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Changes in streamflow drought spatial extent 2

Abstract. Widespread streamflow droughts can pose substantially greater societal
challenges than spatially less extensive events because of the complex realities of
trans-regional water management. In a warming climate, drought spatial extent
may change along with changes in underlying hydro-meteorological contributors.
Here, we assess changes in streamflow drought spatial extent over the period 1981—
2018 across the conterminous United States, and how the importance of potential
hydro-meteorological contributors has changed over time. We first derive a monthly
time series of drought spatial extent and look at trends in streamflow drought
spatial extent. We then determine the spatial percentage 'overlap’ of precipitation
droughts, temperature anomalies, snow-water-equivalent deficits, and soil moisture
deficits with the area under streamflow drought to look at the changing influence of
these contributors on spatial extent. Our results show that (1) the spatial extent of
droughts has increased, mainly because of increases in the extent of small droughts;
(2) streamflow drought extents overall substantially overlap with soil moisture deficits
and the relationship of drought to precipitation and temperature anomalies vary
seasonally; and (3) the importance of temperature as a contributor to drought extent
has increased over time. We therefore conclude that continued global warming
may further increase drought extents, requiring adaptation of regional drought
management strategies.

Keywords: drought, spatial extent, drivers, climate change, United States, snow-water-
equivalent, precipitation, extremes, soil moisture

1. Introduction

Droughts often affect larger geographic regions than do most other types of hydro-
meteorological extremes, and subsequently can have potentially severe impacts on
water supply, agriculture, hydropower production, and ecosystems (e.g. Seager et al.,
2009). Over the last two decades, several notable widespread drought events have
occurred in the United States (US) — including the California (2012-2016; Diffenbaugh
et al., 2015; Luo et al., 2017), Colorado River basin (2000-2014; Udall and Overpeck,
2017) and Missouri River basin droughts (2000-2010; Martin et al., 2020; Woodhouse
and Wise, 2020). While not all of these events were historically unprecedented from a
precipitation perspective (Andreadis et al., 2005; Woodhouse et al., 2009; Hanel et al.,
2018; Williams et al., 2020a), their co-occurrence with anomalously warm and, in some
cases, record-breaking temperatures (Weiss et al., 2009; Luo et al., 2017; Udall and
Overpeck, 2017; Hanel et al., 2018; Martin et al., 2020; Woodhouse and Wise, 2020)
produced impacts that were indeed extraordinary in a historical context (Diffenbaugh
et al., 2015; Martin et al., 2020).

Drought events with large spatial extents particularly challenge existing water
management strategies because they can make drought-alleviating, regional water
transfers from upstream or adjacent basins impossible (Patterson et al., 2013).
Subsequently, the societal impacts of large-scale droughts can be amplified, since many
drought mitigation strategies are predicated on some degree of water availability in
less severely affected adjacent regions. The importance of spatial extent as a drought
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Changes in streamflow drought spatial extent 3

characteristic has previously been acknowledged in frequency analysis through regional
drought indices (Rossi et al., 1992), severity-area-frequency curves, (Henriques and
Santos, 1999; Hisdal and Tallaksen, 2003), severity-area-duration curves (Andreadis
et al., 2005; Sheffield et al., 2009), and stochastic models for spatial drought events
(max-stable models; Oesting and Stein, 2018) but mostly in a time-stationary setting.
Recently, however, changes in drought spatial extents have begun to receive greater
attention. Newer studies have shown that drought extents have changed in the
past and might further change in the future for a range of drought definitions,
including meteorological (Ganguli and Ganguly, 2016; Sharma and Mujumdar, 2017),
soil moisture (Sheffield and Wood, 2008; Lu et al., 2019), ecological (Crockett and
Leroy Westerling, 2018), and hydrological (Rudd et al., 2019) — all of which may affect
the societal and environmental risks associated with drought.

