

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/346967073>

Increasing importance of temperature as a contributor to the spatial extent of streamflow drought

Article in Environmental Research Letters · December 2020

DOI: 10.1088/1748-9326/abd2f0

CITATION

1

READS

84

4 authors, including:

Manuela Irene Brunner

National Center for Atmospheric Research

38 PUBLICATIONS 253 CITATIONS

[SEE PROFILE](#)

Daniel L. Swain

University of California, Los Angeles

31 PUBLICATIONS 1,775 CITATIONS

[SEE PROFILE](#)

A. W. Wood

National Center for Atmospheric Research

151 PUBLICATIONS 11,843 CITATIONS

[SEE PROFILE](#)

Some of the authors of this publication are also working on these related projects:

Spatial dependence of floods [View project](#)

Extremeness of the 2018 drought in Switzerland [View project](#)

¹ Increasing importance of temperature as a
² contributor to the spatial extent of streamflow
³ drought

⁴ **Manuela I. Brunner¹, Daniel L. Swain^{2,3,4}, Eric Gilleland¹, and**
⁵ **Andrew W. Wood^{1,5}**

⁶ ¹ Research Applications Laboratory, National Center for Atmospheric Research,
⁷ Boulder CO, USA

⁸ ² Institute of the Environment and Sustainability, University of California, Los
⁹ Angeles, CA, USA

¹⁰ ³ Capacity Center for Climate and Weather Extremes, National Center for
¹¹ Atmospheric Research, Boulder, CO, USA

¹² ⁴ The Nature Conservancy of California, San Francisco, CA, USA

¹³ ⁵ Climate and Global Dynamics Laboratory, National Center for Atmospheric
¹⁴ Research, Boulder, CO, USA

¹⁵ E-mail: manuela.i.brunner@gmail.com

¹⁶ August 2020

17 **Abstract.** Widespread streamflow droughts can pose substantially greater societal
18 challenges than spatially less extensive events because of the complex realities of
19 trans-regional water management. In a warming climate, drought spatial extent
20 may change along with changes in underlying hydro-meteorological contributors.
21 Here, we assess changes in streamflow drought spatial extent over the period 1981–
22 2018 across the conterminous United States, and how the importance of potential
23 hydro-meteorological contributors has changed over time. We first derive a monthly
24 time series of drought spatial extent and look at trends in streamflow drought
25 spatial extent. We then determine the spatial percentage 'overlap' of precipitation
26 droughts, temperature anomalies, snow-water-equivalent deficits, and soil moisture
27 deficits with the area under streamflow drought to look at the changing influence of
28 these contributors on spatial extent. Our results show that (1) the spatial extent of
29 droughts has increased, mainly because of increases in the extent of small droughts;
30 (2) streamflow drought extents overall substantially overlap with soil moisture deficits
31 and the relationship of drought to precipitation and temperature anomalies vary
32 seasonally; and (3) the importance of temperature as a contributor to drought extent
33 has increased over time. We therefore conclude that continued global warming
34 may further increase drought extents, requiring adaptation of regional drought
35 management strategies.

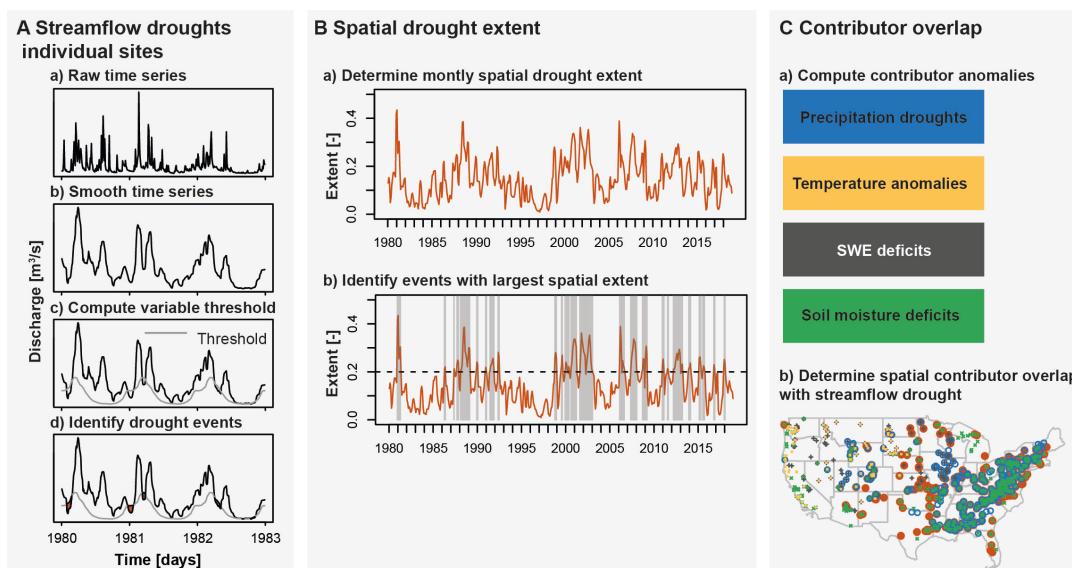
36 *Keywords:* drought, spatial extent, drivers, climate change, United States, snow-water-
37 equivalent, precipitation, extremes, soil moisture

38 1. Introduction

39 Droughts often affect larger geographic regions than do most other types of hydro-
40 meteorological extremes, and subsequently can have potentially severe impacts on
41 water supply, agriculture, hydropower production, and ecosystems (e.g. Seager et al.,
42 2009). Over the last two decades, several notable widespread drought events have
43 occurred in the United States (US) – including the California (2012–2016; Diffenbaugh
44 et al., 2015; Luo et al., 2017), Colorado River basin (2000–2014; Udall and Overpeck,
45 2017) and Missouri River basin droughts (2000–2010; Martin et al., 2020; Woodhouse
46 and Wise, 2020). While not all of these events were historically unprecedented from a
47 precipitation perspective (Andreadis et al., 2005; Woodhouse et al., 2009; Hanel et al.,
48 2018; Williams et al., 2020a), their co-occurrence with anomalously warm and, in some
49 cases, record-breaking temperatures (Weiss et al., 2009; Luo et al., 2017; Udall and
50 Overpeck, 2017; Hanel et al., 2018; Martin et al., 2020; Woodhouse and Wise, 2020)
51 produced impacts that were indeed extraordinary in a historical context (Diffenbaugh
52 et al., 2015; Martin et al., 2020).

53 Drought events with large spatial extents particularly challenge existing water
54 management strategies because they can make drought-alleviating, regional water
55 transfers from upstream or adjacent basins impossible (Patterson et al., 2013).
56 Subsequently, the societal impacts of large-scale droughts can be amplified, since many
57 drought mitigation strategies are predicated on some degree of water availability in
58 less severely affected adjacent regions. The importance of spatial extent as a drought

characteristic has previously been acknowledged in frequency analysis through regional drought indices (Rossi et al., 1992), severity-area-frequency curves, (Henriques and Santos, 1999; Hisdal and Tallaksen, 2003), severity-area-duration curves (Andreadis et al., 2005; Sheffield et al., 2009), and stochastic models for spatial drought events (max-stable models; Oesting and Stein, 2018) but mostly in a time-stationary setting. Recently, however, changes in drought spatial extents have begun to receive greater attention. Newer studies have shown that drought extents have changed in the past and might further change in the future for a range of drought definitions, including meteorological (Ganguli and Ganguly, 2016; Sharma and Mujumdar, 2017), soil moisture (Sheffield and Wood, 2008; Lu et al., 2019), ecological (Crockett and Leroy Westerling, 2018), and hydrological (Rudd et al., 2019) – all of which may affect the societal and environmental risks associated with drought.


