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Abstract—Hardware resource sharing has proven to be an
efficient way to increase resource utilization, save energy, and
decrease operational cost. Modern-day servers accommodate
hundreds of Virtual Machines (VMs) running concurrently,
and lightweight software abstractions like containers enable the
consolidation of an even larger number of independent tenants
per server. The increasing number of hardware accelerators along
with growing interconnection bandwidth creates a new class of
devices available for sharing. To fully utilize the potential of these
devices, I/O architecture needs to be carefully designed for both
processors and devices.

This paper presents the design and analysis of scalable Hyper-
tenant TRanslation of I/0 addresses (HyperTRIO) for shared de-
vices. Hyper TRIO provides isolation and performance guarantees
at low hardware cost by supporting multiple in-flight address
translations, partitioning translation caches, and utilizing both
inter- and intra-tenant access patterns for translation prefetching.
This work also constructs a Hyper-tenant Simulator of I/O
address accesses (HyperSIO) for 1000-tenant systems which we
open-sourced. This work characterizes tenant access patterns and
uses these insights to address identified challenges. Overall, the
HyperTRIO design enables the system to utilize full available
I/0 bandwidth in a hyper-tenant environment.

Index Terms—I/O subsystem, virtualization, address transla-
tion

I. INTRODUCTION

Massive server consolidation in data centers drives higher
server utilization, reduced energy usage, and lower operating
cost. This consolidation is enabled by collocating on the same
physical server multiple tenants in the form of Virtual Ma-
chines (VMs) [8], [14], machine containers [11], or application
processes [20]. All these tenants have to be isolated from each
other but still share computational, storage, and I/O resources.

The ever-increasing number of cores per server enables
the consolidation of even more tenants, which can reach the
order of thousands. A single server using eight Xeon scalable
processors [22] has 448 cores in total. Assuming a 4:1 CPU
oversubscription ratio [27], such a server would have up to
1792 concurrent tenants. On top of the large number of cores,
commodity servers have an ample amount of the main memory
(up to 1TB) [4]. As an example, Firecracker can run hundreds
or thousands of lightweight MicroVMs per server, depending
on their configuration [4]. Drawing an analogy with hyperscale
systems, we name a platform with such a large number of
tenants “a hyper-tenant platform.”
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Fig. 1: High-bandwidth I/O device shared by multiple tenants.

A separate but related trend is that the available I/O
bandwidth continues to grow [1]. Network Interface Cards
(NICs) with 100Gb/s ports are readily available [31], and
a standard for 400Gb/s Ethernet has started to be used. In
addition, some NICs have technology enabling them to be
shared between different servers, making the total number of
tenants per device to be even higher [31]. Given this high
degree of sharing and extreme available bandwidth, it becomes
challenging to architect a system which can fully utilize all
available resources, in particular, available /O bandwidth.

The challenge that this paper addresses is the severe under-
utilization of available I/O bandwidth as the number of tenants
approaches the hyper-tenant regime (Figure 1). We identify
that this severe I/O bandwidth underutilization is caused by
the lack of scalability in the I/O address translation subsystem
- IOMMU design, device design, and software structures. Hy-
perTRIO solves these challenges by supporting many outstand-
ing I/O address memory translations, partitioning the Device
Translation Lookaside Buffer (DevILB) to enforce perfor-
mance isolation between tenants, and the introduction of an
intelligent, hyper-tenant-aware, address translation prefetcher
which utilizes both inter- and intra-tenant information. Further,
we show that simply scaling up the size of the DevTLB is
insufficient to enable Hyper-tenant I/O.

The key contributions of this work are:

o Architectural design and evaluation of Hyper-tenant
TRanslation of I/O addresses (HyperTRIO). We inves-
tigate the interaction between I/O device and system



memory and use cloud benchmarks as a case study.

o The creation and open source release of a Hyper-tenant
Simulator of I/O address accesses (HyperSIO) used for
analysis and performance evaluation'.

o Detailed analysis of inter- and intra-tenant interactions
during I/O address translation.

o Study of IOTLB replacement policies, partitioning, par-
allel address translation, and prefetching of I/O address
translations.

II. BACKGROUND AND MOTIVATION

This section provides background on how I/O device sharing
currently performs and sets up the challenges involved with
translating I/0O address mappings for high-bandwidth devices
with large tenant count. We include a case study of how
utilization of I/O bandwidth scales with present day translation
schemes and how current designs are sub-optimal as the
number of concurrent connections increases.

A. Device Sharing and Address Translation

Single Root I/O Virtualization (SR-IOV) provides a way for
one physical device to be shared between multiple independent
tenants [38]. Such I/O devices can be viewed as a number
of separate PCle devices, each of them represented by a
Virtual Function (VF). For example, some NICs [32], [36] and
GPUs [34] have up to one thousand VFs. In addition, multi-
host technology allows the sharing of one physical device
between up to four hosts [30], [35], [36], further increasing the
total number of tenants. Each VF can be independently used
by a tenant, and it provides isolation, and low virtualization
overhead while efficiently using available hardware resources.

To further decrease the involvement of the tenant’s CPU
when moving data between main memory and I/O device,
modern-day processors use direct memory access (DMA).
When communicating with the tenant’s main memory via
DMA, the device uses guest I/O virtual addresses (glOVA)
to read/write data from/to it. These addresses are generated
by a tenant’s OS, and they provide a flexible manner for
accessing a shared device by multiple isolated units at the
same time. However, all of the gflOVAs must be translated
to host physical addresses (hPAs) before reading/writing data
in the memory. I/O Memory Management Units (IOMMUs)
implement this functionality for both non-virtualized and
virtualized environments. In the latter case, translation takes
the form of a two-dimensional page-table walk [12], shown
in Figure 2. Every access to a guest page table (labeled as
the first-level walk) incurs a walk through a host page table
(second-level walk). This two-dimensional walk is expensive
and requires 24 or 35 memory accesses for 4-level or 5-level
page tables [21], [23] respectively on the x86-64 architecture.
In order to reduce the number of memory accesses, IOMMUs
can have translation caches (L[1-4]TLBs in Figure 2) or nested
TLBs [12], which store translations from guest physical to host
physical addresses.
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As an example in Figure 3, we show the translation steps
performed for each incoming packet. First, a tenant places
a gIOVA into its corresponding ring buffer, located inside
of the packet handling logic, which is later read upon the
arrival of a packet. After identifying the source ID (SID)
(e.g. PCle Bus/Device/Function) for a request, the device
looks up in Context Cache (CC in Figure 3) (D to find a
corresponding Context Entry (CE) which contains a pointer to
the base of the second-level paging entries and Device ID
(DID) @ configured by the host. To accelerate translation
from gIOVA to hPA, the device can have a cache to store
the most recent translations shown as the Device Translation
Lookaside Buffer (DevTLB). It is checked for a request (),
and the device sends a request to the system over PCle ()
with a translated address in the case of a hit @), and with
an untranslated address otherwise. The translation subsystem
(IOMMU), located in the chipset in Figure 3, translates the
gIOVA (©), performing a two-dimensional Page Table Walk
(PTW) when there is a miss in the DevTLB. There can be
multiple hardware structures for caching page-table entries
(L[1-4]TLBs) and for caching translations from glOVA to hPA
(IOTLB) to accelerate the Page Table Walk. When an entry is
not found in a corresponding caching structure, the IOMMU
accesses main memory (7) to retrieve a page-table entry (PTE).
After the page table walk is finished, the hPA is returned to the
device (8), and it finishes the requested read/write operation.

