique insights into the consequences on life-space mobility, which are not well understood. This variabilityis complex and cannot be captured with traditional recall-based pain surveys. As a solution, ecological momentary assessmentsrecord repeated pain experiences throughout the day in the natural environment.
Objective: The aim of this study was to examine the temporal association between ecological momentary assessments of painand GPS metrics in older adults with symptomatic knee osteoarthritis by using a smartwatch platform called Real-time OnlineAssessment and Mobility Monitor.
Methods: Participants (n=19, mean 73.1 years, SD 4.8; female: 13/19, 68%; male: 6/19, 32%) wore a smartwatch for a meanperiod of 13.16 days (SD 2.94). Participants were prompted in their natural environment about their pain intensity (range 0-10)at random time windows in the morning, afternoon, and evening. GPS coordinates were collected at 15-minute intervals andaggregated each day into excursion, ellipsoid, clustering, and trip frequency features. Pain intensity ratings were averaged acrosstime windows for each day. A random effects model was used to investigate the within and between-person effects.
Results: The daily mean pain intensities reported by participants ranged between 0 and 8 with 40% reporting intensities ≥2.The within-person associations between pain intensity and GPS features were more likely to be statistically significant than thoseobserved between persons. Within-person pain intensity was significantly associated with excursion size, and others (excursionspan, total distance, and ellipse major axis) showed a statistical trend (excursion span: P=.08; total distance: P=.07; ellipse majoraxis: P=.07). Each point increase in the mean pain intensity was associated with a 3.06 km decrease in excursion size, 2.89 km
decrease in excursion span, 5.71 km decrease total distance travelled per day, 31.4 km2 decrease in ellipse area, 0.47 km decreaseellipse minor axis, and 3.64 km decrease in ellipse major axis. While not statistically significant, the point estimates for number
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of clusters (P=.73), frequency of trips (P=.81), and homestay (P=.15) were positively associated with pain intensity, and entropy(P=.99) was negatively associated with pain intensity.
Conclusions: In this demonstration study, higher intensity knee pain in older adults was associated with lower life-space mobility.Results demonstrate that a custom-designed smartwatch platform is effective at simultaneously collecting rich information aboutecological pain and life-space mobility. Such smart tools are expected to be important for remote health interventions that harnessthe variability in pain symptoms while understanding their impact on life-space mobility.
(JMIR Mhealth Uhealth 2021;9(1):e19609) doi: 10.2196/19609
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Introduction
The world population of adults aged 65 years or older is rapidlygrowing [1]. This phenomenon, unprecedented in history,highlights a need to maintain and promote programs that managechronic diseases and symptoms causing increased risk of lossof mobility and disability. The National Center for HealthStatistics [2] reports that, of adults 65-75 years old, 30% and14.3% have physical impairments and difficulty walking onequarter-mile (approximately 400 m), respectively. Rates arehigher in those older than 75 years—48.6% have physicalimpairments, and 27.7% have difficulty walking onequarter-mile (approximately 400 m). These impairments havea significant negative impact on life-space mobility—the dailyactivities and geographical area in which people engage. As aresult, many older adults anchor to their houses [3].Osteoarthritis is the most common age-related joint disease inthe United States, affecting over 30 million US adults [4]. Painassociated with osteoarthritis is accompanied by a reduction indaily functioning, limitations in walking, and increased risk ofovert disability. Pain experiences have within- andbetween-person variability due to physiological, medical,behavioral, and environmental differences [5]. This variabilityis complex and cannot be captured with traditional recall-basedpain surveys. As a solution, ecological momentary assessments(EMA) record repeated pain experiences throughout the day ina person's natural environment. It minimizes retrospective [6,7]and recent-experience bias [8,9]. However, there are drawbacksas the EMA tools that utilize paper surveys or dedicated digitalboxes tend to be intrusive, cannot be easily customized, and arenot wearable. In prior work [10], microinteraction EMAs—inwhich people are prompted with questions, similar to those ofROAMM, that can be understood at a glance and answered ina few seconds—were developed on smart watches and comparedto less frequent EMA prompts on smartphones; researchersfound that although prompts on the watch were 8 times morefrequent than those on the phone, participants adhered 35%more to microinteraction EMAs on the watch. Participants alsoresponded to EMAs in less time and reported the EMAs to beless distracting on the watch than those on the phone [11].Therefore, EMAs on a smartwatch might serve as an excellentapproach for enhancing adherence.
Mobility within the perspective of life-space can be describedas the habitual movement of individuals [12-14]. Life-spacemobility includes spatial size and frequency of interaction withthe surrounding environment. The construct is influenced by