Changes in drought spatial extent may plausibly result from changes in underlying hydro-meteorological contributors, including precipitation and temperature. In addition to precipitation deficits, temperature is increasingly being recognized as an important contributor to soil moisture (Weiss et al., 2009; Diffenbaugh et al., 2015; Hari et al., 2020; Williams et al., 2020a) and streamflow drought severity (Woodhouse et al., 2016; Udall and Overpeck, 2017) because temperature directly influences snow water accumulation, snowmelt seasonality (Luo et al., 2017; Mote et al., 2018; Martin et al., 2020; Williams et al., 2020b), and evaporative demand (Dai et al., 2018). However, it remains largely unknown how these potential contributors besides drought magnitude also influence streamflow drought spatial extent.

The aim of this study is to better understand recent changes in streamflow drought spatial extent and their linkage to changes in hydro-meteorological contributors to drought. We ask (1) how streamflow drought spatial extent has changed over time, (2) which physical contributors govern drought spatial extent, (3) and whether/how the importance of these contributors has changed over time. Improving our understanding of how hydro-meteorological contributors influence streamflow drought extent and whether this influence changes over time is crucial in understanding potential future changes in drought spatial extents and assessing the overall risks associated with widespread drought events.

2. Methods

We analyze temporal changes in streamflow drought extents and their contributors over the period 1981–2018 using a dataset of 671 catchments with nearly natural flow conditions in the conterminous US (CONUS; Catchments Attributes and Meteorology for Large-sample Studies CAMELS; Newman et al., 2015; Addor et al., 2017) with a wide range of streamflow characteristics and regimes (Brunner et al., 2020). It would be desirable to work with a dataset extending further back in time, which would, however, come at the expense of spatial coverage. We first extract streamflow droughts at individual sites using a variable threshold-level approach suitable for regions with a seasonal streamflow regime (Van Loon and Laaha, 2015) (Figure 1A).

100 Second, we determine drought spatial extent at a monthly scale as the percentage of
 101 catchments affected by drought during a certain month (Figure 1B). Based on this
 102 drought spatial extent time series, we consider trends in drought spatial extent over
 103 time and define spatially large drought events as events affecting at least 20% of the
 104 catchments in the dataset. Third, we determine the spatial percentage 'overlap' of
 105 precipitation (P) droughts, temperature (T) anomalies, snow-water-equivalent (SWE)
 106 deficits, and soil moisture deficits (SM) with the area under streamflow drought
 107 for each month to explain important hydro-meteorological contributors to drought
 108 spatial extent (Figure 1C). In order to avoid confusing impacts of changes in hydro-
 109 meteorological contributors to drought extent with impacts of management changes, we
 110 focus the analysis on catchments with nearly natural flow conditions. The overlap time
 111 series for the four hydro-meteorological variables are finally used in a trend analysis to
 112 determine changes in the importance of different variables as contributors on drought
 113 spatial extent.

Figure 1. Illustration of working steps. (A) Identify streamflow droughts at individual sites using a threshold level approach by b) smoothing the a) raw time series, c) computing a variables threshold, and d) identifying below threshold events; (B) Compute drought spatial extent at a) a monthly resolution, and b) identify large spatial events with an extent > 20%; (C) Compute overlap of potential contributors with drought spatial extent by a) computing precipitation, SWE, and soil moisture deficits, and temperature anomalies and by b) determining the percentage of stations affected by streamflow drought also affected by contributor deficits/anomalies.

114 2.1. Data

115 The daily streamflow time series were downloaded for the period 1981–2018
 116 from the USGS website (<https://waterdata.usgs.gov/nwis>) using the R-package
 117 dataRetrieval (De Cicco et al., 2018). Areal precipitation (mm) and mean daily
 118 temperature (°C) for the same period were computed using the Daymet dataset which

provides gridded, observation-based estimates of daily precipitation and temperature at a 1-km spatial resolution (Thornton et al., 2012). Snow-water-equivalents (SWE; mm) and soil moisture values (mm) for the period 1981–2014 were derived from a modeled data set by Newman et al. (2015) who used calibrated lumped implementations of the Snow-17 snow accumulation and ablation model and the Sacramento Soil Moisture Accounting model (SacSMA; Burnash et al., 1973) to derive a consistent set of hydro-meteorological variables.

2.2. Droughts at individual sites

Streamflow droughts at individual sites are extracted using a variable threshold-level approach suitable for regions with a seasonal streamflow regime (Van Loon and Laaha, 2015; Heudorfer and Stahl, 2017) at the 15th flow percentile (Figure 1A). The use of a variable instead of a fixed threshold leads to the identification of droughts defined as streamflow anomalies rather than low flows. Please note that such anomalies can also be detected in winter when streamflow anomalies may not have direct societal impacts. The daily time series is smoothed over a moving window of 30 days prior to event extraction to avoid identifying dependent events (Tallaksen and Hisdal, 1997; Van Loon and Laaha, 2015). The variable threshold is composed by the 15th flow percentile for each day of the year determined within a moving window of ± 15 days around the day of interest. We only include events with a minimum duration of 30 days to avoid the consideration of minor droughts. The drought extraction procedure results in a first quartile of 18, a median of 20, and a third quartile of 23 events identified per catchment. These events are spread across seasons as a result of using a variable threshold, which depends on flow seasonality.

2.3. Drought spatial extent

Drought spatial extent is determined at a monthly scale as the percentage of catchments affected by drought during a certain month (Figure 1B). Alternatively, spatial extent could be defined by area-weighting the affected catchments, which does, however, not change the main conclusions of this study. Based on this drought spatial extent time series, we define spatially large drought events as events affecting at least 20% of the catchments in the dataset. However, the drought-affected area does not necessarily need to be contiguous. The duration of these large events is determined as the time elapsing between the start of the event defined as the time of the rise of the extent time series above the threshold of 0.2 and the end of the event when the time series falls below that threshold again. The main date of occurrence is determined as the month with the largest drought extent. We rank the large spatial events according to their bivariate, joint probabilities in terms of event duration and extent determined by their empirical copula (the most severe event is assigned the highest rank; Deheuvels, 1979; Genest and Favre, 2007).

To evaluate changes in the monthly time series of drought spatial extent, we apply the non-parametric Mann–Kendall test (Mann, 1945). In addition, we compare the

159 distributions of drought spatial extent for the two periods 1981–1999 and 2000–2018
160 for the three value ranges < 0.1 , $0.1 – 0.2$ and > 0.2 using the two-sided Kolmogorov–
161 Smirnov test (Smirnov, 1939).

162 *2.4. Contributor overlap*

163 To analyze the importance of different hydro-meteorological contributors to drought
164 spatial extent, we introduce a *contributor overlap* measure defined as the percentage
165 of catchments under hydrological drought simultaneously affected by precipitation
166 drought, temperature anomaly, SWE deficit, or soil moisture deficit. The higher
167 the overlap of a hydro-meteorological contributor with the area under hydrological
168 drought, the more important is the contributor to explain drought spatial extent. An
169 overlap of 1 (0) means that 100% (0%) of the stations under hydrological drought
170 are affected by a deficit in the contributor considered. Precipitation (P) droughts are
171 defined in the same way as streamflow droughts, using a variable threshold, and based
172 on daily precipitation time series. Temperature (T) anomalies are determined as above
173 threshold events using monthly temperature time series and a variable threshold at the
174 85% quantile. SWE and soil moisture (SM) deficits are similarly determined using a
175 below-threshold approach on monthly SWE and soil moisture time series, respectively,
176 with a variable threshold at the 15% quantile. In addition to pure overlap time series,
177 we look at overlap ratios for T/P to assess how the relative importance of these two
178 contributors changes. Denominators of zero were replaced by 0.001.