Changes in drought spatial extent may plausibly result from changes in underlying
hydro-meteorological contributors, including precipitation and temperature. In
addition to precipitation deficits, temperature is increasingly being recognized as an
important contributor to soil moisture (Weiss et al., 2009; Diffenbaugh et al., 2015; Hari
et al., 2020; Williams et al., 2020a) and streamflow drought severity (Woodhouse et al.,
2016; Udall and Overpeck, 2017) because temperature directly influences snow water
accumulation, snowmelt seasonality (Luo et al., 2017; Mote et al., 2018; Martin et al.,
2020; Williams et al., 2020b), and evaporative demand (Dai et al., 2018). However, it
remains largely unknown how these potential contributors besides drought magnitude
also influence streamflow drought spatial extent.

The aim of this study is to better understand recent changes in streamflow drought
spatial extent and their linkage to changes in hydro-meteorological contributors to
drought. We ask (1) how streamflow drought spatial extent has changed over time, (2)
which physical contributors govern drought spatial extent, (3) and whether /how the
importance of these contributors has changed over time. Improving our understanding
of how hydro-meteorological contributors influence streamflow drought extent and
whether this influence changes over time is crucial in understanding potential future
changes in drought spatial extents and assessing the overall risks associated with
widespread drought events.

2. Methods

We analyze temporal changes in streamflow drought extents and their contributors
over the period 1981-2018 using a dataset of 671 catchments with nearly natural flow
conditions in the conterminous US (CONUS; Catchments Attributes and Meteorology
for Large-sample Studies CAMELS; Newman et al., 2015; Addor et al., 2017) with
a wide range of streamflow characteristics and regimes (Brunner et al., 2020). It
would be desirable to work with a dataset extending further back in time, which
would, however, come at the expense of spatial coverage. We first extract streamflow
droughts at individual sites using a variable threshold-level approach suitable for
regions with a seasonal streamflow regime (Van Loon and Laaha, 2015) (Figure 1A).
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Changes in streamflow drought spatial extent 4

Second, we determine drought spatial extent at a monthly scale as the percentage of
catchments affected by drought during a certain month (Figure 1B). Based on this
drought spatial extent time series, we consider trends in drought spatial extent over
time and define spatially large drought events as events affecting at least 20% of the
catchments in the dataset. Third, we determine the spatial percentage 'overlap’ of
precipitation (P) droughts, temperature (T) anomalies, snow-water-equivalent (SWE)
deficits, and soil moisture deficits (SM) with the area under streamflow drought
for each month to explain important hydro-meteorological contributors to drought
spatial extent (Figure 1C). In order to avoid confusing impacts of changes in hydro-
meteorological contributors to drought extent with impacts of management changes, we
focus the analysis on catchments with nearly natural flow conditions. The overlap time
series for the four hydro-meteorological variables are finally used in a trend analysis to
determine changes in the importance of different variables as contributors on drought
spatial extent.

A Streamflow droughts B Spatial drought extent C Contributor overlap
individual sites
a) Raw time series a) Determine montly spatial drought extent a) Compute contributor anomalies

04

Mol 5 [

b) Smooth time series Temperature anomalies
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Figure 1. Illustration of working steps. (A) Identify streamflow droughts at
individual sites using a threshold level approach by b) smoothing the a) raw time
series, ¢) computing a variables threshold, and d) identifying below threshold events;
(B) Compute drought spatial extent at a) a monthly resolution, and b) identify large
spatial events with an extent > 20%; (C) Compute overlap of potential contributors
with drought spatial extent by a) computing precipitation, SWE, and soil moisture
deficits, and temperature anomalies and by b) determining the percentage of stations
affected by streamflow drought also affected by contributor deficits/anomalies.

