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Abstract

How do we learn in the absence of direct experience? In this paper, we discuss a recent paper
by Charpentier et al., 2000 that proposes a new computational account of observational
learning, which arbitrates between choice imitation and goal emulation.



Humans have a remarkable ability to learn how to navigate an environment in the absence of
direct experience by simply observing others (Olsson et al., 2020). For example, imagine traveling
to a foreign country and trying to order food without being able to understand the menu. How
would you accomplish this? One strategy is to simply copy others ahead of you in line - a form of
imitation learning. This will likely result in successfully getting something to eat, but does not
ensure that you will enjoy it. An alternative strategy is to instead infer other people’s goals and
emulate the one that is most consistent with your own. This requires the additional computation
of inferring a model of another person’s mental state (Gonzalez and Chang, In press).

Recently, Charpentier et al., (2020) sought to explore this question to better understand how
humans learn from observations. Using a novel behavioral task, participants observed another
agent choose between two of three presented slot machines. Each slot machine paid out a token
color (e.g., green, red or blue), but only one color could be exchanged for money, which was
unknown to the participants. Thus, participants could only learn which machine to pick by
observing the other agent’s choices. Participants were told that the other agent knew which color
yielded money, and that the winning color could change across trials. Participants had information
about the token color probabilities for each slot machine, and were able to see the outcome (e.g.,
token color) after the agent’s choice. Showing participants the token color returned by the chosen
slot machine, and not its explicit value, required participants to estimate which color was valuable
based solely on the agent’s actions.
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Figure 1. Observational learning task

Suppose the other agent selects the left slot machine (Fig 1A). From this example, it is clear that
the agent is not interested in the red token, but uncertain if the other agent’s goal was to maximize
the probability of a blue or green token. During all trials of a given block, the position (i.e., left,
middle, right) and probability distributions of each slot machine are fixed, however the unavailable
option varies to modulate the difficulty of goal inference. For example, if the rightmost machine in
Fig 1A was unavailable to the agent, a left choice would then clearly indicate a goal to obtain the
rewarding blue token. In a third of the trials, participants were able to play the game themselves
for the potential to earn money (Fig 1B). If the participant selected the middle slot machine after
observing Fig1A, then they most likely believed that the other agent’s goal was to maximize green
rather than blue tokens. Across blocks, the authors manipulated the uncertainty of the outcome
probability distributions and also switched which color is associated with a payoff, akin to a hidden
reversal.



The authors evaluated support for two different observational learning strategies. The choice
imitation model simply learned which slot machine (e.g., left, middle, or right) was more frequently
chosen by the other agent using reinforcement-learning. The goal emulation model, in contrast,
attempted to learn the other agent’s goal (i.e., which color yielded a payoff) by updating the value
of each color via an approximate bayesian updating rule and selecting the machine with the
highest overall expected value. In addition, the authors explored models that combined both
strategies and incorporated an arbitration control mechanism to determine which strategy should
be employed. The proposed arbitration mechanism is similar to previous work comparing
nonsocial model-free and model-based reinforcement-learning (Daw et al., 2005). The basic idea
is that the arbitration controller uses relative uncertainty to choose which strategy to employ.
When a particular strategy can accurately predict the agent’s choices, it gets a higher weight, but
when the model is “surprised” and starts to become less reliable, the other strategy gets a higher
weight. In other words, if the agent’s goals become more difficult to infer, then the reliability of a
goal emulation model decreases and an imitation model is favored. Conversely if the agent’s
choices appear to be more stochastic (due to rapidly changing goals), the reliability of an imitation
learning model decreases and participants will be more likely to employ a goal emulation model.

Overall, the authors find that computational models employing an arbitration mechanism provided
a better account of participant’s behavioral data compared to models employing a single strategy.
This was supported by directly fitting the models to participant’s behavioral data and also
simulating the models to demonstrate that both imitation and goal emulation behavior could be
generated by the model. This is an important and often overlooked step when attempting to falsify
computational models (Palminteri et al., 2017). In addition, the authors found that their 2 x 2
design, crossing certainty in goals with volatility of payoff color, impacted the model’s arbitration
weight. Low uncertainty conditions, where an agent’s choices more clearly indicate its goal,
favored the use of emulation models over imitation, while imitation was favored slightly more in
stable environments relative to volatile ones. These behavioral results from Study 1, centered
within each subject, can be seen in Fig 1C.