179 The contributor overlap measure is computed over the whole study domain
180 (CONUS) to determine the overall importance of different hydro-meteorological
181 contributors on drought spatial extent. In addition, it is computed for nine eco-
182 regions with similar regional climatology (Bukovsky regions; Bukovsky, 2011) to
183 identify regionally important contributors. Furthermore, we perform a correlation
184 analysis of regional contributor overlap with physiographical and climatic catchment
185 characteristics as provided by the CAMELS dataset (Addor et al., 2017) to identify
186 catchment characteristics that might be related to the strength of contributor overlap.
187 The following catchment characteristics are considered: latitude, longitude, catchment
188 area, elevation, mean precipitation, mean potential evapotranspiration, aridity, snow
189 fraction, mean discharge, baseflow index, runoff ratio, soil porosity, soil conductivity,
190 sand fraction, silt fraction, porosity, permeability, and forest cover.

191 The overlap time series for the four hydro-meteorological variables are used in
192 a trend analysis to determine changes in the importance of different variables as
193 contributors to drought spatial extent. We use the non-parametric Mann–Kendall
194 test (Mann, 1945) to compute p-values and the Sen’s slope estimator to determine
195 the direction of change (Sen, 1968). The results of the trend analysis are mapped per
196 Bukovsky region.

197 *2.5. Sensitivity analysis*

198 We vary the drought threshold at individual sites ($t = 0.1, 0.15, 0.2$) and the areal
 199 percentage threshold when defining large spatial events ($p = 0.15, 0.2, 0.25, 0.3$) to
 200 investigate the sensitivity of threshold choices on the number of spatial events, event
 201 duration and spatial extent. The number of large spatial events extracted lies around
 202 25 if a drought threshold at the 15% quantile or higher and an areal percentage
 203 threshold lower than 20% is chosen (SM Figure Appendix A.1). An increase in
 204 thresholds results in the selection of fewer events. Event duration and extent also
 205 depend on the thresholds chosen with extents hardly exceeding 0.5 even for low drought
 206 thresholds. A drought threshold at the 15% flow quantile and an areal percentage of
 207 20% were chosen for the final analysis resulting in 30 spatially large drought events.

208 **3. Results**209 *3.1. Temporal changes in drought spatial extent*

Figure 2. Temporal changes in drought spatial extent. (a) Percentage [-] of catchments affected by hydrological drought (extent) over time, large spatial events with an extent $> 20\%$, and trend line of spatial extent. (b) Magnitude of large spatial events ranked according to bivariate distribution of event extent and duration (the higher the rank, the more extreme the event). (c) Comparison of spatial extents for the periods 1981–1999 and 2000–2018 for different extent ranges (< 0.1 , $0.1 - 0.2$, > 0.2) using boxplots. p-values were derived using the two-sided Kolmogorov–Smirnov test (H_0 : Distributions for two periods are equal).

210 At the monthly scale, drought spatial extent varies considerably over time ranging from
 211 near zero to a maximum of $\sim 40\%$, and shows a modest ($\sim 1\%/\text{decade}$) but statistically
 212 significant ($p\text{-value} = 0.00063$) increasing trend (Figure 2A). This increase in spatial

extent with time can mainly be attributed to increases in spatial extents at lower extent ranges (i.e., events with < 10% coverage; < 0.1; p-value = 0.0062), while the distributions at higher ranges do not show statistically significant changes (0.1 – 0.2 and > 0.2, p-values: 0.11436 and 0.92303) (Figure 2b). In other words: the extent of small spatial events is increasing, while there is little evidence for an increase in the extent of the most geographically extensive events. These changes were assessed by comparing events during the period 2000–2018 to 1981–1999.

Within the spatial extent time series, we identify 30 spatially large events (extent > 0.2) with durations of 1–13 months occurring throughout the year (Figure 2b). The large events generally appear to cluster in time with several large events occurring in the periods 1986–1992, 1998–2003, 2006–2009, and 2010–2018. We find the most severe of these spatial events in terms of extent and duration were the events in 1988 (start: 1988/02, end: 1989/02, duration: 13 months, max. extent: 0.386); 2002 (start: 2002/05, end: 2003/01, duration: 9 months, max. extent: 0.353), 2001 (start: 2001/08, end: 2002/03, duration: 8 months, max. extent: 0.362), 2007 (start: 2007/05, end: 2008/01, duration: 9 months, max. extent: 0.337), and 1981 (start: 1981/01, end: 1981/04, duration: 4 months, max. extent: 0.435). The 1988 event and the events in the early 2000s were also identified as spatially extensive in a model-based study by Andreidis et al. (2005).

3.2. Contributors of drought spatial extent

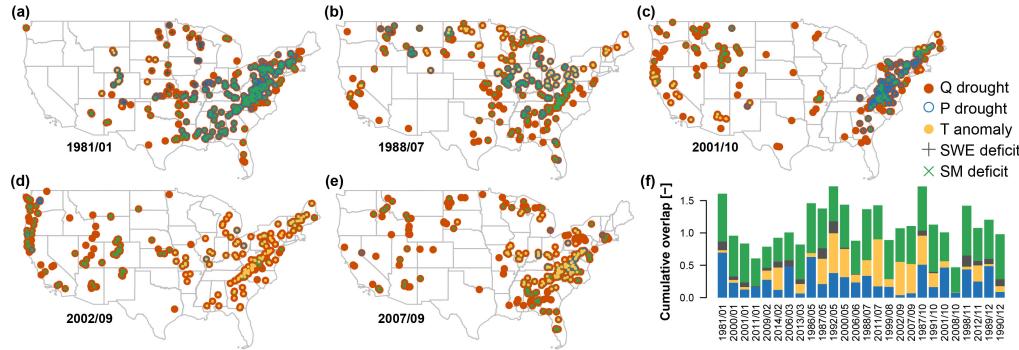

We now consider the importance of hydro-meteorological contributors in governing the strength of drought spatial extent. To do so, we introduce *contributor anomaly overlap* as a measure of association, which describes the percentage of catchments in streamflow drought simultaneously affected by a precipitation drought/deficit (P), positive temperature anomaly (T), snow-water-equivalent (SWE) or soil moisture deficit (SM). We define both the meteorological forcings (P and T) and modulating hydrologic storages (SM and SWE) as potential contributors to streamflow drought extent, while recognizing that variability in SM and SWE is driven by variability in P and T in advance of their impact on streamflow. We look at the covariation of each potential contributor with monthly spatial streamflow drought extent to assign temporally proximal driving roles to all four variables. If streamflow drought extent shows a high overlap within a specific month with SWE or SM deficits, we treat these as contributors to streamflow drought. These storage deficits may have been driven in turn by P deficits or above average T, which in our analysis would not be identified as contributors if that influence occurred prior to the month under consideration. By including storages as a distinct driving factor, we are able to highlight their role in modulating the spatial coherence of streamflow drought and to implicitly consider the lagged influence of the climatic contributors precipitation and temperature.

Figure 3 illustrates the overlap measure for the five largest events. The 1981 event mainly affected the eastern part of the US, a large part of which was simultaneously affected by precipitation drought and soil moisture deficit (Figure 3a). The 1988 event

254 affected a similar region but warm temperature anomalies are more prominent than
255 precipitation deficits (especially in the north; Figure 3b). In 2001, basins along the west
256 coast and in the Rocky Mountains were jointly affected by streamflow drought with
257 catchments along the east coast (Figure 3c). Precipitation deficits show high overlap in
258 the east, while soil moisture deficits are more prominent in the Rocky Mountains and
259 temperature anomalies are more prominent in the southwest. Temperature anomalies
260 and soil moisture deficits were also important during the 2002 event, which affected
261 the eastern US simultaneously with the Pacific Northwest and the Rocky Mountains
262 (Figure 3d). Temperature anomalies were also important during the 2007 event, which
263 affected mainly the eastern and southern portions of the US (Figure 3e).