physical function and spatial extent of movement, but also thecognitive, psychological, social, and environmental dispositionof an individual. Life-space mobility has been measured usingvarious methods [12,13,15,16]. Life-Space Diary, introducedby May et al [13] in 1985, was the first measure. It askedparticipants to report daily their zone out of 5 predefinedconcentric zones, referenced to their bedrooms. Similarly,Life-Space Questionnaire, introduced by Stalvey et al [14] in1999, consisted of 9 yes or no questions asking whether aparticipant was in a certain region within their environment inthe last 3 days. Life-Space Assessment, introduced by Baker etal [12] in 2003, added another perspective by documenting howfar and how often an individual travels to predefined regionswithin their environment, while also considering any assistanceneeded during mobility. However, there remain issues withlife-space mobility assessment—paper-based and recall ofinformation are an added burden on participants and introducemore challenges related to adherence and recall bias.
The use of personal devices such as smartphones andsmartwatches is growing rapidly in both young and older adultpopulation groups. According to the International DataCorporation Worldwide Quarterly Wearable Device Tracker,smartwatches accounted for 44.2% of the wearable market in2018; this is expected to rise to 47.1% by 2023 [17]. Thewidespread use of wearables and their high computational andsensory capabilities provide a platform to reach and interactwith a large share of population, particularly individuals withmedical conditions. This is highly significant due to the abilityto monitor individuals continuously and intervene wheneverand wherever medical conditions occur [18]. It also opens newopportunities to link complex states in a temporal manner.
In this demonstration study, we used a custom-designedsmartwatch platform called Real-time Online Assessment andMobility Monitor (ROAMM) that synchronizes EMA of painexperiences with GPS data to examine their temporalassociations in older adults with symptomatic knee osteoarthritis.We hypothesized that higher pain experiences would beassociated with lower life-space mobility features.
Methods
Study Population
This study was approved by the University of Floridainstitutional review board (UFIRB 201601858), and writteninformed consent was obtained from all participants. Weenrolled 19 older adults. Inclusion criteria were age ≥65 years
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and diagnosis of unilateral or bilateral symptomatic kneeosteoarthritis. Exclusion criteria were failure or inability toprovide informed consent; diagnosis of dementia; and beingunable to communicate because of severe hearing loss or speechdisorder. A convenience sample was drawn from a population

of older adults with knee osteoarthritis. Two participants werenot interested in participating after being informed about thestudy. Each participant received compensation of a US $50 giftcard. Table 1 shows the descriptive characteristics ofparticipants.
Table 1. Participants’ descriptive characteristics.

Value (n=19)Characteristics
73.1 (4.8)Age (years), mean (SD)

Gender, n (%)
6 (32)Male
13 (68)Female
28.23 (4)BMI (kg/m2), mean (SD)

Ethnicity, n (%)
15 (79)White
3 (16)African American
1 (5)Asian

Education, n (%)
10 (53)Graduate
6 (32)College
2 (10)High school
1 (5)Declined to respond

Live alone, n (%)
4 (21)Yes
15 (79)No

Housing, n (%)
16 (84)Single Family Home
1 (5)Other
2 (11)Other (mobile home, boat)

Ecological Momentary Assessment of Pain UsingROAMM
ROAMM was developed at the University of Florida to enablereal-time capture of patient-generated information—wearablesensor data collected simultaneously with symptom EMAs. Forthis study, EMA of pain was evaluated using the 11-point BoxScale (0=no pain, 1-2=mild pain, 3-5=moderate pain, 6=severepain, 7-9=very severe pain, 10=worst possible pain), a validand reliable numerical rating scale [19,20]. Participants wereinstructed about the anchors.

