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Abstract

Multivariate neuroimaging analyses constitute a powerful class of techniques to identify
psychological representations. However, not all psychological processes are represented at the
same spatial scale throughout the brain. This heterogeneity is apparent when comparing
hierarchically organized local representations of perceptual processes to flexible transmodal
representations of more abstract cognitive processes such as social and affective operations.
An open question is how the spatial scale of analytic approaches interacts with the spatial scale
of the representations under investigation. In this article, we describe how multivariate analyses
can be viewed as existing on a spatial spectrum, anchored by searchlights used to identify
locally distributed patterns of information on one end, whole brain approach used to identify
diffuse neural representations at the other, and region-based approaches in between. We
describe how these distinctions are an important and often overlooked analytic consideration
and provide heuristics to compare these different techniques to choose based on the analyst’s
inferential goals.



INTRODUCTION

The past decade has witnessed an explosion in empirical studies employing advanced
statistical methods to understand brain representations. Traditional univariate analyses of
functional magnetic resonance imaging data (fMRI) have historically focused on differences in
magnitudes of activation (Friston et al., 1995), while more contemporary approaches have
explored how spatial patterns of activity encode psychological information (multivariate pattern
analysis; MVPA) (Haxby et al., 2014) and how the temporal dynamics of neural responses are
shared across individuals (intersubject correlation; ISC) (Nastase et al., 2019). Unlike univariate
techniques that independently model each voxel, these modern techniques often involve
aggregating responses across multiple voxels during the modeling process (e.g. searchlights,
regions of interest (ROIs), or whole brain). An underappreciated consideration when using these
approaches is the spatial scale at which these analyses are performed. In this article, we will
discuss how different psychological and cognitive processes may be reflected at different spatial
scales and how this might impact choices in the analysis pipeline. We begin by exploring
evidence for spatial-scale heterogeneity, then compare and contrast the most commonly
employed techniques, and conclude with practical considerations for choosing methods best
suited for different research questions.

Spatial scale of representations in the brain

Many contemporary fMRI methods focused on mapping brain representations or modeling
neural synchrony require selecting specific spatial features to be used in an analysis (e.g. fMRI
decoding, encoding, representational similarity analysis (RSA), ISC, intersubject
representational similarity analysis  (IS-RSA) (Naselaris et al., 2011; Diedrichsen and
Kriegeskorte, 2017; van Baar et al., 2019; Chen et al., 2019; Nastase et al., 2019; Finn et al.,
2020)). In this context, features refer to the specific information that is entered into a model (e.g.
a group of voxels, the average activity in a cortical region, or a neural distance matrix) and used
to make inferences about a specific process, representation, or psychological state. Numerous
published papers have made general recommendations about setting up and interpreting
analyses with different techniques (e.g. (Haynes, 2015)). However, these guides primarily make
recommendations based on statistical considerations such as the interpretability of decoding
accuracy (Etzel et al., 2013), or highlight what contemporary techniques offer beyond simple
univariate contrasts of brain activity (Kriegeskorte and Bandettini, 2007).

A key consideration often missing from these discussions is the spatial variability with which
different kinds of neural and/or psychological information may be represented in the brain
(Kragel et al., 2018). For example, considerable evidence stemming from neuronal recordings,
univariate fMRI studies, neuropsychological investigations, computational modeling, and animal
studies have demonstrated a reliable functional organizational scheme for sensory systems,
with a particular focus on the visual system (Felleman and Van Essen, 1991; Grill-Spector and
Malach, 2004; Hubel and Wiesel, 2004; Yamins et al., 2014). This modular organizational
structure has served as a scaffold for much contemporary research, and has also importantly
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impacted the analytic approaches used to make scientific discoveries. The structure of the
visual system affords researchers the ability to test specific predictions and build models at fine
spatial scales. Some notable examples include direct recordings of populations in preselected
cortical patches (Chang and Tsao, 2017), or using local patterns of neural activity to
topographically map how representations change and transform as information moves through
the visual system (Kriegeskorte et al., 2006). It has also been a key driver of highly
sophisticated contemporary work such as comparing features learned by layers of deep neural
networks to neural representations in different stages of the ventral visual stream (Kriegeskorte,
2015; Cichy et al., 2016; Yamins and DiCarlo, 2016). This scale of analysis comports well with
consensus understanding of how perceptual systems are organized, and is well-suited for
examining the brain through the lens of functional compartments or locally distributed
populations of activity (Haxby et al., 2014; Kragel et al., 2018).