264 Across all events, the importance of different hydro-meteorological variables as
265 contributors to drought spatial extent varies substantially (Figure 3f). While a subset
266 of events do appear to have one primary hydro-meteorological contributor (e.g. 1981:
267 precipitation deficits), streamflow drought is more often associated with a range of
268 underlying contributors that vary by region (e.g. 2002: warm temperature anomalies in
269 the east and soil moisture deficits in the west). That the relative importance of different
270 hydro-meteorological contributors varies on an event-by-event basis is consistent with
271 earlier studies (e.g., for the Pacific Northwest in Bumbaco and Mote, 2010).

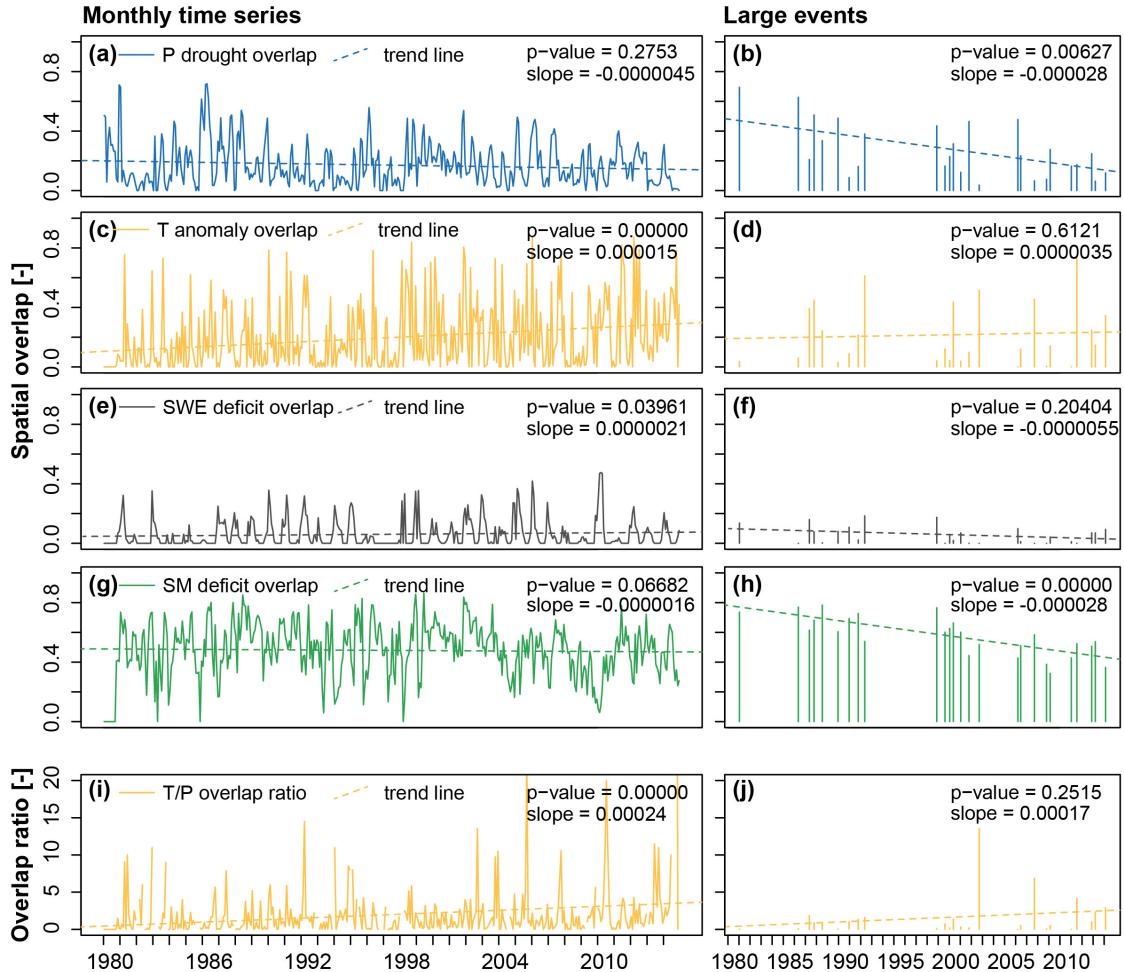

272 Soil moisture deficits are the single contributor with the highest mean explanatory
273 power for drought extent (mean overlap ca. 50%) meaning that regions affected by
274 streamflow drought are often simultaneously affected by soil moisture deficits. The
275 direct importance of precipitation deficits and temperature anomalies, on the other
276 hand, varies more widely across events with overlaps ranging from near zero to as
277 high as 80%. The importance of temperature as a contributor during the month
278 of streamflow drought occurrence varies on a seasonal basis, and is relatively low
279 during the cool season (late autumn through early spring) but often quite high during
280 the warm season (late spring through early autumn). The seasonal importance of
281 temperature as a contributor to drought spatial extent corroborates earlier findings
282 showing that temperature strongly influences other drought characteristics such as
283 duration (Southwestern US; Woodhouse et al., 2009). SWE deficits have only limited
284 explanatory power for drought spatial extent for the US as a whole but can be
285 important regionally – particularly in the Rocky Mountains where snow water storage
286 represents a large fraction of the water balance.

Figure 3. Importance of hydrometeorologic contributors for drought extent of large events. Maps of five spatially largest hydrological drought events: (a) Winter 1981, (b) summer 1988, (c) fall 2001, (d) fall 2002, and (e) fall 2007 and corresponding contributor deficits/anomalies. Blue circles indicate stations affected by meteorological (P) drought during the month of hydrological drought occurrence. Yellow points indicate the presence of temperature (T) anomalies while grey and green crosses indicate SWE and soil moisture (SM) deficits at the time of streamflow drought occurrence, respectively. (f) Contributor overlaps for all large spatial events (extent > 20%) sorted by their month of occurrence (Jan–Dec).

287 The importance of individual hydro-meteorological variables for drought spatial
 288 extent not only varies by event but also by region as shown by our correlation analysis
 289 of regional contributor overlap with catchment characteristics (Figure Appendix A.2).
 290 Precipitation droughts are generally important contributors to streamflow drought
 291 extent in the eastern US, while they are less important in high-elevation regions with
 292 strong snow influences. Temperature is an important contributor in arid and non-
 293 forest catchments, while SWE is important at higher latitudes and more generally in
 294 places with higher snow fraction. Soil moisture deficits are especially important in
 295 lower-elevation regions and in the eastern US.