Participants were prompted about their pain intensity at randomtimes in the morning (8 AM to noon), afternoon (noon to 4 PM),and evening (4 PM to 8 PM). The smartwatch application alsocaptures GPS coordinates (latitude and longitude) every 15minutes throughout the day. Data were transferred every 15seconds and stored securely in a remote server. The applicationinterface was developed after holding a focus group as explainedby Manini and colleagues [21]. ROAMM architecture isexplained in detail in our published papers [22,23] (Figure 1).shows ROAMM app for answering a pain prompt on asmartwatch (Samsung Gear 3, Samsung Group).
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Figure 1. ROAMM app on Samsung Gear 3. Participants rotate the bezel on the watch to select the intensity on a scale from 0 to 10 and the colorchanges accordingly.

GPS Data Collection and Feature Extraction
In this demonstration study, there were some technicaldifficulties during the initial phase of data collection. Thesedifficulties included weak GPS signal coverages in some placesand data transmission problems. The watch required manualchecks on mobile networks, roaming, and location services.These issues were discovered and solved during the datacollection process. However, data quality checks during theanalysis revelated that insufficient GPS data for 9 out of 28participants. Participants with missing data were similar age(mean 73.3, SD 6.1 years old) and female proportion (7/9,77.8%) compared to the 19 participants in our paper. Thus, webelieve the missing data were randomly lost and did not causea selection bias.
GPS, the global positioning system, is a navigation utility thatfurnishes the position of a receiver by measuring its distancefrom a number of satellites. GPS has been used in the healthcare domain in behavior [24,25] and gerontological research[26].

Excursion features included excursion size, excursion span, andtotal distance. Excursion size is the farthest distance anindividual travels from home within a specific time window.Excursion span is the farthest distance between all locationsaway from home. These features provide an individual’s travelpattern that can be generally described as (1) compact and awayfrom home; (2) sparse and away from home; (3) compact andclose to home; and (4) sparse and close to home (Figure 2).Total distance provides overall view of mobility by summingbetween all the location points.
Ellipsoid features used a spanning ellipsoid (or ellipsoid hull),which is defined as the minimum area that encompasses allpoints in 2 dimensions. We used this method to draw an ellipsesuch that all GPS coordinates lie inside or on the boundary ofthe ellipse. We aggregated 3 features from the ellipse: (1) ellipseminor axis, which is the shortest diameter passing through thecenter of the ellipse; (2) ellipse major axis, which is the longestdiameter passing through the center of the ellipse, and (3) areaof the ellipse (Figure 3).

Figure 2. Illustration of possible travel patterns using excursion size and span features. The solid line represents excursion size, and the dashed linerepresents excursion span.
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Figure 3. An illustration of the ellipse encompassing all the GPS coordinates for a participant during a 1-day time frame. The dashed line passingthrough the center represents the ellipse minor axis, and the solid line passing through the center represents the ellipse major axis.

Clustering features provided information on where individualsspend most of their time. This is essential to understand thevariability in locations. We used a distance-based clusteringmechanism, where nearby locations are clustered together. Eachcluster has a centroid, and the distance from the centroiddetermines the membership of a coordinate in that cluster. Weused an adaptive k-mean algorithm to cluster locations, whichdoes not require a predefined number of clusters that theconventional k-mean algorithm requires. Before providing GPScoordinates to the adaptive k-mean clustering algorithm, weclassified them into stationary and moving coordinates bycalculating the time derivative at each location. When the timederivative was <1 km/h), the GPS coordinate was consideredstationary. Only stationary points were considered as input tothe clustering algorithm. We ran a simulation to find the optimalnumber of clusters, with a threshold of 500 m from the cluster’scentroid as an inclusion criterion for each cluster. We startedwith one cluster and gradually increased the number of clustersuntil all GPS coordinates were assigned to a specific cluster.

After clustering all points, we aggregated 2 relevant features:number of clusters and entropy. The number of clusters is simplya count of the generated clusters. The entropy providesinformation on the distribution of time in different clusters.Entropy measures the degree of disorder or the level ofuncertainty in the information theory. In our analysis, entropywas used to measure the level of uncertainty in the time spentin different clusters. Entropy is calculated using the followingformula:

where pi is the percentage of time a participant spends at clusteri, and pi is between (0,1].
A low entropy value means a lower level of uncertainty andthat the participant spent most of the time at one location, whichis an indication of lower life-space mobility (Figure 4).
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Figure 4. Illustration of clustering for a participant’s coordinates within a 1-day time frame. A total of 4 clusters are shown on the map, where eachcluster contains a collection of GPS coordinates.