In parallel, a large body of work has taken a more macroscopic view of brain organization by
examining how diffusely distributed representations and networks subserve different cognitive
functions by dynamically adapting to the task at hand (Kragel et al., 2018). At this spatial scale,
cortical areas can be seen as belonging to various subtypes such as primary sensory-motor,
unimodal associative, transmodal associative, paralimbic, and limbic (Mesulam, 1998). These
subtypes demonstrate independent patterns of functional connectivity at rest (rsfMRI) and can
be used to parcellate the brain into distinct networks (Power et al., 2011; Thomas Yeo et al.,
2011; Glasser et al., 2016; Schaefer et al, 2016). Interestingly, several groups have
demonstrated that subtypes of cortex vary markedly in the similarity between their structural and
functional connectivity (Honey et al., 2009). For example, functional connectivity most closely
resembles anatomical connectivity and microstructural properties in sensory and unimodal
regions, but this resemblance breaks down in transmodal areas such as the default mode
network (DMN) (Paquola et al., 2019; Vazquez-Rodriguez et al., 2019). Further, the variability in
functional connectivity patterns appear to be organized around functional gradients that range
from unimodal primary sensory regions to transmodal associative regions (Margulies et al.,
2016). In other words, neural activity at rest is organized in a manner consistent with the
geometric structure of the brain. Brain regions farther away from primary sensory areas are
responsible for less externally focused computations and more abstract modes of cognition (e.g.
associative, multimodal, internally-directed). Transmodal regions often exhibit less hierarchical
organization, denser interconnectivity, more top-down projections between cortical layers, and
less laminar differentiation, which is believed to facilitate more abstract and flexible responding
to different kinds of information (Paquola et al., 2019; Vazquez-Rodriguez et al., 2019).

The contrast between these literatures serves to highlight the breadth of spatial scales at which
the brain represents and supports different psychological and cognitive functions. If tight,
localized, hierarchical organization of primary sensory systems represents one end of this
range, the other appears to be a more spatially diffuse, abstract, and flexible organization of
transmodal areas. In the field of social and affective neuroscience, there appears to be a
network of brain regions, overlapping with the DMN, thought to reliably support socio-emotional
processing (Lieberman, 2007; Adolphs, 2009). An open question, however, is whether the
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functional organization of these regions resembles primary sensory systems with circumscribed
functional subdivisions, or a more general structure such that all regions support
socio-emotional cognition by flexibly adapting their responsibilities to the particular task at hand.

There is some evidence that this social brain network may contain distinct cortical areas,
patches, and populations of neurons with highly circumscribed responsibilities functionality
tuned to specific aspects of a socioemotional experience, akin to functional specificity in primary
sensory systems (Adolphs, 2009). Meta-analyses of the medial prefrontal cortex (mPFC), for
example, posit the existence of distinct subdivisions for cognitive and emotional tasks (Amodio
and Frith, 2006; De La Vega et al., 2016) and a dorsal to ventral gradient which delineates
representations about others or the self, respectively (Mitchell et al., 2006; Wagner et al., 2012;
Sul et al., 2015). The temporoparietal junction (TPJ) has been strongly associated with
theory-of-mind and specifically reasoning about others’ beliefs and intentions as distinct from
their feelings and emotions (Saxe and Kanwisher, 2003/8; Peelen et al., 2010; Young et al.,
2010; Mc Kell Carter et al., 2012; Koster-Hale et al., 2017), akin to the relationship between the
fusiform gyrus and face processing (Kanwisher et al., 1997). However, subdivisions within this
area show different patterns of functional connectivity with the rest of the brain, suggesting
distinct local representations despite cortical proximity (Mitchell, 2008; Mars et al., 2012; Carter
and Huettel, 2013). This work hints at a potentially fine-grained organizational structure within
socio-emotional brain regions, but has yet to be characterized to the same degree of functional
and spatial granularity as primary sensory systems.

A different perspective proposes that socio-emotional representations might be more diffusely
distributed because the phenomenological experiences themselves (e.g. feeling an emotion,
inferring an intention) are by their very nature more abstract, consisting of the integration of
numerous processes such as perception, memory, prediction, and interoception (Chang et al.,
2015; Barrett, 2017). Numerous studies support this account by demonstrating how regions
within the DMN are critical for mental-state inference but also, prospection, episodic memory,
navigation, narrative comprehension, mind-wandering, and high-level comprehension (Buckner
and Carroll, 2007; Mason et al., 2007; Spreng et al., 2009; Simony et al., 2016; Tamir et al.,
2016; Golchert et al., 2017). A wide range of brain regions, spanning multiple networks,
including the default-mode, salience, and frontoparietal, appear to all be involved in the
representation of emotions (Kober et al., 2008; Lindquist et al., 2012; Chang et al., 2015; Wager
et al., 2015; Kragel and LaBar, 2016). Further, even local neural patterns within specific areas
such as the anterior TPJ demonstrate flexible responding, as the same neural populations
encode information about distances in space, time, as well as social ties (Parkinson et al., 2014)
or are broadly involved in establishing social context (Carter and Huettel, 2013). In this view,
socio-emotional representations are entangled with other cognitive processes because they
depend upon them. As such, neural representations appear to be correspondingly diffuse,
recruiting distributed dynamic brain-networks that can flexibly represent the highly abstract
nature of social and emotional experiences.
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What is the problem?

