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Abstract 
 

Multivariate neuroimaging analyses constitute a powerful class of techniques to identify 
psychological representations. However, not all psychological processes are represented at the 
same spatial scale throughout the brain. This heterogeneity is apparent when comparing 
hierarchically organized local representations of perceptual processes to flexible transmodal 
representations of more abstract cognitive processes such as social and affective operations. 
An open question is how the spatial scale of analytic approaches interacts with the spatial scale 
of the representations under investigation. In this article, we describe how multivariate analyses 
can be viewed as existing on a spatial spectrum, anchored by searchlights used to identify 
locally distributed patterns of information on one end, whole brain approach used to identify 
diffuse neural representations at the other, and region-based approaches in between. We 
describe how these distinctions are an important and often overlooked analytic consideration 
and provide heuristics to compare these different techniques to choose based on the analyst’s 
inferential goals.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

INTRODUCTION 
 
The past decade has witnessed an explosion in empirical studies employing advanced            
statistical methods to understand brain representations. Traditional univariate analyses of          
functional magnetic resonance imaging data (fMRI) have historically focused on differences in            
magnitudes of activation ​(Friston ​et al.​, 1995)​, while more contemporary approaches have            
explored how spatial ​patterns of activity encode psychological information (multivariate pattern           
analysis; MVPA) ​(Haxby ​et al.​, 2014) and how the temporal ​dynamics of neural responses are               
shared across individuals (intersubject correlation; ISC) ​(Nastase ​et al.​, 2019)​. Unlike univariate            
techniques that independently model each voxel, these modern techniques often involve           
aggregating responses across multiple voxels during the modeling process (e.g. searchlights,           
regions of interest (ROIs), or whole brain). An underappreciated consideration when using these             
approaches is the ​spatial scale at which these analyses are performed. In this article, we will                
discuss how different psychological and cognitive processes may be reflected at different spatial             
scales and how this might impact choices in the analysis pipeline. We begin by exploring               
evidence for spatial-scale heterogeneity, then compare and contrast the most commonly           
employed techniques, and conclude with practical considerations for choosing methods best           
suited for different research questions. 
 
Spatial scale of representations in the brain 
 
Many contemporary fMRI methods focused on mapping brain representations or modeling           
neural synchrony require selecting specific ​spatial ​features to be used in an analysis (e.g. fMRI               
decoding, encoding, representational similarity analysis (RSA), ISC, intersubject        
representational similarity analysis (IS-RSA) ​(Naselaris ​et al.​, 2011; Diedrichsen and          
Kriegeskorte, 2017; van Baar ​et al.​, 2019; Chen ​et al.​, 2019; Nastase ​et al.​, 2019; Finn ​et al.​,                  
2020)​). In this context, features refer to the specific information that is entered into a model (e.g.                 
a group of voxels, the average activity in a cortical region, or a neural distance matrix) and used                  
to make inferences about a specific process, representation, or psychological state. Numerous            
published papers have made general recommendations about setting up and interpreting           
analyses with different techniques (e.g. ​(Haynes, 2015)​). However, these guides primarily make            
recommendations based on statistical considerations such as the interpretability of decoding           
accuracy ​(Etzel ​et al.​, 2013)​, or highlight what contemporary techniques offer beyond simple             
univariate contrasts of brain activity ​(Kriegeskorte and Bandettini, 2007)​.  
 
A key consideration often missing from these discussions is the spatial variability with which              
different kinds of neural and/or psychological information may be represented in the brain             
(Kragel ​et al.​, 2018)​. For example, considerable evidence stemming from neuronal recordings,            
univariate fMRI studies, neuropsychological investigations, computational modeling, and animal         
studies have demonstrated a reliable functional organizational scheme for sensory systems,           
with a particular focus on the visual system ​(Felleman and Van Essen, 1991; Grill-Spector and               
Malach, 2004; Hubel and Wiesel, 2004; Yamins ​et al.​, 2014)​. This modular organizational             
structure has served as a scaffold for much contemporary research, and has also importantly              
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impacted the ​analytic approaches ​used to make scientific discoveries. The structure of the             
visual system affords researchers the ability to test specific predictions and build models at fine               
spatial scales. Some notable examples include direct recordings of populations in preselected            
cortical patches ​(Chang and Tsao, 2017)​, or using local patterns of neural activity to              
topographically map how representations change and transform as information moves through           
the visual system ​(Kriegeskorte ​et al.​, 2006)​. It has also been a key driver of highly                
sophisticated contemporary work such as comparing features learned by layers of deep neural             
networks to neural representations in different stages of the ventral visual stream ​(Kriegeskorte,             
2015; Cichy ​et al.​, 2016; Yamins and DiCarlo, 2016)​. This scale of analysis comports well with                
consensus understanding of how perceptual systems are organized, and is well-suited for            
examining the brain through the lens of functional compartments or locally distributed            
populations of activity ​(Haxby ​et al.​, 2014; Kragel ​et al.​, 2018)​.  
 
In parallel, a large body of work has taken a more macroscopic view of brain organization by                 
examining how diffusely distributed representations and networks subserve different cognitive          
functions by dynamically adapting to the task at hand ​(Kragel ​et al.​, 2018)​. At this spatial scale,                 
cortical areas can be seen as belonging to various subtypes such as primary sensory-motor,              
unimodal associative, transmodal associative, paralimbic, and limbic ​(Mesulam, 1998)​. These          
subtypes demonstrate independent patterns of functional connectivity at rest (rsfMRI) and can            
be used to parcellate the brain into distinct networks ​(Power ​et al.​, 2011; Thomas Yeo ​et al.​,                 
2011; Glasser ​et al.​, 2016; Schaefer ​et al.​, 2016)​. Interestingly, several groups have             
demonstrated that subtypes of cortex vary markedly in the similarity between their structural and              
functional connectivity ​(Honey ​et al.​, 2009)​. For example, functional connectivity most closely            
resembles anatomical connectivity and microstructural properties in sensory and unimodal          
regions, but this resemblance breaks down in transmodal areas such as the default mode              
network (DMN) ​(Paquola ​et al.​, 2019; Vázquez-Rodríguez ​et al.​, 2019)​. Further, the variability in              
functional connectivity patterns appear to be organized around functional gradients that range            
from unimodal primary sensory regions to transmodal associative regions ​(Margulies ​et al.​,            
2016)​. In other words, neural activity at rest is organized in a manner consistent with the                
geometric structure of the brain. Brain regions farther away from primary sensory areas are              
responsible for less externally focused computations and more abstract modes of cognition (e.g.             
associative, multimodal, internally-directed). Transmodal regions often exhibit less hierarchical         
organization, denser interconnectivity, more top-down projections between cortical layers, and          
less laminar differentiation, which is believed to facilitate more abstract and flexible responding             
to different kinds of information ​(Paquola ​et al.​, 2019; Vázquez-Rodríguez ​et al.​, 2019)​.  
 
The contrast between these literatures serves to highlight the breadth of spatial scales at which               
the brain represents and supports different psychological and cognitive functions. If tight,            
localized, hierarchical organization of primary sensory systems represents one end of this            
range, the other appears to be a more spatially diffuse, abstract, and flexible organization of               
transmodal areas. In the field of social and affective neuroscience, there appears to be a               
network of brain regions, overlapping with the DMN, thought to reliably support socio-emotional             
processing ​(Lieberman, 2007; Adolphs, 2009)​. An open question, however, is whether the            
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functional organization of these regions resembles primary sensory systems with circumscribed           
functional subdivisions, or a more general structure such that all regions support            
socio-emotional cognition by flexibly adapting their responsibilities to the particular task at hand.  
 
There is some evidence that this social brain network may contain distinct cortical areas,              
patches, and populations of neurons with highly circumscribed responsibilities functionality          
tuned to specific aspects of a socioemotional experience, akin to functional specificity in primary              
sensory systems ​(Adolphs, 2009)​. Meta-analyses of the medial prefrontal cortex (mPFC), for            
example, posit the existence of distinct subdivisions for cognitive and emotional tasks ​(Amodio             
and Frith, 2006; De La Vega ​et al.​, 2016) and a dorsal to ventral gradient which delineates                 
representations about others or the self, respectively ​(Mitchell ​et al.​, 2006; Wagner ​et al.​, 2012;               
Sul ​et al.​, 2015)​. The temporoparietal junction (TPJ) has been strongly associated with             
theory-of-mind and specifically reasoning about others’ beliefs and intentions as distinct from            
their feelings and emotions ​(Saxe and Kanwisher, 2003/8; Peelen ​et al.​, 2010; Young ​et al.​,               
2010; Mc Kell Carter ​et al.​, 2012; Koster-Hale ​et al.​, 2017)​, akin to the relationship between the                 
fusiform gyrus and face processing ​(Kanwisher ​et al.​, 1997)​. However, subdivisions within this             
area show different patterns of functional connectivity with the rest of the brain, suggesting              
distinct local representations despite cortical proximity ​(Mitchell, 2008; Mars ​et al.​, 2012; Carter             
and Huettel, 2013)​. This work hints at a potentially fine-grained organizational structure within             
socio-emotional brain regions, but has yet to be characterized to the same degree of functional               
and spatial granularity as primary sensory systems.  
 
A different perspective proposes that socio-emotional representations might be more diffusely           
distributed because the phenomenological experiences themselves (e.g. feeling an emotion,          
inferring an intention) are by their very nature more abstract, consisting of the integration of               
numerous processes such as perception, memory, prediction, and interoception ​(Chang ​et al.​,            
2015; Barrett, 2017)​. Numerous studies support this account by demonstrating how regions            
within the DMN are critical for mental-state inference but also, prospection, episodic memory,             
navigation, narrative comprehension, mind-wandering, and high-level comprehension ​(Buckner        
and Carroll, 2007; Mason ​et al.​, 2007; Spreng ​et al.​, 2009; Simony ​et al.​, 2016; Tamir ​et al.​,                  
2016; Golchert ​et al.​, 2017)​. A wide range of brain regions, spanning multiple networks,              
including the default-mode, salience, and frontoparietal, appear to all be involved in the             
representation of emotions ​(Kober ​et al.​, 2008; Lindquist ​et al.​, 2012; Chang ​et al.​, 2015; Wager                
et al.​, 2015; Kragel and LaBar, 2016)​. Further, even local neural patterns within specific areas               
such as the anterior TPJ demonstrate flexible responding, as the same neural populations             
encode information about distances in space, time, as well as social ties ​(Parkinson ​et al.​, 2014)                
or are broadly involved in establishing social context ​(Carter and Huettel, 2013)​. In this view,               
socio-emotional representations are entangled with other cognitive processes because they          
depend upon them. As such, neural representations appear to be correspondingly diffuse,            
recruiting distributed dynamic brain-networks that can flexibly represent the highly abstract           
nature of social and emotional experiences.  
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What is the problem? 
 
Given the heterogeneity of the spatial scale of different psychological processes, ​this            
immediately raises a question: ​how do the spatial scales of various analytic techniques interact              
with the representations they are measuring? For example, due to their inherently small spatial              
scale, searchlights are highly sensitive to identifying locally distributed patterns ​(Kriegeskorte ​et            
al.​, 2008; Kriegeskorte and Diedrichsen, 2019)​, making them well suited to investigating            
representations that themselves are organized in a fine-grained manner (e.g. perceptual           
features). On the other hand, whole brain models, that jointly model functional responses across              
the entire brain, have been more successful than searchlights in identifying sensitive and             
specific predictive models of more abstract psychological processes such as pain ​(Wager ​et al.​,              
2013)​, negative affect ​(Chang ​et al.​, 2015)​, guilt ​(Yu ​et al.​, 2020)​, empathy ​(Krishnan ​et al.​,                
2016; López-Solà ​et al.​, 2017)​, and identifying supramodal emotion categories ​(Kragel and            
LaBar, 2016)​. These examples raise the possibility that the efficient study of neural             
representations requires methods that coincide with the scale at which representations are            
organized. This problem is similar in nature to the choice of spatial smoothing kernel used in                
conventional fMRI analysis, whereby the optimal kernel size is dictated by the spatial extent of               
the hemodynamic response function as per the matched filter theorem ​(Friston, 2007)​. A large              
body of work has investigated how acquisition parameters like spatial resolution and            
pre-processing choices like smoothing affect the sensitivity of various analyses such as fMRI             
decoding (e.g ​(Gardumi ​et al.​, 2016; Todd ​et al.​, 2016; Yoo ​et al.​, 2018)​). However, there have                 
been far fewer studies investigating the optimal spatial scale (“kernel size”) of different             
multivariate analysis techniques (e.g. ​(Stelzer ​et al.​, 2014)​). This necessitates that researchers            
carefully consider the spatial scale of their analyses, rather than defaulting to particular             
pipelines. To aid in this process, we compare and contrast how common methodological             
conventions may interact with the spatial scale of neural representations.  
 