296 3.3. Changes in the importance of contributors to drought spatial extent

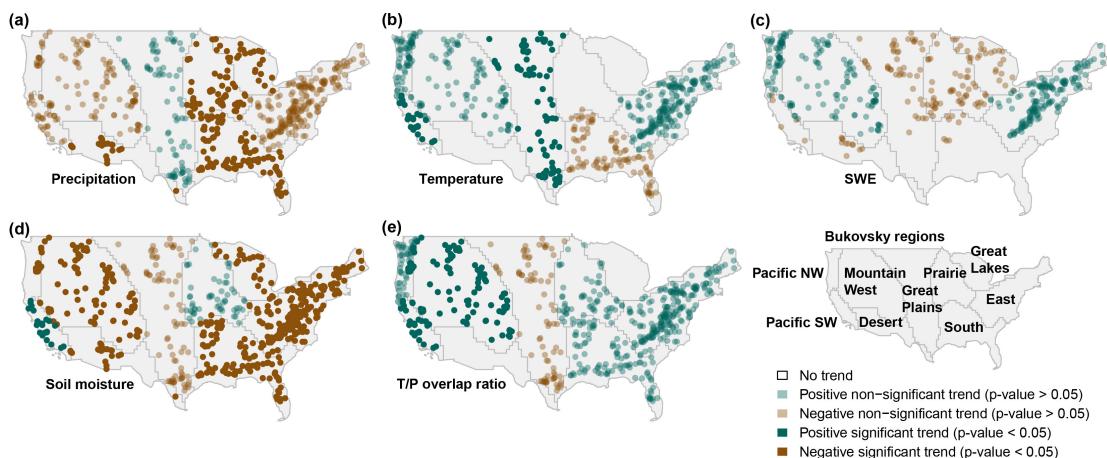


Figure 4. Temporal changes in hydro-meteorologic contributor overlap with spatial drought extent. Monthly spatial overlap of catchments affected by a streamflow drought (left panel) with catchments affected by (a) precipitation droughts, (c) temperature anomalies, (e) SWE deficits, and (g) soil moisture deficits and (i) monthly overlap ratios for T/P. Spatial overlap of catchments affected by a large streamflow drought event (extent > 20%; right panel) with (b) precipitation droughts, (d) temperature anomalies, (f) SWE deficits, and (h) SM deficits and (j) overlap ratios for T/P. Linear trend lines are displayed. p-values for monotonic trends were derived using the Mann–Kendall test.

297 Over the full CONUS, the importance of precipitation as a contributor to drought
 298 spatial extent remains relatively stable over time for all events (Figure 4a, p-value:
 299 0.2753) but decreases for the large events (Figure 4b, p-value: 0.00627). In contrast,
 300 temperature becomes more important across all events as a contributor to spatial
 301 extent (Figure 4c, p-value: 0.00000). However, this increase is weaker and not
 302 statistically significant for the large events alone because the really large events are
 303 driven by a combination of precipitation and temperature (Figure 4d, p-value: 0.6121).
 304 The strong increase in the relative importance of temperature, combined with the more

weakly decreasing relative importance of precipitation, yields a large and statistically robust increase in the ratio of T to P influence (T/P) (Figures 4i, j; p-values: 0.00000, and 0.2515). The importance of both SWE and soil moisture remains relatively stable across all events (Figures 4e, g, p-values: 0.03961 and 0.06682) though it decreases for large events (Figures 4f, h, p-values: 0.0.20404 and 0.00000).

Trend analyses for the nine climatic regions reveal substantial regional differences in the monthly overlap time series for the different hydro-meteorologic contributors (Figure 5). Precipitation overlap decreases over most regions except the Great Plains (Figure 5a), while temperature overlap increases in most regions except for portions of the southeast (Figure 5b) – resulting in an overall increase of the importance of temperature relative to precipitation (increase in T/P overlap ratio in all regions except the Great Plains, Figure 5e). The increase of the importance of temperature relative to precipitation is especially pronounced across the inter-mountain west and Pacific Southwest but is also strong across the eastern US. Changes in SWE deficit overlap are mostly small except in the Pacific Northwest, where we note a substantial increase in SWE deficit overlap with drought spatial extent (Figure 5c). Finally, the importance of soil moisture as an explanatory variable for drought extent decreases in most regions, with the strongest decreases found across the eastern US (Figure 5d).

Figure 5. Regional trends in hydro-climatic contributor overlap with drought spatial extent. Trends in spatial drought overlap at a monthly scale for (a) precipitation, (b) temperature, (c) SWE (catchments with a mean annual SWE smaller than 1 mm were excluded), (d) soil moisture, (e) T/P overlap ratio determined for nine climatic regions (Bukovsky). p-values were derived using the non-parametric Mann-Kendall test. Significant trends ($p\text{-values} < 0.05$) are highlighted by saturated colors and non-significant trends ($p\text{-values} > 0.05$) indicated by dull colors, positive trends by turquoise colors, and negative trends by brown colors.

323 4. Discussion

The overall increase in streamflow drought extent corroborates increases in drought extent found for meteorological drought in India (Sharma and Mujumdar, 2017), although such regional analyses may be strongly affected by spatially heterogeneous

327 trends in regional precipitation. This increase in drought spatial extent is reflected in
328 increasing probabilities of catchments to be jointly affected by drought as determined
329 by Patterson et al. (2013) for the South Atlantic region. Our findings mainly show
330 increases in smaller drought extents and not the large events. However, the extent of
331 these large events may change in future as Rudd et al. (2019) showed that streamflow
332 droughts with the largest spatial extent in Great Britain are projected to further
333 increase in extent towards the middle and end of the century. These findings have
334 potentially major implications for regional water management strategies as well as for
335 future studies on drought in a warming climate.

336 *4.1. Water management implications of increasing drought extent*

337 Increasing spatial extent of streamflow droughts – as we have identified in the
338 present study in the US and has been previously identified in Great Britain (Rudd
339 et al., 2019) – have substantial implications for their associated socioeconomic and
340 environmental impacts. An increase in drought extent, for instance, implies increases
341 in the probability that neighboring or upstream-downstream catchments co-experience
342 drought (Patterson et al., 2013). Such an increase in regional drought hazard makes
343 water management considerably more challenging. Inter-basin transfers (Gupta and
344 van der Zaag, 2008) may no longer be an option, and water contributions from
345 water-abundant upstream regions to dependent downstream regions may be reduced
346 if upstream and downstream regions co-experience drought (Viviroli et al., 2020).
347 For example, Southern California, home to roughly 25 million people, sources water
348 originating in both the north and south Sierra mountain ranges, as well as from
349 the upper Colorado River basin, a strategy which ideally hedges against the risk of
350 co-varying droughts in all source regions (Record et al., 2016). A decrease in the
351 possibility of such transfers and contributions may increase the severity of drought
352 impacts and drought risk as potentially more people, ecosystems, and industries are
353 affected. The simultaneous occurrence of drought in several basins and regions may
354 therefore expose weaknesses in existing water management policies and increase the
355 need for coordination among regions from both water supply and demand perspectives.

356 *4.2. Implications of increasingly temperature-driven drought extent*

357 High temperatures can intensify drought events and support their propagation from
358 one to another region through land-atmospheric feedbacks (e.g. Miralles et al., 2019).
359 Our findings show that the importance of temperature as a contributor to drought
360 is not limited to soil moisture droughts (Ault, 2020; Williams et al., 2020a) but
361 extends to the spatial extent of streamflow droughts particularly during the warm
362 season (late spring through early autumn). The impact of temperature on drought
363 and therefore drought extent is twofold: In winter, increased temperatures decrease
364 snow accumulation, which can lead to time-lagged streamflow deficits later in the
365 year (Bumbaco and Mote, 2010). In summer, high temperatures increase evaporative

366 demand which can reduce streamflow directly through in-channel evaporation and
367 indirectly through reduced soil moisture inputs (Dai et al., 2018; Luo et al., 2017).

