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Abstract 
How do we learn in the absence of direct experience? In this paper, we discuss a recent paper 
by Charpentier et al., 2000 that proposes a new computational account of observational 
learning, which arbitrates between choice imitation and goal emulation. 
  



 

Humans have a remarkable ability to learn how to navigate an environment in the absence of 
direct experience by simply observing others (Olsson et al., 2020). For example, imagine traveling 
to a foreign country and trying to order food without being able to understand the menu. How 
would you accomplish this? One strategy is to simply copy others ahead of you in line - a form of 
imitation learning. This will likely result in successfully getting something to eat, but does not 
ensure that you will enjoy it. An alternative strategy is to instead infer other people’s goals and 
emulate the one that is most consistent with your own. This requires the additional computation 
of inferring a model of another person’s mental state (Gonzalez and Chang, In press). 
 
Recently, Charpentier et al., (2020) sought to explore this question to better understand how 
humans learn from observations. Using a novel behavioral task, participants observed another 
agent choose between two of three presented slot machines. Each slot machine paid out a token 
color (e.g., green, red or blue), but only one color could be exchanged for money, which was 
unknown to the participants. Thus, participants could only learn which machine to pick by 
observing the other agent’s choices. Participants were told that the other agent knew which color 
yielded money, and that the winning color could change across trials. Participants had information 
about the token color probabilities for each slot machine, and were able to see the outcome (e.g., 
token color) after the agent’s choice. Showing participants the token color returned by the chosen 
slot machine, and not its explicit value, required participants to estimate which color was valuable 
based solely on the agent’s actions. 

 
Figure 1. Observational learning task 
 
Suppose the other agent selects the left slot machine (Fig 1A). From this example, it is clear that 
the agent is not interested in the red token, but uncertain if the other agent’s goal was to maximize 
the probability of a blue or green token. During all trials of a given block, the position (i.e., left, 
middle, right) and probability distributions of each slot machine are fixed, however the unavailable 
option varies to modulate the difficulty of goal inference. For example, if the rightmost machine in 
Fig 1A was unavailable to the agent, a left choice would then clearly indicate a goal to obtain the 
rewarding blue token. In a third of the trials, participants were able to play the game themselves 
for the potential to earn money (Fig 1B). If the participant selected the middle slot machine after 
observing Fig1A, then they most likely believed that the other agent’s goal was to maximize green 
rather than blue tokens. Across blocks, the authors manipulated the uncertainty of the outcome 
probability distributions and also switched which color is associated with a payoff, akin to a hidden 
reversal. 



 

 
The authors evaluated support for two different observational learning strategies. The choice 
imitation model simply learned which slot machine (e.g., left, middle, or right) was more frequently 
chosen by the other agent using reinforcement-learning. The goal emulation model, in contrast, 
attempted to learn the other agent’s goal (i.e., which color yielded a payoff) by updating the value 
of each color via an approximate bayesian updating rule and selecting the machine with the 
highest overall expected value. In addition, the authors explored models that combined both 
strategies and incorporated an arbitration control mechanism to determine which strategy should 
be employed. The proposed arbitration mechanism is similar to previous work comparing 
nonsocial model-free and model-based reinforcement-learning (Daw et al., 2005). The basic idea 
is that the arbitration controller uses relative uncertainty to choose which strategy to employ. 
When a particular strategy can accurately predict the agent’s choices, it gets a higher weight, but 
when the model is “surprised” and starts to become less reliable, the other strategy gets a higher 
weight. In other words, if the agent’s goals become more difficult to infer, then the reliability of a 
goal emulation model decreases and an imitation model is favored. Conversely if the agent’s 
choices appear to be more stochastic (due to rapidly changing goals), the reliability of an imitation 
learning model decreases and participants will be more likely to employ a goal emulation model.  
 
Overall, the authors find that computational models employing an arbitration mechanism provided 
a better account of participant’s behavioral data compared to models employing a single strategy. 
This was supported by directly fitting the models to participant’s behavioral data and also 
simulating the models to demonstrate that both imitation and goal emulation behavior could be 
generated by the model. This is an important and often overlooked step when attempting to falsify 
computational models (Palminteri et al., 2017). In addition, the authors found that their 2 x 2 
design, crossing certainty in goals with volatility of payoff color, impacted the model’s arbitration 
weight. Low uncertainty conditions, where an agent’s choices more clearly indicate its goal, 
favored the use of emulation models over imitation, while imitation was favored slightly more in 
stable environments relative to volatile ones. These behavioral results from Study 1, centered 
within each subject, can be seen in Fig 1C.  
 