Current conventions 
 
Whether researchers are performing MVPA analyses to test information encoding or decoding,            
ISC analyses to measure neural synchrony, or connectivity analyses to examine networks, each             
technique implicitly or explicitly constrains the spatial scale at which statistics are computed.             
Should separate statistical models be built for different voxels, neighborhoods, or regions of the              
brain (i.e. independent groups of voxels)? And if so, how should this be determined? Should               
predictions, weights, and variability from these models be combined to make inferences? And if              
so, how? Because different answers to these questions ultimately test very different statistical             
models, ​spatial ​feature selection becomes a key decision that always adds additional            
assumptions or constraints to the hypotheses being tested and the conclusions being drawn.             
Fortunately, there are numerous options available to researchers that fall along a spectrum of              
fine-grain to diffuse spatial scales  (Figure 1). 1

1 Because all methods fundamentally operate on information contained in voxels, fine-grained in this 
context refers to information in voxel patterns comprised of ​small​ (often-contiguous) ​spatial 
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Searchlights 
The popular searchlight approach ​(Kriegeskorte ​et al.​, 2006; Kriegeskorte and Bandettini, 2007)            
lies at one end of the spectrum and can be viewed as the “mass-multivariate” analogue to the                 
“mass-univariate” approach popular in conventional activation-based fMRI analyses ​(Friston ​et          
al.​, 1995)​. Searchlight analyses only consider information contained in local, overlapping           
neighborhoods around each voxel defined by a radius, and ignore how information may be              
distributed across spatial scales outside of those local neighborhoods. In this way, searchlights             
may ignore relevant signals in more diffuse representations such as emotions, and are             
consistently outperformed by whole brain or regional models in those situations ​(Kragel ​et al.​,              
2018)​. When used for decoding analyses, searchlights are equivalent to feature           
subset-selection in the machine-learning literature, whereby subsets are determined by the           
coordinates of each voxel and the radius of each searchlight ​(Hastie ​et al.​, 2009)​. Similar to                
their univariate counterpart, searchlights are agnostic to functional or anatomical subdivisions           
and typically require as many statistical computations as voxels in the brain. Though rarely              
directly contrasted, searchlights can be easily compared as they are most often computed with              
the same radius size and therefore different searchlights contain the same number of voxels. 
  

 
Figure 1 | Spatial scales of different analytic strategies 
Most common analytic methods can be seen as lying on a spectrum of varying spatial scales.                
Searchlights (left) represent one endpoint of this spectrum as they are well suited for modeling               
information at small spatial scales such as fine-grained neural patterns in a local neighborhood around a                
voxel defined by a radius size. ROI (middle) approaches can be used to model larger spatial scales                 
explicitly taking into account functional and anatomical divisions. Multiple ROIs can be combined together              
to model even larger spatial extents such as functional networks. Whole brain (right) approaches              
represent the other endpoint of this spectrum as they are well suited for modeling diffuse representations                
that extend beyond local neighborhoods, regions, and networks.  
 
Regions of Interest 
At a larger spatial scale, ROI approaches consist of groups of voxels determined by anatomical               
or functional divisions. There are broadly two types of ROI approaches: (a) ​contiguous and (b)               

neighborhoods ​, whereas diffuse refers to voxel patterns encompassing much larger contiguous or 
non-contiguous spatial extents.  

https://paperpile.com/c/nl5wGE/HZ7u+fbCE
https://paperpile.com/c/nl5wGE/HZ7u+fbCE
https://paperpile.com/c/nl5wGE/HZ7u+fbCE
https://paperpile.com/c/nl5wGE/V1II
https://paperpile.com/c/nl5wGE/V1II
https://paperpile.com/c/nl5wGE/V1II
https://paperpile.com/c/nl5wGE/V1II
https://paperpile.com/c/nl5wGE/DpqZ
https://paperpile.com/c/nl5wGE/DpqZ
https://paperpile.com/c/nl5wGE/DpqZ
https://paperpile.com/c/nl5wGE/DpqZ
https://paperpile.com/c/nl5wGE/mk1y
https://paperpile.com/c/nl5wGE/mk1y
https://paperpile.com/c/nl5wGE/mk1y


 

non-contiguous​. Contiguous approaches consist of voxel-groups that are spatially constrained          
to cover a continuous area of the brain, whereas non-contiguous approaches include both             
spatially contiguous but also spatially disjoint groups of voxels such as functional networks.             
Non-contiguous ROIs by their nature tend to encompass a larger spatial extent than contiguous              
regions. In both cases, spatial constraints are typically determined in two ways. One approach              
leverages ​functional responses, measured for example by using functional localizers from           
independent data ​(Saxe ​et al.​, 2006)​, or by directly pruning voxels using techniques such as               
recursive feature elimination ​(De Martino ​et al.​, 2008)​. The other approach relies on ​anatomical              
boundaries typically determined from brain atlases, rsfMRI connectivity network parcellations, or           
meta-analyses ​(Yarkoni ​et al.​, 2011; Chang ​et al.​, 2013; De La Vega ​et al.​, 2016; Eickhoff ​et al.​,                  
2018; Shenton ​et al.​, n.d.)​. The number of unique statistical computations estimated in the ROI               
approach is generally fewer than the searchlight approach and is determined based on the              
number of distinct regions selected. Unlike searchlights, ROI approaches can directly leverage            
known anatomical distinctions or functional response profiles as part of the spatial feature             
selection process. This flexibility enables them to capture a wide range of spatial scales, for               
example, modeling multiple distinct brain regions together, or differentiating cortical          
sub-divisions across multiple models. More generally, ROI approaches are tests of focal            
hypotheses constrained to locations researchers often believe to be relevant a priori, such as              
social brain regions ​(Thornton and Mitchell, 2017)​. However, with this flexibility comes a             
trade-off in consistency across analyses. Comparisons across regions can become more           
complicated as ROIs typically don’t contain the same number of voxels.  
 
Whole brain models 
Whole brain models reflect the largest spatial scale as they consider all voxels and their               
covariance during model estimation. In contrast to numerous small searchlights or ROIs, the             
whole brain approach can be viewed as a “single searchlight/region” with a radius large enough               
to encompass all brain voxels. This approach can be used with unsupervised methods such as               
independent components analysis ​(Calhoun ​et al.​, 2001; Beckmann ​et al.​, 2005)​, or supervised             
methods such as decoding ​(Wager ​et al.​, 2013; Chang ​et al.​, 2015)​. Like searchlights, no               
anatomical information is explicitly used to determine the spatial scale of whole brain models.              
However, in decoding analyses, some more sophisticated algorithms can incorporate          
information about spatial smoothness or regional connectivity to find model estimates that better             
reflect regional structure by forcing spatial constraints ​(Baldassarre ​et al.​, 2012; Gramfort ​et al.​,              
2013; Grosenick ​et al.​, 2013)​. Whole brain prediction analyses can provide a single model              
comprised of feature weights at each voxel that are simple to test in additional experimental               
contexts. Such generalization tests are highly valuable as they can provide valid reverse             
inference ​(Varoquaux and Poldrack, 2019) and also aid in identifying relative voxel importance             
(with caveats) ​(Haufe ​et al.​, 2014; Kriegeskorte and Douglas, 2019)​. In addition, generalization             
tests can facilitate psychological construct validity, whereby model performance in different           
contexts can provide measurement information about the sensitivity and specificity of how a             
particular psychological construct is defined (e.g. different types of pain, memory, touch) ​(Kragel             
et al.​, 2018)​. For this reason, these models have been particularly popular in translational and               
affective neuroscience whereas whole brain decoders have been used as “biomarkers” because            
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they generalize well across populations and tasks even within a single subject ​(Wager ​et al.​,               
2013; Gabrieli ​et al.​, 2015; Lindquist ​et al.​, 2015; Krishnan ​et al.​, 2016; Woo ​et al.​, 2017; Kragel                  
et al.​, 2018)​.  
 
ANALYTIC CONSIDERATIONS 
 
There are several key factors that researchers might consider when choosing between different             
scales of spatial feature selection. We have organized these factors into three broad categories.              
The first concerns subjective choices such as the goals of a particular analysis and the types of                 
inferences researchers hope to make. The second comprises practical considerations for           
reliable statistical estimation. The third concerns computational resource availability and the           
trade-offs between different approaches. A summary of these comparisons is listed in Table 1. 
 

 
Figure 2 | Interactions between methodological and representational spatial scales 
Depending on the type of phenomenon under inquiry some analytic techniques may be more or less                
optimal. Increasing spatial scale of analysis techniques are depicted on the x-axis with searchlights at the                
small (left) end and whole brain approaches on the large (right) end; these mirror the spectrum Figure 1.                  
The y-axis depicts hypothetical endpoints of representational scales with fine-grained local patterns in the              
bottom row (e.g. perceptual processes) and more diffuse patterns in the top row (e.g. social and                
emotional processes). Fine scale methods like searchlights may fail to capture diffuse representations as              
local neighborhoods provide a distorted view of a diffuse representation (top-row; left). These same              
methods may be optimal for finer neural representation in which all relevant information is reflected in a                 
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local neighborhood (bottom-row; left). On the other hand large scale methods such as whole brain               
approaches may be unable to reliably identify informative voxels when representations are organized in              
local neighborhoods (bottom-row; right) and may be better suited to identifying diffuse representations             
with large spatial extents (top-row; right). ROI approaches (top/bottom-row; middle) offer a flexible             
compromise, inheriting both the strengths and weaknesses of searchlight and whole brain approaches             
depending on the particular ROI method employed. At the same time, the smallest spatial scale               
measurable by fMRI is likely limited by the BOLD point-spread-function (PSF) at a particular magnetic               
field strength, e.g. 3-5mm at 3T ​(Parkes ​et al.​, 2005)​. 
 
What is the goal? 
 
A primary distinguishing factor between different analytic techniques is the type of inference             
researchers want to make. Broadly construed, modeling falls into two “cultures,” ​(Breiman,            
2001; Yarkoni and Westfall, 2016)​: ​inference emphasizes model interpretability and is evaluated            
using null-hypothesis-significance-testing (NHST) in a single context (e.g. a single dataset or            
task), while ​prediction ​emphasizes ​generalizability to new contexts and is evaluated based on             
out-of-sample model performance ​(Bzdok and Ioannidis, 2019)​. While this characterization          
cleanly distinguishes univariate magnitude based analyses and multivariate predictive analyses,          
different multivariate analyses often conflate both goals in confusing ways ​(Hebart and Baker,             
2018)​. For example, searchlight analysis was primarily conceived of as an information mapping             
technique and, when combined with cross-validated decoding, can approximate out-of-sample          
performance to make inferences about “where information is represented” ​(Kriegeskorte ​et al.​,            
2006; Kriegeskorte and Bandettini, 2007)​. Decoding in the context of whole brain models has              
focused primarily on predictive performance and generalization to a variety of contexts such as              
developing brain-computer-interfaces ​(Woo ​et al.​, 2017; Hebart and Baker, 2018)​.  
 
Reflecting these differences, results from searchlight analyses are typically reported as           
accuracy maps and inference is performed by comparing accuracy at each searchlight to             
empirical or permuted chance ​(Haynes, 2015) (Table 1 Conventional Inferences). However, the            
feasible conclusions that can be drawn from this approach only indicate whether ​at least one               
voxel in a local neighborhood is related to the outcome being predicted, not necessarily that               
every voxel in that neighborhood is reliably representing psychological information          
(Viswanathan ​et al.​, 2012; Etzel ​et al.​, 2013) . Feature weights within a searchlight are almost               2

never examined nor used to make predictions on completely distinct datasets. This is due to the                
fact that searchlights are most often overlapping, leading each voxel to have a different feature               
weight depending upon the particular searchlight (local neighborhood) it belongs to. This makes             
it infeasible to perform traditional feature importance testing (e.g. bootstrapping/permutation          
testing) as there are numerous possible ways to integrate these different weights across             
searchlights (e.g. see MIDAS ​(Varol ​et al.​, 2018)​). With increasing radius size these issues              
make it nearly impossible to identify which voxels are most important for prediction, as accuracy               
scores are “smeared” over spatial extents because searchlights are overlapping ​(Viswanathan           

2 This same criticism does not necessarily apply to searchlight-RSA or searchlight-ISC analyses 
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et al.​, 2012) . Searchlight analyses are also often computed on individual brains and             3

performance metrics (e.g. accuracy) are aggregated at the group level to draw inferences             
(Stelzer ​et al.​, 2014)​. This also means that the particular geometry of a representation (i.e. the                
spatial layout of feature weights within a local neighborhood) are likely to differ across              
individuals, greatly complicating what types of valid group inferences are possible. Unlike            
univariate activation analyses, rejecting the null-hypothesis of conventional parametric tests on           
accuracies (e.g. one-sample t-test) only suggests that ​some individuals demonstrate an effect            
not that the effect is ​typical in the population ​(Nichols ​et al.​, 2005; Stelzer ​et al.​, 2013; Allefeld ​et                   
al.​, 2016)​.  
 