2.1. Data

The daily streamflow time series were downloaded for the period 1981-2018
from the USGS website (https://waterdata.usgs.gov/nwis) using the R-package
dataRetrieval (De Cicco et al., 2018). Areal precipitation (mm) and mean daily
temperature (°C) for the same period were computed using the Daymet dataset which
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provides gridded, observation-based estimates of daily precipitation and temperature
at a 1-km spatial resolution (Thornton et al., 2012). Snow-water-equivalents
(SWE; mm) and soil moisture values (mm) for the period 1981-2014 were derived
from a modeled data set by Newman et al. (2015) who used calibrated lumped
implementations of the Snow—17 snow accumulation and ablation model and the
Sacramento Soil Moisture Accounting model (SacSMA; Burnash et al., 1973) to derive
a consistent set of hydro-meteorological variables.

2.2. Droughts at individual sites

Streamflow droughts at individual sites are extracted using a variable threshold-level
approach suitable for regions with a seasonal streamflow regime (Van Loon and Laaha,
2015; Heudorfer and Stahl, 2017) at the 15th flow percentile (Figure 1A). The use of
a variable instead of a fixed threshold leads to the identification of droughts defined
as streamflow anomalies rather than low flows. Please note that such anomalies can
also be detected in winter when streamflow anomalies may not have direct societal
impacts. The daily time series is smoothed over a moving window of 30 days prior to
event extraction to avoid identifying dependent events (Tallaksen and Hisdal, 1997;
Van Loon and Laaha, 2015). The variable threshold is composed by the 15th flow
percentile for each day of the year determined within a moving window of £ 15 days
around the day of interest. We only include events with a minimum duration of 30
days to avoid the consideration of minor droughts. The drought extraction procedure
results in a first quartile of 18, a median of 20, and a third quartile of 23 events
identified per catchment. These events are spread across seasons as a result of using a
variable threshold, which depends on flow seasonality.

2.3. Drought spatial extent

Drought spatial extent is determined at a monthly scale as the percentage of
catchments affected by drought during a certain month (Figure 1B). Alternatively,
spatial extent could be defined by area-weighting the affected catchments, which does,
however, not change the main conclusions of this study. Based on this drought spatial
extent time series, we define spatially large drought events as events affecting at least
20% of the catchments in the dataset. However, the drought-affected area does not
necessarily need to be contiguous. The duration of these large events is determined
as the time elapsing between the start of the event defined as the time of the rise
of the extent time series above the threshold of 0.2 and the end of the event when
the time series falls below that threshold again. The main date of occurrence is
determined as the month with the largest drought extent. We rank the large spatial
events according to their bivariate, joint probabilities in terms of event duration and
extent determined by their empirical copula (the most severe event is assigned the
highest rank; Deheuvels, 1979; Genest and Favre, 2007).

To evaluate changes in the monthly time series of drought spatial extent, we apply
the non-parametric Mann—Kendall test (Mann, 1945). In addition, we compare the
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distributions of drought spatial extent for the two periods 1981-1999 and 2000-2018
for the three value ranges < 0.1, 0.1 — 0.2 and > 0.2 using the two-sided Kolmogorov—
Smirnov test (Smirnov, 1939).

2.4. Contributor overlap

To analyze the importance of different hydro-meteorological contributors to drought
spatial extent, we introduce a contributor overlap measure defined as the percentage
of catchments under hydrological drought simultaneously affected by precipitation
drought, temperature anomaly, SWE deficit, or soil moisture deficit. The higher
the overlap of a hydro-meteorological contributor with the area under hydrological
drought, the more important is the contributor to explain drought spatial extent. An
overlap of 1 (0) means that 100% (0%) of the stations under hydrological drought
are affected by a deficit in the contributor considered. Precipitation (P) droughts are
defined in the same way as streamflow droughts, using a variable threshold, and based
on daily precipitation time series. Temperature (T) anomalies are determined as above
threshold events using monthly temperature time series and a variable threshold at the
85% quantile. SWE and soil moisture (SM) deficits are similarly determined using a
below-threshold approach on monthly SWE and soil moisture time series, respectively,
with a variable threshold at the 15% quantile. In addition to pure overlap time series,
we look at overlap ratios for T /P to assess how the relative importance of these two
contributors changes. Denominators of zero were replaced by 0.001.