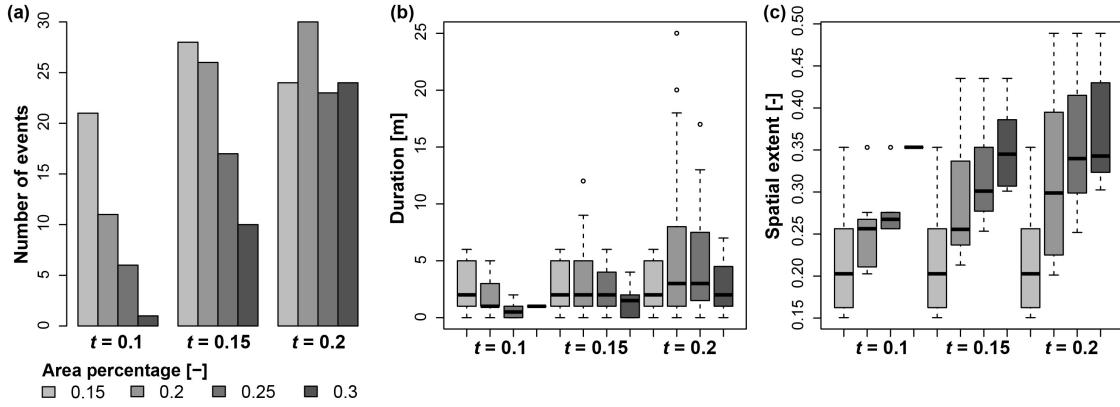
368 The increasing importance of temperature as a contributor to drought spatial
369 extent suggests that future temperature increases might not only lead to increases
370 in soil moisture drought spatial extents (Sheffield and Wood, 2008; Lu et al., 2019;
371 Dai, 2013) and streamflow drought frequencies (Strzepek et al., 2010) but related
372 to these also to spatial streamflow drought extents. In relatively moist and cool
373 regions such as the Pacific Northwest, where a lack of snowpack has historically
374 been an important contributor to hydrological drought (Bumbaco and Mote, 2010),
375 temperature may be especially influential. Indeed, a decrease in Pacific Northwest
376 snowpack has already been observed as temperature has warmed over the past few
377 decades (Mote et al., 2018). In more arid regions, such as the Great Plains and the
378 interior Southwest, temperature affects drought extent primarily through an increase
379 in evaporative demand (Vicente-Serrano et al., 2020). Here, too, a temperature driven
380 climate change signal has already been identified in drought trends during the late 21st
381 century (Cook et al., 2015; Martin et al., 2020). Indeed, temperature changes may
382 be more directly translated into changes in drought spatial extent than precipitation
383 changes as they are more spatially coherent (i.e., virtually the entire Earth is warming,
384 but regional precipitation trends are far more heterogeneous; Wuebbles et al., 2014;
385 Cook et al., 2020).

386 5. Conclusions

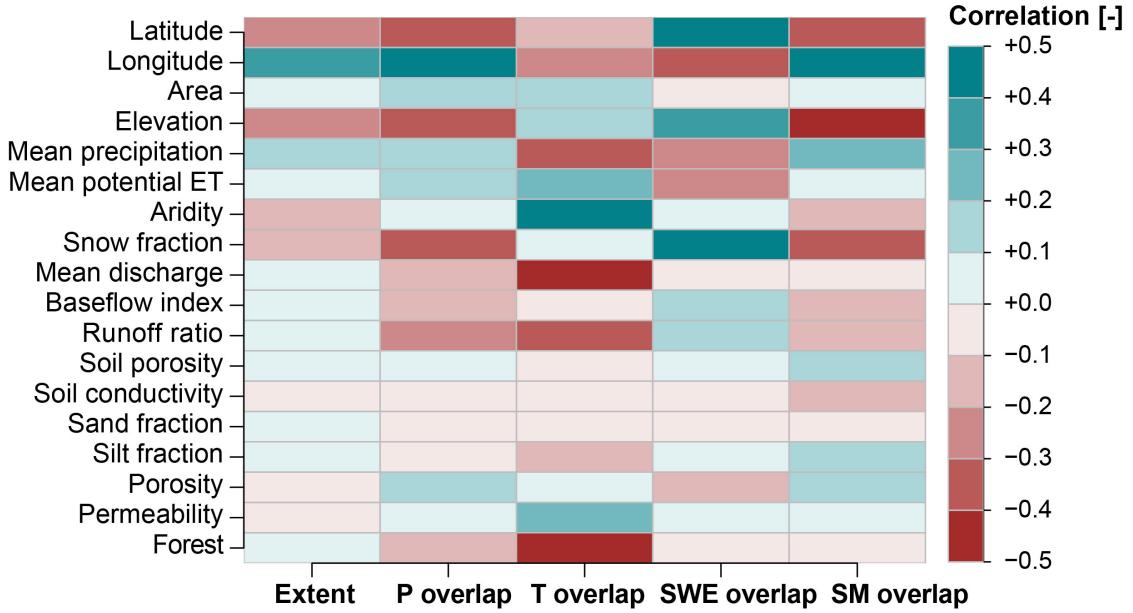
387 We conclude that: (1) Drought spatial extent over the United States (US) has increased
388 over the period 1981–2018, mainly resulting from increases of events with a small
389 spatial extent; (2) The importance of different hydro-meteorological contributors for
390 drought spatial extent greatly varies across events and is strongest overall for soil
391 moisture; (3) Temperature has become more important as a contributor to drought
392 spatial extent over time, mainly at the expense of precipitation.

393 How future changes in different hydro-meteorological contributors will impact
394 spatial streamflow drought extent still needs to be formally quantified using directed
395 modeling. Such an approach might leverage the outcomes of widely available studies
396 in which a hydrological model is driven by downscaled climate model output to
397 simulate future streamflow time series. However, the use of such a modeling process
398 is associated with several substantial uncertainties some of which remain difficult to
399 account for using current methods. One key aspect of such modeling work is the need
400 to incorporate not only key geophysical and ecohydrological processes, but also human
401 interventions within watersheds including flood and water management infrastructure,
402 legal and public policy considerations, and land use changes. However, such an
403 assessment would require a modeling framework enabling a realistic representation
404 of human activities and their impact on the water cycle, which remains challenging.
405 Ultimately, it is clear that water management strategies will need to account for the
406 increasingly temperature-driven nature of droughts, as well as their increased spatial

407 extent, in a warming climate.


408 **Acknowledgements**

409 **Funding:** This work was supported by the Swiss National Science Foundation via
410 a PostDoc.Mobility grant (Number: P400P2_183844, granted to MIB). DLS was
411 supported by a joint collaboration between the Institute of the Environment and
412 Sustainability at the University of California, Los Angeles; the Center for Climate and
413 Weather Extremes at the National Center for Atmospheric Research; and the Nature
414 Conservancy of California as well as NSF PREEVENTS award 1854940. Support for
415 AW was provided by the Bureau of Reclamation (CA R16AC00039), the US Army
416 Corps of Engineers (CSA 1254557), and the NASA Advanced Information Systems
417 Technology program (award ID 80NSSC17K0541).


418 **Author contributions:** MIB developed the study concept in discussions with all
419 co-authors. MIB performed the analyses, produced the figures, and wrote the first
420 draft of the manuscript. DLS provided input on data interpretation and the climate
421 context of the results. AW provided input on the framing of the contributor concepts.
422 All co-authors revised and edited the manuscript.

423 **Competing interests:** The authors have no competing interests.

424 **Data and materials availability:** The daily discharge time series used in this
425 study are available via the USGS website: <https://waterdata.usgs.gov/nwis>.
426 The gridded precipitation and temperature time series can be downloaded via the
427 Daymet website: <http://daymet.ornl.gov/>. The simulated SWE and soil moisture
428 time series and the CAMELS catchment attributes can be downloaded via <https://ral.ucar.edu/solutions/products/camels>. The data that support the findings
429 of this study are available upon reasonable request from the authors.
430

431 **Appendix A. Supplementary material**432 *Appendix A.1. Sensitivity analysis for large spatial events with respect to threshold
433 choices*

Figure Appendix A.1. Sensitivity analysis for large spatial events with respect to threshold choices. Threshold effect on (A) number of events, (B) event duration, and (C) spatial extent.