Given the heterogeneity of the spatial scale of different psychological processes, this
immediately raises a question: how do the spatial scales of various analytic techniques interact
with the representations they are measuring? For example, due to their inherently small spatial
scale, searchlights are highly sensitive to identifying locally distributed patterns (Kriegeskorte et
al., 2008; Kriegeskorte and Diedrichsen, 2019), making them well suited to investigating
representations that themselves are organized in a fine-grained manner (e.g. perceptual
features). On the other hand, whole brain models, that jointly model functional responses across
the entire brain, have been more successful than searchlights in identifying sensitive and
specific predictive models of more abstract psychological processes such as pain (Wager et al.,
2013), negative affect (Chang et al., 2015), guilt (Yu et al., 2020), empathy (Krishnan et al.,
2016; Loépez-Sola et al., 2017), and identifying supramodal emotion categories (Kragel and
LaBar, 2016). These examples raise the possibility that the efficient study of neural
representations requires methods that coincide with the scale at which representations are
organized. This problem is similar in nature to the choice of spatial smoothing kernel used in
conventional fMRI analysis, whereby the optimal kernel size is dictated by the spatial extent of
the hemodynamic response function as per the matched filter theorem (Friston, 2007). A large
body of work has investigated how acquisition parameters like spatial resolution and
pre-processing choices like smoothing affect the sensitivity of various analyses such as fMRI
decoding (e.g (Gardumi et al., 2016; Todd et al., 2016; Yoo et al., 2018)). However, there have
been far fewer studies investigating the optimal spatial scale (“kernel size”) of different
multivariate analysis techniques (e.g. (Stelzer et al., 2014)). This necessitates that researchers
carefully consider the spatial scale of their analyses, rather than defaulting to particular
pipelines. To aid in this process, we compare and contrast how common methodological
conventions may interact with the spatial scale of neural representations.

Current conventions

Whether researchers are performing MVPA analyses to test information encoding or decoding,
ISC analyses to measure neural synchrony, or connectivity analyses to examine networks, each
technique implicitly or explicitly constrains the spatial scale at which statistics are computed.
Should separate statistical models be built for different voxels, neighborhoods, or regions of the
brain (i.e. independent groups of voxels)? And if so, how should this be determined? Should
predictions, weights, and variability from these models be combined to make inferences? And if
so, how? Because different answers to these questions ultimately test very different statistical
models, spatial feature selection becomes a key decision that always adds additional
assumptions or constraints to the hypotheses being tested and the conclusions being drawn.
Fortunately, there are numerous options available to researchers that fall along a spectrum of
fine-grain to diffuse spatial scales’ (Figure 1).

' Because all methods fundamentally operate on information contained in voxels, fine-grained in this
context refers to information in voxel patterns comprised of small (often-contiguous) spatial
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Searchlights

The popular searchlight approach (Kriegeskorte et al., 2006; Kriegeskorte and Bandettini, 2007)
lies at one end of the spectrum and can be viewed as the “mass-multivariate” analogue to the
“mass-univariate” approach popular in conventional activation-based fMRI analyses (Friston et
al., 1995). Searchlight analyses only consider information contained in local, overlapping
neighborhoods around each voxel defined by a radius, and ignore how information may be
distributed across spatial scales outside of those local neighborhoods. In this way, searchlights
may ignore relevant signals in more diffuse representations such as emotions, and are
consistently outperformed by whole brain or regional models in those situations (Kragel et al.,
2018). When wused for decoding analyses, searchlights are equivalent to feature
subset-selection in the machine-learning literature, whereby subsets are determined by the
coordinates of each voxel and the radius of each searchlight (Hastie et al., 2009). Similar to
their univariate counterpart, searchlights are agnostic to functional or anatomical subdivisions
and typically require as many statistical computations as voxels in the brain. Though rarely
directly contrasted, searchlights can be easily compared as they are most often computed with
the same radius size and therefore different searchlights contain the same number of voxels.

Searchlight Whole brain .
Increasing Spatial Scale

Figure 1 | Spatial scales of different analytic strategies

Most common analytic methods can be seen as lying on a spectrum of varying spatial scales.
Searchlights (left) represent one endpoint of this spectrum as they are well suited for modeling
information at small spatial scales such as fine-grained neural patterns in a local neighborhood around a
voxel defined by a radius size. ROl (middle) approaches can be used to model larger spatial scales
explicitly taking into account functional and anatomical divisions. Multiple ROIs can be combined together
to model even larger spatial extents such as functional networks. Whole brain (right) approaches
represent the other endpoint of this spectrum as they are well suited for modeling diffuse representations
that extend beyond local neighborhoods, regions, and networks.

Regions of Interest
At a larger spatial scale, ROI approaches consist of groups of voxels determined by anatomical
or functional divisions. There are broadly two types of ROl approaches: (a) contiguous and (b)