The contributor overlap measure is computed over the whole study domain
(CONUS) to determine the overall importance of different hydro-meteorological
contributors on drought spatial extent. In addition, it is computed for nine eco-
regions with similar regional climatology (Bukovsky regions; Bukovsky, 2011) to
identify regionally important contributors. Furthermore, we perform a correlation
analysis of regional contributor overlap with physiographical and climatic catchment
characteristics as provided by the CAMELS dataset (Addor et al., 2017) to identify
catchment characteristics that might be related to the strength of contributor overlap.
The following catchment characteristics are considered: latitude, longitude, catchment
area, elevation, mean precipitation, mean potential evapotranspiration, aridity, snow
fraction, mean discharge, baseflow index, runoff ratio, soil porosity, soil conductivity,
sand fraction, silt fraction, porosity, permeability, and forest cover.

The overlap time series for the four hydro-meteorological variables are used in
a trend analysis to determine changes in the importance of different variables as
contributors to drought spatial extent. We use the non-parametric Mann-Kendall
test (Mann, 1945) to compute p-values and the Sen’s slope estimator to determine
the direction of change (Sen, 1968). The results of the trend analysis are mapped per
Bukovsky region.
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2.5. Sensitivity analysis

We vary the drought threshold at individual sites (¢ = 0.1,0.15,0.2) and the areal
percentage threshold when defining large spatial events (p = 0.15,0.2,0.25,0.3) to
investigate the sensitivity of threshold choices on the number of spatial events, event
duration and spatial extent. The number of large spatial events extracted lies around
25 if a drought threshold at the 15% quantile or higher and an areal percentage
threshold lower than 20% is chosen (SM Figure Appendix A.1). An increase in
thresholds results in the selection of fewer events. Event duration and extent also
depend on the thresholds chosen with extents hardly exceeding 0.5 even for low drought
thresholds. A drought threshold at the 15% flow quantile and an areal percentage of
20% were chosen for the final analysis resulting in 30 spatially large drought events.

3. Results

3.1. Temporal changes in drought spatial extent

(a) p-value = 0.00063

ﬂﬂ ol A LA Al A
0 il VGAIOR,1 |t Wi

1 117 1T 17T 17 1T 17T 17T 7T 17T T T T T T T T T TT 17T 1T 17T 1T 17T 1T 1T 7T T T T T T T
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04

Spatial drought
extent [-]
0 02 O
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0.0

—— Droughtextent[-] .--~ Trend line Time [m]
Threshold Large events with extent > 0.2
%2 b Lo J© 8
o - 0.4 o —_
S = '
— o
2 1988 2001|2002 507 % 0.3 | — -
2. ™ £ = B
2 =
g & 22 4 —_ —
o p-value = 0.92303
© = -
€ o | E 01 pvalue 00062 E
- ® 0.
§ ‘ ‘ | ‘ ‘ | ‘ ‘ ’ .g E _ pvalue 011436 O 1981-1999
Qo 4 \ \ I & 00 4 W 2000-2018
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Time [m]

Figure 2. Temporal changes in drought spatial extent. (a) Percentage

[-] of catchments affected by hydrological drought (extent) over time, large spatial
events with an extent > 20%, and trend line of spatial extent. (b) Magnitude of
large spatial events ranked according to bivariate distribution of event extent and
duration (the higher the rank, the more extreme the event). (c) Comparison of
spatial extents for the periods 1981-1999 and 2000-2018 for different extent ranges
(< 0.1, 0.1 — 0.2, > 0.2) using boxplots. p-values were derived using the two-sided
Kolmogorov—Smirnov test (HO: Distributions for two periods are equal).

210 At the monthly scale, drought spatial extent varies considerably over time ranging from
211 near zero to a maximum of ~40%, and shows a modest (~1%/decade) but statistically
212 significant (p-value = 0.00063) increasing trend (Figure 2A). This increase in spatial
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extent with time can mainly be attributed to increases in spatial extents at lower
extent ranges (i.e., events with < 10% coverage; < 0.1; p-value = 0.0062), while the
distributions at higher ranges do not show statistically significant changes (0.1 — 0.2
and > 0.2, p-values: 0.11436 and 0.92303) (Figure 2b). In other words: the extent of
small spatial events is increasing, while there is little evidence for an increase in the
extent of the most geographically extensive events. These changes were assessed by
comparing events during the period 2000-2018 to 1981-1999.