Frequency of trips and homestay percentage providedinformation about the number of trips away from home andtime spent at home, respectively. First, we classified the GPScoordinates as home or away from home, then calculated the 2features accordingly. Homestay is represented as a fractionbetween 0 and 1. It is the ratio of the number of GPS coordinateswithin the home radius (ie, 100 m) to the total number ofcoordinates. Homestay is considered 0 (or 0% when all the GPScoordinates are outside home in a given time period of interest,and 1 (or 100%) when all the GPS coordinates are within thehome radius. A trip is calculated when a sequence of GPScoordinates—home, away from home, home—occurschronologically. The number of trips occurring within a specifictime window are summed to yield the frequency of trips.
Statistical Analysis
We evaluated the relationship between EMA of pain (predictor)and the measures of life-space mobility using GPS features(outcomes). Pain intensity ratings were averaged acrossday-windows. This was done to better connect to the day-basedfrequency of measurement for the GPS features. In addition tothat, we graphically expressed pain intensities into 2 groups:low pain (<2) and high pain (≥2), but statistical comparison wasnot performed.
A 2-level random effects model (participant and day) was usedto account for repeated measurements. The model was fit afterdisaggregating the within and between-persons effects. Parcelingthese effects allows a more in-depth understanding about the

association between GPS features and EMA pain. The approachused person-mean centering around the grand mean(between-person effect) and the within person effect (eachperson-specific mean for the time varying covariate) [27-29].We used the xtcenter command (Stata/MP; version 16.0 forWindows; StataCorp LLC) and entered terms for within-personand between-person effects into the model. The model was alsoadjusted for age, living alone, and gender covariates as fixedeffects. An independent-covariance structure, which wasconfirmed as the most efficient without loss of model fit usingthe Akaike information criterion, was used in all models. Allanalyses were conducted using Stata/MP. Statistical significancewas confirmed at the P≤.05 level. Because this study is ademonstration project, P≤.10 was considered as a trend effect.
Results
Participants wore the smartwatch for a mean of 13.16 (SD 2.94)days and responded to a mean of 82% of pain prompts. Figure5 shows the distribution of reported pain intensities by allparticipants. A pain intensity rating of 0 was the most commonintensity and the highest was 8. The mean pain intensity for thelow pain group was 0.26 (SD 0.44) and for the high pain groupwas 2.78 (SD 0.93). Descriptive characteristics of the life-spacemobility features are listed in Table 2. Multimedia Appendix 1shows that some GPS features were intercorrelated—there werestrong correlations between excursion features and ellipsoidfeatures and weak correlations between the remaining features.
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Figure 5. Histogram showing pain distribution.

Table 2. Descriptive characteristics of life-space mobility features.
KurtosisMedianSDMeanFeatures
17.8718.9918.9711.35Excursion size (km)
15.344.7219.7311.33Excursion span (km)
10.438.6738.2123.14Total distance (km)
42.398.00342.11104.89Ellipse area (km2)
5.871.494.653.41Ellipse minor axis (km)
16.757.3423.4214.59Ellipse major axis (km)
8.4624.202.88Frequency of trips
–0.310.740.310.66Homestay percentage
0.8621.082.02Number of clusters
0.050.200.340.30Entropy

The median and mean of the daily GPS features of the low paingroup were generally higher than those of the high pain groupfor excursion features (Figure 6) and ellipsoid features (Figure7). The results of the mixed-effect model are shown in Table3. There were no between-person effects of pain intensity onGPS features (Figure 8 and Figure 9), but within-personsassociation were predominant. The majority of GPS features (7

out of 10) indicated that having high pain was associated witha lower value (ie, life-space mobility). Among these GPSfeatures, within-person pain intensity was significantlyassociated with excursion size, and others (excursion span, totaldistance, and ellipse major axis) showed a statistical trend(P<.10).
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Figure 6. Distance features including excursion size, excursion span, and total distance for each pain group.