Throughout this work, we focus on hyper-tenant environ-
ments where every tenant requires a two-dimensional page
table walk to translate its guest I/O Virtual Address (glOVA)
to a host Physical Address (hPA). This typically happens when
a tenant has a form of a VM, while containers do not require
the long walk [40]. However, the isolation of the latter ones
usually raises lots of concerns in hyper-tenant setups, and
lightweight MicroVMs are used instead [4].

B. Case-Study of a SR-IOV NIC

As a motivating case study, we use two real-world systems -
one with a server running on an AMD Ryzen 9 3900X
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Fig. 3: Translation steps performed for glOVA triggered by an
incoming packet to a device. BDF - PCle Bus/Device/Function
triplet. CC - Context Cache. CE - Context Entry. glOVA - guest
I/0O Virtual Address. hPA - host Physical Address. [OMMU
- I/O Memory Management Unit. IOTLB - I/O Translation
Lookaside Buffer. PTE - Page Table Entry.

CPU, and another one with a server running on an Intel
Xeon E7-4870 (Table I). Using these systems, we measure
the bottlenecks for IOMMU translation for a multi-tenant use
case. For each machine we use a dual-port Intel X540-T2 NIC
as an instance of a shared device, supporting a maximum of 63
VFs per port [19]. As a workload, we chose iperf3 v3.1.3 [3]
to create connection pairs between two machines over a
10Gb/s link. On both client and server, core affinity was set
to a different CPU for every connection to avoid resource
contention and improve single stream locality.

AMD - Firstly, we perform experiments using the AMD
machine for running iperf servers and the Client Host for
iperf clients. Using IOMMU performance counters available
on the server, we record the number of IOMMU TLB PTE
hits/misses and the number of nested IOMMU page reads
as we vary number of parallel connections between 2 and
120. We interleave VFs between two available PFs. Every
iperf server was running inside a VM with one of the NIC’s
VFs directly assigned to it. For all the experiments, the total
bandwidth was around 12.1Gb/s, which was the same as when
using non-virtualized configuration (it is less than the expected
20Gb/s due to the NIC design, which was also found in other
studies [2]). Using the recorded statistics, we calculate the
TLB PTE miss rate, which is less than 0.1% when there are
less than 80 connections. However, for a larger number of
connections we observe increasing miss rate for up to 4.3% for
120 connections (shown in Figure 4). In addition to increasing
IOMMU TLB PTE miss rate, the number of nested page
table reads increases more than 400 times for 120 connections
compared to 80 connections. These results indicate that a large
number of tenants cause contention for cached translations and
it will be even more challenging in a hyper-tenant setup.

Intel - We perform a second study using Intel CPUs and a
single 10Gb/s link. In this study we compared I/O bandwidth
when running native versus virtualized (using VF’s) network
interfaces.

In one case (native), the server (Server Host 2) and the
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Fig. 4: IOMMU TLB PTE miss rate versus number of parallel
iperf3 connections between 80 and 120 on an AMD system
(Server Host 1).

client were running directly on the host and natively sharing a
single network interface. In the other case, every iperf server
was run inside a VM with a directly assigned VF to it. The
results of our experiments are shown in Figure 5. We observe
that a single connection using a host interface can utilize up to
8.7Gb/s, which is less than the 9.49Gb/s of useful bandwidth
possible for 1500B packets on a 10Gb/s link. This behavior
is caused by a CPU bottleneck on the server side and can
be removed by using faster cores. At the same time, the
maximum achievable bandwidth for the connection using a
VF is only 6.7Gb/s, which is lower than the direct (non-
virtualized) host interface speed. This can be explained by
virtualization overhead.

When the number of client-server pairs increases, bandwidth
per connection goes down, therefore removing the CPU bot-
tleneck (since in our configuration, every client and server is
pinned to a different core). As the number of connections is
varied between two and eight, the physical link is utilized 99%
in both experiments. However, when the number of connection
pairs exceeds eight, the total bandwidth for configurations
using VFs starts to decrease, flattening out at around 0.5Gb/s
for more than 16 pairs. In contrast, increasing the number of
client-server pairs does not affect total bandwidth in the case
of running on the host directly.

From the above experiments, we conclude that it is con-
tention for a shared IOVA translation resource in the virtual-
ized setup which ultimately limits the utilization of available
I/O bandwidth. Every tenant’s OS allocates a number of pages
for use by its device independently, and translations of gIOVAs
for every tenant start thrashing the DevTLB, L[1-4]TLBs, and
overloads the IOMMU with a large number of requests, as
the experiment with the AMD host showed. Unfortunately, the
Intel system does not provide the same level of performance
counter visibility as the AMD system for IOMMU, therefore
we measured the effect indirectly. Using the Hyper-tenant
Simulator of I/O described in Section IV, we show that
contention for the shared translation resources causes I/O link



TABLE I: System parameters for case-study of SR-IOV NIC.