Within the spatial extent time series, we identify 30 spatially large events (extent
> 0.2) with durations of 1-13 months occurring throughout the year (Figure 2b). The
large events generally appear to cluster in time with several large events occurring in
the periods 1986-1992, 1998-2003, 2006-2009, and 2010-2018. We find the most
severe of these spatial events in terms of extent and duration were the events in
1988 (start: 1988/02, end: 1989/02, duration: 13 months, max. extent: 0.386);
2002 (start: 2002/05, end: 2003/01, duration: 9 months, max. extent: 0.353), 2001
(start: 2001/08, end: 2002/03, duration: 8 months, max. extent: 0.362), 2007 (start:
2007/05, end: 2008/01, duration: 9 months, max. extent: 0.337), and 1981 (start:
1981/01, end: 1981/04, duration: 4 months, max. extent: 0.435). The 1988 event and
the events in the early 2000s were also identified as spatially extensive in a model-based
study by Andreadis et al. (2005).

3.2. Contributors of drought spatial extent

We now consider the importance of hydro-meteorological contributors in governing
the strength of drought spatial extent. To do so, we introduce contributor anomaly
overlap as a measure of association, which describes the percentage of catchments in
streamflow drought simultaneously affected by a precipitation drought/deficit (P),
positive temperature anomaly (T), snow-water-equivalent (SWE) or soil moisture
deficit (SM). We define both the meteorological forcings (P and T) and modulating
hydrologic storages (SM and SWE) as potential contributors to streamflow drought
extent, while recognizing that variability in SM and SWE is driven by variability in
P and T in advance of their impact on streamflow. We look at the covariation of
each potential contributor with monthly spatial streamflow drought extent to assign
temporally proximal driving roles to all four variables. If streamflow drought extent
shows a high overlap within a specific month with SWE or SM deficits, we treat these
as contributors to streamflow drought. These storage deficits may have been driven in
turn by P deficits or above average T, which in our analysis would not be identified
as contributors if that influence occurred prior to the month under consideration. By
including storages as a distinct driving factor, we are able to highlight their role in
modulating the spatial coherence of streamflow drought and to implicitly consider the
lagged influence of the climatic contributors precipitation and temperature.

Figure 3 illustrates the overlap measure for the five largest events. The 1981 event
mainly affected the eastern part of the US, a large part of which was simultaneously
affected by precipitation drought and soil moisture deficit (Figure 3a). The 1988 event
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affected a similar region but warm temperature anomalies are more prominent than
precipitation deficits (especially in the north; Figure 3b). In 2001, basins along the west
coast and in the Rocky Mountains were jointly affected by streamflow drought with
catchments along the east coast (Figure 3c). Precipitation deficits show high overlap in
the east, while soil moisture deficits are more prominent in the Rocky Mountains and
temperature anomalies are more prominent in the southwest. Temperature anomalies
and soil moisture deficits were also important during the 2002 event, which affected
the eastern US simultaneously with the Pacific Northwest and the Rocky Mountains
(Figure 3d). Temperature anomalies were also important during the 2007 event, which
affected mainly the eastern and southern portions of the US (Figure 3e).

Across all events, the importance of different hydro-meteorological variables as
contributors to drought spatial extent varies substantially (Figure 3f). While a subset
of events do appear to have one primary hydro-meteorological contributor (e.g. 1981:
precipitation deficits), streamflow drought is more often associated with a range of
underlying contributors that vary by region (e.g. 2002: warm temperature anomalies in
the east and soil moisture deficits in the west). That the relative importance of different
hydro-meteorological contributors varies on an event-by-event basis is consistent with
earlier studies (e.g., for the Pacific Northwest in Bumbaco and Mote, 2010).