434 *Appendix A.2. Correlation of hydro-climatic contributor overlap for the nine climatic
435 regions with catchment characteristics from the CAMELS dataset*

Figure Appendix A.2. Correlation of hydro-climatic contributor overlap for the nine climatic regions with catchment characteristics from the CAMELS dataset. Turquoise and red colors indicate positive and negative correlations, respectively.

436 **References**

437 Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data
438 set: Catchment attributes and meteorology for large-sample studies, *Hydrology and*
439 *Earth System Sciences*, 21, 5293–5313, <https://doi.org/10.5194/hess-21-5293-2017>,
440 2017.

441 Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier,
442 D. P.: Twentieth-century drought in the conterminous United States, *Journal of*
443 *Hydrometeorology*, 6, 985–1001, <https://doi.org/10.1175/JHM450.1>, 2005.

444 Ault, T. R.: On the essentials of drought in a changing climate, *Science*, 368, 256–260,
445 <https://doi.org/10.1126/science.aaz5492>, 2020.

446 Brunner, M. I., Newman, A., Melsen, L. A., and Wood, A.: Future streamflow
447 regime changes in the United States: assessment using functional classification,
448 *Hydrology and Earth System Sciences*, 24, 3951–3966, <https://doi.org/10.5194/hess-24-3951-2020>, 2020.

450 Bukovsky, M. S.: Masks for the Bukovsky regionalization of North America, URL
451 <http://www.narccap.ucar.edu/contrib/bukovsky/>, 2011.

452 Bumbaco, K. A. and Mote, P. W.: Three recent flavors of drought in the Pacific
453 Northwest, *Journal of Applied Meteorology and Climatology*, 49, 2058–2068,
454 <https://doi.org/10.1175/2010JAMC2423.1>, 2010.

455 Burnash, R. J. C., Ferral, R. L., and McGuire, R. A.: A generalized streamflow
456 simulation system. Conceptual modeling for digital computers, Tech. rep., Joint
457 Federal-State River Forecast Center, Sacramento, 1973.

458 Cook, B. I., Ault, T. R., and Smerdon, J. E.: Unprecedented 21st century drought
459 risk in the American Southwest and Central Plains, *Science Advances*, 1, 1–7,
460 <https://doi.org/10.1126/sciadv.1400082>, 2015.

461 Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and
462 Anchukaitis, K. J.: Twenty-first century drought projections in the CMIP6 forcing
463 scenarios, *Earth's Future*, 8, 1–18, <https://doi.org/10.1029/2019ef001461>, 2020.

464 Crockett, J. L. and Leroy Westerling, A.: Greater temperature and precipitation
465 extremes intensify Western U.S. droughts, wildfire severity, and sierra Nevada
466 tree mortality, *Journal of Climate*, 31, 341–354, <https://doi.org/10.1175/JCLI-D-17-0254.1>, 2018.

468 Dai, A.: Increasing drought under global warming in observations and models, *Nature*
469 *Climate Change*, 3, 52–58, <https://doi.org/10.1038/nclimate1633>, 2013.

470 Dai, A., Zhao, T., and Chen, J.: Climate change and drought: a precipitation
471 and evaporation perspective, *Current Climate Change Reports*, 4, 301–312,
472 <https://doi.org/10.1007/s40641-018-0101-6>, 2018.

473 De Cicco, L. A., Lorenz, D., Hirsch, R. M., and Watkins, W.: dataRetrieval: R
474 packages for discovering and retrieving water data available from U.S. federal

475 hydrologic web services, <https://doi.org/10.5066/P9X4L3GE>, URL <https://code.usgs.gov/water/dataRetrieval>, 2018.

477 Deheuvels, P.: La fonction de dépendance empirique et ses propriétés. Un test non
478 paramétrique d'indépendance, *Bulletin de la Classe des sciences*, 65, 274–292,
479 <https://doi.org/10.3406/barb.1979.58521>, 1979.

480 Diffenbaugh, N. S., Swain, D. L., Touma, D., and Lubchenco, J.: Anthropogenic
481 warming has increased drought risk in California, *Proceedings of the National
482 Academy of Sciences of the United States of America*, 112, 3931–3936,
483 <https://doi.org/10.1073/pnas.1422385112>, 2015.

484 Ganguli, P. and Ganguly, A. R.: Space-time trends in U.S. meteorological droughts,
485 *Journal of Hydrology: Regional Studies*, 8, 235–259, <https://doi.org/10.1016/j.ejrh.2016.09.004>, 2016.

487 Genest, C. and Favre, A.-C.: Everything you always wanted to know about copula
488 modeling but were afraid to ask, *Journal of Hydrologic Engineering*, 12, 347–367,
489 [https://doi.org/10.1061/\(ASCE\)1084-0699\(2007\)12:4\(347\)](https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)), 2007.

490 Gupta, J. and van der Zaag, P.: Interbasin water transfers and integrated water
491 resources management: Where engineering, science and politics interlock, *Physics
492 and Chemistry of the Earth*, 33, 28–40, <https://doi.org/10.1016/j.pce.2007.04.003>,
493 2008.

494 Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., and
495 Kumar, R.: Revisiting the recent European droughts from a long-term perspective,
496 *Scientific Reports*, 8, 1–11, <https://doi.org/10.1038/s41598-018-27464-4>, 2018.

497 Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future
498 occurrences of the exceptional 2018–2019 Central European drought under global
499 warming, *Scientific Reports*, 10, 1–10, <https://doi.org/10.1038/s41598-020-68872-9>,
500 URL <https://doi.org/10.1038/s41598-020-68872-9>, 2020.

501 Henriques, A. G. and Santos, M. J. J.: Regional drought distribution model, *Physics
502 and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere*, 24, 19–22,
503 [https://doi.org/10.1016/S1464-1909\(98\)00005-7](https://doi.org/10.1016/S1464-1909(98)00005-7), 1999.

504 Heudorfer, B. and Stahl, K.: Comparison of different threshold level methods for
505 drought propagation analysis in Germany, *Hydrology Research*, 48, 1311–1326,
506 <https://doi.org/10.2166/nh.2016.258>, 2017.

507 Hisdal, H. and Tallaksen, L. M.: Estimation of regional meteorological and hydrological
508 drought characteristics: A case study for Denmark, *Journal of Hydrology*, 281, 230–
509 247, [https://doi.org/10.1016/S0022-1694\(03\)00233-6](https://doi.org/10.1016/S0022-1694(03)00233-6), 2003.

510 Lu, J., Carbone, G. J., and Grego, J. M.: Uncertainty and hotspots in 21st century
511 projections of agricultural drought from CMIP5 models, *Scientific Reports*, 9, 1–12,
512 <https://doi.org/10.1038/s41598-019-41196-z>, 2019.

513 Luo, L., Apps, D., Arcand, S., Xu, H., Pan, M., and Hoerling, M.: Contribution
514 of temperature and precipitation anomalies to the California drought during

515 2012–2015, *Geophysical Research Letters*, 44, 3184–3192, <https://doi.org/10.1002/2016GL072027>, 2017.

517 Mann, H. B.: Nonparametric tests against trend, *Econometrica*, 13, 245–259, 1945.

518 Martin, J. T., Pederson, G. T., Woodhouse, C. A., Cook, E. R., McCabe, G. J.,
519 Wise, E. K., Erger, P., Dolan, L., McGuire, M., Gangopadhyay, S., Chase, K. J.,
520 Littell, J. S., Gray, S. T., St. George, S., Friedman, J. M., Sauchyn, D., Jacques,
521 S., and King, J. C.: Increased drought severity tracks warming in the United
522 States' largest river basin, *Proceedings of the National Academy of Sciences*, pp.
523 1–9, <https://doi.org/10.1073/pnas.1916208117>, 2020.