Figure 7. Ellipse minor axis, ellipse major axis, and ellipse area for each pain group.
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Table 3. Mixed effect association between pain and GPS features adjusted for age, living alone, and gender covariates.
95% CIP>|z|SECoefficientGPS features and mixed-model effectsa

Excursion size
–12.65, 5.06.404.52–3.79Between
–6.16, 0.04.051.58–3.06Within

Excursion span
–12.41, 6.05.504.71–3.18Between
–6.11, 0.35.081.65–2.89Within

Total distance
–29.94, 5.95.199.16–11.92Between
–11.93, 0.51.073.17–5.71Within

Ellipse area
–228.07, 111.62.5086.66–58.23Between
–85.65, 22.81.2627.67–31.42Within

Ellipse minor axis
–3.43, 0.82.231.08–1.31Between
–1.21, 0.28.220.38–0.47Within

Ellipse major axis
–15.78, 6.06.385.57–4.86Between
–7.50, 0.22.071.97–3.64Within

Frequency of trips
–0.47, 1.49.310.500.51Between
–0.38, 0.49.810.220.05Within

Homestay percentage
–0.08, 0.08.940.04–0.003Between
–0.01, 0.06.150.020.03Within

Number of clusters
–0.35, 0.58.630.240.11Between
–0.14, 0.19.730.080.03Within

Entropy
–0.18, 0.10.530.07–0.04Between
–0.05, 0.05.990.03–0.0003Within

aValues represent the within- and between-person effect.
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Figure 8. Clustering features including number of clusters and entropy for each pain group.

Figure 9. Frequency of trips and homestay percentages for each pain group.

Discussion
This study used a customized smartwatch app for EMA of painand life-space mobility as a demonstration project. Previously,these constructs have not been coupled into a single platformthat permits synchronizing of symptoms with objective measuresof mobility in the natural environment. The results suggest thatEMA of pain is negatively associated with most but not alllife-space mobility features. Importantly, within-person effects,but not between-person effects, were more likely to bestatistically significant. In general, older adults with confirmedknee osteoarthritis had lower life-space mobility, when painintensity exceeded 2 out of 10. The results confirm the feasibilityand analytic procedures for using smartwatch technology toharnesses sensor data alongside EMA of clinically relevantsymptoms.
Chronic pain, such as pain from symptomatic knee osteoarthritis,is dynamic [30]. The variability of pain within and betweendays makes it hard to fully capture pain experience [5]. Therehas been long-standing interest in understanding daily pain[5,31]. Earlier endeavors relied on patient recall of pain, whichis susceptible to recall bias and lack of ecological validity ofthe assessment [32]. EMA is an alternative tool to allow

researchers to capture and assess a person's pain multiple timesin the person's natural environments. Electronic handhelddevices have provided additional features to EMA research viatheir ability to capture moment-by-moment data generated bytheir built-in sensors, allowing an in-depth understanding of theimpact that pain experiences have on mobility patterns (eg,life-space mobility). Studies [33-36] have used handheld devices(eg, smartphones and iPod) for EMA of pain; however, the useof these devices was limited to electronically record participants’diaries without utilizing the built-in sensors, and no studies haveused smartwatches for data collection.
In our study, 10 semantically meaningful features were extractedfrom the GPS coordinates according to previous work [24-26]and redefined as life-space mobility metrics. We chose toseparate within- and between-person effects to study theassociations of pain intensity ratings on GPS features. This wasdone because typical coefficients from random effects modelsrepresent a blend of both [37]. The within-person associationsdemonstrate that pain and life-space mobility relate to eachother on an individual level. This is important because previousresearch demonstrates that life-space mobility is lower in peoplereporting higher levels of pain [37]. The within-personassociations found in this study not only support the previous
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between-person findings, they also support the notion thatpain-related interventions are likely to have an impact on anindividuals’ life-space mobility. Specifically, excursion featureswere negatively associated with pain intensity. Among thesefeatures, within-person pain intensity was significantlyassociated with excursion size, and showed a statistical trend(P<.10) with excursion span and total distance. Each pointincrease in the mean pain intensity was associated with a 3.06km decrease in excursion size, 2.89 km decrease in excursionspan, and 5.71 km decrease in total distance. This suggestsoverall travel patterns are closer to home and more compactwhen older adults are experiencing a higher mean pain intensity.
The spanning ellipsoid, which summarizes the GPS coordinatorsinto 2 dimensions, was negatively associated with within-painintensity. The ellipsoid features represent a close approximationof the life-space concept (ie, reaching circular levels away fromhome). Ellipse major axis, which indicates the maximumdistance across life-space, was significantly associated withpain intensity. Each point increase in the mean pain intensity
was associated with 31.4 km2 decrease in ellipse area, 0.47 kmdecrease in ellipse minor axis, and 3.64 km decrease ellipsemajor axis. Notably, the ellipse tends to have a smaller area,length, and width with higher pain intensity, which is similarto our observation about excursion features. Point estimatessuggest that higher intensities of pain may constrain individualsto their home and limit the number of places they can visit.
Location clustering provides information about the distributionof places individuals spend outside of their homes. The numberof clusters and entropy both contribute to understanding thevariability of places visited by participants. While notstatistically significant, the directionality of the coefficientsindicated that higher pain intensities were associated with ahigher number of places an individual stays at (stationaryplaces). In other words, higher pain appears to be associatedwith spending more time at a lower number of locations, butthis needs to be confirmed in larger samples.
The directionality of the point estimates demonstrated that thefrequency of trips was higher when pain intensity was high.Although this may seem counterintuitive, coupled with the otherresults, it appears that these frequent trips were close to home.Similarly, point estimates for homestay percentage werepositively associated with pain intensity. Given the weakassociations of these features, trip frequency and homestaypercentage may not be useful features for understanding theimpact of pain on life-space mobility.
The association between pain and life-space mobility has notbeen widely studied, and more research is needed in this regard[38,39]. Despite the lack of relevant research, our results agreewith those of Rantakokko et al [38] and Liddle et al [40], wherelife-space mobility was found to be negatively associated withpain. Rantakokko et al [38] examined the association betweenlife-space mobility and multiple outcomes, including pain, inpatients with Parkinson disease. They followed a paper-based