Server Host 1 Server Host 2 Client Host

CPU AMD Ryzen 9 3900X Xeon E7-4870, Xeon E3-1231 v3,

1 socket, 24 threads 4 sockets, 80 threads 1 socket, 8 threads
Chipset x570 Intel 7500 Intel C224
Memory 64GB, 400 MB/VM 256GB, 2 GB/VM 16GB
NIC Intel X540-T2, Driver 5.1.0-k
Linux Kernel | Host - 5.0.0, VMs - 4.15.0 | Host/VMs - 4.15.0 | 4473
Test Duration 300s
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Fig. 5: Cumulative I/O bandwidth for different number of
concurrent connections on an Intel Server Host 2.

utilization to go down with the increasing number of tenants
in the same way as in Figure 5.

ITI. HYPERTRIO ARCHITECTURE

To remove the guest I/O Virtual Address (gIOVA) trans-
lation bottleneck in a hyper-tenant environment and enable
full utilization of available I/O device bandwidth, we propose
the HyperTRIO architecture - Hyper-tenant TRanslation of
I/O addresses. Below we describe three main innovations
augmenting the base design covered in Section II:

o Pending Translation Buffer (PTB) - The PTB is located
inside of each a device and supports multiple in-flight
translations from different tenants.

o Fartitioned Device-TLB (P-DevTLB) - The P-DevTLB
provides architectural support for translation isolation by
assigning a unique tenant’s tag per row of the Device-
TLB.

o Translation Prefetching Scheme - The Prefetch Unit (PU)
initiates translations of the most recent glOVAs stored
from previous tenant’s accesses to IOMMU using inter-
tenant information.

The HyperTRIO architecture is presented in Figure 6 with
our newly added blocks shown in light gray. We analyze
HyperTRIO performance in Section V.

Pending Translation Buffer (PTB). Every packet coming
from an I/O link generates several glOVA translation requests
to determine the physical addresses of the corresponding ring

buffer, data buffer, and address for the interrupt mailbox.
For a 200Gb/s link, a 1500B packet arrives every 62ns,
leaving a device working at 1.2GHz [33] only 74 cycles for
all translations to be completed. This amount of available
processing time between requests is even less for real-world
applications. For example, in a key-value store application [7]
most of the keys are under 60B, and values are under 1000B.

HyperTRIO keeps track of all in-flight gIOVA to hPA
translations in a Pending Translation Buffer - PTB. To avoid
head-of-line blocking when an IOMMU performs a two-
dimensional page table walk, PTB supports out-of-order trans-
lation completion. If a new packet arriving from the I/O link
cannot allocate an entry into the PTB, it is dropped. A larger
buffer can prevent the dropping of a packet at additional
hardware cost. However, to keep PTB size reasonable, we look
for optimization in other parts of the design. For example, in
the case of performing a full 4-level two-dimensional page
table walk when doing a translation for 1500B packets, PTB
has to keep track of 112 outstanding requests. Having such
a large number of outstanding requests in hardware becomes
expensive and not scalable with increasing link bandwidth and
the growing number of tenants.

Partitioned Device-TLB (P-DevTLB). The Device-TLB
stores translations from gIOVAs to hPAs. Since it is located
on a device, it provides the fastest translation in the case of
a hit and allows us to avoid expensive communication over
PClIe with a chipset. In a hyper-tenant environment, every
tenant will try to allocate their most recent translations in
the DevTLB, causing the eviction of translations for another
tenant. To exacerbate the problem, independent tenants can
use the same VF driver and OS which allocates the same
virtual addresses for a device (see Section IV-D). The more
tenants that share a system, the higher the chance that two
translations from different tenants will use the same page
address and corresponding entries in the DevTLB will conflict.
Since address allocation by a driver cannot be controlled from
a host machine, we propose a partitioning scheme for the
DevTLB which improves isolation between tenants and helps
to increase utilization of available I/O bandwidth.

Every translation request received by a DevILB contains
a Source ID (SID) and/or Process Address Space Identifier
(PASID) [20]. SID assignment is controlled by a hypervisor,
it is known after a VF is allocated to a tenant, and it does not
depend on a tenant’s type. Therefore, we can use it to isolate
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Fig. 6: HyperTRIO architecture. PTB - Pending Translation
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translations of independent tenants at the DevTLB.

We add a partition tag (PTag) to every row in the DevTLB,
which should match with a SID in order for translation to be
cached. Depending on the design, the PTag allows caching
of translations only from a single tenant (complete match
between SID and PTag) or for a group of tenants (matching
lower bits of SID and PTag). In Figure 6, rows tagged with
different PTags are cross-hatched differently. This partitioning
of a single DevTLB enables performance isolation, e.g., it
prevents a low-bandwidth tenant from evicting translations for
high-bandwidth tenants.

Translation Prefetching Scheme. The maximum band-
width of a tenant can be specified at configuration time just
after adding it to a system. While the tenant is active, hardware
load balancing and queue management enforce configured
bandwidth to meet QoS, therefore providing a regular number
of accesses to the translation subsystem for all tenants. We use
this insight to predict the next SID based on the previously
observed history. We also found that each tenant’s page is
accessed more than a thousand times (see Section IV-D).

We introduce a Prefetch Unit (PU) on each HyperTRIO
device, which is accessed concurrently with the DevTLB (see
Figure 6). The Prefetch Unit has two parts - a Prefetch Buffer
(PB), and Source ID predictor (SID-predictor). The PB is a
small fully-associative cache, which keeps translations from
glOVAs to hPAs and it is shared by all tenants in the system.
It is populated after the completion of every prefetch request
generated by a PU. The SID-predictor contains a table which
directly maps from the currently accessed SID to a predicted
SID and a history-length register. The latter is configured by
the host and can be updated whenever bandwidth allocation
per tenant changes and/or when a tenant is added/removed.

The PU is checked along with DevTLB to see if it contains
a valid translation for a current translation request in a PB. If
there is one in a PB, it is returned, and no further requests are
generated. In the case of a miss in the PB, the SID-predictor
is checked for a corresponding entry to a currently accessed
SID. In the presence of a valid entry, the PU sends a prefetch

request with a predicted SID to the chipset. The latter contains
a glOVA history reader, which uses a predicted SID to read the
most recent translations from main memory. The IOVA history
reader fetches two previously accessed glOVAs. Instead of
keeping translations from glOVA to hPA, it issues translation
requests for predicted glOVAs to an IOMMU. This enables
fetching the most recent translations from the memory when
previous ones were invalidated, and at the same time gives a
chance to cache intermediate translations in the L[1-4]TLBs.
Later requests can benefit from having a hit to these translation
caches in the case of a miss in the DevTLB and PB.