neighborhoods, whereas diffuse refers to voxel patterns encompassing much larger contiguous or
non-contiguous spatial extents.
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non-contiguous. Contiguous approaches consist of voxel-groups that are spatially constrained
to cover a continuous area of the brain, whereas non-contiguous approaches include both
spatially contiguous but also spatially disjoint groups of voxels such as functional networks.
Non-contiguous ROls by their nature tend to encompass a larger spatial extent than contiguous
regions. In both cases, spatial constraints are typically determined in two ways. One approach
leverages functional responses, measured for example by using functional localizers from
independent data (Saxe et al., 2006), or by directly pruning voxels using techniques such as
recursive feature elimination (De Martino et al., 2008). The other approach relies on anatomical
boundaries typically determined from brain atlases, rsfMRI connectivity network parcellations, or
meta-analyses (Yarkoni et al., 2011; Chang et al., 2013; De La Vega et al., 2016; Eickhoff et al.,
2018; Shenton et al., n.d.). The number of unique statistical computations estimated in the ROI
approach is generally fewer than the searchlight approach and is determined based on the
number of distinct regions selected. Unlike searchlights, ROI approaches can directly leverage
known anatomical distinctions or functional response profiles as part of the spatial feature
selection process. This flexibility enables them to capture a wide range of spatial scales, for
example, modeling multiple distinct brain regions together, or differentiating cortical
sub-divisions across multiple models. More generally, ROl approaches are tests of focal
hypotheses constrained to locations researchers often believe to be relevant a priori, such as
social brain regions (Thornton and Mitchell, 2017). However, with this flexibility comes a
trade-off in consistency across analyses. Comparisons across regions can become more
complicated as ROls typically don’t contain the same number of voxels.

Whole brain models

Whole brain models reflect the largest spatial scale as they consider all voxels and their
covariance during model estimation. In contrast to numerous small searchlights or ROls, the
whole brain approach can be viewed as a “single searchlight/region” with a radius large enough
to encompass all brain voxels. This approach can be used with unsupervised methods such as
independent components analysis (Calhoun et al., 2001; Beckmann et al., 2005), or supervised
methods such as decoding (Wager et al.,, 2013; Chang et al., 2015). Like searchlights, no
anatomical information is explicitly used to determine the spatial scale of whole brain models.
However, in decoding analyses, some more sophisticated algorithms can incorporate
information about spatial smoothness or regional connectivity to find model estimates that better
reflect regional structure by forcing spatial constraints (Baldassarre et al., 2012; Gramfort et al.,
2013; Grosenick et al., 2013). Whole brain prediction analyses can provide a single model
comprised of feature weights at each voxel that are simple to test in additional experimental
contexts. Such generalization tests are highly valuable as they can provide valid reverse
inference (Varoquaux and Poldrack, 2019) and also aid in identifying relative voxel importance
(with caveats) (Haufe et al., 2014; Kriegeskorte and Douglas, 2019). In addition, generalization
tests can facilitate psychological construct validity, whereby model performance in different
contexts can provide measurement information about the sensitivity and specificity of how a
particular psychological construct is defined (e.g. different types of pain, memory, touch) (Kragel
et al., 2018). For this reason, these models have been particularly popular in translational and
affective neuroscience whereas whole brain decoders have been used as “biomarkers” because
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they generalize well across populations and tasks even within a single subject (Wager et al.,
2013; Gabrieli et al., 2015; Lindquist et al., 2015; Krishnan et al., 2016; Woo et al., 2017; Kragel
et al., 2018).

ANALYTIC CONSIDERATIONS

There are several key factors that researchers might consider when choosing between different
scales of spatial feature selection. We have organized these factors into three broad categories.
The first concerns subjective choices such as the goals of a particular analysis and the types of
inferences researchers hope to make. The second comprises practical considerations for
reliable statistical estimation. The third concerns computational resource availability and the
trade-offs between different approaches. A summary of these comparisons is listed in Table 1.
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Figure 2 | Interactions between methodological and representational spatial scales

Depending on the type of phenomenon under inquiry some analytic techniques may be more or less
optimal. Increasing spatial scale of analysis techniques are depicted on the x-axis with searchlights at the
small (left) end and whole brain approaches on the large (right) end; these mirror the spectrum Figure 1.
The y-axis depicts hypothetical endpoints of representational scales with fine-grained local patterns in the
bottom row (e.g. perceptual processes) and more diffuse patterns in the top row (e.g. social and
emotional processes). Fine scale methods like searchlights may fail to capture diffuse representations as
local neighborhoods provide a distorted view of a diffuse representation (top-row; left). These same
methods may be optimal for finer neural representation in which all relevant information is reflected in a
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local neighborhood (bottom-row; left). On the other hand large scale methods such as whole brain
approaches may be unable to reliably identify informative voxels when representations are organized in
local neighborhoods (bottom-row; right) and may be better suited to identifying diffuse representations
with large spatial extents (top-row; right). ROl approaches (top/bottom-row; middle) offer a flexible
compromise, inheriting both the strengths and weaknesses of searchlight and whole brain approaches
depending on the particular ROl method employed. At the same time, the smallest spatial scale
measurable by fMRI is likely limited by the BOLD point-spread-function (PSF) at a particular magnetic
field strength, e.g. 3-5mm at 3T (Parkes et al., 2005).

What is the goal?