Soil moisture deficits are the single contributor with the highest mean explanatory
power for drought extent (mean overlap ca. 50%) meaning that regions affected by
streamflow drought are often simultaneously affected by soil moisture deficits. The
direct importance of precipitation deficits and temperature anomalies, on the other
hand, varies more widely across events with overlaps ranging from near zero to as
high as 80%. The importance of temperature as a contributor during the month
of streamflow drought occurrence varies on a seasonal basis, and is relatively low
during the cool season (late autumn through early spring) but often quite high during
the warm season (late spring through early autumn). The seasonal importance of
temperature as a contributor to drought spatial extent corroborates earlier findings
showing that temperature strongly influences other drought characteristics such as
duration (Southwestern US; Woodhouse et al., 2009). SWE deficits have only limited
explanatory power for drought spatial extent for the US as a whole but can be
important regionally — particularly in the Rocky Mountains where snow water storage
represents a large fraction of the water balance.
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Figure 3. Importance of hydrometeorologic contributors for drought
extent of large events. Maps of five spatially largest hydrological drought events:
(a) Winter 1981, (b) summer 1988, (c) fall 2001, (d) fall 2002, and (e) fall 2007 and
corresponding contributor deficits/anomalies. Blue circles indicate stations affected
by meteorological (P) drought during the month of hydrological drought occurrence.
Yellow points indicate the presence of temperature (T) anomalies while grey and
green crosses indicate SWE and soil moisture (SM) deficits at the time of streamflow
drought occurrence, respectively. (f) Contributor overlaps for all large spatial events
(extent > 20%) sorted by their month of occurrence (Jan—Dec).

The importance of individual hydro-meteorological variables for drought spatial
extent not only varies by event but also by region as shown by our correlation analysis
of regional contributor overlap with catchment characteristics (Figure Appendix A.2).
Precipitation droughts are generally important contributors to streamflow drought
extent in the eastern US, while they are less important in high-elevation regions with
strong snow influences. Temperature is an important contributor in arid and non-
forest catchments, while SWE is important at higher latitudes and more generally in
places with higher snow fraction. Soil moisture deficits are especially important in
lower-elevation regions and in the eastern US.
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3.3. Changes in the importance of contributors to drought spatial extent
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Figure 4. Temporal changes in hydro-meteorologic contributor overlap

with spatial drought extent.

Monthly spatial overlap of catchments affected

by a streamflow drought (left panel) with catchments affected by (a) precipitation
droughts, (c) temperature anomalies, (¢) SWE deficits, and (g) soil moisture deficits
and (i) monthly overlap ratios for T/P. Spatial overlap of catchments affected by a
large streamflow drought event (extent > 20%; right panel) with (b) precipitation
droughts, (d) temperature anomalies, (f) SWE deficits, and (h) SM deficits and (j)
overlap ratios for T /P. Linear trend lines are displayed. p-values for monotonic trends

were derived using the Mann—Kendall test.

Over the full CONUS, the importance of precipitation as a contributor to drought

spatial extent remains relatively stable over time for all events (Figure 4a, p-value:
0.2753) but decreases for the large events (Figure 4b, p-value: 0.00627). In contrast,
temperature becomes more important across all events as a contributor to spatial

extent (Figure 4c, p-value: 0.00000).

However, this increase is weaker and not

statistically significant for the large events alone because the really large events are

driven by a combination of precipitation and temperature (Figure 4d, p-value: 0.6121).

The strong increase in the relative importance of temperature, combined with the more
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weakly decreasing relative importance of precipitation, yields a large and statistically
robust increase in the ratio of T to P influence (T/P) (Figures 4i, j; p-values: 0.00000,
and 0.2515). The importance of both SWE and soil moisture remains relatively stable
across all events (Figures 4e, g, p-values: 0.03961 and 0.06682) though it decreases for
large events (Figures 4f, h, p-values: 0.0.20404 and 0.00000).