We keep only the Prefetch Buffer and SID-predictor on a
device to provide low-latency in the case of a hit in the PB and
to able to update the SID-predictor on every incoming packet.
IOVA history reader has only a state machine for fetching
the most recently accessed glOVAs from a tenant, keeping its
hardware cost independent of the number of tenants. Since
prefetching is done in advance, memory access latency can
be hidden by issuing translation prefetching earlier through
configuring history length register in a Prefetch Unit.

IV. HYPER-TENANT SIMULATOR OF I/O

To be able to study I/O devices in a hyper-tenant environ-
ment running real-world workloads, we created a Hyper-tenant
Simulator of I/O - HyperSIO. It consists of three main parts:

e Log Collector - derived from QEMU, it models up to
24 tenants at the same time with Network Interface
Cards directly assigned to them. It records all operations
performed by an IOMMU while translating addresses for
tenants’ devices.

e Trace Constructor - using multiple collected logs, Hyper-
SIO constructs translation information for every tenant
and its sequence of accesses to an IOMMU. Using this
information, it generates a Hyper-Trace which is used by
the hyper-tenant performance model.

e Trace-Driven Device-System Performance Model - a fully
custom trace-driven performance model written in C++.
It incorporates detailed interaction between an I/O device,
translation subsystem and host main memory using real-
world latencies to compute I/O utilization.

We created HyperSIO because modern-day servers have
hundreds of cores [22] and can potentially run workloads with
large numbers of VFs supported by I/O devices [4], [32].
To enable analysis and experimentation with I/O sharing for
varying number of tenants, all accesses between a device,
a server, and an I/O link have to be recorded. Below we
discuss different options which were considered for studying
and evaluating such hyper-tenant systems.

Even though there exist many tools for CPU and memory
instrumentation [26], they typically do not give any visibility
into the chipset and do not allow recording translations of
guest I/O Virtual Addresses (glOVAs). One option is to modify
the OS or IOMMU drivers and record the information about
page accesses. However, modifying the OS solves only part of
the problem, since some translation requests can be handled
by a hardware translation cache on a device without accessing



the IOMMU, thereby preventing a researcher from seeing
all memory accesses. The second option would be to record
translation requests directly on a device, but this functionality
is not provided by hardware vendors and would significantly
impact performance of a high-bandwidth I/O device. The third
option is to use available full-system architecture simulators.
Yet they model processor architecture thoroughly, they lack
detailed I/O simulation. On top of that, it is hardly feasible
to simulate hyper-tenant systems with reasonable performance
for real-world workloads when using detailed or cycle-accurate
software simulation. As a result, we decided to create Hyper-
SIO which runs real-world applications, saves I/O device logs,
constructs data-structures and traces for a hyper-tenant system,
and uses a fully custom performance model for studying and
performance evaluation. The source code for HyperSIO can
be found at http://parallel.princeton.edu/hypersio.html.

A. HyperSIO: Log Collector

HyperSIO’s Log Collector is used to record accesses to
an IOMMU from independent tenants running real-world
workloads. As we discussed above, we need to be able to
model a full system, including I/O device, system chipset,
main memory, and processor. QEMU 3.0.0 can emulate all
these pieces, including an IOMMU [5], which is a part of
its Q35 chipset model. However, QEMU lacks a model of
an I/O device supporting SR-IOV for sharing. To get around
this problem, we emulate a system with multiple independent
Network Interface Cards (NICs) where every NIC is directly
assigned to a separate VM. Since modeling a system with
thousands of tenants at the same time would require thousands
of VMs, it was not feasible to do it on our server. Another
QEMU limitation was that in order to directly assign a device
to a VM, the former has to be connected to a PCle root
complex, which supports only 24 slots at the same time. So,
instead of emulating a system with a thousand tenants, we run
a configuration with fewer tenants multiple times, we record
all the logs separately and use a Trace Constructor to generate
a single trace representing all translations from a hyper-tenant
system.

Figure 7 shows a detailed diagram of the emulated system
used by the Log Collector. We model a server with 64
x86_64 cores, 208GB of main memory, Q35 chipset with an
IOMMU, and 24 e1000 NICs. Since this system is emulated
using QEMU, we name it a Level-1 VM (L1VM). Inside
of LIVM, we run nested Level-2 VMs (L2VM) representing
separate tenants, where each of them is using one NIC directly
assigned to it using PCle passthrough. As a result, every NIC
is allocated into a separate IOMMU group in the L1VM,
guaranteeing its isolation from other NICs.

After we assign the devices to the tenants, we send traffic
through the NICs. To emulate I/O link connections for the
devices we use tun/tap interfaces available as an option for
QEMU. Every tenant is running a server part of real-world
workload inside of L2VM, and it is connected to the client
through an I/O device managed by an IOMMU. The client is
connected to a tap interface on the host side, and it commu-
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Fig. 7: Architecture of an emulated system with up to 24 NICs
directly assigned to VMs.

nicates with the server as if they were connected through a
real network. The Trace Collector runs the same workload for
every client-server pair, starting it in parallel for all the pairs
and recording all translation requests received by the IOMMU.

B. HyperSIO: Trace Constructor

HyperSIO’s Hyper-Trace Constructor produces a single
trace from the logs generated by a Log Collector to model
a hyper-tenant system. The Constructor parses accesses to a
Context Cache, IOMMU, and page table entries from each
trace, creates separate data-structures for translation requests,
context cache entries, and page table entries, and saves them
in a format supported by the Performance Model described
later.

Since the Trace Collector records translation requests from
up to 24 I/O devices for a single run, the Hyper-Trace
Constructor has to read results from multiple runs when the
number of modeled tenants is larger than the number of
emulated devices. Consequently, there stems a question on
how to interleave requests between tenants. Since we study
scalability of I/O bandwidth utilization with the increasing
number of tenants, we model the same bandwidth for all
tenants in a system. The number of consecutive requests sent
by every tenant can be configured through a command-line
option to model bursty traffic.