In contrast, whole brain analyses are often concerned with generalization to completely new             
datasets, which can be comprised of different individuals ​(Woo ​et al.​, 2017)​. While predictive              
performance is essential in translational applications, the resulting feature weights at each voxel             
also provide some useful information as to the spatial layout of the representations e.g. “neural               
signature” ​(Wager ​et al.​, 2013)​. Feature importance (Table 1 Conventional Inferences) can be             
assessed by thresholding via resampling methods such as bootstrapping or permutation           
(Stelzer ​et al.​, 2014; Chang ​et al.​, 2015)​, however, the resulting thresholded maps must be               
interpreted with caution. Unlike univariate activation maps, reliable weight maps do not indicate             
that a voxel explicitly represents psychological information, but that in concert with other voxels              
it can effectively predict an outcome ​(Haufe ​et al.​, 2014)​. In other words, some voxels may                
indeed represent outcome-relevant information, but some may serve to denoise other voxels            
which share correlated noise ​(Kriegeskorte and Douglas, 2019)​.  
 
ROI analyses are flexible enough to inherit the strengths and weaknesses of both searchlight              
and whole brain analyses depending on the details of an implementation. Separate models can              
be estimated for disjoint ROIs and aggregated to make predictions, similar to kernel-learning in              
machine learning, where different kernels are used for different regions ​(Filippone ​et al.​, 2012;              
Schrouff ​et al.​, 2013)​. A single model encompassing multiple disjoint voxels can also be              
estimated to draw inferences about a network of regions or voxels that share similar functional               
response profiles, e.g. “social-brain mask” ​(Thornton and Mitchell, 2017)​. Because ROI methods            
don’t typically involve overlapping features like searchlights, accuracy maps do not suffer from             
spatial “smearing,” and feature weights can be examined for relative voxel importance similar to              
whole brain models ​(Chang ​et al.​, 2018)​. At the same time, performance metrics and              
generalization tests on separate datasets and contexts are feasible and straightforward,           
permitting inferences about the sensitivity and specificity of representations within single brain            
regions ​(Chang ​et al.​, 2015; Krishnan ​et al.​, 2016)​.  
 
Thus, each end of the spectrum varies in its inferential goals. Searchlight decoding permits              
spatial inference based on isolated local neighborhoods tested in similar contexts while ignoring             
how that information is represented (ignoring feature weights) unless explicitly modeled with            
approaches like RSA. Because they are typically estimated separately across individuals, they            

3 Smearing however, can happen in principal with searchlight-RSA and searchlight-ISC analyses 
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do not identify shared or common representations, but rather whether any kind of task-relevant              
representations exist in the brain ​(Allefeld ​et al.​, 2016)​. Whole brain models permit strong              
inferences about generalization, based on model performance, and diffuse inferences about the            
spatial location of representations based on feature weights. Most often in practice, whole brain              
models aim to learn a common representation that generalizes across individuals. Regional            
approaches land in-between these endpoints based on their particular implementation. All           
methods however, can extend beyond simple decoding analyses to facilitate stronger           
inferences. Searchlight analyses can use cross-validated RSA or pattern-component-modeling         
(PCM) with model comparison to test hypotheses about what stimulus features geometrically            
organize information within a neighborhood ​(Nastase ​et al.​, 2017; Kriegeskorte and           
Diedrichsen, 2019)​. Different whole brain feature weight maps can be compared within the             
same context to determine representational specificity, shared information, and facilitate valid           
reverse inferences ​(Krishnan ​et al.​, 2016; Varoquaux and Poldrack, 2019)​.  
 
Model estimation 
 
The most common multivariate fMRI analyses are typically decoding models and RSA            4

(Kriegeskorte ​et al.​, 2006; Norman ​et al.​, 2006)​. In decoding approaches, voxels are considered              
features​, while time-points, trials, individuals, or sessions serve as ​observations. ​Building a            
statistical model (e.g. a classifier, regression) requires estimating ​weights for features that can             
be combined to predict an ​outcome that generalizes over observations, such as properties of a               
task/stimulus (e.g. condition or category labels) or responses from individuals (e.g. behavior,            
emotional ratings) . Voxel-selection procedures are the primary determinant of inputs that a            5

statistical model uses to predict an outcome. This means the successful statistical estimation is              
heavily affected by the ratio between the number of features (​p​) and number of observations (​n​)                
(Hastie ​et al.​, 2009)​. When ​n ​>= p, (more or equivalent observations than features) a model can                 
be consistently estimated without further constraints. However, situations where ​n < ​p (fewer             6

observations than features) yield a statistically underdetermined problem such that many unique            
combinations of features weights can yield the same predicted outcome. This issue is further              
exacerbated by the degree of independence between features. For example, spatial smoothing            
is a preprocessing step that can help boost signal to noise ratios, but decreases spatial               
independence. Together these issues can lead to models that exhibit ​overfitting , whereby            7

4 While encoding models can also be viewed as a kind of multivariate model, they are most often 
multivariate in ​stimulus feature space​ but univariate in brain-space. In other words, high-dimensional 
models are primarily used to fit and predict a single voxel’s responses rather than a local or global spatial 
pattern ​(Nishimoto ​et al.​, 2011; Huth ​et al.​, 2016) 
5 This delineation doesn’t perfectly capture RSA analyses as models are typically distance matrices 
derived from stimulus or task features and outcomes are neural distance matrices based on responses to 
those stimulus or task features.  
6 Consistently here refers to a single solution (weights) that maps between features and outcomes 
conditional on some error/loss function (e.g. sum-of-squared errors/L​2​ norm​ in linear regression). 
7 Underfitting​ is also possible, whereby feature weight fails to capture the true signal in a data, but occurs 
less often in fMRI analyses. This is because in most datasets, irrespective of spatial scale, researchers 
rarely have ​more​ observations being predicted (e.g. trials, conditions, individuals) than features used to 
make predictions (e.g. voxels), i.e. ​n​ < ​p​ or ​n​ << ​p​. 
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feature weights reflect both true signal but also idiosyncratic noise and generalize poorly to new               
data. To combat these issues, most estimation routines rely on some form of regularization,              
whereby constraints or penalties are used to limit the range of possible estimated feature              
weights. Common approaches include minimizing the squared (ridge, L​2 penalty) or absolute            
magnitude (lasso, L​1 penalty) ​(Hastie ​et al.​, 2009) of feature weights. In many cases, these               
penalization techniques are similar to imposing differently shaped priors in Bayesian models            
(James ​et al.​, 2013; Nunez-Elizalde ​et al.​, 2019)​.  
 
Since searchlights focus on local neighborhoods, their radius size, along with the details of an               
experimental task (e.g. number of conditions, trials, trials per condition etc), determine the ratio              
between features (voxels) and observations (trials, conditions) (Table 1 Estimation). Small           
neighborhoods comprise few features (e.g. ~28 voxels in a 6mm radius searchlight collected at              
2mm voxel resolution volume) meaning approximately equivalent number of observations and           
features (​n ​~ ​p​) or a smaller imbalance of more features than observations (​n ​< p​; e.g. 100                  
voxels to 80 observations ​(Nastase ​et al.​, 2017)​). This may facilitate algorithms that require less               
regularization as evidenced by the popular use of linear models (e.g.           
linear-discriminant-analysis (LDA) and support-vector-machine (SVM)) that exhibit good        
performance using default or variance-scaled hyperparameters rather than optimal         
hyperparameters tuned via cross-validation (e.g. ​(Norman ​et al.​, 2006; Hanke ​et al.​, 2009)​.             
However, radii are often arbitrarily chosen based on sizes in previous studies and can have               
large effects on this ratio and thus may require different statistical models and regularization              
strategies, e.g. cross-validated MANOVA ​(Allefeld and Haynes, 2014)​. In addition, multiple           
comparisons corrections are needed to adjust for the large number of estimated models ​(Etzel              
et al.​, 2013)​.  
 
Since whole brain models include all voxels and are often used to identify representations that               
generalize across individuals, the features greatly outnumber observations (​n << ​p​; e.g. 350k             
voxels to 182 individuals ​(Chang ​et al.​, 2015)​) often requiring stronger regularization ​(Kragel ​et              
al.​, 2018) (Table 1 Estimation). For this reason, several studies use rigorous nested             
cross-validation along with independent hold-out sets to first tune regularization          
hyperparameters, then evaluate cross-validated predicted performance, and finally test         
generalization performance on completely new individuals ​(Wager ​et al.​, 2013; Chang ​et al.​,             
2015; López-Solà ​et al.​, 2017; Kragel ​et al.​, 2018)​. Another popular regularization approach is              
the LASSO-PCR, in which dimensionality reduction over all brain voxels is first performed using              
principal components analysis (PCA) followed by a sparse regression model (LASSO) to            8

estimate weights on each principal component that are later inverted back into voxel space              
(Wager ​et al.​, 2011)​. This approach jointly considers large groups of voxels with similar              
responses as single features used for prediction and produces sparse weight maps where only              
a few such voxel groups contribute strongly to prediction.  
 

8 In practice the maximum number of retainable components is limited to the number of observations, 
typically individuals, in the dataset. 
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As noted in the previous section, the flexibility of ROI approaches, and the particular              
implementation chosen, will largely dictate the properties of an estimation regime. However,            
using a particular implementation such as non-overlapping, but contiguous ROIs, it may be             
possible to balance the strengths and weakness of both searchlight and whole-brain            
approaches (e.g. smaller neighborhoods, necessitates less regularization, but with estimable          
feature importance maps that can be used for generalization testing).  
 
Computational Resources 
 
The differences in inference and estimation routines between different techniques also impose            
different demands on computational resources (Table 1 Compute Cost). Broadly speaking,           
resources can be divided into three categories: (a) central processing units (CPU) time - the               
number of independent estimations required, the time required for each, and the serial or              
parallelizability of the estimations; (b) random access memory (RAM) - the “temporary” working             
memory required to perform each estimation, typically determined by how and whether a             
particular algorithm needs to operate on all features and observations together, or can operate              
on them in a piecewise (batch) fashion; (c) Storage - the hard disk space required to store the                  
outputs of an estimation routine and the format of this storage which can determine ease of                
sharing models.  
 
At the small spatial scale end of the spectrum, searchlights often demand high CPU costs, low                
to medium memory, and most often, low storage. This is because searchlight analyses require              
estimating as many models as there are voxels in a dataset. However, estimations can proceed               
in parallel and because features come from local neighborhoods with a small number of voxels,               
memory demands are typically low as well. Memory demands increase monotonically with            
increasing features and/or observations, i.e. larger radius or more task trials/conditions. If            
inferences are primarily made using accuracy maps, then storage is simple as a single value               
can be stored at each voxel location which can be easily shared. However, if researchers intend                
to store feature weights for each searchlight, storage becomes more complex due to large              
demands on disk-space and complicated indexing assigning feature weight vectors to each            
voxel location.  
 
At the large spatial scale end of the spectrum, whole brain models often demand low CPU                
costs, high memory, and low and simple storage. Because all voxels are used for estimation,               
only a single model needs be computed. However, because algorithms require operating on all              
voxels and observations simultaneously, they must hold and manipulate very large matrices            
(e.g. whole brian covariance matrix of 3k observations (100 participants with 30 trials each) by               
200k voxels) in memory. Storage costs are low and straightforward as a model consists of a                
single scalar performance score and each voxel is only associated with a single feature weight,               
making whole brain models very easy to share and test on new datasets.  
 
As with other analytic considerations, ROI approaches typically fall between searchlight and            
whole brain analyses with relatively medium CPU costs and memory, but simple and low              



 

storage requirements. CPU costs can be minimized using parallelization like searchlight           
analyses. Memory demands scale with the size of each ROI as larger regions (e.g.              
non-contiguous default mode network mask) require manipulating more features and          
observations together. Since ROI models are typically non-overlapping, they share storage           
demands similar to whole brain models as feature-weights from different regions can be stored              
together in a single file along with binary masks to later extract the weights and apply them to                  
new data. Accuracy maps derived from ROI models are similar to those estimated from              
searchlights, as only a single value needs to be associated with each voxel location.  
 
For all spatial scales, cross-validation or non-parametric inference using resampling methods           
such as bootstrapping and permutation testing, will dramatically increase CPU costs and can             
potentially increase memory or storage requirements. This is because resampling methods           
require re-estimating a completely new model for each cross-validation fold and           
bootstrapped/permuted iteration. In the case of cross-validation or permutation testing, only the            
performance of each iteration needs to be retained, keeping storage costs low. However,             
bootstrapping distributions of feature weights requires retaining each iteration in order to define             
upper and lower uncertainty bounds (e.g. confidence intervals), thereby increasing costs           
depending upon researchers’ goals. For example, keeping feature weights in memory can            
reduce storage costs at the expense of increased RAM and decreased analytic flexibility down              
the line (e.g. loading and estimating a distribution). Saving feature weights to disk on the other                
hand, increases storage costs by a factor of bootstrap iterations (each iteration produces a new               
set of feature weights of the same shape and size as the original model), but provides more                 
analytic flexibility later on. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
In this article we have highlighted literature demonstrating how neural representations can exist 
at multiple spatial scales across the brain. Representations related to perceptual processes are 
often localized to small neighborhoods with highly specific response properties and hierarchical 
organization. Representations related to more abstract modes of cognition like social and 
emotional processing have been observed at fine spatial scales, but more often consist of 
diffuse spatial representations spanning multiple regions and networks. This representational 
heterogeneity can interact with the spatial scale of particular analytic techniques, ranging from 
fine-grain pattern sensitivity in local neighborhoods (searchlights), focal tests of specific regions 
and networks (ROI), to whole brain neural markers that generalize across experimental 
contexts.  
 