Trend analyses for the nine climatic regions reveal substantial regional differences
in the monthly overlap time series for the different hydro-meteorologic contributors
(Figure 5). Precipitation overlap decreases over most regions except the Great Plains
(Figure 5a), while temperature overlap increases in most regions except for portions
of the southeast (Figure 5b) — resulting in an overall increase of the importance of
temperature relative to precipitation (increase in T /P overlap ratio in all regions except
the Great Plains, Figure 5e). The increase of the importance of temperature relative
to precipitation is especially pronounced across the inter-mountain west and Pacific
Southwest but is also strong across the eastern US. Changes in SWE deficit overlap are
mostly small except in the Pacific Northwest, where we note a substantial increase in
SWE deficit overlap with drought spatial extent (Figure 5c). Finally, the importance of
soil moisture as an explanatory variable for drought extent decreases in most regions,
with the strongest decreases found across the eastern US (Figure 5d).

SWE

Bukovsky regions
Great

Pacific NW| | Mountain Prairie Lakes

West  Great
Plains
Pacific SW . Desert South

East

O No trend
Positive non-significant trend (p-value > 0.05)
Negative non-significant trend (p-value > 0.05)
m Positive significant trend (p-value < 0.05)
m  Negative significant trend (p-value < 0.05)

Figure 5. Regional trends in hydro-climatic contributor overlap with
drought spatial extent. Trends in spatial drought overlap at a monthly scale
for (a) precipitation, (b) temperature, (¢) SWE (catchments with a mean annual
SWE smaller than 1 mm were excluded), (d) soil moisture, (e¢) T/P overlap ratio
determined for nine climatic regions (Bukovsky). p-values were derived using the non-
parametric Mann-Kendall test. Significant trends (p-values < 0.05) are highlighted
by saturated colors and non-significant trends (p-values > 0.05) indicated by dull
colors, positive trends by turquoise colors, and negative trends by brown colors.

4. Discussion

The overall increase in streamflow drought extent corroborates increases in drought
extent found for meteorological drought in India (Sharma and Mujumdar, 2017),
although such regional analyses may be strongly affected by spatially heterogeneous
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trends in regional precipitation. This increase in drought spatial extent is reflected in
increasing probabilities of catchments to be jointly affected by drought as determined
by Patterson et al. (2013) for the South Atlantic region. Our findings mainly show
increases in smaller drought extents and not the large events. However, the extent of
these large events may change in future as Rudd et al. (2019) showed that streamflow
droughts with the largest spatial extent in Great Britain are projected to further
increase in extent towards the middle and end of the century. These findings have
potentially major implications for regional water management strategies as well as for
future studies on drought in a warming climate.

4.1. Water management implications of increasing drought extent

Increasing spatial extent of streamflow droughts — as we have identified in the
present study in the US and has been previously identified in Great Britain (Rudd
et al., 2019) — have substantial implications for their associated socioeconomic and
environmental impacts. An increase in drought extent, for instance, implies increases
in the probability that neighboring or upstream-downstream catchments co-experience
drought (Patterson et al., 2013). Such an increase in regional drought hazard makes
water management considerably more challenging. Inter-basin transfers (Gupta and
van der Zaag, 2008) may no longer be an option, and water contributions from
water-abundant upstream regions to dependent downstream regions may be reduced
if upstream and downstream regions co-experience drought (Viviroli et al., 2020).
For example, Southern California, home to roughly 25 million people, sources water
originating in both the north and south Sierra mountain ranges, as well as from
the upper Colorado River basin, a strategy which ideally hedges against the risk of
co-varying droughts in all source regions (Record et al., 2016). A decrease in the
possibility of such transfers and contributions may increase the severity of drought
impacts and drought risk as potentially more people, ecosystems, and industries are
affected. The simultaneous occurrence of drought in several basins and regions may
therefore expose weaknesses in existing water management policies and increase the
need for coordination among regions from both water supply and demand perspectives.