A primary distinguishing factor between different analytic techniques is the type of inference
researchers want to make. Broadly construed, modeling falls into two “cultures,” (Breiman,
2001; Yarkoni and Westfall, 2016): inference emphasizes model interpretability and is evaluated
using null-hypothesis-significance-testing (NHST) in a single context (e.g. a single dataset or
task), while prediction emphasizes generalizability to new contexts and is evaluated based on
out-of-sample model performance (Bzdok and loannidis, 2019). While this characterization
cleanly distinguishes univariate magnitude based analyses and multivariate predictive analyses,
different multivariate analyses often conflate both goals in confusing ways (Hebart and Baker,
2018). For example, searchlight analysis was primarily conceived of as an information mapping
technique and, when combined with cross-validated decoding, can approximate out-of-sample
performance to make inferences about “where information is represented” (Kriegeskorte et al.,
2006; Kriegeskorte and Bandettini, 2007). Decoding in the context of whole brain models has
focused primarily on predictive performance and generalization to a variety of contexts such as
developing brain-computer-interfaces (Woo et al., 2017; Hebart and Baker, 2018).

Reflecting these differences, results from searchlight analyses are typically reported as
accuracy maps and inference is performed by comparing accuracy at each searchlight to
empirical or permuted chance (Haynes, 2015) (Table 1 Conventional Inferences). However, the
feasible conclusions that can be drawn from this approach only indicate whether at least one
voxel in a local neighborhood is related to the outcome being predicted, not necessarily that
every voxel in that neighborhood is reliably representing psychological information
(Viswanathan et al., 2012; Etzel et al., 2013)?. Feature weights within a searchlight are almost
never examined nor used to make predictions on completely distinct datasets. This is due to the
fact that searchlights are most often overlapping, leading each voxel to have a different feature
weight depending upon the particular searchlight (local neighborhood) it belongs to. This makes
it infeasible to perform traditional feature importance testing (e.g. bootstrapping/permutation
testing) as there are numerous possible ways to integrate these different weights across
searchlights (e.g. see MIDAS (Varol et al., 2018)). With increasing radius size these issues
make it nearly impossible to identify which voxels are most important for prediction, as accuracy
scores are “smeared” over spatial extents because searchlights are overlapping (Viswanathan

2 This same criticism does not necessarily apply to searchlight-RSA or searchlight-ISC analyses
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et al., 2012)%. Searchlight analyses are also often computed on individual brains and
performance metrics (e.g. accuracy) are aggregated at the group level to draw inferences
(Stelzer et al., 2014). This also means that the particular geometry of a representation (i.e. the
spatial layout of feature weights within a local neighborhood) are likely to differ across
individuals, greatly complicating what types of valid group inferences are possible. Unlike
univariate activation analyses, rejecting the null-hypothesis of conventional parametric tests on
accuracies (e.g. one-sample t-test) only suggests that some individuals demonstrate an effect
not that the effect is typical in the population (Nichols et al., 2005; Stelzer et al., 2013; Allefeld et
al., 2016).

In contrast, whole brain analyses are often concerned with generalization to completely new
datasets, which can be comprised of different individuals (Woo et al., 2017). While predictive
performance is essential in translational applications, the resulting feature weights at each voxel
also provide some useful information as to the spatial layout of the representations e.g. “neural
signature” (Wager et al., 2013). Feature importance (Table 1 Conventional Inferences) can be
assessed by thresholding via resampling methods such as bootstrapping or permutation
(Stelzer et al., 2014; Chang et al., 2015), however, the resulting thresholded maps must be
interpreted with caution. Unlike univariate activation maps, reliable weight maps do not indicate
that a voxel explicitly represents psychological information, but that in concert with other voxels
it can effectively predict an outcome (Haufe et al., 2014). In other words, some voxels may
indeed represent outcome-relevant information, but some may serve to denoise other voxels
which share correlated noise (Kriegeskorte and Douglas, 2019).

ROI analyses are flexible enough to inherit the strengths and weaknesses of both searchlight
and whole brain analyses depending on the details of an implementation. Separate models can
be estimated for disjoint ROIs and aggregated to make predictions, similar to kernel-learning in
machine learning, where different kernels are used for different regions (Filippone et al., 2012;
Schrouff et al., 2013). A single model encompassing multiple disjoint voxels can also be
estimated to draw inferences about a network of regions or voxels that share similar functional
response profiles, e.g. “social-brain mask” (Thornton and Mitchell, 2017). Because ROI methods
don’t typically involve overlapping features like searchlights, accuracy maps do not suffer from
spatial “smearing,” and feature weights can be examined for relative voxel importance similar to
whole brain models (Chang et al., 2018). At the same time, performance metrics and
generalization tests on separate datasets and contexts are feasible and straightforward,
permitting inferences about the sensitivity and specificity of representations within single brain
regions (Chang et al., 2015; Krishnan et al., 2016).

Thus, each end of the spectrum varies in its inferential goals. Searchlight decoding permits
spatial inference based on isolated local neighborhoods tested in similar contexts while ignoring
how that information is represented (ignoring feature weights) unless explicitly modeled with
approaches like RSA. Because they are typically estimated separately across individuals, they

3 Smearing however, can happen in principal with searchlight-RSA and searchlight-ISC analyses
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do not identify shared or common representations, but rather whether any kind of task-relevant
representations exist in the brain (Allefeld et al., 2016). Whole brain models permit strong
inferences about generalization, based on model performance, and diffuse inferences about the
spatial location of representations based on feature weights. Most often in practice, whole brain
models aim to learn a common representation that generalizes across individuals. Regional
approaches land in-between these endpoints based on their particular implementation. All
methods however, can extend beyond simple decoding analyses to facilitate stronger
inferences. Searchlight analyses can use cross-validated RSA or pattern-component-modeling
(PCM) with model comparison to test hypotheses about what stimulus features geometrically
organize information within a neighborhood (Nastase et al., 2017; Kriegeskorte and
Diedrichsen, 2019). Different whole brain feature weight maps can be compared within the
same context to determine representational specificity, shared information, and facilitate valid
reverse inferences (Krishnan et al., 2016; Varoquaux and Poldrack, 2019).