In addition to configurable number of requests from a
tenant, the Trace constructor supports two options for inter-
tenant interleaving. The first one is Round-Robin (RR),
which is used as an arbitration scheme between queues and
is found in a real NIC [19]. This scheme is efficient for
hardware implementation, and models the case when tenants
have steady long-lived connections providing data with an
arbiter that selects the next stream. The second one is random
(RAND), which represents a scenario for tenants sending
separate requests instead of generating a steady data stream.



TABLE II: System parameters used by performance simulator.

One-way PCle latency [33] 450ns
DRAM latency 50ns
IOTLB hit 2ns
# memory accesses during PTW [21] 24

Packet size at I/O link
1/0 link bandwidth
L2 Page Cache

L3 Page Cache

1542B (Eth Pkt + IPG)
200Gb/s
512 entries, 16-ways
1024 entries, 16-ways

C. HyperSIO: Performance Model

The HyperSIO Performance Model is a fully custom device-
system model written in C++. It reads traces generated by the
Trace Constructor which includes glOVA translation requests,
Context Cache, and page-table entries. HyperSIO models the
system described in Section III in order to evaluate different
architectural aspects of an I/O address translation scheme
and their impact on achievable device utilization in a hyper-
tenant environment. The main parameters used for modeling
are listed in Table II.

HyperSIO calculates the next packet arrival time based on
provided I/O link bandwidth and packet size, therefore model-
ing a fully utilized link. When a new packet arrives, it is placed
in a Pending Translation Buffer (see Figure 6) when there is
available buffer space, and it is dropped otherwise. At the
next arrival time, a dropped packet is retried. Every accepted
packet generates three translation requests corresponding to
a translation of the ring buffer pointer, accessing the data
buffer, and sending a notification to the system about a newly
arrived packet. Depending on whether a miss/hit occurs in
every translation structure, a request is either completed and
the packet is considered processed, or a new event is scheduled
in a queue for a corresponding structure. For example, if a
translation request misses in the Device TLB (DevTLB), it
is scheduled to access an IOMMU in the future after the
PCle traversal time. When a request hits in the DevTLB, its
completion is scheduled after the hit time. Information about
page table entries read from a Hyper-Trace is used to populate
page table caches (L[1-4]TLB in Figure 6) when the IOMMU
performs a page-table walk.

At the end of a simulation, HyperSIO calculates the total
amount of data processed by a device by multiplying the total
number of processed packets from all tenants by an average
packet size. To get an average bandwidth, HyperSIO divides
the total number of bytes by the time spent to translate all
the requests. Since packets are dropped when there is no
available space in a PTB, average link bandwidth is lower than
nominal when the translation subsystem becomes a bottleneck.
Otherwise, if all translations for a packet are finished before
the next one arrives on the link, the total bandwidth is limited
by I/O link throughput.

D. Single- and Multi-Tenant Characterization

Using logs recorded by the HyperSIO Log Collector we
analyze page access patterns for single- and multi-tenant se-
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Fig. 8: I/O virtual page access for a single tenant.

tups. From a single-tenant analysis, we make two conclusions.
The first is that all accessed page frames can be split into
three groups based on their frequency (Figure 8a). The second
is that accesses to certain pages have a periodic pattern and
every page is accessed around 1500 times in a row (Figure 8b).
From the analysis of a multi-tenant trace, we observe different
tenants are using the same page frame addresses, increasing
the chance of evicting each other’s translations from caching
structures.

Single tenant characterization. To characterize single-
tenant translation requests, we ran the mediastream benchmark
and recorded around 4.6 x 10° IOMMU translation requests
from a NIC. All requests were from 104 pages assigned to
a tenant’s I/O device by its OS. We analyzed the frequency
of accesses to these page frames and found that all of them
can be split into three groups based on the total number of
accesses. Figure 8a shows the frequency of accesses to page
frames in the first and the second groups.

The first group contains accesses to a single glOVA page
at address 0x34800000. These accesses are to a page
containing addresses of ring buffers allocated to a tenant and
therefore addresses inside that page are translated for every
packet arriving at the I/O link. The second group has 32 page



frames in the range from 0xbbe00000 to 0xbfe00000
which are used for data buffers. During the test, the L1IVM
had huge pages enabled, and therefore all page frames in the
second group are for 2MB pages where each of it is accessed
almost the same number of times. Since a page frame in the
first group is accessed for every incoming packet, it is seen
around 30 times more frequently than page frames for data
buffers. The third group contains 70 page frames between
0x£0000000 and Oxfff£f£ff. They are 4KB in size and
used only after NIC initialization with the total number of
accesses less than 100 times per each page frame (not shown
in Figure 8a due to limited space). So, even though there are
around 5 x 10° packets, they access only around 31 pages
most of the time.

Figure 8b shows the order of page frame accesses for the
second group described above. It has a periodic structure since
the NIC is using a ring buffer to store them. Each 2MB page
is accessed around 1500 times sequentially until the driver
unmaps it and starts using buffers located in the next page.
The same pattern of IOVAs was observed previously [6], but
during our experiments the working page set was larger.

Analysis of a single-tenant stream provides two insights into
IOVA access patterns. First, page frames can be grouped based
on their access frequency. When caching translations in the
IOTLB, this fact can be used to decide which translation to
evict in the case of a conflict. The second observation is that
each 2MB page used for data buffers is accessed many times
sequentially, exhibiting high temporal locality. Periodic access
to those pages can be used by a prefetcher to load the next
page. It also shows that switching to a new page frame happens
less frequently than accesses to the same page.

Multi-Tenant Characterization. To model a multi-tenant
system, we run several copies of the same workload used
for a single-tenant setup. All L2VM servers use the same
L1VM host and therefore share the same IOMMU. Though all
VMs are independent of each other, they use the same subset
of page frames for data buffers in the address range from
0xbc000000 to 0xb£f000000. This can be attributed to the
fact that all VMs in our experiment run the same OS with the
same version of the device driver. In a virtualized environment
where a tenant has a virtual device directly assigned to it, this
can often be the case since all VFs are identical to each other
and the hypervisor has no control over guest virtual address
assignment. As a result, glOVA distribution can cause certain
rows in the DevTLB or L[1-4]TLBs to be used more frequently
than others, leading to conflicts between different tenants.