questionnaire and assessed life-space mobility using life-spaceassessment. They found that life-space mobility is negativelyassociated with pain [38]. Similarly, Liddle et al [40] examinedlife-space mobility among patients with Parkinson disease usingGPS on smartphones. They found that people with moresymptoms spend more time at home and travel shorter distances.
Other studies have found strong associations between life-spacemobility and depression [25], visual impairment [41], andpersonal and social characteristics [42,43] using GPS. Amongthese studies, only Cornwell et al [42] used smartphones forGPS tracking and EMA collection to examine the socialenvironments relevant to older adults’ everyday lives, wherethey found that certain activities such as exercising, shopping,socializing, and social activities were likely to take place outsideof residential tracts. These studies [25,41-43] show the importantrole GPS features play, when coupled with other outcomes, inunderstanding individuals’ behavior and their experience innatural environment and the importance of wearables in linkingcomplex states in a temporal manner.
This demonstration study provided insights on the potentialrelationship between life-space mobility and pain in older adultswith symptomatic knee osteoarthritis by utilizing smartwatches.Our results demonstrate that a custom-designed smartwatchplatform was effective at simultaneously collecting richinformation about ecological pain and life-space mobility.ROAMM could potentially help clinicians in assessing pain orother patient-reported outcomes in patients’ naturalenvironments, while continuously collecting relevant sensorydata. Though our results point to interesting insights inunderstanding the relationship between life-space mobility andEMA of pain, our study had limitations. The sample size wasnot large enough to generalize and infer causality betweenlife-space mobility and pain. Additionally, the overall painreported by participants was low, with the majority reporting apain intensity less than 4. In the future, we aim to recruit a largersample size with more diversity in terms of pain intensity.
The major goal of this study was to demonstrate that asmartwatch platform—ROAMM—could be used to collectEMA of pain with concurrent mobility tracking via GPS forlife-space mobility assessment in older adults with symptomaticknee osteoarthritis. Point estimates from other life-spacemobility features confirm that the directionality of associationsis plausible and provides initial evidence for their utility infuture studies. In general, it appears that higher intensities ofpain intensity tend to limit their life-space mobility by eitherconstraining them to their residence or limiting their excursionlengths. This area of research is still in its infancy, but with appssimilar to ROAMM, the demand for these tools is expected toincrease remote health endeavors that are gaining significantmomentum in health care. Such connected technologies havea potentially important role giving practitioners informationabout their patients' behaviors, symptoms, and health conditionsequalae in their patients' natural environments.
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