While it may be tempting to iterate over many possible analyses and attempt to “optimize” for 
the “best” spatial scale, we caution researchers against framing the issue in this way given the 
lack of research specifically addressing this issue. For example, techniques like model 
comparison between searchlights and whole brain models are not trivial or even feasible to 
perform in most cases. Whole brain approaches estimate a single model, but other approaches 
estimate N models, where N is the number of ROIs or searchlights. Which of the N models 



 

should be used to compare to the whole brain model? Or should N models be combined into an 
ensemble? And if so how? One possible approach illustrated by Chang et al., ​(2015)​ (Fig S4 
Panel B) and Kragel et al., ​(2018)​ (Fig 3) compares the ​performance​ of whole brain models to 
the entire distribution of searchlight models, but is unable to directly compare how different 
model weights capture the representation of emotions. Adding decision points to analysis 
pipelines without cross-validation multiplies analytic flexibility and will likely increase experiment 
level false-positive rates or facilitate “p-hacking” ​(Carp, 2012)​. Instead, we recommend 
researchers more carefully select their analytic approach using a combination of empirical 
goals, estimation techniques, and computational resources to determine what makes the most 
sense for the investigation at hand. At the same time, we believe the field may benefit from 
investigations directly examining the spatial scale of psychological phenomena thereby bringing 
greater clarity and more progress to this understudied issue.  
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Table 1 | Comparison of different analytics strategies 
This table compares searchlight, ROI, and whole brain approaches in terms of their strengths and 
weaknesses along three categories: inferential goals, model estimation, and computational resource 
demands. Legend: ​n​: number of observations; ​p​: number of features; ​~​: approximately equal; ​<​ or >: less 
or greater than; ​<<​ or ​>>​: much less or much greater than 

9 The number of dimensions of predictive group models are typically limited by the number of participants 
in the dataset. 

 Searchlight ROI Whole brain 

Spatial Scale Fine-grained and fixed. 
 
 
Determined by 
searchlight radius 
which is typically the 
same for all 
searchlights.  

Medium and flexible. 
 
 
Determined by how ROI 
was parcellated (e.g. 
functional responses, 
anatomy, network). 
Size reflects variable 
anatomy or functional 
response profiles. 

Diffuse and fixed. 
 
 
Determined by sampling 
resolution of data 
(number of voxels). 

Conventional 
inferences  

Predictive 
performance of each 
searchlight (e.g. 
accuracy, 
correlation-distance). 
 
Feature weights within 
searchlights typically 
not examined. 
 
Separate statistical 
models per individual 
and model 
performance 
aggregated at the 
group level. 

Predictive performance 
for each ROI. 
 
 
 
 
Feature weights within 
ROIs highlight most 
informative voxels. 
 
Separate or common 
models across 
individuals. 

Single predictive 
performance for model.  
 
 
 
 
Feature weights highlight 
most informative voxels. 
 
 
Separate or common 
models across 
individuals. 

Estimation 
(decoding) 

Independent models 
with overlapping 
features and some 
regularization (e.g. 
SVM).  
 
 
Anatomy is not part of 
estimation. 

Independent models 
with non-overlapping 
features and medium 
regularization (e.g. 
SVM, ridge) 
 
 
Anatomy can be used 
to define regions. 

Single model that uses 
global covariance across 
all features with high 
regularization and/or 
dimensionality reduction 
(e.g. LASSO-PCR ) 9

 
Anatomy is not part of 
estimation but provide 



 

10 See structured sparsity models ​(Baldassarre ​et al.​, 2012; Gramfort ​et al.​, 2013; Grosenick ​et al.​, 2013) 

 
 
 
n > p; n ~ p ; n < p 

 
 
 
n < p; n << p 

constraints . 10

 
n << p 

Compute 
Cost 
(CPU-time) 

High 
 
Large number of 
independent 
estimations required; 
more with permutation 
testing 
 
Parallelization can 
reduce cost, but 
integrating results can 
be complicated 

Medium 
 
Number of estimations 
depends on number of 
regions 
 
 
 
Parallelization can 
reduce cost and 
integrating results is 
straightforward  

Low 
 
Typically just one 
estimation and 
permutation regime 
performed 
 
 
Parallelization is not 
trivial or not possible 
except for permutation 
testing or bootstrapping 
weights 

Compute 
Cost 
(Memory) 

Low/Medium memory 
 
Each searchlight has a 
small/medium memory 
footprint determined by 
radius and number of 
trials/conditions.  
 
 
Estimation rarely 
requires operating on 
all searchlight models 
simultaneously. 

Medium memory 
 
Memory cost scales 
with the size of regions 
selected and number of 
trials/conditions/particip
ants.  
 
 
Estimation rarely 
requires operating all 
ROI models 
simultaneously.  

High memory 
 
Memory cost typically 
depends on total number 
of voxels (sampling 
resolution) and specific 
estimation routine (e.g. 
SVD).  
 
Estimation almost always 
requires operating on all 
voxels and observations 
simultaneously; 
exacerbated for 
between-subject models 
that require operating on 
many individual 
participants 
simultaneously 

Compute 
cost 
(Storage + 
Ease of 
Sharing) 

Low and simple if 
primarily working with 
performance only (e.g. 
accuracy maps, 
distance-correlation) 
because each voxel is 

Low and simple 
because ROIs are most 
often non-overlapping 
and each voxel is 
associated with a single 
value (feature-weight or 

Low and simple because 
just one model in which 
each voxel is associated 
with a single 
feature-weight. 
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associated with a 
single value. 
 
High and complicated 
if intending to save 
feature weights 
because searchlights 
are overlapping.  
 
 
Data sharing typically 
consists of accuracy 
maps. 

performance).  
 
 
Can represent 
performance and 
weight maps in a single 
standard format (array, 
nifti). Easy to apply to 
new datasets.  
 
Data sharing typically 
consists of accuracy 
maps, but feature 
weight maps are trivial 
to share as well. 

 
 
 
Can represent 
weightmaps in a single 
standard format. 
 
 
 
 
Data sharing typically 
consists of weight maps 
that are then applied to 
novel datasets 



 

Acknowledgements 
The authors wish to thank Emma Templeton, Jin Cheong, & Amanda Brandt for providing 
helpful feedback on earlier drafts of this manuscript. In addition, the authors would like to 
acknowledge their funding sources for this work including: the National Institute of Mental Health 
R01MH116026 and the National Science Foundation CAREER 1848370. 
 
Open Science Statement 
A preprint of this manuscript has been submitted to bioRxiv.  



 

References 

Adolphs, R. (2009). The social brain: neural basis of social knowledge. ​Annual review of 
psychology​, ​60​, 693–716 

Allefeld, C., Görgen, K., Haynes, J.-D. (2016). Valid population inference for information-based 
imaging: From the second-level t-test to prevalence inference. ​NeuroImage​, ​141​, 378–92 

Allefeld, C., Haynes, J.-D. (2014). Searchlight-based multi-voxel pattern analysis of fMRI by 
cross-validated MANOVA. ​NeuroImage​, ​89​, 345–57 

Amodio, D.M., Frith, C.D. (2006). Meeting of minds: the medial frontal cortex and social 
cognition. ​Nature reviews. Neuroscience​, ​7​, 268–77 

van Baar, J.M., Chang, L.J., Sanfey, A.G. (2019). The computational and neural substrates of 
moral strategies in social decision-making. ​Nature communications​, ​10​, 1483 

Baldassarre, L., Mourao-Miranda, J., Pontil, M. (2012). Structured Sparsity Models for Brain 
Decoding from fMRI Data. In: ​2012 Second International Workshop on Pattern Recognition 
in NeuroImaging​. p. 5–8. 

Barrett, L.F. (2017). The theory of constructed emotion: an active inference account of 
interoception and categorization. ​Social cognitive and affective neuroscience​, ​12​, 1833 

Beckmann, C.F., DeLuca, M., Devlin, J.T., et al. (2005). Investigations into resting-state 
connectivity using independent component analysis. ​Philosophical transactions of the Royal 
Society of London. Series B, Biological sciences​, ​360​, 1001–13 

Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by 
the author). ​Statistical science: a review journal of the Institute of Mathematical Statistics​, 
16 ​, 199–231 

Buckner, R.L., Carroll, D.C. (2007). Self-projection and the brain. ​Trends in cognitive sciences​, 
11 ​, 49–57 

Bzdok, D., Ioannidis, J.P.A. (2019). Exploration, Inference, and Prediction in Neuroscience and 
Biomedicine. ​Trends in neurosciences​, ​42​, 251–62 

Calhoun, V.D., Adali, T., Pearlson, G.D., et al. (2001). A method for making group inferences 
from functional MRI data using independent component analysis. ​Human brain mapping​, 
14 ​, 140–51 

Carp, J. (2012). On the plurality of (methodological) worlds: estimating the analytic flexibility of 
FMRI experiments. ​Frontiers in neuroscience​, ​6​, 149 

Carter, R.M., Huettel, S.A. (2013). A nexus model of the temporal-parietal junction. ​Trends in 
cognitive sciences​, ​17​, 328–36 

Chang, L.J., Gianaros, P.J., Manuck, S.B., et al. (2015). A Sensitive and Specific Neural 

http://paperpile.com/b/nl5wGE/MX6e
http://paperpile.com/b/nl5wGE/MX6e
http://paperpile.com/b/nl5wGE/MX6e
http://paperpile.com/b/nl5wGE/MX6e
http://paperpile.com/b/nl5wGE/MX6e
http://paperpile.com/b/nl5wGE/MX6e
http://paperpile.com/b/nl5wGE/WB69
http://paperpile.com/b/nl5wGE/WB69
http://paperpile.com/b/nl5wGE/WB69
http://paperpile.com/b/nl5wGE/WB69
http://paperpile.com/b/nl5wGE/WB69
http://paperpile.com/b/nl5wGE/WB69
http://paperpile.com/b/nl5wGE/kVfI
http://paperpile.com/b/nl5wGE/kVfI
http://paperpile.com/b/nl5wGE/kVfI
http://paperpile.com/b/nl5wGE/kVfI
http://paperpile.com/b/nl5wGE/kVfI
http://paperpile.com/b/nl5wGE/kVfI
http://paperpile.com/b/nl5wGE/TUaH
http://paperpile.com/b/nl5wGE/TUaH
http://paperpile.com/b/nl5wGE/TUaH
http://paperpile.com/b/nl5wGE/TUaH
http://paperpile.com/b/nl5wGE/TUaH
http://paperpile.com/b/nl5wGE/TUaH
http://paperpile.com/b/nl5wGE/VVAI
http://paperpile.com/b/nl5wGE/VVAI
http://paperpile.com/b/nl5wGE/VVAI
http://paperpile.com/b/nl5wGE/VVAI
http://paperpile.com/b/nl5wGE/VVAI
http://paperpile.com/b/nl5wGE/VVAI
http://paperpile.com/b/nl5wGE/5Z0n
http://paperpile.com/b/nl5wGE/5Z0n
http://paperpile.com/b/nl5wGE/5Z0n
http://paperpile.com/b/nl5wGE/5Z0n
http://paperpile.com/b/nl5wGE/5Z0n
http://paperpile.com/b/nl5wGE/vzM7
http://paperpile.com/b/nl5wGE/vzM7
http://paperpile.com/b/nl5wGE/vzM7
http://paperpile.com/b/nl5wGE/vzM7
http://paperpile.com/b/nl5wGE/vzM7
http://paperpile.com/b/nl5wGE/vzM7
http://paperpile.com/b/nl5wGE/oUrU
http://paperpile.com/b/nl5wGE/oUrU
http://paperpile.com/b/nl5wGE/oUrU
http://paperpile.com/b/nl5wGE/oUrU
http://paperpile.com/b/nl5wGE/oUrU
http://paperpile.com/b/nl5wGE/oUrU
http://paperpile.com/b/nl5wGE/oUrU
http://paperpile.com/b/nl5wGE/3A6I
http://paperpile.com/b/nl5wGE/3A6I
http://paperpile.com/b/nl5wGE/3A6I
http://paperpile.com/b/nl5wGE/3A6I
http://paperpile.com/b/nl5wGE/3A6I
http://paperpile.com/b/nl5wGE/3A6I
http://paperpile.com/b/nl5wGE/SwIw
http://paperpile.com/b/nl5wGE/SwIw
http://paperpile.com/b/nl5wGE/SwIw
http://paperpile.com/b/nl5wGE/SwIw
http://paperpile.com/b/nl5wGE/SwIw
http://paperpile.com/b/nl5wGE/Y4vK
http://paperpile.com/b/nl5wGE/Y4vK
http://paperpile.com/b/nl5wGE/Y4vK
http://paperpile.com/b/nl5wGE/Y4vK
http://paperpile.com/b/nl5wGE/Y4vK
http://paperpile.com/b/nl5wGE/Y4vK
http://paperpile.com/b/nl5wGE/AyYd
http://paperpile.com/b/nl5wGE/AyYd
http://paperpile.com/b/nl5wGE/AyYd
http://paperpile.com/b/nl5wGE/AyYd
http://paperpile.com/b/nl5wGE/AyYd
http://paperpile.com/b/nl5wGE/AyYd
http://paperpile.com/b/nl5wGE/esei
http://paperpile.com/b/nl5wGE/esei
http://paperpile.com/b/nl5wGE/esei
http://paperpile.com/b/nl5wGE/esei
http://paperpile.com/b/nl5wGE/esei
http://paperpile.com/b/nl5wGE/esei
http://paperpile.com/b/nl5wGE/bjBY
http://paperpile.com/b/nl5wGE/bjBY
http://paperpile.com/b/nl5wGE/bjBY
http://paperpile.com/b/nl5wGE/bjBY
http://paperpile.com/b/nl5wGE/bjBY
http://paperpile.com/b/nl5wGE/bjBY
http://paperpile.com/b/nl5wGE/gigq