In order to study how I/O link utilization depends on the
number of tenants, we used the HyperSIO Performance Model
and ran different numbers of copies of the same workload.
We assume that DevTLB has 64 entries, which is the same as
the number of IOTLB entries in Intel’s design [33], and use a
200Gb/s I/O link. Figure 9 presents the results of performance
simulation indicating that the maximum achievable aggregated
I/O bandwidth depends on the number of connections in the
same way as our motivational study shown in Figure 5. Since
the DevTLB is a shared resource, it becomes a bottleneck

200 1" —@— DeVTLB: 64 entries, 2 ways, LRU
—¥— DevTLB: 64 entries, 4 ways, LRU

DevTLB: 64 entries, 8 ways, LRU
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Fig. 9: Modeled I/O bandwidth depending on IOTLB config-
uration and number of concurrent connections.

when utilized by a large number of tenants. For an 8-way
set-associate DevTLB, more than four concurrent connections
start evicting entries of other tenants, which eventually leads
to thrashing and significantly increases translation time for
every request. Finally, the system becomes limited by the per-
formance of the gIOVA translation subsystem, which involves
traversing the PCle bus, doing a two-dimensional page-table
walk, and accessing DRAM.

V. EVALUATION

In this section we evaluate the HyperTRIO architecture us-
ing HyperSIO to see how it addresses the challenges appearing
in hyper-tenant environments and how insights about intra- and
inter-tenant interaction can be used to remove guest I/O Virtual
Address (glOVA) to host Physical Address (hPA) translation
bottleneck.

First, we describe real-world workloads used to model
a hyper-tenant environment. After that, we compare Hyper-
TRIO’s performance with a base design and show that our
architecture efficiently utilizes I/O device bandwidth indepen-
dent of the number of tenants in a system and workload
parameters. Then we study if changing parameters of a default
translation subsystem like the DevTLB replacement strategy
and its size can significantly improve I/O link utilization.
Finally, we perform multiple sensitivity studies looking at how
separate blocks of HyperTRIO - Pending Translation Buffer,
FPartitioned Device-TLB, and Translation Prefetching - affect
utilization of a device.

A. Benchmarks

We used three I/O intensive benchmarks for evaluation listed
in Table III. Every benchmark consists of a server and a client.
The client sends a stream of requests or data to the server. Each
client-server pair communicates through a separate network
interface, which prevents the network interface from becoming
a bottleneck. HyperSIO runs the same benchmark for all the
tenants in its emulated system, records translation requests and
related information, constructs a single trace modeling a hyper-
tenant system, and uses HyperSIO’s Performance Model to get



TABLE III: Maximum, minimum, and total number of trans-
lation requests recorded for every benchmark. 7Tnt - Tenant(s).

Benchmark Max # Min # Total Transl

Transl/Tnt | Transl/Tnt | for 1024 Tnt
iperf3 108,510 68,079 69,712,894
mediastream 73,657 5,520 5,652,477
websearch 108,513 43,362 44,402,679

the link utilization for every configuration (see Section IV).
The benchmarks include:

e iperf3 [3] - throughput oriented benchmark stressing
network stack. It generates a steady stream of packets
with a maximum size specified as a parameter. We used
a maximum size of 1500B and restricted iperf3 to use
only IPv4 packets. Each client was run for 60 seconds to
have enough time to record the interval when all tenants
were active.

o mediastream - a benchmark from Cloudsuite 3 [37],
serving videos of different length and qualities to a
client. We used default options, except for the number
of connections per host which was set to eight to stress
the I/O link.

o websearch - another benchmark from Cloudsuite 3, where
a client sends requests to multiple server index nodes.
This benchmark was run for 360s in a steady state instead
of the default 60s to collect longer translation traces. It
also required 12GB of memory per index server which
reduced the maximum number of simultaneously running
tenants to twelve due to the main memory constraints of
the host machine.

As described in Section IV, HyperSIO stops generating a
trace when any tenant runs out of requests in order to avoid
the “edge effect” when only a subset of all tenants is active.
Therefore, the number of requests per tenant depends on which
logs were read by HyperSIO to generate a trace. Table III lists
minimum and maximum number of translation requests per
tenant along with the total number for the 1024-tenant setup.

We also constructed multiple traces for each benchmark
using different inter-tenant interleaving - round-robin
(RR) and random (RAND). The used interleavings are
RR1, RR4, and RANDI1, where the number at the end indicates
consecutive number of packets sent to a tenant. For example,
for a bursty traffic pattern, more packets can arrive at a given
time interval compared to a non-bursty traffic. In that case,
RR4 would better capture this parameter compared to RR1.

B. HyperTRIO Scalability

One of the main goals of the HyperTRIO architecture
described in Section III is to enable full I/O link utilization for
devices in hyper-tenant environments by removing the guest
I/O Virtual Address Translation (glOVA) to host Physical Ad-
dress (hPA) bottleneck. Figure 10 shows maximum achievable
link bandwidth of HyperTRIO compared to a Base architecture
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Fig. 10: Scalability of I/O bandwidth for HyperTRIO and Base
designs.
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TABLE IV: Architectural parameters of HyperTRIO and Base
configurations used for evaluation.

Parameter Base HyperTRIO
PTB 1 entry 32 entries
64-entries
DevTLB 8-ways, LFU
I partition | 8 partitions
512-entries
L2TLB 16-ways, LFU
I partition | 32 partitions
1024-entries
L3TLB 16-ways, LFU
1 partition 64 partitions
Prefetching No 8-entry buffer, 48-access stride
Scheme 2 pages history/tenant

using parameters listed in Table IV. We vary number of tenants
from 4 to 1024 and evaluate different inter-tenant interleavings.

For the Base configuration, the maximum achievable I/O
bandwidth does not scale with increasing number of tenants
independent of their interleaving. It scales slightly better for
iperf3 than for two other benchmarks due to regular accesses
of the former one, but for any number of tenants greater than
32, link utilization is between 12 and 30Gb/s, which is at
most 15% of the nominal 200Gb/s I/O bandwidth. For small
number of tenants, interleaving causes eviction of different
translations from DevTLB. With larger burst size of 4 packets,
more evictions are caused by RR4 than by RR1 (mediastream,
websearch), reducing link utilization. In contrast, for large
number of tenants, translations used to access the ring buffer
pointer can be reused inside a burst, therefore RR4 has higher
bandwidth compared to RRI1.