The authors explored brain regions that were potentially associated with the arbitration
mechanism by correlating signals from their computational model with trial-to-trial fluctuations in
BOLD signal. They found that the goal emulation reliability signal significantly correlated with the
right anterior insula, while the imitation reliability signal correlated with the medial orbitofrontal
cortex. They also calculated the degree of surprise in the goal emulation strategy when
participant’s observed the outcome of the other agent’s actions by calculating the Kullback-Leibler
divergence between the prior and posterior values of each color. They found that this surprise
signal significantly correlated with regions associated with the salience network including bilateral
insula, dorsal anterior cingulate, dorsolateral prefrontal cortex and parietal cortex.

This paper provides a substantial improvement in our understanding of the computations
underlying observational learning, particularly in how different types of learning strategies such
as choice imitation and goal emulation can be flexibly applied across different learning
environments that may vary in uncertainty and volatility. The field of social neuroscience is just



beginning to embrace the use of computational models (Cheong et al., 2017) and this paper
provides an important advance in demonstrating how to move beyond basic reinforcement
models. Furthermore, this work demonstrates the importance of using carefully controlled
experimental designs in developing new models and evaluating their performance across different
experimental controls. However, one potential limitation to this approach is whether these models
are specific to this particular experiment, or if they will generalize to other observational learning
contexts. Looking to the future, we hope the field will begin to embrace the use of naturalistic
designs when studying the neurocomputational mechanisms underlying social cognition
(Wheatley et al., 2019). Real social interactions reflect non-stationary dynamic processes as
people mutually adapt their behavior and may have different types of signals and error structures
than will be present in an artificial interaction. Inadequately sampling the psychological
phenomena of interest (e.g., goal emulation) with overly constrained experimental designs, will
bias researchers to converge on overly simplistic explanatory models, which are unlikely to
generalize to real world contexts (Jolly and Chang, 2019).

A notable strength of this paper is the inclusion of an additional replication sample. The authors
preregistered their computational models and brain findings based on Study 1 prior to the
collection of Study 2. While some of their brain findings replicated, such as the correlations with
goal emulation reliability and KL-divergence, unfortunately the correlation with imitation reliability
in the OFC did not. It is currently unusual for researchers to include a replication sample in
neuroimaging studies due to the large expense in collecting data. This practice is incredibly
important for minimizing experimenter bias and overfitting data, particularly in studies that involve
lots of experimenter degrees of freedom (e.g., computational models and neuroimaging).
However, this replication study also raises new issues. First, how should replication results be
reported? Charpentier et al (2020) present so many different analyses (e.g., ROI, whole-brain,
different parametric regressors across 10 different computational models) across both study
samples, that readers may have a difficult time sorting out what are the key results that they
should take away from this work. Should preregistered hypotheses carry more value than ones
generated after data collection even if the effects replicate across both studies? What about
reviewers’ comments on the manuscript? Because these can never be preregistered, should they
be demarcated as “exploratory”? Second, should we be more concerned with minimizing false
positives or false negatives? Neuroimaging studies are traditionally highly underpowered
(Cremers et al., 2017) with meta-analyses estimating an approximate power of 8% (Button et al.,
2013). If a single study is underpowered, then filtering results by additional underpowered
replications will certainly reduce the likelihood of reporting a spurious finding, but will also
dramatically increase the likelihood of missing true effects hidden in the data, which might have
emerged if the two samples had been combined to increase the power. Third, replication studies
are expensive and funding agencies and early career scientists may choose to prioritize new
discoveries rather than confirming old ideas when deciding how to allocate their limited resources.
This has the potential to further exacerbate the economic inequality across laboratories where
only a limited number of well funded groups can afford to publish cutting edge work that includes
independent replications. Though we certainly appreciate the importance of minimizing
experimenter bias and false positives, there are many other important issues to consider with the



use of preregistration and replication studies. We look forward to future discussions surrounding
these important issues as the field begins to grapple with these quickly changing research norms.
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