Model estimation

The most common multivariate* fMRI analyses are typically decoding models and RSA
(Kriegeskorte et al., 2006; Norman et al., 2006). In decoding approaches, voxels are considered
features, while time-points, trials, individuals, or sessions serve as observations. Building a
statistical model (e.g. a classifier, regression) requires estimating weights for features that can
be combined to predict an outcome that generalizes over observations, such as properties of a
task/stimulus (e.g. condition or category labels) or responses from individuals (e.g. behavior,
emotional ratings)®. Voxel-selection procedures are the primary determinant of inputs that a
statistical model uses to predict an outcome. This means the successful statistical estimation is
heavily affected by the ratio between the number of features (p) and number of observations (n)
(Hastie et al., 2009). When n >= p, (more or equivalent observations than features) a model can
be consistently® estimated without further constraints. However, situations where n < p (fewer
observations than features) yield a statistically underdetermined problem such that many unique
combinations of features weights can yield the same predicted outcome. This issue is further
exacerbated by the degree of independence between features. For example, spatial smoothing
is a preprocessing step that can help boost signal to noise ratios, but decreases spatial
independence. Together these issues can lead to models that exhibit overfitting’, whereby

4 While encoding models can also be viewed as a kind of multivariate model, they are most often
multivariate in stimulus feature space but univariate in brain-space. In other words, high-dimensional
models are primarily used to fit and predict a single voxel’s responses rather than a local or global spatial
pattern (Nishimoto et al., 2011; Huth et al., 2016)

5 This delineation doesn’t perfectly capture RSA analyses as models are typically distance matrices
derived from stimulus or task features and outcomes are neural distance matrices based on responses to
those stimulus or task features.

6 Consistently here refers to a single solution (weights) that maps between features and outcomes
conditional on some error/loss function (e.g. sum-of-squared errors/L, norm in linear regression).

7 Underfitting is also possible, whereby feature weight fails to capture the true signal in a data, but occurs
less often in fMRI analyses. This is because in most datasets, irrespective of spatial scale, researchers
rarely have more observations being predicted (e.g. trials, conditions, individuals) than features used to
make predictions (e.g. voxels), i.e. n<porn<<p.
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feature weights reflect both true signal but also idiosyncratic noise and generalize poorly to new
data. To combat these issues, most estimation routines rely on some form of regularization,
whereby constraints or penalties are used to limit the range of possible estimated feature
weights. Common approaches include minimizing the squared (ridge, L, penalty) or absolute
magnitude (lasso, L, penalty) (Hastie et al., 2009) of feature weights. In many cases, these
penalization techniques are similar to imposing differently shaped priors in Bayesian models
(James et al., 2013; Nunez-Elizalde et al., 2019).

Since searchlights focus on local neighborhoods, their radius size, along with the details of an
experimental task (e.g. number of conditions, trials, trials per condition etc), determine the ratio
between features (voxels) and observations (trials, conditions) (Table 1 Estimation). Small
neighborhoods comprise few features (e.g. ~28 voxels in a 6mm radius searchlight collected at
2mm voxel resolution volume) meaning approximately equivalent number of observations and
features (n ~ p) or a smaller imbalance of more features than observations (n < p; e.g. 100
voxels to 80 observations (Nastase et al., 2017)). This may facilitate algorithms that require less
regularization as evidenced by the popular use of Ilinear models (e.g.
linear-discriminant-analysis (LDA) and support-vector-machine (SVM)) that exhibit good
performance using default or variance-scaled hyperparameters rather than optimal
hyperparameters tuned via cross-validation (e.g. (Norman et al., 2006; Hanke et al., 2009).
However, radii are often arbitrarily chosen based on sizes in previous studies and can have
large effects on this ratio and thus may require different statistical models and regularization
strategies, e.g. cross-validated MANOVA (Allefeld and Haynes, 2014). In addition, multiple
comparisons corrections are needed to adjust for the large number of estimated models (Etzel
etal., 2013).

Since whole brain models include all voxels and are often used to identify representations that
generalize across individuals, the features greatly outnumber observations (n << p; e.g. 350k
voxels to 182 individuals (Chang et al., 2015)) often requiring stronger regularization (Kragel et
al., 2018) (Table 1 Estimation). For this reason, several studies use rigorous nested
cross-validation along with independent hold-out sets to first tune regularization
hyperparameters, then evaluate cross-validated predicted performance, and finally test
generalization performance on completely new individuals (Wager et al., 2013; Chang et al.,
2015; Lopez-Sola et al., 2017; Kragel et al., 2018). Another popular regularization approach is
the LASSO-PCR, in which dimensionality reduction over all brain voxels is first performed using
principal components analysis (PCA)® followed by a sparse regression model (LASSO) to
estimate weights on each principal component that are later inverted back into voxel space
(Wager et al., 2011). This approach jointly considers large groups of voxels with similar
responses as single features used for prediction and produces sparse weight maps where only
a few such voxel groups contribute strongly to prediction.