 

Signature for Picture-Induced Negative Affect. ​PLoS biology​, ​13​, e1002180 

Chang, L.J., Jolly, E., Cheong, J.H., et al. (2018). Endogenous variation in ventromedial 
prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. 
bioRxiv 

Chang, L.J., Yarkoni, T., Khaw, M.W., et al. (2013). Decoding the role of the insula in human 
cognition: functional parcellation and large-scale reverse inference. ​Cerebral cortex ​, ​23​, 
739–49 

Chang, L., Tsao, D.Y. (2017). The Code for Facial Identity in the Primate Brain. ​Cell​, ​169​, 
1013–28.e14 

Chen, P.-H.A., Jolly, E., Cheong, J.H., et al. (2019). Inter-subject representational similarity 
analysis reveals individual variations in affective experience when watching erotic movies. 
bioRxiv​, 726570 

Cichy, R.M., Khosla, A., Pantazis, D., et al. (2016). Comparison of deep neural networks to 
spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical 
correspondence. ​Scientific reports​, ​6​, 27755 

De La Vega, A., Chang, L.J., Banich, M.T. (2016). Large-scale meta-analysis of human medial 
frontal cortex reveals tripartite functional organization. ​Journal of 

De Martino, F., Valente, G., Staeren, N., et al. (2008). Combining multivariate voxel selection 
and support vector machines for mapping and classification of fMRI spatial patterns. 
NeuroImage​, ​43​, 44–58 

Diedrichsen, J., Kriegeskorte, N. (2017). Representational models: A common framework for 
understanding encoding, pattern-component, and representational-similarity analysis. ​PLoS 
computational biology​, ​13​, e1005508 

Eickhoff, S.B., Yeo, B.T.T., Genon, S. (2018). Imaging-based parcellations of the human brain. 
Nature reviews. Neuroscience​, ​19​, 672–86 

Etzel, J.A., Zacks, J.M., Braver, T.S. (2013). Searchlight analysis: promise, pitfalls, and 
potential. ​NeuroImage​, ​78​, 261–69 

Felleman, D.J., Van Essen, D.C. (1991). Distributed hierarchical processing in the primate 
cerebral cortex. ​Cerebral cortex ​, ​1​, 1–47 

Filippone, M., Marquand, A.F., Blain, C.R.V., et al. (2012). PROBABILISTIC PREDICTION OF 
NEUROLOGICAL DISORDERS WITH A STATISTICAL ASSESSMENT OF 
NEUROIMAGING DATA MODALITIES. ​The annals of applied statistics​, ​6​, 1883–1905 

Finn, E.S., Glerean, E., Khojandi, A.Y., et al. (2020). Idiosynchrony: From shared responses to 
individual differences during naturalistic neuroimaging. ​NeuroImage​, ​215​, 116828 

Friston, K. (2007). Statistical parametric mapping. ​Statistical Parametric Mapping​, 10–31 

Friston, K.J., Holmes, A.P., Poline, J.B., et al. (1995). Analysis of fMRI time-series revisited. 

http://paperpile.com/b/nl5wGE/gigq
http://paperpile.com/b/nl5wGE/gigq
http://paperpile.com/b/nl5wGE/gigq
http://paperpile.com/b/nl5wGE/gigq
http://paperpile.com/b/nl5wGE/gigq
http://paperpile.com/b/nl5wGE/bQlf
http://paperpile.com/b/nl5wGE/bQlf
http://paperpile.com/b/nl5wGE/bQlf
http://paperpile.com/b/nl5wGE/3QVS
http://paperpile.com/b/nl5wGE/3QVS
http://paperpile.com/b/nl5wGE/3QVS
http://paperpile.com/b/nl5wGE/3QVS
http://paperpile.com/b/nl5wGE/3QVS
http://paperpile.com/b/nl5wGE/3QVS
http://paperpile.com/b/nl5wGE/3QVS
http://paperpile.com/b/nl5wGE/qnMS
http://paperpile.com/b/nl5wGE/qnMS
http://paperpile.com/b/nl5wGE/qnMS
http://paperpile.com/b/nl5wGE/qnMS
http://paperpile.com/b/nl5wGE/qnMS
http://paperpile.com/b/nl5wGE/qnMS
http://paperpile.com/b/nl5wGE/oIOw
http://paperpile.com/b/nl5wGE/oIOw
http://paperpile.com/b/nl5wGE/oIOw
http://paperpile.com/b/nl5wGE/oIOw
http://paperpile.com/b/nl5wGE/X6NZ
http://paperpile.com/b/nl5wGE/X6NZ
http://paperpile.com/b/nl5wGE/X6NZ
http://paperpile.com/b/nl5wGE/X6NZ
http://paperpile.com/b/nl5wGE/X6NZ
http://paperpile.com/b/nl5wGE/X6NZ
http://paperpile.com/b/nl5wGE/X6NZ
http://paperpile.com/b/nl5wGE/LNxg
http://paperpile.com/b/nl5wGE/LNxg
http://paperpile.com/b/nl5wGE/LNxg
http://paperpile.com/b/nl5wGE/VQku
http://paperpile.com/b/nl5wGE/VQku
http://paperpile.com/b/nl5wGE/VQku
http://paperpile.com/b/nl5wGE/VQku
http://paperpile.com/b/nl5wGE/VQku
http://paperpile.com/b/nl5wGE/VQku
http://paperpile.com/b/nl5wGE/W9JD
http://paperpile.com/b/nl5wGE/W9JD
http://paperpile.com/b/nl5wGE/W9JD
http://paperpile.com/b/nl5wGE/W9JD
http://paperpile.com/b/nl5wGE/W9JD
http://paperpile.com/b/nl5wGE/W9JD
http://paperpile.com/b/nl5wGE/W9JD
http://paperpile.com/b/nl5wGE/jI0f
http://paperpile.com/b/nl5wGE/jI0f
http://paperpile.com/b/nl5wGE/jI0f
http://paperpile.com/b/nl5wGE/jI0f
http://paperpile.com/b/nl5wGE/jI0f
http://paperpile.com/b/nl5wGE/m74o
http://paperpile.com/b/nl5wGE/m74o
http://paperpile.com/b/nl5wGE/m74o
http://paperpile.com/b/nl5wGE/m74o
http://paperpile.com/b/nl5wGE/m74o
http://paperpile.com/b/nl5wGE/m74o
http://paperpile.com/b/nl5wGE/UO3k
http://paperpile.com/b/nl5wGE/UO3k
http://paperpile.com/b/nl5wGE/UO3k
http://paperpile.com/b/nl5wGE/UO3k
http://paperpile.com/b/nl5wGE/UO3k
http://paperpile.com/b/nl5wGE/UO3k
http://paperpile.com/b/nl5wGE/Qqf3
http://paperpile.com/b/nl5wGE/Qqf3
http://paperpile.com/b/nl5wGE/Qqf3
http://paperpile.com/b/nl5wGE/Qqf3
http://paperpile.com/b/nl5wGE/Qqf3
http://paperpile.com/b/nl5wGE/Qqf3
http://paperpile.com/b/nl5wGE/Qqf3
http://paperpile.com/b/nl5wGE/wIx6
http://paperpile.com/b/nl5wGE/wIx6
http://paperpile.com/b/nl5wGE/wIx6
http://paperpile.com/b/nl5wGE/wIx6
http://paperpile.com/b/nl5wGE/wIx6
http://paperpile.com/b/nl5wGE/wIx6
http://paperpile.com/b/nl5wGE/U8vO
http://paperpile.com/b/nl5wGE/U8vO
http://paperpile.com/b/nl5wGE/U8vO
http://paperpile.com/b/nl5wGE/V1II


 

NeuroImage​, ​2​, 45–53 

Gabrieli, J.D.E., Ghosh, S.S., Whitfield-Gabrieli, S. (2015). Prediction as a humanitarian and 
pragmatic contribution from human cognitive neuroscience. ​Neuron​, ​85​, 11–26 

Gardumi, A., Ivanov, D., Hausfeld, L., et al. (2016). The effect of spatial resolution on decoding 
accuracy in fMRI multivariate pattern analysis. ​NeuroImage​, ​132​, 32–42 

Glasser, M.F., Coalson, T.S., Robinson, E.C., et al. (2016). A multi-modal parcellation of human 
cerebral cortex. ​Nature​, ​536​, 171–78 

Golchert, J., Smallwood, J., Jefferies, E., et al. (2017). Individual variation in intentionality in the 
mind-wandering state is reflected in the integration of the default-mode, fronto-parietal, and 
limbic networks. ​NeuroImage​, ​146​, 226–35 

Gramfort, A., Thirion, B., Varoquaux, G. (2013). Identifying Predictive Regions from fMRI with 
TV-L1 Prior. In: ​2013 International Workshop on Pattern Recognition in Neuroimaging​. p. 
17–20. 

Grill-Spector, K., Malach, R. (2004). The human visual cortex. ​Annual review of neuroscience​, 
27 ​, 649–77 

Grosenick, L., Klingenberg, B., Katovich, K., et al. (2013). Interpretable whole-brain prediction 
analysis with GraphNet. ​NeuroImage​, ​72​, 304–21 

Hanke, M., Halchenko, Y.O., Sederberg, P.B., et al. (2009). PyMVPA: A python toolbox for 
multivariate pattern analysis of fMRI data. ​Neuroinformatics​, ​7​, 37–53 

Hastie, T., Tibshirani, R., Friedman, J. (2009). ​The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction, Second Edition​. Springer Science & Business Media. 

Haufe, S., Meinecke, F., Görgen, K., et al. (2014). On the interpretation of weight vectors of 
linear models in multivariate neuroimaging. ​NeuroImage​, ​87​, 96–110 

Haxby, J.V., Connolly, A.C., Guntupalli, J.S. (2014). Decoding neural representational spaces 
using multivariate pattern analysis. ​Annual review of neuroscience​, ​37​, 435–56 

Haynes, J.-D. (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and 
Perspectives. ​Neuron​, ​87​, 257–70 

Hebart, M.N., Baker, C.I. (2018). Deconstructing multivariate decoding for the study of brain 
function. ​NeuroImage​, ​180​, 4–18 

Honey, C.J., Sporns, O., Cammoun, L., et al. (2009). Predicting human resting-state functional 
connectivity from structural connectivity. ​Proceedings of the National Academy of Sciences 
of the United States of America​, ​106​, 2035–40 

Hubel, D.H., Wiesel, T.N. (2004). ​Brain and Visual Perception: The Story of a 25-Year 
Collaboration ​. Oxford University Press. 