In contrast, the HyperTRIO architecture enables the use of
up to 100% of the total link bandwidth in an environment
with 1024 tenants. Its partitioning of DevTLB and Translation
Caches allows the use of these structures more uniformly
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Fig. 11: I/O link utilization for the Base design with different DevTLB sizes and replacement policies.

in a hyper-tenant setup, and it also provides enough entries
for caching of translations for low tenant-count environments.
The Prefetching Scheme captures inter- and intra-tenant infor-
mation supplying a valid translation from a Prefetch Buffer
for 45% of requests for websearch benchmark in 1024-tenant
setup. The Pending Translation buffer provides support for
hiding misses to the DevTLB and Prefetch Buffer by keeping
track of in-flight translations and hiding the latency caused
by performing a two-dimensional page table walk. Tenant
interleaving has little effect on HyperTRIO, and in the case
of the least predictable RANDI order it achieves up to 80%
link utilization with 1024 tenants.

C. Base Configuration Study

In this sensitivity study we want to answer the question of
whether changing some parameters of the Base configuration
can significantly affect utilization of an I/O link.

Scaling DevTLB Size

Figure 11a shows results using the Base configuration with
two different DevTLB sizes. A 1024 entry DevTLB enables
reaching higher bandwidth for up to 64 tenants. However, it
depends on the tenants’ order. For example, a 64-entry size
DevTLB for 16 tenants allows the utilization of the I/O link 3
times more efficiently for RR4 interleaving than a 1024-entry
DevTLB with RR1 interleaving for websearch benchmark.

When the number of tenants exceeds 128, configurations
with both sizes provide the same link utilization for RR1
and RANDI1. RR4 gives higher bandwidth due to reuse of
translations inside of a burst as described above. Overall, in a
hyper-tenant setup, when many tenants use the same IOVAs, a
simple increase of DevTLB size does not improve utilization
of available bandwidth due to conflicts in frequently used sets.

Studying DevTLB Replacement Policies

Analysis of a single-tenant trace (see Section IV-D, Fig-
ure 8a) shows that translation requests to some pages are
seen more frequently than to other pages, and motivates us
to implement a Least Frequently Used (LFU) replacement

scheme. We use a 4-bit counter to track the number of accesses
per cache entry, and all the counters in a row are divided by
two when any of them saturates [24]. Having a full translation
trace allows us to build an oracle scheme [9], evicting in the
case of a conflict with the entry which will be used furthest
in the future from the current access.

Figure 11b shows results for the described policies. For
a small number of tenants, all translations fit into DevTLB
without conflicts, therefore allowing the system to fully utilize
available I/O bandwidth. With increasing number of tenants,
total bandwidth starts to decrease, and for more than 64 of
them the translation cache becomes completely thrashed by
requests from different tenants, making the translation subsys-
tem a bottleneck. In-between we see that LFU outperforms the
LRU scheme, potentially improving achievable bandwidth by
up to two times for iperf3 benchmark in a 16-tenant setup. This
is attributed to the fact that evicting a translation corresponding
to the most frequently used page will more likely cause a miss
some time in the feature than evicting one of the translations
for a data buffer. Compared to oracle, LFU performs slightly
worse, but even a perfect strategy does not allow the translation
scheme to scale in a hyper-tenant setup due to long reuse
distance of the same page belonging to a single tenant.

Scalability with Fully Associative DevTLB

Next, we study the effect of the total number of available
entries in the DevILB on I/O utilization. Once again, we
use insights from Section IV-D, but this time focusing on the
distribution of IOVA accesses in time (see Figure 8b). Since
all pages are accessed periodically, the number of translations
which should be kept in a DevILB can be small: including
only translation to a page with ring buffers, data buffers, and
interrupt mailbox.

We define active translation set size as the minimum number
of entries in a fully-associate DevTLB required to achieve the
full utilization of an I/O link. Among three benchmarks, iperf3
has the most regular access streaming pattern, and its active
translation set is 8. mediastream and websearch benchmarks
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Fig. 12: Contribution of Pending Translation Buffer, Partitioned DevTLB, and Translation Prefetching Scheme to 1/O link

bandwidth in HyperTRIO design.

have a much higher number of active pages for a single
tenant - hypothetical 32- and 36-way fully associative caches
are needed respectively. Compared to iperf3, they have less
regular access patterns, which requires more pages.

Figure 11c shows how I/O link utilization scales for full-
associative DevTLBs with increasing number of tenants. In
this study we use the oracle replacement scheme to remove the
effects of evicting a wrong entry and focus only on tenant in-
teraction in an ideal scenario. As can be seen from Figure 11c,
in all benchmarks, using more than eight tenants produces low
bandwidth utilization. Basically, when the number of tenants
reaches the number of available translation entries, every new
request starts to miss in the DevTLB, and the translation
request is forwarded to a chipset to complete the translation.
Though its total processing time depends on a miss/hit to
L[1-4]TLBs, for high bandwidth I/O devices even just PCle
latency will severely affect the total throughput.

D. HyperTRIO Evaluation
Scalability of the Partitioning Scheme

From the two previous studies, we observe that neither
changing DevTLB replacement policies nor increasing its
associativity allows us to scalably use the I/O link. In this
case-study we evaluate how partitioning of the DevTLB and
L[1-4]TLBs described in Section III affects total performance.

We set partition size to one 8-entry row per tenant, even
though mediastream and websearch benchmarks have larger
active translation sets per tenant. This decision is made in
favor of having more isolated partitions for large numbers of
tenants. Exploring the optimal number of partitions and the
number of devices per partition is left outside of the scope
of this work, giving an assumption that all the tenants fairly
share an available I/O device.

Figure 12a presents results for the proposed scheme. Link
utilization stays high until multiple devices start using the

same partition. Partitioning an 8-way set-associative DevTLB
provides significant improvements over the base case, but at
the same time it limits the maximum possible cached trans-
lations available for every tenant. The benefit of the scheme
comes from isolation and independent management of tenants,
allowing translations to evict entries which belong only to the
same partition. Overall, partitioning improves utilization better
than simply increasing associativity or changing replacement
policy of DevTLB, but it still does not solve the scalability
challenge in hyper-tenant environments.