8 In practice the maximum number of retainable components is limited to the number of observations,
typically individuals, in the dataset.
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As noted in the previous section, the flexibility of ROl approaches, and the particular
implementation chosen, will largely dictate the properties of an estimation regime. However,
using a particular implementation such as non-overlapping, but contiguous ROls, it may be
possible to balance the strengths and weakness of both searchlight and whole-brain
approaches (e.g. smaller neighborhoods, necessitates less regularization, but with estimable
feature importance maps that can be used for generalization testing).

Computational Resources

The differences in inference and estimation routines between different techniques also impose
different demands on computational resources (Table 1 Compute Cost). Broadly speaking,
resources can be divided into three categories: (a) central processing units (CPU) time - the
number of independent estimations required, the time required for each, and the serial or
parallelizability of the estimations; (b) random access memory (RAM) - the “temporary” working
memory required to perform each estimation, typically determined by how and whether a
particular algorithm needs to operate on all features and observations together, or can operate
on them in a piecewise (batch) fashion; (c) Storage - the hard disk space required to store the
outputs of an estimation routine and the format of this storage which can determine ease of
sharing models.

At the small spatial scale end of the spectrum, searchlights often demand high CPU costs, low
to medium memory, and most often, low storage. This is because searchlight analyses require
estimating as many models as there are voxels in a dataset. However, estimations can proceed
in parallel and because features come from local neighborhoods with a small number of voxels,
memory demands are typically low as well. Memory demands increase monotonically with
increasing features and/or observations, i.e. larger radius or more task trials/conditions. If
inferences are primarily made using accuracy maps, then storage is simple as a single value
can be stored at each voxel location which can be easily shared. However, if researchers intend
to store feature weights for each searchlight, storage becomes more complex due to large
demands on disk-space and complicated indexing assigning feature weight vectors to each
voxel location.

At the large spatial scale end of the spectrum, whole brain models often demand low CPU
costs, high memory, and low and simple storage. Because all voxels are used for estimation,
only a single model needs be computed. However, because algorithms require operating on all
voxels and observations simultaneously, they must hold and manipulate very large matrices
(e.g. whole brian covariance matrix of 3k observations (100 participants with 30 trials each) by
200k voxels) in memory. Storage costs are low and straightforward as a model consists of a
single scalar performance score and each voxel is only associated with a single feature weight,
making whole brain models very easy to share and test on new datasets.

As with other analytic considerations, ROl approaches typically fall between searchlight and
whole brain analyses with relatively medium CPU costs and memory, but simple and low



storage requirements. CPU costs can be minimized using parallelization like searchlight
analyses. Memory demands scale with the size of each ROI as larger regions (e.qg.
non-contiguous default mode network mask) require manipulating more features and
observations together. Since ROl models are typically non-overlapping, they share storage
demands similar to whole brain models as feature-weights from different regions can be stored
together in a single file along with binary masks to later extract the weights and apply them to
new data. Accuracy maps derived from ROl models are similar to those estimated from
searchlights, as only a single value needs to be associated with each voxel location.

For all spatial scales, cross-validation or non-parametric inference using resampling methods
such as bootstrapping and permutation testing, will dramatically increase CPU costs and can
potentially increase memory or storage requirements. This is because resampling methods
require re-estimating a completely new model for each cross-validation fold and
bootstrapped/permuted iteration. In the case of cross-validation or permutation testing, only the
performance of each iteration needs to be retained, keeping storage costs low. However,
bootstrapping distributions of feature weights requires retaining each iteration in order to define
upper and lower uncertainty bounds (e.g. confidence intervals), thereby increasing costs
depending upon researchers’ goals. For example, keeping feature weights in memory can
reduce storage costs at the expense of increased RAM and decreased analytic flexibility down
the line (e.g. loading and estimating a distribution). Saving feature weights to disk on the other
hand, increases storage costs by a factor of bootstrap iterations (each iteration produces a new
set of feature weights of the same shape and size as the original model), but provides more
analytic flexibility later on.

CONCLUSIONS AND RECOMMENDATIONS

In this article we have highlighted literature demonstrating how neural representations can exist
at multiple spatial scales across the brain. Representations related to perceptual processes are
often localized to small neighborhoods with highly specific response properties and hierarchical
organization. Representations related to more abstract modes of cognition like social and
emotional processing have been observed at fine spatial scales, but more often consist of
diffuse spatial representations spanning multiple regions and networks. This representational
heterogeneity can interact with the spatial scale of particular analytic techniques, ranging from
fine-grain pattern sensitivity in local neighborhoods (searchlights), focal tests of specific regions
and networks (ROI), to whole brain neural markers that generalize across experimental
contexts.