Huth, A.G., de Heer, W.A., Griffiths, T.L., et al. (2016). Natural speech reveals the semantic 

http://paperpile.com/b/nl5wGE/V1II
http://paperpile.com/b/nl5wGE/V1II
http://paperpile.com/b/nl5wGE/V1II
http://paperpile.com/b/nl5wGE/V1II
http://paperpile.com/b/nl5wGE/2yhx
http://paperpile.com/b/nl5wGE/2yhx
http://paperpile.com/b/nl5wGE/2yhx
http://paperpile.com/b/nl5wGE/2yhx
http://paperpile.com/b/nl5wGE/2yhx
http://paperpile.com/b/nl5wGE/2yhx
http://paperpile.com/b/nl5wGE/IRi5
http://paperpile.com/b/nl5wGE/IRi5
http://paperpile.com/b/nl5wGE/IRi5
http://paperpile.com/b/nl5wGE/IRi5
http://paperpile.com/b/nl5wGE/IRi5
http://paperpile.com/b/nl5wGE/IRi5
http://paperpile.com/b/nl5wGE/cOBB
http://paperpile.com/b/nl5wGE/cOBB
http://paperpile.com/b/nl5wGE/cOBB
http://paperpile.com/b/nl5wGE/cOBB
http://paperpile.com/b/nl5wGE/cOBB
http://paperpile.com/b/nl5wGE/cOBB
http://paperpile.com/b/nl5wGE/hubY
http://paperpile.com/b/nl5wGE/hubY
http://paperpile.com/b/nl5wGE/hubY
http://paperpile.com/b/nl5wGE/hubY
http://paperpile.com/b/nl5wGE/hubY
http://paperpile.com/b/nl5wGE/hubY
http://paperpile.com/b/nl5wGE/hubY
http://paperpile.com/b/nl5wGE/XpGX
http://paperpile.com/b/nl5wGE/XpGX
http://paperpile.com/b/nl5wGE/XpGX
http://paperpile.com/b/nl5wGE/XpGX
http://paperpile.com/b/nl5wGE/XpGX
http://paperpile.com/b/nl5wGE/yJM0
http://paperpile.com/b/nl5wGE/yJM0
http://paperpile.com/b/nl5wGE/yJM0
http://paperpile.com/b/nl5wGE/yJM0
http://paperpile.com/b/nl5wGE/yJM0
http://paperpile.com/b/nl5wGE/fw9p
http://paperpile.com/b/nl5wGE/fw9p
http://paperpile.com/b/nl5wGE/fw9p
http://paperpile.com/b/nl5wGE/fw9p
http://paperpile.com/b/nl5wGE/fw9p
http://paperpile.com/b/nl5wGE/fw9p
http://paperpile.com/b/nl5wGE/Dxfa
http://paperpile.com/b/nl5wGE/Dxfa
http://paperpile.com/b/nl5wGE/Dxfa
http://paperpile.com/b/nl5wGE/Dxfa
http://paperpile.com/b/nl5wGE/Dxfa
http://paperpile.com/b/nl5wGE/Dxfa
http://paperpile.com/b/nl5wGE/mk1y
http://paperpile.com/b/nl5wGE/mk1y
http://paperpile.com/b/nl5wGE/mk1y
http://paperpile.com/b/nl5wGE/mk1y
http://paperpile.com/b/nl5wGE/CpaO
http://paperpile.com/b/nl5wGE/CpaO
http://paperpile.com/b/nl5wGE/CpaO
http://paperpile.com/b/nl5wGE/CpaO
http://paperpile.com/b/nl5wGE/CpaO
http://paperpile.com/b/nl5wGE/CpaO
http://paperpile.com/b/nl5wGE/sRtr
http://paperpile.com/b/nl5wGE/sRtr
http://paperpile.com/b/nl5wGE/sRtr
http://paperpile.com/b/nl5wGE/sRtr
http://paperpile.com/b/nl5wGE/sRtr
http://paperpile.com/b/nl5wGE/sRtr
http://paperpile.com/b/nl5wGE/fbUg
http://paperpile.com/b/nl5wGE/fbUg
http://paperpile.com/b/nl5wGE/fbUg
http://paperpile.com/b/nl5wGE/fbUg
http://paperpile.com/b/nl5wGE/fbUg
http://paperpile.com/b/nl5wGE/fbUg
http://paperpile.com/b/nl5wGE/qv18
http://paperpile.com/b/nl5wGE/qv18
http://paperpile.com/b/nl5wGE/qv18
http://paperpile.com/b/nl5wGE/qv18
http://paperpile.com/b/nl5wGE/qv18
http://paperpile.com/b/nl5wGE/qv18
http://paperpile.com/b/nl5wGE/B8oP
http://paperpile.com/b/nl5wGE/B8oP
http://paperpile.com/b/nl5wGE/B8oP
http://paperpile.com/b/nl5wGE/B8oP
http://paperpile.com/b/nl5wGE/B8oP
http://paperpile.com/b/nl5wGE/B8oP
http://paperpile.com/b/nl5wGE/B8oP
http://paperpile.com/b/nl5wGE/BPBE
http://paperpile.com/b/nl5wGE/BPBE
http://paperpile.com/b/nl5wGE/BPBE
http://paperpile.com/b/nl5wGE/BPBE
http://paperpile.com/b/nl5wGE/0x1G


 

maps that tile human cerebral cortex. ​Nature​, ​532​, 453–58 

James, G., Witten, D., Hastie, T., et al. (2013). ​An Introduction to Statistical Learning: with 
Applications in R​. Springer, New York, NY. 

Kanwisher, N., McDermott, J., Chun, M.M. (1997). The fusiform face area: a module in human 
extrastriate cortex specialized for face perception. ​The Journal of neuroscience: the official 
journal of the Society for Neuroscience​, ​17​, 4302–11 

Kober, H., Barrett, L.F., Joseph, J., et al. (2008). Functional grouping and cortical-subcortical 
interactions in emotion: a meta-analysis of neuroimaging studies. ​NeuroImage​, ​42​, 
998–1031 

Koster-Hale, J., Richardson, H., Velez, N., et al. (2017). Mentalizing regions represent 
distributed, continuous, and abstract dimensions of others’ beliefs. ​NeuroImage​, ​161​, 9–18 

Kragel, P.A., Koban, L., Barrett, L.F., et al. (2018). Representation, Pattern Information, and 
Brain Signatures: From Neurons to Neuroimaging. ​Neuron​, ​99​, 257–73 

Kragel, P.A., LaBar, K.S. (2016). Decoding the Nature of Emotion in the Brain. ​Trends in 
cognitive sciences​, ​20​, 444–55 

Kriegeskorte, N. (2015). Deep Neural Networks: A New Framework for Modeling Biological 
Vision and Brain Information Processing. ​Annual review of vision science​, ​1​, 417–46 

Kriegeskorte, N., Bandettini, P. (2007). Analyzing for information, not activation, to exploit 
high-resolution fMRI. ​NeuroImage​, ​38​, 649–62 

Kriegeskorte, N., Diedrichsen, J. (2019). Peeling the Onion of Brain Representations. ​Annual 
review of neuroscience​, ​42​, 407–32 

Kriegeskorte, N., Douglas, P.K. (2019). Interpreting encoding and decoding models. ​Current 
opinion in neurobiology ​, ​55​, 167–79 

Kriegeskorte, N., Goebel, R., Bandettini, P. (2006). Information-based functional brain mapping. 
Proceedings of the National Academy of Sciences of the United States of America​, ​103​, 
3863–68 

Kriegeskorte, N., Mur, M., Bandettini, P. (2008). Representational similarity analysis--connecting 
the branches of systems neuroscience. ​Frontiers in systems neuroscience​, ​2 

Krishnan, A., Woo, C.-W., Chang, L.J., et al. (2016). Somatic and vicarious pain are represented 
by dissociable multivariate brain patterns. ​eLife​, ​5 

Lieberman, M.D. (2007). Social cognitive neuroscience: a review of core processes. ​Annual 
review of psychology​, ​58​, 259–89 

Lindquist, K.A., Wager, T.D., Kober, H., et al. (2012). The brain basis of emotion: a 
meta-analytic review. ​The Behavioral and brain sciences​, ​35​, 121–43 

Lindquist, M.A., Krishnan, A., López-Solà, M., et al. (2015). Group-regularized individual 

http://paperpile.com/b/nl5wGE/0x1G
http://paperpile.com/b/nl5wGE/0x1G
http://paperpile.com/b/nl5wGE/0x1G
http://paperpile.com/b/nl5wGE/0x1G
http://paperpile.com/b/nl5wGE/0x1G
http://paperpile.com/b/nl5wGE/veGr
http://paperpile.com/b/nl5wGE/veGr
http://paperpile.com/b/nl5wGE/veGr
http://paperpile.com/b/nl5wGE/veGr
http://paperpile.com/b/nl5wGE/TF4V
http://paperpile.com/b/nl5wGE/TF4V
http://paperpile.com/b/nl5wGE/TF4V
http://paperpile.com/b/nl5wGE/TF4V
http://paperpile.com/b/nl5wGE/TF4V
http://paperpile.com/b/nl5wGE/TF4V
http://paperpile.com/b/nl5wGE/TF4V
http://paperpile.com/b/nl5wGE/GnCX
http://paperpile.com/b/nl5wGE/GnCX
http://paperpile.com/b/nl5wGE/GnCX
http://paperpile.com/b/nl5wGE/GnCX
http://paperpile.com/b/nl5wGE/GnCX
http://paperpile.com/b/nl5wGE/GnCX
http://paperpile.com/b/nl5wGE/GnCX
http://paperpile.com/b/nl5wGE/SnUC
http://paperpile.com/b/nl5wGE/SnUC
http://paperpile.com/b/nl5wGE/SnUC
http://paperpile.com/b/nl5wGE/SnUC
http://paperpile.com/b/nl5wGE/SnUC
http://paperpile.com/b/nl5wGE/SnUC
http://paperpile.com/b/nl5wGE/DpqZ
http://paperpile.com/b/nl5wGE/DpqZ
http://paperpile.com/b/nl5wGE/DpqZ
http://paperpile.com/b/nl5wGE/DpqZ
http://paperpile.com/b/nl5wGE/DpqZ
http://paperpile.com/b/nl5wGE/DpqZ
http://paperpile.com/b/nl5wGE/ze2I
http://paperpile.com/b/nl5wGE/ze2I
http://paperpile.com/b/nl5wGE/ze2I
http://paperpile.com/b/nl5wGE/ze2I
http://paperpile.com/b/nl5wGE/ze2I
http://paperpile.com/b/nl5wGE/ze2I
http://paperpile.com/b/nl5wGE/B1lO
http://paperpile.com/b/nl5wGE/B1lO
http://paperpile.com/b/nl5wGE/B1lO
http://paperpile.com/b/nl5wGE/B1lO
http://paperpile.com/b/nl5wGE/B1lO
http://paperpile.com/b/nl5wGE/B1lO
http://paperpile.com/b/nl5wGE/fbCE
http://paperpile.com/b/nl5wGE/fbCE
http://paperpile.com/b/nl5wGE/fbCE
http://paperpile.com/b/nl5wGE/fbCE
http://paperpile.com/b/nl5wGE/fbCE
http://paperpile.com/b/nl5wGE/fbCE
http://paperpile.com/b/nl5wGE/rZyn
http://paperpile.com/b/nl5wGE/rZyn
http://paperpile.com/b/nl5wGE/rZyn
http://paperpile.com/b/nl5wGE/rZyn
http://paperpile.com/b/nl5wGE/rZyn
http://paperpile.com/b/nl5wGE/rZyn
http://paperpile.com/b/nl5wGE/AAHo
http://paperpile.com/b/nl5wGE/AAHo
http://paperpile.com/b/nl5wGE/AAHo
http://paperpile.com/b/nl5wGE/AAHo
http://paperpile.com/b/nl5wGE/AAHo
http://paperpile.com/b/nl5wGE/AAHo
http://paperpile.com/b/nl5wGE/HZ7u
http://paperpile.com/b/nl5wGE/HZ7u
http://paperpile.com/b/nl5wGE/HZ7u
http://paperpile.com/b/nl5wGE/HZ7u
http://paperpile.com/b/nl5wGE/HZ7u
http://paperpile.com/b/nl5wGE/HZ7u
http://paperpile.com/b/nl5wGE/ea6j
http://paperpile.com/b/nl5wGE/ea6j
http://paperpile.com/b/nl5wGE/ea6j
http://paperpile.com/b/nl5wGE/ea6j
http://paperpile.com/b/nl5wGE/ea6j
http://paperpile.com/b/nl5wGE/yPr4
http://paperpile.com/b/nl5wGE/yPr4
http://paperpile.com/b/nl5wGE/yPr4
http://paperpile.com/b/nl5wGE/yPr4
http://paperpile.com/b/nl5wGE/yPr4
http://paperpile.com/b/nl5wGE/W71L
http://paperpile.com/b/nl5wGE/W71L
http://paperpile.com/b/nl5wGE/W71L
http://paperpile.com/b/nl5wGE/W71L
http://paperpile.com/b/nl5wGE/W71L
http://paperpile.com/b/nl5wGE/W71L
http://paperpile.com/b/nl5wGE/MLLP
http://paperpile.com/b/nl5wGE/MLLP
http://paperpile.com/b/nl5wGE/MLLP
http://paperpile.com/b/nl5wGE/MLLP
http://paperpile.com/b/nl5wGE/MLLP
http://paperpile.com/b/nl5wGE/MLLP
http://paperpile.com/b/nl5wGE/n3Oc


 

prediction: theory and application to pain. ​NeuroImage 

López-Solà, M., Koban, L., Krishnan, A., et al. (2017). When pain really matters: A 
vicarious-pain brain marker tracks empathy for pain in the romantic partner. 
Neuropsychologia 

Margulies, D.S., Ghosh, S.S., Goulas, A., et al. (2016). Situating the default-mode network 
along a principal gradient of macroscale cortical organization. ​Proceedings of the National 
Academy of Sciences of the United States of America​, ​113​, 12574–79 