Pending Translation Buffer

The Pending Translation Buffer (PTB) allows HyperTRIO
to hide translation latency in the case of a miss in the DevTLB.
This case study assumes the DevTLB has 8 partitions as in the
previous experiment, and it augments that configuration with
a PTB, studying its effect on I/O link utilization.

Figure 12b shows simulation results for different PTB sizes.
With eight entries it enables reaching full [/O bandwidth for
a partitioned design with up to 16 tenants (compare with Fig-
ure 12a). Cumulative effect of both units gives an opportunity
to hide translation latency when missing into DevTLB when
the active translation size is larger than the number of DevTLB
entries per partition. Translation requests which come after a
missed one can be started before the previous one is finished,
effectively enabling hit under miss. Further size increase of the
PTB to 32 entries allows us to achieve an aggregated 136Gb/s
for 1024 tenants for all benchmarks. Keeping track of more
in-flight translations can improve utilization further, however
it becomes expensive from a hardware point of view and does
not scale for larger I/O bandwidth.

Translation Prefetching Scheme

Finally, we show the contribution of the Translation
Prefetching scheme into total link utilization. As a base line
we use the configuration from a previous case study with



partitioned DevILB and L[1-4]TLBs, and with PTB of size
32, augmenting it with prefetching described in Section III.

To study the accuracy and timeliness of a prefetcher [45], we
analyzed different Prefetch Buffer (PB) sizes, history length,
and number of prefetch requests per Source ID. Since PB
is a fully associative buffer, it should be kept small, and
we found that eight entries are a good trade-off between
precision and hardware resources used for the buffer. History
length is a parameter which can be configured by a hypervisor
after the addition/removal of a tenant. We found that for our
simulated system a history depth of 48 requests is optimal
across different number of tenants. The last parameter we
studied was the number of prefetched translations for each
tenant. In order to keep the translation for several tenants in a
small PB, we prefetch the two most recently used translations
per tenant.

The effect of a Prefetching Scheme on I/O link utilization
is shown in Figure 12c. For hyper-tenant configurations it
improves link utilization by up to 30% for the websearch
benchmark. It also scales better than simply increasing the
PTB size, since the prefetch buffer and history length can
stay the same for larger number tenants. All page translation
history of accesses is kept in the main memory which is an
ample resource in today’s servers.

VI. RELATED WORK

Much work has evaluated the scalability of IOMMU de-
sign, management, protection, and their impact on I/O link
utilization. Depending on message size, CPU utilization can
become significant due to frequent page map and unmap
operations [10]. However, it was shown only for a single
client-server pair. To reduce the number of cycles required to
process every packet, a hierarchical page-table was replaced
by a flat one for every tenant’s ring buffer [28]. However, it
required modifications of device drivers and guest OSes, which
is not always possible in hyper-tenant environments. Different
protection schemes and their scalability as part of IOMMU
design were also studied [29], [47]. Some schemes allow the
use of up to 90% [29] of the total throughput of a device by
reducing the cost of page unmapping. However, this work has
focused on the software side of IOMMU management, without
studying the interaction between multiple independent tenants
in the system. Previous work also evaluated the performance
of IOMMU page allocation for a 10Gb/s NIC, using 270
netperf instances to stress the system [39]. Compared to all
the aforementioned work, HyperTRIO looks at the behavior
of gIOVA to hPA translation subsystem from a hardware
point of view in hyper-tenant environments with up to 1024
concurrently running tenants.

Prior work characterized IOVA streams showing that evic-
tion policy for IOTLBs do not change miss/hit ratio and
suggest using prefetching for adjacent pages [6]. They also
proposed applying page coloring to offset address spaces of
different 1/O devices for their isolation. With HyperTRIO,
we did partitioning in hardware. In our work, tenants use
2 MB pages, and we found that devices used in total 32 pages

for data buffers instead of 10 as described before [6]. When
studying replacement policies, in addition to LRU and oracle
schemes, we evaluated LFU which was motivated by tenant’s
trace analysis. We also designed a Hyper-Tenant Performance
Simulator for I/O which incorporates real latencies instead of
just calculating the number of hits to IOTLB. Finally, our
prefetching scheme uses a completely different approach by
keeping track of translation history in the main memory and
prefetching it in hardware. In contrast to previous work [6],
HyperTRIO does not use software hints.

For GPUs it was shown that a highly threaded Page Table
Walker significantly improves the performance [41], [42],
[44], [46]. A SIMD instruction generates up to 64 transla-
tion requests [44], but multiple GPU lanes usually cooperate
towards completion of a single task, providing opportunities
for coalescing of multiple translation requests into one [44]. In
contrast, every tenant sharing an I/O device is independent of
others, and we cannot rely on any cooperation between them.

Partitioning and leveraging multiple data sources was pre-
viously done for the memory hierarchy [15], [17], [18]. Data
cache bypassing and pinning was studied in the context of
GPUs [25]. To the best of our knowledge, we make the first
attempt to use partitioning for translation structures in a multi-
level translation hierarchy for hyper-tenant environments.

Multiple efforts were done to optimize one- and two-dimen-
sional page-table walks [12], [13], [16], [43], [44]. However,
those studies focus on data-intensive applications and study
MMU designs, while this work looks at IOMMU address
translation. Shared I/O devices have multiple unique features
including usage of ring-buffers, knowledge of tenant’s band-
width at the assignment time, and more strict requirements for
total translation time due to limited buffering space.

VII. CONCLUSION

In this work, we presented HyperTRIO, an architecture for
scalable guest I/O Virtual Address (gIOVA) to host Physical
Address (hPA) translation in hyper-tenant environments. We
showed that increasing the number of tenants leads to poor
I/O link utilization and prevents the system from using all the
available bandwidth of high-throughput devices. We proposed
to use a Pending Translation Buffer to support multiple in-
flight translations on a device, described a Partitioned Device-
TLB for tenant isolation and uniform utilization of hardware
resources, and proposed a scalable Prefetching Scheme which
uses inter- and intra-tenant information to predict and translate
glOVAs to hPAs. In order to analyze and study hyper-tenant
environments, we built the Hyper-Tenant Simulator of 1/O -
HyperSIO. Overall we find that the HyperTRIO architecture
enables the system to utilize more than 90% of the 200Gb/s
link in environments with up to 1024 independent tenants
compared to only 6% for a design without the support of
multiple in-flight translations, Partitioned Device-TLB, and
Prefetching Scheme.
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