While it may be tempting to iterate over many possible analyses and attempt to “optimize” for
the “best” spatial scale, we caution researchers against framing the issue in this way given the
lack of research specifically addressing this issue. For example, techniques like model
comparison between searchlights and whole brain models are not trivial or even feasible to
perform in most cases. Whole brain approaches estimate a single model, but other approaches
estimate N models, where N is the number of ROlIs or searchlights. Which of the N models



should be used to compare to the whole brain model? Or should N models be combined into an
ensemble? And if so how? One possible approach illustrated by Chang et al., (2015) (Fig S4
Panel B) and Kragel et al., (2018) (Fig 3) compares the performance of whole brain models to
the entire distribution of searchlight models, but is unable to directly compare how different
model weights capture the representation of emotions. Adding decision points to analysis
pipelines without cross-validation multiplies analytic flexibility and will likely increase experiment
level false-positive rates or facilitate “p-hacking” (Carp, 2012). Instead, we recommend
researchers more carefully select their analytic approach using a combination of empirical
goals, estimation techniques, and computational resources to determine what makes the most
sense for the investigation at hand. At the same time, we believe the field may benefit from
investigations directly examining the spatial scale of psychological phenomena thereby bringing
greater clarity and more progress to this understudied issue.
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Table 1 | Comparison of different analytics strategies
This table compares searchlight, ROI, and whole brain approaches in terms of their strengths and
weaknesses along three categories: inferential goals, model estimation, and computational resource
demands. Legend: n: number of observations; p: number of features; ~: approximately equal; < or >: less
or greater than; << or >>: much less or much greater than

Searchlight

ROI

Whole brain

Spatial Scale

Conventional
inferences

Estimation
(decoding)

Fine-grained and fixed.

Determined by
searchlight radius
which is typically the
same for all
searchlights.

Predictive
performance of each
searchlight (e.g.
accuracy,
correlation-distance).

Feature weights within
searchlights typically
not examined.

Separate statistical
models per individual
and model
performance
aggregated at the
group level.

Independent models
with overlapping
features and some
regularization (e.g.
SVM).

Anatomy is not part of
estimation.

Medium and flexible.

Determined by how ROI
was parcellated (e.g.
functional responses,
anatomy, network).
Size reflects variable
anatomy or functional
response profiles.

Predictive performance
for each ROI.

Feature weights within
ROIs highlight most
informative voxels.

Separate or common
models across
individuals.

Independent models
with non-overlapping
features and medium
regularization (e.g.
SVM, ridge)

Anatomy can be used
to define regions.

Diffuse and fixed.

Determined by sampling
resolution of data
(number of voxels).

Single predictive
performance for model.

Feature weights highlight
most informative voxels.

Separate or common
models across
individuals.

Single model that uses
global covariance across
all features with high
regularization and/or
dimensionality reduction
(e.g. LASSO-PCR?)

Anatomy is not part of
estimation but provide

® The number of dimensions of predictive group models are typically limited by the number of participants

in the dataset.



Compute
Cost
(CPU-time)

Compute
Cost
(Memory)

Compute
cost
(Storage +
Ease of
Sharing)

n>p;n~p;n<p
High

Large number of
independent
estimations required;
more with permutation
testing

Parallelization can
reduce cost, but
integrating results can
be complicated

Low/Medium memory

Each searchlight has a
small/medium memory
footprint determined by
radius and number of
trials/conditions.

Estimation rarely
requires operating on
all searchlight models
simultaneously.

Low and simple if
primarily working with
performance only (e.g.
accuracy maps,
distance-correlation)
because each voxel is

n<p;/n<<p
Medium

Number of estimations
depends on number of
regions

Parallelization can
reduce cost and
integrating results is
straightforward

Medium memory

Memory cost scales
with the size of regions
selected and number of
trials/conditions/particip
ants.

Estimation rarely
requires operating all
ROI models
simultaneously.

Low and simple
because ROIls are most
often non-overlapping
and each voxel is
associated with a single
value (feature-weight or

constraints.

n<<p

Low

Typically just one
estimation and
permutation regime
performed

Parallelization is not
trivial or not possible
except for permutation
testing or bootstrapping
weights

High memory

Memory cost typically
depends on total number
of voxels (sampling
resolution) and specific
estimation routine (e.g.
SVD).

Estimation almost always
requires operating on all
voxels and observations
simultaneously;
exacerbated for
between-subject models
that require operating on
many individual
participants
simultaneously

Low and simple because
just one model in which
each voxel is associated
with a single
feature-weight.

1 See structured sparsity models (Baldassarre et al., 2012; Gramfort et al., 2013; Grosenick et al., 2013)
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associated with a
single value.

High and complicated
if intending to save
feature weights
because searchlights
are overlapping.

Data sharing typically
consists of accuracy
maps.

performance).

Can represent
performance and
weight maps in a single
standard format (array,
nifti). Easy to apply to
new datasets.

Data sharing typically
consists of accuracy
maps, but feature
weight maps are ftrivial
to share as well.

Can represent
weightmaps in a single
standard format.

Data sharing typically
consists of weight maps
that are then applied to
novel datasets
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