Mars, R.B., Sallet, J., Schüffelgen, U., et al. (2012). Connectivity-Based Subdivisions of the 
Human Right ‘Temporoparietal Junction Area’: Evidence for Different Areas Participating in 
Different Cortical Networks. ​Cerebral cortex ​, ​22​, 1894–1903 

Mason, M.F., Norton, M.I., Van Horn, J.D., et al. (2007). Wandering minds: the default network 
and stimulus-independent thought. ​Science​, ​315​, 393–95 

Mc Kell Carter, R., Bowling, D.L., Reeck, C., et al. (2012). A Distinct Role of the 
Temporal-Parietal Junction in Predicting Socially Guided Decisions. ​Science​, ​337 

Mesulam, M.M. (1998). From sensation to cognition. ​Brain: a journal of neurology​, ​121 ( Pt 6)​, 
1013–52 

Mitchell, J.P. (2008). Activity in right temporo-parietal junction is not selective for theory-of-mind. 
Cerebral cortex ​, ​18​, 262–71 

Mitchell, J.P., Macrae, C.N., Banaji, M.R. (2006). Dissociable medial prefrontal contributions to 
judgments of similar and dissimilar others. ​Neuron​, ​50​, 655–63 

Naselaris, T., Kay, K.N., Nishimoto, S., et al. (2011). Encoding and decoding in fMRI. 
NeuroImage​, ​56​, 400–410 

Nastase, S.A., Connolly, A.C., Oosterhof, N.N., et al. (2017). Attention Selectively Reshapes the 
Geometry of Distributed Semantic Representation. ​Cerebral cortex ​, ​27​, 4277–91 

Nastase, S.A., Gazzola, V., Hasson, U., et al. (2019). Measuring shared responses across 
subjects using intersubject correlation. ​Social cognitive and affective neuroscience 

Nichols, T., Brett, M., Andersson, J., et al. (2005). Valid conjunction inference with the minimum 
statistic. ​NeuroImage​, ​25​, 653–60 

Nishimoto, S., Vu, A.T., Naselaris, T., et al. (2011). Reconstructing visual experiences from 
brain activity evoked by natural movies. ​Current biology: CB​, ​21​, 1641–46 

Norman, K.A., Polyn, S.M., Detre, G.J., et al. (2006). Beyond mind-reading: multi-voxel pattern 
analysis of fMRI data. ​Trends in cognitive sciences​, ​10​, 424–30 

Nunez-Elizalde, A.O., Huth, A.G., Gallant, J.L. (2019). Voxelwise encoding models with 
non-spherical multivariate normal priors. ​NeuroImage​, ​197​, 482–92 

Paquola, C., De Wael, R.V., Wagstyl, K., et al. (2019). Microstructural and functional gradients 

http://paperpile.com/b/nl5wGE/n3Oc
http://paperpile.com/b/nl5wGE/n3Oc
http://paperpile.com/b/nl5wGE/LgdR
http://paperpile.com/b/nl5wGE/LgdR
http://paperpile.com/b/nl5wGE/LgdR
http://paperpile.com/b/nl5wGE/i4cf
http://paperpile.com/b/nl5wGE/i4cf
http://paperpile.com/b/nl5wGE/i4cf
http://paperpile.com/b/nl5wGE/i4cf
http://paperpile.com/b/nl5wGE/i4cf
http://paperpile.com/b/nl5wGE/i4cf
http://paperpile.com/b/nl5wGE/i4cf
http://paperpile.com/b/nl5wGE/pdnk
http://paperpile.com/b/nl5wGE/pdnk
http://paperpile.com/b/nl5wGE/pdnk
http://paperpile.com/b/nl5wGE/pdnk
http://paperpile.com/b/nl5wGE/pdnk
http://paperpile.com/b/nl5wGE/pdnk
http://paperpile.com/b/nl5wGE/pdnk
http://paperpile.com/b/nl5wGE/ntT9
http://paperpile.com/b/nl5wGE/ntT9
http://paperpile.com/b/nl5wGE/ntT9
http://paperpile.com/b/nl5wGE/ntT9
http://paperpile.com/b/nl5wGE/ntT9
http://paperpile.com/b/nl5wGE/ntT9
http://paperpile.com/b/nl5wGE/akCh
http://paperpile.com/b/nl5wGE/akCh
http://paperpile.com/b/nl5wGE/akCh
http://paperpile.com/b/nl5wGE/akCh
http://paperpile.com/b/nl5wGE/akCh
http://paperpile.com/b/nl5wGE/rjyA
http://paperpile.com/b/nl5wGE/rjyA
http://paperpile.com/b/nl5wGE/rjyA
http://paperpile.com/b/nl5wGE/rjyA
http://paperpile.com/b/nl5wGE/rjyA
http://paperpile.com/b/nl5wGE/rjyA
http://paperpile.com/b/nl5wGE/drIC
http://paperpile.com/b/nl5wGE/drIC
http://paperpile.com/b/nl5wGE/drIC
http://paperpile.com/b/nl5wGE/drIC
http://paperpile.com/b/nl5wGE/drIC
http://paperpile.com/b/nl5wGE/06Tv
http://paperpile.com/b/nl5wGE/06Tv
http://paperpile.com/b/nl5wGE/06Tv
http://paperpile.com/b/nl5wGE/06Tv
http://paperpile.com/b/nl5wGE/06Tv
http://paperpile.com/b/nl5wGE/06Tv
http://paperpile.com/b/nl5wGE/RMbc
http://paperpile.com/b/nl5wGE/RMbc
http://paperpile.com/b/nl5wGE/RMbc
http://paperpile.com/b/nl5wGE/RMbc
http://paperpile.com/b/nl5wGE/RMbc
http://paperpile.com/b/nl5wGE/Mo1D
http://paperpile.com/b/nl5wGE/Mo1D
http://paperpile.com/b/nl5wGE/Mo1D
http://paperpile.com/b/nl5wGE/Mo1D
http://paperpile.com/b/nl5wGE/Mo1D
http://paperpile.com/b/nl5wGE/Mo1D
http://paperpile.com/b/nl5wGE/TUhm
http://paperpile.com/b/nl5wGE/TUhm
http://paperpile.com/b/nl5wGE/TUhm
http://paperpile.com/b/nl5wGE/PZL8
http://paperpile.com/b/nl5wGE/PZL8
http://paperpile.com/b/nl5wGE/PZL8
http://paperpile.com/b/nl5wGE/PZL8
http://paperpile.com/b/nl5wGE/PZL8
http://paperpile.com/b/nl5wGE/PZL8
http://paperpile.com/b/nl5wGE/pV6H
http://paperpile.com/b/nl5wGE/pV6H
http://paperpile.com/b/nl5wGE/pV6H
http://paperpile.com/b/nl5wGE/pV6H
http://paperpile.com/b/nl5wGE/pV6H
http://paperpile.com/b/nl5wGE/pV6H
http://paperpile.com/b/nl5wGE/U7eB
http://paperpile.com/b/nl5wGE/U7eB
http://paperpile.com/b/nl5wGE/U7eB
http://paperpile.com/b/nl5wGE/U7eB
http://paperpile.com/b/nl5wGE/U7eB
http://paperpile.com/b/nl5wGE/U7eB
http://paperpile.com/b/nl5wGE/0r2i
http://paperpile.com/b/nl5wGE/0r2i
http://paperpile.com/b/nl5wGE/0r2i
http://paperpile.com/b/nl5wGE/0r2i
http://paperpile.com/b/nl5wGE/0r2i
http://paperpile.com/b/nl5wGE/0r2i
http://paperpile.com/b/nl5wGE/KpSN


 

are increasingly dissociated in transmodal cortices. ​PLoS biology​, ​17​, e3000284 

Parkes, L.M., Schwarzbach, J.V., Bouts, A.A., et al. (2005). Quantifying the spatial resolution of 
the gradient echo and spin echo BOLD response at 3 Tesla. ​Magnetic resonance in 
medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of 
Magnetic Resonance in Medicine​, ​54​, 1465–72 

Parkinson, C., Liu, S., Wheatley, T. (2014). A common cortical metric for spatial, temporal, and 
social distance. ​The Journal of neuroscience: the official journal of the Society for 
Neuroscience​, ​34​, 1979–87 

Peelen, M.V., Atkinson, A.P., Vuilleumier, P. (2010). Supramodal representations of perceived 
emotions in the human brain. ​The Journal of neuroscience: the official journal of the Society 
for Neuroscience​, ​30​, 10127–34 

Power, J.D., Cohen, A.L., Nelson, S.M., et al. (2011). Functional network organization of the 
human brain. ​Neuron​, ​72​, 665–78 

Saxe, R., Brett, M., Kanwisher, N. (2006). Divide and conquer: a defense of functional 
localizers. ​NeuroImage​, ​30​, 1088–96; discussion 1097–99 

Saxe, R., Kanwisher, N. (2003/8). People thinking about thinking people: The role of the 
temporo-parietal junction in ‘theory of mind’. ​NeuroImage​, ​19​, 1835–42 

Schaefer, A., Kong, R., Gordon, E.M., et al. (2016). Cerebral cortex parcellation by fusion of 
local and global functional connectivity feature. In: ​The International Society for Magnetic 
Resonance in Medicine Annual Meeting, Singapore​. 

Schrouff, J., Rosa, M.J., Rondina, J.M., et al. (2013). PRoNTo: pattern recognition for 
neuroimaging toolbox. ​Neuroinformatics​, ​11​, 319–37 

Shenton, M.E., Kikinis, R., McCarley, W., et al. Harvard brain atlas: a teaching and visualization 
tool. ​Proceedings 1995 Biomedical Visualization 

Simony, E., Honey, C.J., Chen, J., et al. (2016). Dynamic reconfiguration of the default mode 
network during narrative comprehension. ​Nature communications​, ​7​, 12141 

Spreng, R.N., Mar, R.A., Kim, A.S.N. (2009). The common neural basis of autobiographical 
memory, prospection, navigation, theory of mind, and the default mode: a quantitative 
meta-analysis. ​Journal of cognitive neuroscience​, ​21​, 489–510 

Stelzer, J., Buschmann, T., Lohmann, G., et al. (2014). Prioritizing spatial accuracy in 
high-resolution fMRI data using multivariate feature weight mapping. ​Frontiers in 
neuroscience​, ​8​, 66 

Stelzer, J., Chen, Y., Turner, R. (2013). Statistical inference and multiple testing correction in 
classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster 
size control. ​NeuroImage​, ​65​, 69–82 

Sul, S., Tobler, P.N., Hein, G., et al. (2015). Spatial gradient in value representation along the 
medial prefrontal cortex reflects individual differences in prosociality. ​Proceedings of the 

http://paperpile.com/b/nl5wGE/KpSN
http://paperpile.com/b/nl5wGE/KpSN
http://paperpile.com/b/nl5wGE/KpSN
http://paperpile.com/b/nl5wGE/KpSN
http://paperpile.com/b/nl5wGE/KpSN
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/TNdC
http://paperpile.com/b/nl5wGE/7YPx
http://paperpile.com/b/nl5wGE/7YPx
http://paperpile.com/b/nl5wGE/7YPx
http://paperpile.com/b/nl5wGE/7YPx
http://paperpile.com/b/nl5wGE/7YPx
http://paperpile.com/b/nl5wGE/7YPx
http://paperpile.com/b/nl5wGE/7YPx
http://paperpile.com/b/nl5wGE/uUR3
http://paperpile.com/b/nl5wGE/uUR3
http://paperpile.com/b/nl5wGE/uUR3
http://paperpile.com/b/nl5wGE/uUR3
http://paperpile.com/b/nl5wGE/uUR3
http://paperpile.com/b/nl5wGE/uUR3
http://paperpile.com/b/nl5wGE/uUR3
http://paperpile.com/b/nl5wGE/h1X3
http://paperpile.com/b/nl5wGE/h1X3
http://paperpile.com/b/nl5wGE/h1X3
http://paperpile.com/b/nl5wGE/h1X3
http://paperpile.com/b/nl5wGE/h1X3
http://paperpile.com/b/nl5wGE/h1X3
http://paperpile.com/b/nl5wGE/AtQa
http://paperpile.com/b/nl5wGE/AtQa
http://paperpile.com/b/nl5wGE/AtQa
http://paperpile.com/b/nl5wGE/AtQa
http://paperpile.com/b/nl5wGE/AtQa
http://paperpile.com/b/nl5wGE/AtQa
http://paperpile.com/b/nl5wGE/iJTB
http://paperpile.com/b/nl5wGE/iJTB
http://paperpile.com/b/nl5wGE/iJTB
http://paperpile.com/b/nl5wGE/iJTB
http://paperpile.com/b/nl5wGE/iJTB
http://paperpile.com/b/nl5wGE/iJTB
http://paperpile.com/b/nl5wGE/5KGh
http://paperpile.com/b/nl5wGE/5KGh
http://paperpile.com/b/nl5wGE/5KGh
http://paperpile.com/b/nl5wGE/5KGh
http://paperpile.com/b/nl5wGE/5KGh
http://paperpile.com/b/nl5wGE/5IIM
http://paperpile.com/b/nl5wGE/5IIM
http://paperpile.com/b/nl5wGE/5IIM
http://paperpile.com/b/nl5wGE/5IIM
http://paperpile.com/b/nl5wGE/5IIM
http://paperpile.com/b/nl5wGE/5IIM
http://paperpile.com/b/nl5wGE/ed00
http://paperpile.com/b/nl5wGE/ed00
http://paperpile.com/b/nl5wGE/ed00
http://paperpile.com/b/nl5wGE/P7zu
http://paperpile.com/b/nl5wGE/P7zu
http://paperpile.com/b/nl5wGE/P7zu
http://paperpile.com/b/nl5wGE/P7zu
http://paperpile.com/b/nl5wGE/P7zu
http://paperpile.com/b/nl5wGE/P7zu
http://paperpile.com/b/nl5wGE/WV7w
http://paperpile.com/b/nl5wGE/WV7w
http://paperpile.com/b/nl5wGE/WV7w
http://paperpile.com/b/nl5wGE/WV7w
http://paperpile.com/b/nl5wGE/WV7w
http://paperpile.com/b/nl5wGE/WV7w
http://paperpile.com/b/nl5wGE/WV7w
http://paperpile.com/b/nl5wGE/AYSU
http://paperpile.com/b/nl5wGE/AYSU
http://paperpile.com/b/nl5wGE/AYSU
http://paperpile.com/b/nl5wGE/AYSU
http://paperpile.com/b/nl5wGE/AYSU
http://paperpile.com/b/nl5wGE/AYSU
http://paperpile.com/b/nl5wGE/AYSU
http://paperpile.com/b/nl5wGE/4uMG
http://paperpile.com/b/nl5wGE/4uMG
http://paperpile.com/b/nl5wGE/4uMG
http://paperpile.com/b/nl5wGE/4uMG
http://paperpile.com/b/nl5wGE/4uMG
http://paperpile.com/b/nl5wGE/4uMG
http://paperpile.com/b/nl5wGE/4uMG
http://paperpile.com/b/nl5wGE/Pl2a
http://paperpile.com/b/nl5wGE/Pl2a
http://paperpile.com/b/nl5wGE/Pl2a