4.2. Implications of increasingly temperature-driven drought extent

High temperatures can intensify drought events and support their propagation from
one to another region through land-atmospheric feedbacks (e.g. Miralles et al., 2019).
Our findings show that the importance of temperature as a contributor to drought
is not limited to soil moisture droughts (Ault, 2020; Williams et al., 2020a) but
extends to the spatial extent of streamflow droughts particularly during the warm
season (late spring through early autumn). The impact of temperature on drought
and therefore drought extent is twofold: In winter, increased temperatures decrease
snow accumulation, which can lead to time-lagged streamflow deficits later in the
year (Bumbaco and Mote, 2010). In summer, high temperatures increase evaporative
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demand which can reduce streamflow directly through in-channel evaporation and
indirectly through reduced soil moisture inputs (Dai et al., 2018; Luo et al., 2017).

The increasing importance of temperature as a contributor to drought spatial
extent suggests that future temperature increases might not only lead to increases
in soil moisture drought spatial extents (Sheffield and Wood, 2008; Lu et al., 2019;
Dai, 2013) and streamflow drought frequencies (Strzepek et al., 2010) but related
to these also to spatial streamflow drought extents. In relatively moist and cool
regions such as the Pacific Northwest, where a lack of snowpack has historically
been an important contributor to hydrological drought (Bumbaco and Mote, 2010),
temperature may be especially influential. Indeed, a decrease in Pacific Northwest
snowpack has already been observed as temperature has warmed over the past few
decades (Mote et al., 2018). In more arid regions, such as the Great Plains and the
interior Southwest, temperature affects drought extent primarily through an increase
in evaporative demand (Vicente-Serrano et al., 2020). Here, too, a temperature driven
climate change signal has already been identified in drought trends during the late 21st
century (Cook et al., 2015; Martin et al., 2020). Indeed, temperature changes may
be more directly translated into changes in drought spatial extent than precipitation
changes as they are more spatially coherent (i.e., virtually the entire Earth is warming,
but regional precipitation trends are far more heterogeneous; Wuebbles et al., 2014;
Cook et al., 2020).

5. Conclusions

We conclude that: (1) Drought spatial extent over the United States (US) has increased
over the period 1981-2018, mainly resulting from increases of events with a small
spatial extent; (2) The importance of different hydro-meteorological contributors for
drought spatial extent greatly varies across events and is strongest overall for soil
moisture; (3) Temperature has become more important as a contributor to drought
spatial extent over time, mainly at the expense of precipitation.

How future changes in different hydro-meteorological contributors will impact
spatial streamflow drought extent still needs to be formally quantified using directed
modeling. Such an approach might leverage the outcomes of widely available studies
in which a hydrological model is driven by downscaled climate model output to
simulate future streamflow time series. However, the use of such a modeling process
is associated with several substantial uncertainties some of which remain difficult to
account for using current methods. One key aspect of such modeling work is the need
to incorporate not only key geophysical and ecohydrological processes, but also human
interventions within watersheds including flood and water management infrastructure,
legal and public policy considerations, and land use changes. However, such an
assessment would require a modeling framework enabling a realistic representation
of human activities and their impact on the water cycle, which remains challenging.
Ultimately, it is clear that water management strategies will need to account for the
increasingly temperature-driven nature of droughts, as well as their increased spatial
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extent, in a warming climate.
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Appendix A. Supplementary material

Appendiz A.1. Sensitivity analysis for large spatial events with respect to threshold
choices
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Figure Appendix A.l. Sensitivity analysis for large spatial events with
respect to threshold choices. Threshold effect on (A) number of events, (B)
event duration, and (C) spatial extent.

Appendiz A.2. Correlation of hydro-climatic contributor overlap for the nine climatic
regions with catchment characteristics from the CAMELS dataset
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Figure Appendix A.2. Correlation of hydro-climatic contributor overlap
for the nine climatic regions with catchment characteristics from the
CAMELS dataset. Turquoise and red colors indicate positive and negative
correlations, respectively.
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