The authors explored brain regions that were potentially associated with the arbitration 
mechanism by correlating signals from their computational model with trial-to-trial fluctuations in 
BOLD signal. They found that the goal emulation reliability signal significantly correlated with the 
right anterior insula, while the imitation reliability signal correlated with the medial orbitofrontal 
cortex. They also calculated the degree of surprise in the goal emulation strategy when 
participant’s observed the outcome of the other agent’s actions by calculating the Kullback-Leibler 
divergence between the prior and posterior values of each color. They found that this surprise 
signal significantly correlated with regions associated with the salience network including bilateral 
insula, dorsal anterior cingulate, dorsolateral prefrontal cortex and parietal cortex.  
 
This paper provides a substantial improvement in our understanding of the computations 
underlying observational learning, particularly in how different types of learning strategies such 
as choice imitation and goal emulation can be flexibly applied across different learning 
environments that may vary in uncertainty and volatility. The field of social neuroscience is just 



 

beginning to embrace the use of computational models (Cheong et al., 2017) and this paper 
provides an important advance in demonstrating how to move beyond basic reinforcement 
models. Furthermore, this work demonstrates the importance of using carefully controlled 
experimental designs in developing new models and evaluating their performance across different 
experimental controls. However, one potential limitation to this approach is whether these models 
are specific to this particular experiment, or if they will generalize to other observational learning 
contexts. Looking to the future, we hope the field will begin to embrace the use of naturalistic 
designs when studying the neurocomputational mechanisms underlying social cognition 
(Wheatley et al., 2019). Real social interactions reflect non-stationary dynamic processes as 
people mutually adapt their behavior and may have different types of signals and error structures 
than will be present in an artificial interaction. Inadequately sampling the psychological 
phenomena of interest (e.g., goal emulation) with overly constrained experimental designs, will 
bias researchers to converge on overly simplistic explanatory models, which are unlikely to 
generalize to real world contexts (Jolly and Chang, 2019).  
 
A notable strength of this paper is the inclusion of an additional replication sample. The authors 
preregistered their computational models and brain findings based on Study 1 prior to the 
collection of Study 2. While some of their brain findings replicated, such as the correlations with 
goal emulation reliability and KL-divergence, unfortunately the correlation with imitation reliability 
in the OFC did not. It is currently unusual for researchers to include a replication sample in 
neuroimaging studies due to the large expense in collecting data. This practice is incredibly 
important for minimizing experimenter bias and overfitting data, particularly in studies that involve 
lots of experimenter degrees of freedom (e.g., computational models and neuroimaging). 
However, this replication study also raises new issues. First, how should replication results be 
reported? Charpentier et al (2020) present so many different analyses (e.g., ROI, whole-brain, 
different parametric regressors across 10 different computational models) across both study 
samples, that readers may have a difficult time sorting out what are the key results that they 
should take away from this work. Should preregistered hypotheses carry more value than ones 
generated after data collection even if the effects replicate across both studies? What about 
reviewers’ comments on the manuscript? Because these can never be preregistered, should they 
be demarcated as “exploratory”? Second, should we be more concerned with minimizing false 
positives or false negatives? Neuroimaging studies are traditionally highly underpowered 
(Cremers et al., 2017) with meta-analyses estimating an approximate power of 8% (Button et al., 
2013). If a single study is underpowered, then filtering results by additional underpowered 
replications will certainly reduce the likelihood of reporting a spurious finding, but will also 
dramatically increase the likelihood of missing true effects hidden in the data, which might have 
emerged if the two samples had been combined to increase the power. Third, replication studies 
are expensive and funding agencies and early career scientists may choose to prioritize new 
discoveries rather than confirming old ideas when deciding how to allocate their limited resources. 
This has the potential to further exacerbate the economic inequality across laboratories where 
only a limited number of well funded groups can afford to publish cutting edge work that includes 
independent replications. Though we certainly appreciate the importance of minimizing 
experimenter bias and false positives, there are many other important issues to consider with the 



 

use of preregistration and replication studies. We look forward to future discussions surrounding 
these important issues as the field begins to grapple with these quickly changing research norms. 
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