 

National Academy of Sciences of the United States of America​, ​112​, 7851–56 

Tamir, D.I., Thornton, M.A., Contreras, J.M., et al. (2016). Neural evidence that three 
dimensions organize mental state representation: Rationality, social impact, and valence. 
Proceedings of the National Academy of Sciences of the United States of America​, ​113​, 
194–99 

Thomas Yeo, B.T., Krienen, F.M., Sepulcre, J., et al. (2011). The organization of the human 
cerebral cortex estimated by intrinsic functional connectivity. ​Journal of neurophysiology 

Thornton, M.A., Mitchell, J.P. (2017). Theories of Person Perception Predict Patterns of Neural 
Activity During Mentalizing. ​Cerebral cortex ​, 1–16 

Todd, N., Moeller, S., Auerbach, E.J., et al. (2016). Evaluation of 2D multiband EPI imaging for 
high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage 
artifacts. ​NeuroImage​, ​124​, 32–42 

Varol, E., Sotiras, A., Davatzikos, C. (2018). MIDAS: Regionally linear multivariate discriminative 
statistical mapping. ​NeuroImage​, ​174​, 111–26 

Varoquaux, G., Poldrack, R.A. (2019). Predictive models avoid excessive reductionism in 
cognitive neuroimaging. ​Current opinion in neurobiology​, ​55​, 1–6 

Vázquez-Rodríguez, B., Suárez, L.E., Markello, R.D., et al. (2019). Gradients of 
structure–function tethering across neocortex. ​Proceedings of the National Academy of 
Sciences of the United States of America​, ​116​, 21219–27 

Viswanathan, S., Cieslak, M., Grafton, S.T. (2012). On the geometric structure of fMRI 
searchlight-based information maps. ​arXiv [q-bio.NC] 

Wager, T.D., Atlas, L.Y., Leotti, L.A., et al. (2011). Predicting individual differences in placebo 
analgesia: contributions of brain activity during anticipation and pain experience. ​The 
Journal of neuroscience: the official journal of the Society for Neuroscience​, ​31​, 439–52 

Wager, T.D., Atlas, L.Y., Lindquist, M.A., et al. (2013). An fMRI-based neurologic signature of 
physical pain. ​The New England journal of medicine​, ​368​, 1388–97 

Wager, T.D., Kang, J., Johnson, T.D., et al. (2015). A Bayesian model of category-specific 
emotional brain responses. ​PLoS computational biology​, ​11​, e1004066 

Wagner, D.D., Haxby, J.V., Heatherton, T.F. (2012). The representation of self and person 
knowledge in the medial prefrontal cortex. ​Wiley interdisciplinary reviews. Cognitive 
science​, ​3​, 451–70 

Woo, C.-W., Chang, L.J., Lindquist, M.A., et al. (2017). Building better biomarkers: brain models 
in translational neuroimaging. ​Nature neuroscience​, ​20​, 365–77 

Yamins, D.L.K., DiCarlo, J.J. (2016). Using goal-driven deep learning models to understand 
sensory cortex. ​Nature neuroscience​, ​19​, 356–65 

Yamins, D.L.K., Hong, H., Cadieu, C.F., et al. (2014). Performance-optimized hierarchical 

http://paperpile.com/b/nl5wGE/Pl2a
http://paperpile.com/b/nl5wGE/Pl2a
http://paperpile.com/b/nl5wGE/Pl2a
http://paperpile.com/b/nl5wGE/Pl2a
http://paperpile.com/b/nl5wGE/tuJx
http://paperpile.com/b/nl5wGE/tuJx
http://paperpile.com/b/nl5wGE/tuJx
http://paperpile.com/b/nl5wGE/tuJx
http://paperpile.com/b/nl5wGE/tuJx
http://paperpile.com/b/nl5wGE/tuJx
http://paperpile.com/b/nl5wGE/tuJx
http://paperpile.com/b/nl5wGE/mV3b
http://paperpile.com/b/nl5wGE/mV3b
http://paperpile.com/b/nl5wGE/mV3b
http://paperpile.com/b/nl5wGE/kUkb
http://paperpile.com/b/nl5wGE/kUkb
http://paperpile.com/b/nl5wGE/kUkb
http://paperpile.com/b/nl5wGE/kUkb
http://paperpile.com/b/nl5wGE/9X4F
http://paperpile.com/b/nl5wGE/9X4F
http://paperpile.com/b/nl5wGE/9X4F
http://paperpile.com/b/nl5wGE/9X4F
http://paperpile.com/b/nl5wGE/9X4F
http://paperpile.com/b/nl5wGE/9X4F
http://paperpile.com/b/nl5wGE/9X4F
http://paperpile.com/b/nl5wGE/Gak2
http://paperpile.com/b/nl5wGE/Gak2
http://paperpile.com/b/nl5wGE/Gak2
http://paperpile.com/b/nl5wGE/Gak2
http://paperpile.com/b/nl5wGE/Gak2
http://paperpile.com/b/nl5wGE/Gak2
http://paperpile.com/b/nl5wGE/S82B
http://paperpile.com/b/nl5wGE/S82B
http://paperpile.com/b/nl5wGE/S82B
http://paperpile.com/b/nl5wGE/S82B
http://paperpile.com/b/nl5wGE/S82B
http://paperpile.com/b/nl5wGE/S82B
http://paperpile.com/b/nl5wGE/4UUi
http://paperpile.com/b/nl5wGE/4UUi
http://paperpile.com/b/nl5wGE/4UUi
http://paperpile.com/b/nl5wGE/4UUi
http://paperpile.com/b/nl5wGE/4UUi
http://paperpile.com/b/nl5wGE/4UUi
http://paperpile.com/b/nl5wGE/4UUi
http://paperpile.com/b/nl5wGE/lOWL
http://paperpile.com/b/nl5wGE/lOWL
http://paperpile.com/b/nl5wGE/lOWL
http://paperpile.com/b/nl5wGE/WZub
http://paperpile.com/b/nl5wGE/WZub
http://paperpile.com/b/nl5wGE/WZub
http://paperpile.com/b/nl5wGE/WZub
http://paperpile.com/b/nl5wGE/WZub
http://paperpile.com/b/nl5wGE/WZub
http://paperpile.com/b/nl5wGE/WZub
http://paperpile.com/b/nl5wGE/GYLW
http://paperpile.com/b/nl5wGE/GYLW
http://paperpile.com/b/nl5wGE/GYLW
http://paperpile.com/b/nl5wGE/GYLW
http://paperpile.com/b/nl5wGE/GYLW
http://paperpile.com/b/nl5wGE/GYLW
http://paperpile.com/b/nl5wGE/yKe1
http://paperpile.com/b/nl5wGE/yKe1
http://paperpile.com/b/nl5wGE/yKe1
http://paperpile.com/b/nl5wGE/yKe1
http://paperpile.com/b/nl5wGE/yKe1
http://paperpile.com/b/nl5wGE/yKe1
http://paperpile.com/b/nl5wGE/EJNQ
http://paperpile.com/b/nl5wGE/EJNQ
http://paperpile.com/b/nl5wGE/EJNQ
http://paperpile.com/b/nl5wGE/EJNQ
http://paperpile.com/b/nl5wGE/EJNQ
http://paperpile.com/b/nl5wGE/EJNQ
http://paperpile.com/b/nl5wGE/EJNQ
http://paperpile.com/b/nl5wGE/3YCQ
http://paperpile.com/b/nl5wGE/3YCQ
http://paperpile.com/b/nl5wGE/3YCQ
http://paperpile.com/b/nl5wGE/3YCQ
http://paperpile.com/b/nl5wGE/3YCQ
http://paperpile.com/b/nl5wGE/3YCQ
http://paperpile.com/b/nl5wGE/kVWF
http://paperpile.com/b/nl5wGE/kVWF
http://paperpile.com/b/nl5wGE/kVWF
http://paperpile.com/b/nl5wGE/kVWF
http://paperpile.com/b/nl5wGE/kVWF
http://paperpile.com/b/nl5wGE/kVWF
http://paperpile.com/b/nl5wGE/ffp7


 

models predict neural responses in higher visual cortex. ​Proceedings of the National 
Academy of Sciences​, ​111​, 8619–24 

Yarkoni, T., Poldrack, R.A., Nichols, T.E., et al. (2011). Large-scale automated synthesis of 
human functional neuroimaging data. ​Nature methods​, ​8​, 665–70 

Yarkoni, T., Westfall, J. (2016). Choosing prediction over explanation in psychology: Lessons 
from machine learning. ​figshare 

Yoo, P.E., John, S.E., Farquharson, S., et al. (2018). 7T-fMRI: Faster temporal resolution yields 
optimal BOLD sensitivity for functional network imaging specifically at high spatial 
resolution. ​NeuroImage​, ​164​, 214–29 

Young, L., Dodell-Feder, D., Saxe, R. (2010). What gets the attention of the temporo-parietal 
junction? An fMRI investigation of attention and theory of mind. ​Neuropsychologia​, ​48​, 
2658–64 

Yu, H., Koban, L., Chang, L.J., et al. (2020). A Generalizable Multivariate Brain Pattern for 
Interpersonal Guilt. ​Cerebral cortex  

 

http://paperpile.com/b/nl5wGE/ffp7
http://paperpile.com/b/nl5wGE/ffp7
http://paperpile.com/b/nl5wGE/ffp7
http://paperpile.com/b/nl5wGE/ffp7
http://paperpile.com/b/nl5wGE/ffp7
http://paperpile.com/b/nl5wGE/ffp7
http://paperpile.com/b/nl5wGE/EH40
http://paperpile.com/b/nl5wGE/EH40
http://paperpile.com/b/nl5wGE/EH40
http://paperpile.com/b/nl5wGE/EH40
http://paperpile.com/b/nl5wGE/EH40
http://paperpile.com/b/nl5wGE/EH40
http://paperpile.com/b/nl5wGE/oZd4
http://paperpile.com/b/nl5wGE/oZd4
http://paperpile.com/b/nl5wGE/oZd4
http://paperpile.com/b/nl5wGE/6yLK
http://paperpile.com/b/nl5wGE/6yLK
http://paperpile.com/b/nl5wGE/6yLK
http://paperpile.com/b/nl5wGE/6yLK
http://paperpile.com/b/nl5wGE/6yLK
http://paperpile.com/b/nl5wGE/6yLK
http://paperpile.com/b/nl5wGE/6yLK
http://paperpile.com/b/nl5wGE/ZE66
http://paperpile.com/b/nl5wGE/ZE66
http://paperpile.com/b/nl5wGE/ZE66
http://paperpile.com/b/nl5wGE/ZE66
http://paperpile.com/b/nl5wGE/ZE66
http://paperpile.com/b/nl5wGE/ZE66
http://paperpile.com/b/nl5wGE/ZE66
http://paperpile.com/b/nl5wGE/pmBf
http://paperpile.com/b/nl5wGE/pmBf
http://paperpile.com/b/nl5wGE/pmBf