524 Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.: Land–atmospheric
525 feedbacks during droughts and heatwaves: state of the science and current
526 challenges, *Annals of the New York Academy of Sciences*, 1436, 19–35,
527 <https://doi.org/10.1111/nyas.13912>, 2019.

528 Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic declines
529 in snowpack in the western US, *npj Climate and Atmospheric Science*, 2, 1–6,
530 <https://doi.org/10.1038/s41612-018-0012-1>, 2018.

531 Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A.,
532 Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.:
533 Development of a large-sample watershed-scale hydrometeorological data set for the
534 contiguous USA: Data set characteristics and assessment of regional variability in
535 hydrologic model performance, *Hydrology and Earth System Sciences*, 19, 209–223,
536 <https://doi.org/10.5194/hess-19-209-2015>, 2015.

537 Oesting, M. and Stein, A.: Spatial modeling of drought events using max-stable
538 processes, *Stochastic Environmental Research and Risk Assessment*, 32, 63–81,
539 <https://doi.org/10.1007/s00477-017-1406-z>, 2018.

540 Patterson, L. A., Lutz, B. D., and Doyle, M. W.: Characterization of drought
541 in the South Atlantic, United States, *Journal of the American Water Resources
542 Association*, 49, 1385–1397, <https://doi.org/10.1111/jawr.12090>, 2013.

543 Record, R. A., Kightlinger, J., and Man, D. C.: Integrated water resources plan:
544 2015 update, Tech. rep., The metropolitan water district of southern California, Los
545 Angeles, 2016.

546 Rossi, G., Benedini, M., Tsakiris, G., and Giakoumakis, S.: On regional drought
547 estimation and analysis, *Water Resources Management*, 6, 249–277, <https://doi.org/10.1007/BF00872280>, 1992.

549 Rudd, A. C., Kay, A. L., and Bell, V. A.: National-scale analysis of future river flow
550 and soil moisture droughts: potential changes in drought characteristics, *Climatic
551 Change*, 156, 323–340, <https://doi.org/10.1007/s10584-019-02528-0>, 2019.

552 Seager, R., Tzanova, A., and Nakamura, J.: Drought in the Southeastern United
553 States: Causes, variability over the last millennium, and the potential for future
554 hydroclimate change, *Journal of Climate*, 22, 5021–5045, <https://doi.org/10.1175/2009JCLI2683.1>, 2009.

556 Sen, P. K.: Estimates of the regression coefficient based on Kendall's Tau, Journal
557 of the American Statistical Association, 63, 1379–1389, <https://doi.org/10.2307/2285891>, 1968.

559 Sharma, S. and Mujumdar, P.: Increasing frequency and spatial extent of concurrent
560 meteorological droughts and heatwaves in India, Scientific Reports, 7, 1–9,
561 <https://doi.org/10.1038/s41598-017-15896-3>, 2017.

562 Sheffield, J. and Wood, E. F.: Projected changes in drought occurrence under future
563 global warming from multi-model, multi-scenario, IPCC AR4 simulations, Climate
564 Dynamics, 31, 79–105, <https://doi.org/10.1007/s00382-007-0340-z>, 2008.

565 Sheffield, J., Andreadis, K. M., Wood, E. F., and Lettenmaier, D. P.: Global and
566 continental drought in the second half of the twentieth century: Severity-area-
567 duration analysis and temporal variability of large-scale events, Journal of Climate,
568 22, 1962–1981, <https://doi.org/10.1175/2008JCLI2722.1>, 2009.

569 Smirnov, N. V.: Estimate of deviation between empirical distribution functions in two
570 independent samples., Bull. Moscow Univ., 2, 3–16, 1939.

571 Strzepek, K., Yohe, G., Neumann, J., and Boehlert, B.: Characterizing changes in
572 drought risk for the United States from climate change, Environmental Research
573 Letters, 5, <https://doi.org/10.1088/1748-9326/5/4/044012>, 2010.

574 Tallaksen, L. M. and Hisdal, H.: Regional analysis of extreme streamflow drought
575 duration and deficit volume, Friend'97 - Regional Hydrology: Concepts and
576 Models for Sustainable Water Resource Management, 246, 141–150, <https://doi.org/10.1212/WNL.0b013e31823ed0a4>, 1997.

578 Thornton, P., Thornton, M., Mayer, B., Wilhelmi, N., Wei, Y., and Cook, R.: Daymet:
579 daily surface weather on a 1 km grid for North America, 1980–2012, 2012.

580 Udall, B. and Overpeck, J.: The twenty-first century Colorado River hot drought
581 and implications for the future, Water Resources Research, 53, 2404–2418,
582 <https://doi.org/10.1002/2016WR019638>, 2017.

583 Van Loon, A. F. and Laaha, G.: Hydrological drought severity explained by climate
584 and catchment characteristics, Journal of Hydrology, 526, 3–14, <https://doi.org/10.1016/j.jhydrol.2014.10.059>, 2015.

586 Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y., and Tomas-
587 Burguera, M.: Unraveling the influence of atmospheric evaporative demand on
588 drought and its response to climate change, Wiley Interdisciplinary Reviews:
589 Climate Change, 11, 1–31, <https://doi.org/10.1002/wcc.632>, 2020.

590 Vivioli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y.: Increasing
591 dependence of lowland populations on mountain water resources, Nature
592 Sustainability, <https://doi.org/10.1038/s41893-020-0559-9>, 2020.

593 Weiss, J. L., Castro, C. L., and Overpeck, J. T.: Distinguishing pronounced droughts
594 in the southwestern United States: Seasonality and effects of warmer temperatures,
595 Journal of Climate, 22, 5918–5932, <https://doi.org/10.1175/2009JCLI2905.1>, 2009.

596 Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K.,
597 Baek, S. H., Badger, A. M., and Livneh, B.: Large contribution from anthropogenic
598 warming to an emerging North American megadrought, *Science*, 368, 314–318,
599 <https://doi.org/10.1126/science.aaz9600>, 2020a.

600 Williams, E., Funk, C., Shukla, S., and McEvoy, D.: Quantifying human-induced
601 temperature impacts on the 2018 United States Four corners hydrologic and agro-
602 pastoral drought, *Bulletin of the American Meteorological Society*, 101, S11–S15,
603 <https://doi.org/10.1175/BAMS-D-19-0187.1>, 2020b.

604 Woodhouse, C. A. and Wise, E. K.: The changing relationship between the upper and
605 lower Missouri River basins during drought, *International Journal of Climatology*,
606 pp. 1–18, <https://doi.org/10.1002/joc.6502>, 2020.

607 Woodhouse, C. A., Russell, J. L., and Cook, E. R.: Two modes of North American
608 drought from instrumental and paleoclimatic data, *Journal of Climate*, 22, 4336–
609 4347, <https://doi.org/10.1175/2009JCLI2705.1>, 2009.

610 Woodhouse, C. A., Pederson, G. T., Morino, K., McAfee, S. A., and McCabe, G. J.: Increasing influence of air temperature on upper Colorado River
611 streamflow, *Geophysical Research Letters*, 43, 2174–2181, <https://doi.org/10.1002/2015GL067613>, 2016.

614 Wuebbles, D., Meehl, G., Hayhoe, K., Karl, T. R., Kunkel, K., Santer, B., Wehner, M.,
615 Colle, B., Fischer, E. M., Fu, R., Goodman, A., Janssen, E., Kharin, V.,
616 Lee, H., Li, W., Long, L. N., Olsen, S. C., Pan, Z., Seth, A., Sheffield, J., and
617 Sun, L.: CMIP5 climate model analyses: Climate extremes in the United States,
618 *Bulletin of the American Meteorological Society*, 95, 571–583, <https://doi.org/10.1175/BAMS-D-12-00172.1>, 2014.